JP2008133937A - Fluid sealing type damping device - Google Patents

Fluid sealing type damping device Download PDF

Info

Publication number
JP2008133937A
JP2008133937A JP2006322262A JP2006322262A JP2008133937A JP 2008133937 A JP2008133937 A JP 2008133937A JP 2006322262 A JP2006322262 A JP 2006322262A JP 2006322262 A JP2006322262 A JP 2006322262A JP 2008133937 A JP2008133937 A JP 2008133937A
Authority
JP
Japan
Prior art keywords
short
valve
elastic
fluid
circuit channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006322262A
Other languages
Japanese (ja)
Inventor
Tadamitsu Minamizawa
忠光 南沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2006322262A priority Critical patent/JP2008133937A/en
Publication of JP2008133937A publication Critical patent/JP2008133937A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid sealing type damping device having a novel structure effective for attaining high reliability on the closing-opening of a valve member and achieving the high flow action of the fluid through an orifice flow passage to realize a desired stable damping effect. <P>SOLUTION: A short-circuit flow passage 90 is formed on the outer peripheral side of a movable rubber diaphragm 68 of a partitioning member 32, separately from the orifice flow passage 50. An elastic-wall valve 94 is formed integrally with the movable rubber diaphragm 68, and is protruded from the outer peripheral surface of the movable rubber diaphragm 68. A valve member accepting portion 92 having the elastic-wall valve 94 disposed therein is formed in the short-circuit flow passage 90. The elastic-wall valve 94 is pushed with an elastically fastening margin against a valve seat 82 formed in the valve member accepting portion 92, so that the short-circuit flow passage 90 is kept in the isolation state. The short-circuit flow passage 90 is set into the communication state by the elastic deformation of the elastic-wall valve 94 based on the difference between a negative pressure generated in a pressure chamber 42 and the pressure in a balancing chamber 44. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、受圧室と平衡室を連通するオリフィス通路を通じての流体の流動作用により防振効果を得るようにした流体封入式防振装置に係り、特に、オリフィス通路の目詰まり状態下で、受圧室の圧力変動を可動ゴム膜の変形に基づき吸収する圧力変動吸収機構を備えた流体封入式防振装置に関するものである。   The present invention relates to a fluid-filled vibration isolator that obtains an anti-vibration effect by a fluid flow action through an orifice passage that communicates a pressure receiving chamber and an equilibrium chamber, and in particular, under a clogged state of an orifice passage. The present invention relates to a fluid-filled vibration isolator equipped with a pressure fluctuation absorbing mechanism that absorbs pressure fluctuation in a chamber based on deformation of a movable rubber film.

従来から、振動伝達系を構成する部材間に介装される防振支持体や防振連結体等の防振装置の一種として、内部に封入された非圧縮性流体の共振作用等の流動作用に基づき防振効果を得るようにした流体封入式防振装置が知られている。この流体封入式防振装置は、第一の取付部材と筒状の第二の取付部材が該第二の取付部材の一方の開口部側において本体ゴム弾性体で連結されていると共に、第二の取付部材の他方の開口部が可撓性膜で覆蓋されていることで、本体ゴム弾性体と可撓性膜の間に非圧縮性流体が封入された流体室を備えている。また、第二の取付部材に支持された仕切部材で流体室が仕切られて、流体室における仕切部材を挟んだ両側に壁部の一部が本体ゴム弾性体で構成された受圧室と壁部の一部が可撓性膜で構成された平衡室が形成され、それら受圧室と平衡室が、仕切部材に形成されたオリフィス通路を通じて相互に連通された構造を呈している。このような構造によれば、振動入力に伴い受圧室と平衡室の間に相対的な圧力変動の差が生じて、オリフィス通路を通じての流体の流動量が確保されることとなり、かかる流体の共振作用等の流動作用に基づき防振効果が得られることから、例えば自動車用のエンジンマウントやボデーマウント、デフマウント、サスペンションメンバマウント等への適用が検討されている。   Conventionally, as a type of anti-vibration device such as an anti-vibration support and an anti-vibration coupling body interposed between members constituting the vibration transmission system, a fluid action such as a resonance action of an incompressible fluid enclosed inside There is known a fluid-filled vibration isolator that obtains an anti-vibration effect based on the above. In this fluid-filled vibration isolator, a first mounting member and a cylindrical second mounting member are connected by a main rubber elastic body on one opening side of the second mounting member, and a second Since the other opening of the mounting member is covered with a flexible film, a fluid chamber is provided in which an incompressible fluid is sealed between the main rubber elastic body and the flexible film. In addition, the fluid chamber is partitioned by the partition member supported by the second mounting member, and the pressure receiving chamber and the wall portion in which part of the wall portion is formed of a main rubber elastic body on both sides of the partition member in the fluid chamber An equilibration chamber partially formed of a flexible membrane is formed, and the pressure receiving chamber and the equilibration chamber communicate with each other through an orifice passage formed in the partition member. According to such a structure, a relative pressure fluctuation difference is generated between the pressure receiving chamber and the equilibrium chamber in accordance with the vibration input, and the amount of fluid flowing through the orifice passage is ensured. Since a vibration isolation effect can be obtained based on a fluid action such as an action, application to an engine mount, body mount, differential mount, suspension member mount, etc. for automobiles has been studied.

ところが、オリフィス通路を通じての流体の共振作用により発揮される防振効果が、予めオリフィス通路がチューニングされた比較的に狭い周波数域に限られるため、要求される高度な防振特性に対応することが難しいという問題があった。   However, the anti-vibration effect exerted by the resonance action of the fluid through the orifice passage is limited to a relatively narrow frequency range in which the orifice passage is tuned in advance. There was a problem that it was difficult.

そこで、例えば、オリフィス通路のチューニング周波数よりも高周波数域で問題となる振動が入力された際に、それに起因する急激な圧力変動の上昇を抑えて、防振効果を安定して得ることを目的として、液圧吸収機構(圧力変動吸収機構)を設けることが提案される。この液圧吸収機構は、特許文献1(特開平09−042372号公報)にも示されているように、受圧室と平衡室を仕切る仕切部材に可動膜を配設して、一方の面に受圧室の圧力が及ぼされ且つ他方の面に平衡室の圧力が及ぼされる構造を呈している。かかる高周波数域の振動入力に伴い、可動膜が変形して圧力変動が吸収されることによって、高動ばね化が回避されることとなる。   Therefore, for example, when vibrations that are problematic in the frequency range higher than the tuning frequency of the orifice passage are input, the purpose is to suppress the sudden rise in pressure fluctuation caused by the vibrations and to obtain a stable anti-vibration effect. It is proposed to provide a hydraulic pressure absorption mechanism (pressure fluctuation absorption mechanism). As shown in Patent Document 1 (Japanese Patent Laid-Open No. 09-042372), this hydraulic pressure absorbing mechanism is provided with a movable film on a partition member that partitions a pressure receiving chamber and an equilibrium chamber, and is provided on one surface. It has a structure in which the pressure of the pressure receiving chamber is exerted and the pressure of the equilibrium chamber is exerted on the other surface. With the vibration input in the high frequency range, the movable film is deformed and the pressure fluctuation is absorbed, so that a high dynamic spring is avoided.

ところで、上述の従来構造の流体封入式防振装置では、大きな加速度で衝撃的な振動荷重が第一の取付部材と第二の取付部材の間に入力されると、受圧室に過大な負圧が発生する場合がある。その結果、受圧室の流体が液相分離を起こして気泡が発生し、該気泡が潰れることによって、異音や振動が生じる、所謂キャビテーションの問題があった。   By the way, in the above-described conventional fluid-filled vibration isolator, when a shocking vibration load with a large acceleration is input between the first mounting member and the second mounting member, an excessive negative pressure is applied to the pressure receiving chamber. May occur. As a result, there has been a so-called cavitation problem in which abnormal noise and vibration are generated when the fluid in the pressure receiving chamber undergoes liquid phase separation to generate bubbles and the bubbles are crushed.

この問題に対して、上記特許文献1では、可動膜に舌片状の切欠きを設けて、可動膜自体の弾性変形を利用して、受圧室と平衡室を連通状態と遮断状態に切り換える開閉弁を構成することが提案されている。   With respect to this problem, in Patent Document 1 described above, a tongue-shaped notch is provided in the movable film, and the pressure-receiving chamber and the equilibrium chamber are switched between a communication state and a shut-off state using elastic deformation of the movable film itself. It has been proposed to constitute a valve.

しかしながら、可動膜に切欠きを形成しただけでは、弁体の開閉作動が確実にコントロールされ難いことと相俟って、受圧室が不必要に短絡するおそれがあり、それによって、オリフィス通路による本来の液封防振効果が大幅に低下してしまうおそれもあった。   However, simply forming a notch in the movable membrane may cause the pressure receiving chamber to be short-circuited unnecessarily, coupled with the fact that the opening and closing operation of the valve body is difficult to be controlled reliably. There was also a possibility that the liquid-sealing vibration-proofing effect would be significantly reduced.

そこで、本出願人は、先に、特許文献2(特開2003−148548号公報)において、オリフィス通路を形成する仕切部材の壁部の一部を本体ゴム弾性体と一体形成された弁体によって構成した流体封入式防振装置を提案した。   In view of this, the present applicant previously described in Patent Document 2 (Japanese Patent Laid-Open No. 2003-148548) that a part of the wall portion of the partition member forming the orifice passage is formed by a valve body integrally formed with the main rubber elastic body. A constructed fluid-filled vibration isolator was proposed.

ところが、このような流体封入式防振装置においては、オリフィス通路自体に短絡構造を持たせたことで、防振装置の使用条件等によって、オリフィス通路が不必要に開放されることが懸念され、その結果、防振性能の信頼性が得られ難くなるおそれがあった。また、弁体が本体ゴム弾性体と一体形成されていることから、大荷重が入力される本体ゴム弾性体のばね特性を実現するためにゴム材料が限定されてしまい、弁体に有利な特性を付与することが難しい場合も想定される。   However, in such a fluid-filled vibration isolator, since the orifice passage itself has a short circuit structure, there is a concern that the orifice passage may be unnecessarily opened depending on the use conditions of the vibration isolator, As a result, there is a risk that it is difficult to obtain the reliability of the vibration isolation performance. Further, since the valve body is integrally formed with the main rubber elastic body, the rubber material is limited in order to realize the spring characteristics of the main rubber elastic body to which a large load is input, and this is advantageous for the valve body. It is also assumed that it is difficult to give

特開平09−042372号公報Japanese Patent Application Laid-Open No. 09-042372 特開2003−148548号公報JP 2003-148548 A

ここにおいて、本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、弁体の開閉作動の信頼性やオリフィス通路を通じての流体の流動作用が、何れも有効に発揮されて、目的とする防振効果が安定して得られる、新規な構造の流体封入式防振装置を提供することにある。   Here, the present invention has been made in the background as described above, and the problem to be solved is that the reliability of the opening / closing operation of the valve body and the fluid flow action through the orifice passage are In other words, the present invention provides a fluid-filled vibration isolator having a novel structure that can be effectively exhibited and stably obtain a target vibration isolating effect.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載されたもの、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. Further, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or an invention that can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized based on thought.

すなわち、本発明の特徴とするところは、第一の取付部材と第二の取付部材を本体ゴム弾性体で連結すると共に、第二の取付部材で仕切部材を支持せしめて、仕切部材を挟んだ両側に壁部の一部が本体ゴム弾性体で構成された受圧室と壁部の一部が可撓性膜で構成された平衡室を形成して、それら受圧室や平衡室に非圧縮性流体を封入すると共に、仕切部材の外周部分にそれら受圧室と平衡室を相互に連通せしめるオリフィス通路を形成する一方、仕切部材の中央部分に可動ゴム膜を配設して、可動ゴム膜の一方の面に受圧室の圧力が及ぼされ且つ可動ゴム膜の他方の面に平衡室の圧力が及ぼされるようにして圧力変動吸収機構を構成した流体封入式防振装置において、仕切部材における可動ゴム膜の外周側にオリフィス通路とは別に短絡流路を形成すると共に、可動ゴム膜に弾性弁を一体形成して弾性弁を可動ゴム膜の外周面に突出させると共に、短絡流路において弾性弁を配設する弁体収容部を形成して弁体収容部に設けた弁座に対して弾性弁を弾性による締め代をもって押し付けることで短絡流路を遮断状態に保持せしめるようにし、受圧室に発生する負圧と平衡室との圧力差に基づいて弾性弁の弾性変形により短絡流路が連通状態とされるようにした流体封入式防振装置にある。   That is, the feature of the present invention is that the first mounting member and the second mounting member are connected by the main rubber elastic body, and the partition member is supported by the second mounting member, and the partition member is sandwiched. Formed on both sides are a pressure receiving chamber with part of the wall made of rubber elastic body and an equilibrium chamber with part of the wall made of flexible membrane, and these pressure receiving chamber and equilibrium chamber are incompressible While enclosing the fluid, an orifice passage is formed in the outer peripheral portion of the partition member to connect the pressure receiving chamber and the equilibrium chamber to each other, and a movable rubber film is disposed in the central portion of the partition member, In the fluid-filled vibration isolator having the pressure fluctuation absorbing mechanism configured such that the pressure of the pressure receiving chamber is exerted on the surface of the movable rubber film and the pressure of the equilibrium chamber is exerted on the other surface of the movable rubber film, the movable rubber film in the partition member Short-circuit flow separately from the orifice passage And forming an elastic valve integrally with the movable rubber film so that the elastic valve protrudes from the outer peripheral surface of the movable rubber film, and forming a valve body housing portion for disposing the elastic valve in the short-circuit channel Based on the pressure difference between the negative pressure generated in the pressure-receiving chamber and the equilibrium chamber, the elastic valve is pressed against the valve seat provided in the accommodating part with elastic allowance to keep the short-circuit flow path shut off. The fluid-filled vibration isolator is configured such that the short-circuit flow path is brought into communication by elastic deformation of the elastic valve.

このような本発明に従う構造とされた流体封入式防振装置においては、オリフィス通路と別に短絡流路が設けられていることによって、オリフィス通路を通じての流体の流動作用が、短絡流路の連通/遮断状態による影響を直接に受けることが抑えられている。即ち、オリフィス通路自体の長さや断面積等の形状が安定して一定に保たれる。   In such a fluid-filled vibration isolator having a structure according to the present invention, the short-circuit channel is provided separately from the orifice passage, so that the fluid flow action through the orifice passage The direct influence of the interruption state is suppressed. In other words, the shape of the orifice passage itself, such as the length and cross-sectional area, is kept stable and constant.

また、短絡流路を開閉する弾性弁が可動ゴム膜と一体形成されていることで、部品点数の増加を伴うことなく弾性弁が実現される。更に、弾性弁の材料選択に際して、例えば大きな支持ばね特性や耐オゾン性、耐ガソリン性等が要求される本体ゴム弾性体の材料による制限を受けることがなく、特性的に略同じ要求のある可動ゴム膜と一体形成することによって、弾性弁の要求特性を高度に実現できる。   Further, since the elastic valve that opens and closes the short-circuit channel is formed integrally with the movable rubber film, the elastic valve is realized without increasing the number of parts. Furthermore, when selecting a material for the elastic valve, for example, there is no restriction due to the material of the main rubber elastic body that requires large support spring characteristics, ozone resistance, gasoline resistance, etc. By integrally forming with the rubber film, the required characteristics of the elastic valve can be realized to a high degree.

しかも、弾性弁が可動ゴム膜の外周面に突出していると共に、短絡流路の弁体収容部の弁座に対して弾性による締め代をもって押し付けられるようになっていることから、可動ゴム膜の変形に伴う弾性弁の変形が抑えられて、弾性弁の開閉作動の信頼性が向上される。   In addition, since the elastic valve protrudes from the outer peripheral surface of the movable rubber film and is pressed against the valve seat of the valve body housing portion of the short-circuit channel with an elastic tightening margin, the movable rubber film The deformation of the elastic valve accompanying the deformation is suppressed, and the reliability of the opening / closing operation of the elastic valve is improved.

それ故、部品点数の削減により、製造工程の短縮化および低コスト化が有利に図られることに加え、弾性弁の安定した開閉作動により、高動ばね化の防止やオリフィス通路を通じての流体流動量の確保が、何れも好適に為されて、所期の防振効果が安定して得られるのである。   Therefore, by reducing the number of parts, the manufacturing process can be advantageously shortened and the cost can be reduced. In addition, the elastic valve can be stably opened and closed to prevent high dynamic springs and the amount of fluid flow through the orifice passage. As a result, the desired vibration-proofing effect can be stably obtained.

また、本発明に係る流体封入式防振装置においては、仕切部材の外周部分を周方向に一周より短い長さで周方向に延びて、その一方の周方向端部が受圧室に他方の周方向端部が平衡室に各々連通孔を通じて連通されることによりオリフィス通路が形成されていると共に、オリフィス通路の周方向一方の端部と他方の端部との間でオリフィス通路が形成されていない部分において周方向に延びるようにして短絡流路が形成されている構造が、採用されても良い。   Further, in the fluid filled type vibration damping device according to the present invention, the outer peripheral portion of the partition member extends in the circumferential direction with a length shorter than one circumference in the circumferential direction, and one circumferential end thereof is provided in the pressure receiving chamber. An orifice passage is formed by communicating each end in the direction with the equilibrium chamber through a communication hole, and no orifice passage is formed between one end and the other end in the circumferential direction of the orifice passage. A structure in which a short-circuit channel is formed so as to extend in the circumferential direction in the portion may be employed.

このような構造によれば、短絡流路が仕切部材におけるオリフィス通路を形成した余剰スペースを利用して形成されているため、防振装置のコンパクト化や、オリフィス通路と短絡流路の別体構造化が有利に実現され得る。しかも、オリフィス通路や短絡流路が何れも周方向に延びていることによって、仕切部材の限られた範囲内で、長さ等のチューニングの自由度が大きくなる。また、仕切部材の厚さ寸法が小さい場合でも、弾性弁の変位ストロークを周方向で確保することも可能となる。   According to such a structure, since the short-circuit channel is formed by using the surplus space in which the orifice passage in the partition member is formed, the vibration isolator is made compact, and the separate structure of the orifice channel and the short-circuit channel is provided. Can advantageously be realized. In addition, since both the orifice passage and the short-circuit passage extend in the circumferential direction, the degree of freedom in tuning such as the length is increased within a limited range of the partition member. Moreover, even when the thickness dimension of the partition member is small, the displacement stroke of the elastic valve can be secured in the circumferential direction.

また、本発明に係る流体封入式防振装置においては、短絡流路の一方の端部がオリフィス通路の一方の連通孔を通じて受圧室に連通されていると共に、短絡流路の他方の端部がオリフィス通路の他方の連通孔を通じて平衡室に連通されている一方、短絡流路上に設けた弁体収容部において弾性弁が仕切部材の周方向への弾性変形に基づいて短絡流路を開閉するように配設されている構造が、好適に採用され得る。   In the fluid filled type vibration damping device according to the present invention, one end of the short-circuit channel is communicated with the pressure receiving chamber through one communication hole of the orifice channel, and the other end of the short-circuit channel is While being connected to the equilibrium chamber through the other communication hole of the orifice passage, the elastic valve opens and closes the short-circuit channel based on the elastic deformation in the circumferential direction of the partition member in the valve body housing portion provided on the short-circuit channel. The structure disposed in the above can be suitably employed.

本構造によれば、目的とする防振効果が一層有利に発揮され得る。これは、本発明者等が従来構造の流体封入式防振装置におけるキャビテーション問題について鋭意検討した結果、キャビテーションの発生し易い箇所がオリフィス通路の受圧室への開口付近であることが実験等により判ったことに基づく。即ち、短絡流路がオリフィス通路の受圧室への開口を利用して形成されていることにより、短絡流路の連通状態下、受圧室のなかでも特にキャビテーションの発生し易いオリフィス通路の開口部付近で過大な負圧が速やかに且つ効率的に解消されることとなる。その結果、例えば特許文献2(特開2003−148548号公報)に示されている如きオリフィス通路の中間部分に短絡手段を設けた従来構造の防振装置に比して、一層優れたキャビテーション回避効果が期待される。   According to this structure, the target vibration-proof effect can be exhibited more advantageously. As a result of intensive studies on the cavitation problem in the conventional fluid-filled vibration isolator by the present inventors, it has been found by experiments that the location where cavitation is likely to occur is near the opening of the orifice passage to the pressure receiving chamber. Based on that. That is, the short-circuit channel is formed by utilizing the opening of the orifice passage to the pressure-receiving chamber, so that, in the communication state of the short-circuit channel, in the vicinity of the orifice passage opening that is particularly susceptible to cavitation in the pressure-receiving chamber. Therefore, the excessive negative pressure is quickly and efficiently eliminated. As a result, for example, the cavitation avoidance effect is more excellent than that of a conventional vibration isolator having a short-circuit means provided in the middle portion of the orifice passage as disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2003-148548). There is expected.

また、本発明に係る流体封入式防振装置においては、短絡流路が仕切部材を厚さ方向に貫通して形成されていると共に、短絡流路上に設けた弁体収容部において弾性弁が仕切部材の厚さ方向への弾性変形に基づいて短絡流路を開閉するように配設されている構造が、採用されても良い。   Further, in the fluid filled type vibration damping device according to the present invention, the short-circuit channel is formed so as to penetrate the partition member in the thickness direction, and the elastic valve is partitioned in the valve body housing portion provided on the short-circuit channel. A structure arranged to open and close the short-circuit channel based on elastic deformation in the thickness direction of the member may be employed.

これによれば、短絡構造が簡単とされて、製造が容易になると共に、短絡流路を形成するための周方向スペースを小さくできて、その分、オリフィス通路の周方向の長さを大きくすることも可能となる。また、かかる流体封入式防振装置が自動車用エンジンマウント等に採用される場合に、主たる振動の入力方向が、仕切部材を挟んで受圧室と平衡室が対向する方向と平行に延びることが多い。ここで本構造のように、弾性弁が仕切部材の厚さ方向に変形して短絡流路を開閉するようになっていると、受圧室の過大な負圧の発生において、弾性弁が効率良く弾性変形する結果、キャビテーション防止効果の更なる向上が図られ得る。   According to this, the short-circuit structure is simplified, the manufacture becomes easy, the circumferential space for forming the short-circuit channel can be reduced, and the length of the orifice passage in the circumferential direction is increased accordingly. It is also possible. In addition, when such a fluid-filled vibration isolator is used in an automobile engine mount or the like, the main vibration input direction often extends parallel to the direction in which the pressure receiving chamber and the equilibrium chamber face each other across the partition member. . Here, as in this structure, when the elastic valve is deformed in the thickness direction of the partition member to open and close the short-circuit channel, the elastic valve is efficiently used in the generation of excessive negative pressure in the pressure receiving chamber. As a result of elastic deformation, the effect of preventing cavitation can be further improved.

また、本発明に係る流体封入式防振装置においては、可動ゴム膜から突出して一体形成された弾性弁が、その突出先端部分よりも可動ゴム膜側の基端部分において断面積が小さくされており、その突出先端部分において短絡流路に設けられた弁座に当接して短絡流路を開閉する当接弁部が設けられていると共に、その基端部分において弾性変形部が設けられている構造が、好適に採用される。   Further, in the fluid filled type vibration damping device according to the present invention, the elastic valve that is integrally formed protruding from the movable rubber film has a smaller cross-sectional area at the base end portion on the movable rubber film side than the protruding tip portion. In addition, a contact valve portion that opens and closes the short circuit flow path by contacting a valve seat provided in the short circuit flow path is provided at the protruding tip portion, and an elastic deformation portion is provided at the base end portion. A structure is preferably employed.

このような構造によれば、弾性弁の基端部分に設けられた弾性変形部の断面積が、弾性弁の突出先端部分に設けられた当接弁部の断面積よりも小さくされている。これにより、弾性弁の開閉作動が、主として弾性変形部の変形により確保されつつ、短絡流路の弁座に当接する当接弁部の変形が抑えられて、弾性弁の弁座への当接状態が安定する。しかも、断面積の小さな弾性変形部を基点としたモーメント作用が有利に発揮されて、弾性弁への圧力作用に基づく開閉作動を一層効率よくすることも可能である。それ故、弾性弁の開閉作動のコントロール性能、延いては短絡流路の連通/遮断状態のコントロール性能が向上されて、防振効果の更なる向上が図られ得る。   According to such a structure, the cross-sectional area of the elastic deformation part provided in the base end part of the elastic valve is made smaller than the cross-sectional area of the contact valve part provided in the protruding tip part of the elastic valve. Thereby, the opening / closing operation of the elastic valve is ensured mainly by the deformation of the elastic deformation portion, and the deformation of the contact valve portion that contacts the valve seat of the short-circuit channel is suppressed, so that the elastic valve contacts the valve seat. The state is stable. In addition, the moment action based on the elastic deformation portion having a small cross-sectional area is advantageously exhibited, and the opening / closing operation based on the pressure action on the elastic valve can be made more efficient. Therefore, the control performance of the opening / closing operation of the elastic valve, and hence the control performance of the communication / blocking state of the short-circuit flow path can be improved, and the vibration isolation effect can be further improved.

また、本発明に係る流体封入式防振装置においては、自動車用エンジンマウントに適用されて、オリフィス通路が車両走行時に入力されるエンジンシェイクに相当する周波数域で減衰効果を発揮するようにチューニングされていると共に、オリフィス通路が機能するエンジンシェイクの振動入力時には短絡流路が遮断状態に維持されるように弾性弁の弾性による締め代が設定されている構造が、採用されても良い。   Further, in the fluid filled type vibration damping device according to the present invention, it is applied to an automobile engine mount, and the orifice passage is tuned so as to exhibit a damping effect in a frequency range corresponding to an engine shake input when the vehicle travels. In addition, a structure may be adopted in which a tightening allowance is set by the elasticity of the elastic valve so that the short-circuit flow path is maintained in a cut-off state when the vibration of the engine shake in which the orifice passage functions is input.

このような構造によれば、走行状態で問題となるエンジンシェイクが、オリフィス通路を通じての流体の共振作用等の流動作用に基づき有利に抑えられる。また、例えばエンジンシェイクよりも高周波数域の走行こもり音等が入力された際に、オリフィス通路が目詰まり状態となっても、可動ゴム膜の弾性変形で受圧室の圧力が吸収されることによって、高動ばね化が回避される。特に、段差乗り越えやスピードブレーカの走行等に伴い大振幅の振動が入力されて、受圧室に過大な負圧が発生した場合にも、弾性弁の高度な開閉作動によって、該負圧が速やかに且つ効率的に解消される結果、キャビテーションに起因する異音が有利に抑えられる。そのような有用な防振装置が、弾性弁と可動ゴム膜の一体構造による部品点数の削減に基づき、簡単な構造で低コストに実現されることから、自動車用エンジンマウントに対して有利に適用され得る。   According to such a structure, an engine shake that becomes a problem in the running state can be advantageously suppressed based on a fluid action such as a resonance action of the fluid through the orifice passage. In addition, for example, when a traveling boom sound or the like in a higher frequency range than the engine shake is input, even if the orifice passage is clogged, the pressure of the pressure receiving chamber is absorbed by the elastic deformation of the movable rubber film. High dynamic springs are avoided. In particular, even when large amplitude vibration is input due to stepping over a step or running a speed breaker, and excessive negative pressure is generated in the pressure receiving chamber, the negative pressure is quickly reduced by the advanced opening / closing operation of the elastic valve. As a result of being efficiently eliminated, abnormal noise caused by cavitation is advantageously suppressed. Such a useful anti-vibration device is realized with a simple structure at low cost based on the reduction in the number of parts by integrating the elastic valve and the movable rubber film, so it can be advantageously applied to automotive engine mounts. Can be done.

以下、本発明を、更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。先ず、図1には、本発明の流体封入式防振装置に係る一実施形態としての自動車用エンジンマウント10が示されている。自動車用エンジンマウント10は、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14が本体ゴム弾性体16で弾性連結された構造とされている。第一の取付金具12がパワーユニット側に取り付けられる一方、第二の取付金具14がブラケット金具18を介して車両ボデー側に取り付けられることで、互いに防振連結される一対の防振対象部材としてのパワーユニットと車両ボデーとの間に介装されて、パワーユニットを車両ボデーに対して防振支持せしめるようになっている。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings. First, FIG. 1 shows an automobile engine mount 10 as an embodiment according to the fluid filled type vibration damping device of the present invention. The automobile engine mount 10 has a structure in which a first mounting member 12 as a first mounting member and a second mounting member 14 as a second mounting member are elastically connected by a main rubber elastic body 16. . The first mounting bracket 12 is mounted on the power unit side, while the second mounting bracket 14 is mounted on the vehicle body side via the bracket bracket 18, thereby providing a pair of vibration isolation target members that are connected to each other for vibration isolation. The power unit is interposed between the power unit and the vehicle body so that the power unit is supported in an anti-vibration manner with respect to the vehicle body.

なお、図1では、自動車に装着する前のエンジンマウント10の単体での状態が示されているが、本実施形態では、装着状態において、パワーユニットの分担支持荷重がマウント軸方向(図1中、上下)に入力される。従って、マウント装着状態下では、本体ゴム弾性体16の弾性変形に基づき第一の取付金具12と第二の取付金具14が軸方向で互いに接近する方向に変位する。また、かかる装着状態下、防振すべき主たる振動は、略マウント軸方向に入力されることとなる。以下の説明中、特に断りのない限り、上下方向は、マウント軸方向となる図1中の上下方向をいう。   1 shows the state of the engine mount 10 as a single unit before being mounted on the automobile, but in the present embodiment, in the mounted state, the shared support load of the power unit is in the mount axis direction (in FIG. 1, (Up and down). Therefore, in the mounted state, the first mounting member 12 and the second mounting member 14 are displaced in the axial direction toward each other based on the elastic deformation of the main rubber elastic body 16. In addition, under such a mounted state, main vibrations to be vibrated are input substantially in the mount axis direction. In the following description, unless otherwise specified, the vertical direction refers to the vertical direction in FIG.

より詳細には、第一の取付金具12は、略円柱形状を有していると共に、その中心軸上には、上端面に開口する螺子穴20が形成されている。この螺子穴20に螺着される図示しない固定ボルトによって、第一の取付金具12がパワーユニットに固定されるようになっている。   More specifically, the first mounting member 12 has a substantially cylindrical shape, and a screw hole 20 that opens to the upper end surface is formed on the central axis thereof. The first mounting bracket 12 is fixed to the power unit by a fixing bolt (not shown) that is screwed into the screw hole 20.

一方、第二の取付金具14は、全体として大径の略円筒形状を有していると共に、その軸方向上端部には、軸直角方向に広がるフランジ状部22が一体形成されている。第一の取付金具12が第二の取付金具14の軸方向上側の開口部側に離隔して同心軸上に位置せしめられており、これら第一の取付金具12と第二の取付金具14の間に本体ゴム弾性体16が配設されている。   On the other hand, the second mounting bracket 14 has a substantially cylindrical shape with a large diameter as a whole, and a flange-shaped portion 22 that extends in the direction perpendicular to the axis is integrally formed at the upper end portion in the axial direction. The first mounting bracket 12 is positioned on the concentric shaft so as to be separated from the opening portion on the upper side in the axial direction of the second mounting bracket 14, and the first mounting bracket 12 and the second mounting bracket 14. A main rubber elastic body 16 is disposed therebetween.

本体ゴム弾性体16は、全体として略円錐台形状を有している。本体ゴム弾性体16の小径側端面には、第一の取付金具12が軸方向に差し込まれるようにして加硫接着されていると共に、本体ゴム弾性体16の大径側端部外周面には、第二の取付金具14の軸方向上側の部分の内周面が重ね合わされて加硫接着されている。要するに、本体ゴム弾性体16が、図2にも示されているように、第一の取付金具12と第二の取付金具14を備えた第一の一体加硫成形品24として形成されている。また、上述の説明からも明らかなように、第一の取付金具12と第二の取付金具14が本体ゴム弾性体16によって弾性連結されていると共に、第二の取付金具14の軸方向一方(図1中、上)の開口部が、本体ゴム弾性体16によって流体密に閉塞されている。   The main rubber elastic body 16 has a substantially truncated cone shape as a whole. The first rubber fitting 12 is vulcanized and bonded to the small-diameter side end surface of the main rubber elastic body 16 so as to be inserted in the axial direction, and the large-diameter side end outer peripheral surface of the main rubber elastic body 16 is attached to the main rubber elastic body 16. The inner peripheral surface of the upper portion in the axial direction of the second mounting bracket 14 is overlapped and vulcanized and bonded. In short, the main rubber elastic body 16 is formed as a first integrally vulcanized molded product 24 including the first mounting bracket 12 and the second mounting bracket 14 as shown in FIG. . Further, as apparent from the above description, the first mounting bracket 12 and the second mounting bracket 14 are elastically connected by the main rubber elastic body 16 and one of the second mounting brackets 14 in the axial direction ( The upper opening in FIG. 1 is fluid-tightly closed by the main rubber elastic body 16.

なお、本体ゴム弾性体16の大径側端面には、すり鉢状の大径凹所26が形成されて、荷重入力時の応力緩和が図られている。また、第二の取付金具14の軸方向中間部分から下端部にかけての内周面には、本体ゴム弾性体16と一体形成された薄肉のシールゴム層28が被着形成されている。更に、本体ゴム弾性体16おける大径凹所26の開口周縁部とシールゴム層28の間には、第二の取付金具14の軸方向中間部分を全周に亘って延びるようにして、軸直角方向に広がる環状段差面30が形成されている。   A mortar-shaped large-diameter recess 26 is formed on the large-diameter side end face of the main rubber elastic body 16 so as to relieve stress when a load is input. A thin seal rubber layer 28 formed integrally with the main rubber elastic body 16 is attached to the inner peripheral surface from the axially intermediate portion to the lower end portion of the second mounting bracket 14. Further, between the opening peripheral edge of the large-diameter recess 26 in the main rubber elastic body 16 and the seal rubber layer 28, an axially intermediate portion of the second mounting bracket 14 extends over the entire circumference so as to be perpendicular to the axis. An annular step surface 30 extending in the direction is formed.

このような第一の一体加硫成形品24には、軸方向下方の開口部から仕切部材32と可撓性膜としてのダイヤフラム34が入れられて、第二の取付金具14に対して嵌着固定されている。仕切部材32は、厚肉の略円板形状を有しており、金属や合成樹脂等の硬質材で形成されている。また、仕切部材32の軸方向中間部分には、外周面に開口して周方向に所定の長さ(本実施形態では一周弱の長さ)で延びる周溝36が形成されている。   In such a first integral vulcanized molded article 24, a partition member 32 and a diaphragm 34 as a flexible film are inserted from an opening in the axial direction, and are fitted to the second mounting bracket 14. It is fixed. The partition member 32 has a thick, substantially disk shape, and is formed of a hard material such as metal or synthetic resin. In addition, a circumferential groove 36 is formed in the intermediate portion in the axial direction of the partition member 32 and opens to the outer peripheral surface and extends in the circumferential direction by a predetermined length (a length of a little less than one round in the present embodiment).

一方、ダイヤフラム34は、図3に示されているように、薄肉のゴム膜によって形成されており、波紋状の弛みをもった略薄肉円板形状とされて容易に撓み変形が許容されるようになっている。また、ダイヤフラム34の外周面には、円筒形状のゴム膜固定金具38が加硫接着されている。即ち、ダイヤフラム34は、ゴム膜固定金具38を備えた第二の一体加硫成形品40として形成されている。そして、これら仕切部材32とゴム膜固定金具38が、第二の取付金具14に軸方向に挿入されると共に、第二の取付金具14に八方絞り等の縮径加工が施されることにより、第二の取付金具14に対して嵌着固定されている。特に、第二の取付金具14の軸方向下端部にかしめ加工が施されていることによって、ゴム膜固定金具38における第二の取付金具14の軸方向下端部からの抜け出しが防止されている。その結果、第二の取付金具14の軸方向他方(図1中、下)の開口部が、ダイヤフラム34で流体密に覆蓋されている。   On the other hand, the diaphragm 34 is formed of a thin rubber film, as shown in FIG. 3, and is formed into a substantially thin disk shape having ripples of slack so that it can be easily bent and deformed. It has become. A cylindrical rubber film fixture 38 is vulcanized and bonded to the outer peripheral surface of the diaphragm 34. That is, the diaphragm 34 is formed as a second integrally vulcanized molded product 40 provided with a rubber film fixing bracket 38. The partition member 32 and the rubber film fixing bracket 38 are inserted into the second mounting bracket 14 in the axial direction, and the second mounting bracket 14 is subjected to diameter reduction processing such as eight-way drawing, It is fixedly fitted to the second mounting bracket 14. In particular, since the caulking process is applied to the lower end portion in the axial direction of the second mounting bracket 14, the rubber film fixing bracket 38 is prevented from coming out from the lower end portion in the axial direction. As a result, the opening on the other axial direction (the lower side in FIG. 1) of the second mounting member 14 is covered with the diaphragm 34 in a fluid-tight manner.

かかる組付状態下、仕切部材32とゴム膜固定金具38は、相互に軸方向で重ね合わされて、本体ゴム弾性体16の環状段差面30と第二の取付金具14の下端部分との間で、軸方向に挟持されて位置決めされている。また、これら仕切部材32およびゴム膜固定金具38と第二の取付金具14の嵌着面間には、その全面に亘ってシールゴム層28が挟圧されており、それらの嵌着面間が流体密にシールされている。   Under such an assembled state, the partition member 32 and the rubber film fixing bracket 38 are overlapped with each other in the axial direction, and between the annular step surface 30 of the main rubber elastic body 16 and the lower end portion of the second mounting bracket 14. , And are positioned in the axial direction. Further, between the fitting surfaces of the partition member 32 and the rubber film fixing bracket 38 and the second mounting bracket 14, a seal rubber layer 28 is sandwiched over the entire surface, and the fluid is between the fitting surfaces. It is tightly sealed.

これにより、第一の取付金具12と第二の取付金具14の間における本体ゴム弾性体16とダイヤフラム34の対向面間が流体密に閉塞されて、該対向面間の中間部分に仕切部材32が軸直角方向に広がって配設されており、仕切部材32を挟んだ軸方向一方の側には、壁部の一部が本体ゴム弾性体16で構成されて、本体ゴム弾性体16の弾性変形に基づき圧力変動が生ぜしめられる受圧室42が形成されている一方、仕切部材32を挟んだ軸方向他方の側には、壁部の一部がダイヤフラム34で構成されて、ダイヤフラム34の弾性変形に基づき容積変化が容易に許容される平衡室44が形成されている。これら受圧室42や平衡室44には、水やアルキレングリコール,ポリアルキレングリコール,シリコーン油等の非圧縮性流体が封入されている。受圧室42や平衡室44への非圧縮性流体の封入は、例えば非圧縮性流体中で第一の一体加硫成形品24に対して仕切部材32や第二の一体加硫成形品40を組み付けることにより、有利に為される。   Thereby, between the opposing surfaces of the main rubber elastic body 16 and the diaphragm 34 between the first mounting bracket 12 and the second mounting bracket 14 is fluid-tightly closed, and a partition member 32 is provided at an intermediate portion between the opposing surfaces. Is disposed so as to extend in the direction perpendicular to the axis, and on one side in the axial direction across the partition member 32, a part of the wall portion is constituted by the main rubber elastic body 16, and the elasticity of the main rubber elastic body 16 is increased. A pressure receiving chamber 42 is formed in which pressure fluctuations are generated based on deformation. On the other side in the axial direction across the partition member 32, a part of the wall portion is constituted by a diaphragm 34, and the elasticity of the diaphragm 34 is formed. An equilibrium chamber 44 in which a volume change is easily allowed based on the deformation is formed. The pressure receiving chamber 42 and the equilibrium chamber 44 are filled with incompressible fluid such as water, alkylene glycol, polyalkylene glycol, and silicone oil. For example, the incompressible fluid is sealed in the pressure receiving chamber 42 and the equilibrium chamber 44 by, for example, separating the partition member 32 and the second integral vulcanized molded product 40 from the first integral vulcanized molded product 24 in the incompressible fluid. This is advantageously done by assembling.

また、仕切部材32の外周面における周溝36の開口が、シールゴム層28が被着された第二の取付金具14によって流体密に覆蓋されている。この周溝36の周方向両端部は、仕切部材32に形成された連通孔46,48を通じて、それぞれ、受圧室42と平衡室44の各一方に連通されている。これにより、仕切部材32の外周部分を周方向に所定長さ(本実施形態では一周弱の長さ)で延びて受圧室42と平衡室44を相互に連通するオリフィス通路50が形成されている。   Moreover, the opening of the circumferential groove 36 on the outer peripheral surface of the partition member 32 is fluid-tightly covered with the second mounting member 14 to which the seal rubber layer 28 is attached. Both ends in the circumferential direction of the circumferential groove 36 are communicated with one of the pressure receiving chamber 42 and the equilibrium chamber 44 through communication holes 46 and 48 formed in the partition member 32, respectively. As a result, an orifice passage 50 is formed which extends the outer peripheral portion of the partition member 32 in the circumferential direction by a predetermined length (a length of a little less than one round in the present embodiment) and allows the pressure receiving chamber 42 and the equilibrium chamber 44 to communicate with each other. .

本実施形態では、オリフィス通路50を流動せしめられる流体の共振周波数が、該流体の共振作用に基づいてエンジンシェイク等に相当する10Hz前後の低周波数域の振動に対して有効な防振効果(高減衰効果)が発揮されるようにチューニングされている。オリフィス通路50のチューニングは、例えば、受圧室42や平衡室44の各壁ばね剛性、即ちそれら各室42,44を単位容積だけ変化させるのに必要な圧力変化量に対応する本体ゴム弾性体16やダイヤフラム34等の各弾性変形量に基づく特性値を考慮しつつ、オリフィス通路50の通路長さと通路断面積を調節することによって行うことが可能であり、一般に、オリフィス通路50を通じて伝達される圧力変動の位相が変化して略共振状態となる周波数を、当該オリフィス通路50のチューニング周波数として把握することが出来る。   In the present embodiment, the resonance frequency of the fluid that is allowed to flow through the orifice passage 50 is effective against vibrations in a low frequency region around 10 Hz corresponding to an engine shake or the like based on the resonance action of the fluid. It is tuned so that the damping effect is demonstrated. Tuning of the orifice passage 50 is performed by, for example, the rigidity of the wall springs of the pressure receiving chamber 42 and the equilibrium chamber 44, that is, the main rubber elastic body 16 corresponding to the amount of pressure change necessary to change the chambers 42 and 44 by a unit volume. It is possible to adjust the passage length and passage cross-sectional area of the orifice passage 50 while taking into account the characteristic values based on the respective elastic deformation amounts of the diaphragm 34 and the diaphragm 34. In general, the pressure transmitted through the orifice passage 50 The frequency at which the phase of the change changes and becomes a substantially resonant state can be grasped as the tuning frequency of the orifice passage 50.

このように第一の取付金具12と第二の取付金具14が本体ゴム弾性体16で連結されて内部に受圧室42や平衡室44、オリフィス通路50等を備えたマウント本体には、ホルダ部材としてのブラケット金具18が組み付けられている。ブラケット金具18は、図4にも示されているように、鉄やアルミニウム合金等の剛性材で形成されており、円筒形状のブラケット本体52に対して、その軸方向一方の開口部からカップ形状を有する固定脚部54が被せ付けられて、溶接等で一体的に固定された構造とされている。ブラケット本体52の軸方向一方(図1中、上)の開口部には、外方に広がるフランジ形の鍔状部56が一体形成されている。一方、ブラケット本体52の軸方向他方の開口部には、内周側に突出する環状受部58が一体形成されている。   In this manner, the first mounting bracket 12 and the second mounting bracket 14 are connected by the main rubber elastic body 16, and the holder body is provided with the pressure receiving chamber 42, the equilibrium chamber 44, the orifice passage 50, etc. The bracket metal fitting 18 is assembled. As shown in FIG. 4, the bracket fitting 18 is made of a rigid material such as iron or aluminum alloy, and has a cup shape from one opening in the axial direction of the cylindrical bracket body 52. The fixed leg part 54 which has is attached, and it is set as the structure fixed by welding etc. integrally. A flange-shaped flange-shaped portion 56 that extends outward is integrally formed at one opening (upper in FIG. 1) in the axial direction of the bracket body 52. On the other hand, an annular receiving portion 58 that protrudes toward the inner peripheral side is integrally formed in the other opening portion in the axial direction of the bracket body 52.

マウント本体の第二の取付金具14がブラケット金具18のブラケット本体52に圧入されて、ブラケット本体52の鍔状部56が第二の取付金具14のフランジ状部22に重ね合わせられていることにより、ブラケット金具18のマウント本体に対する軸方向位置が規定されて、ブラケット金具18とマウント本体が相互に組み付けられている。また、固定脚部54の底壁部の中央には、内外に貫通するボルト挿通孔60が形成されている。そして、固定脚部54の底壁部近くの外周面が一部切り欠かれ(図示せず)、該切欠きから固定脚部54のボルト挿通孔60に挿通される図示しない固定ボルトによって、ブラケット金具18、延いてはブラケット金具18に固定された第二の取付金具14が、車両ボデーに対して固定されるようになっている。   The second mounting bracket 14 of the mount body is press-fitted into the bracket body 52 of the bracket bracket 18, and the flange-shaped portion 56 of the bracket body 52 is overlapped with the flange-shaped portion 22 of the second mounting bracket 14. The position of the bracket metal 18 in the axial direction with respect to the mount body is defined, and the bracket metal 18 and the mount body are assembled to each other. Further, a bolt insertion hole 60 penetrating inward and outward is formed in the center of the bottom wall portion of the fixed leg portion 54. Then, the outer peripheral surface near the bottom wall portion of the fixed leg portion 54 is partially cut away (not shown), and the bracket is fixed by a fixing bolt (not shown) inserted through the notch into the bolt insertion hole 60 of the fixed leg portion 54. The metal fitting 18 and by extension, the second mounting metal fitting 14 fixed to the bracket metal fitting 18 are fixed to the vehicle body.

また、ブラケット金具18とマウント本体の間には、蓋板部材としての底蓋金具62が組み付けられている。底蓋金具62は、図5に示されているように、中央部分が下方に向かって膨らむことで全体として浅底の皿形状とされている。底蓋金具62の外周部分には、上方に突出して、略一定の先細り状の断面で周方向の全周に亘って連続して延びるシールゴム64が加硫接着されている。底蓋金具62の外周縁部が、ブラケット本体52の環状受部58に重ね合わせられると共に、シールゴム64を介して第二の取付金具14の下端部に重ね合わせられている。そして、第二の取付金具14がブラケット金具18に圧入固定されて、シールゴム64が軸方向に圧縮変形せしめられていることにより、底蓋金具62の外周縁部が環状受部58と第二の取付金具14の軸方向下端部分の間で軸方向に挟持固定されている。   Further, a bottom cover fitting 62 as a cover plate member is assembled between the bracket fitting 18 and the mount body. As shown in FIG. 5, the bottom lid fitting 62 has a shallow dish shape as a whole by the center portion bulging downward. A seal rubber 64 that protrudes upward and continuously extends over the entire circumference in the circumferential direction is bonded to the outer peripheral portion of the bottom lid fitting 62 by vulcanization. The outer peripheral edge portion of the bottom cover fitting 62 is overlaid on the annular receiving portion 58 of the bracket main body 52, and is overlaid on the lower end portion of the second mounting fitting 14 via the seal rubber 64. The second mounting member 14 is press-fitted and fixed to the bracket member 18, and the seal rubber 64 is compressed and deformed in the axial direction, so that the outer peripheral edge portion of the bottom cover member 62 is connected to the annular receiving portion 58 and the second receiving portion 58. The mounting bracket 14 is clamped and fixed in the axial direction between the lower end portions in the axial direction.

その結果、第二の取付金具14の下側開口部が底蓋金具62で流体密に覆蓋されることとなり、ダイヤフラム34を挟んだ平衡室44と反対側には、外部空間に対して流体密に密閉された密閉空気室66が形成されている。従って、ダイヤフラム34の密閉空気室66内への膨出変形に基づいて平衡室44の容積変化が許容されていると共に、ダイヤフラム34の密閉空気室66内への膨出変形に伴ってダイヤフラム34に対して密閉空気室66の空気ばねが作用せしめられるようになっている。この空気ばねの作用を利用して、例えば静ばねと動ばねの比を調節し、ばね特性をチューニングすることが可能となるのである。   As a result, the lower opening of the second mounting bracket 14 is covered with the bottom lid bracket 62 in a fluid-tight manner, and on the side opposite to the equilibrium chamber 44 across the diaphragm 34, the fluid tightness with respect to the external space is provided. A sealed air chamber 66 is formed. Therefore, the volume change of the equilibrium chamber 44 is allowed based on the bulging deformation of the diaphragm 34 into the sealed air chamber 66, and the diaphragm 34 is moved into the diaphragm 34 along with the bulging deformation of the diaphragm 34 into the sealed air chamber 66. On the other hand, the air spring of the sealed air chamber 66 is made to act. By utilizing the action of the air spring, for example, the ratio of the static spring to the dynamic spring can be adjusted to tune the spring characteristics.

ここで、本実施形態に係る仕切部材32が、図6にも示されているように、可動ゴム膜としてのゴム弾性膜68を配設し得る構造とされている。即ち、仕切部材32は、第一仕切金具70と第二仕切金具72を含んで構成されている。   Here, as shown in FIG. 6, the partition member 32 according to the present embodiment has a structure in which a rubber elastic film 68 as a movable rubber film can be disposed. That is, the partition member 32 includes a first partition member 70 and a second partition member 72.

第一仕切金具70は、図7にも示されているように、薄肉の略円板形状を有していると共に、中央部分に円形状の透孔74が貫設されている。また、第一仕切金具70の径方向中間部分に段差状部が設けられて、外周部分が内周部分よりも軸方向一方(図1中、上)に突出している。これにより、第一仕切金具70の外周部分が、周溝36の幅方向一方(図1中、上)の壁部に対応した形状とされている。更に、第一仕切金具70の周上の一箇所には、前述のオリフィス通路50の一方の端部を受圧室42に接続する連通孔46が貫設されている。   As shown in FIG. 7, the first partition fitting 70 has a thin and substantially disk shape, and a circular through hole 74 is provided through the center portion. In addition, a stepped portion is provided in the radial intermediate portion of the first partition fitting 70, and the outer peripheral portion protrudes in the axial direction (upward in FIG. 1) from the inner peripheral portion. Thereby, the outer peripheral part of the 1st partition metal fitting 70 is made into the shape corresponding to the wall part of the width direction one side (upper in FIG. 1) of the circumferential groove 36. FIG. Further, a communication hole 46 that connects one end of the orifice passage 50 described above to the pressure receiving chamber 42 is provided at one location on the circumference of the first partition fitting 70.

一方、第二仕切金具72は、図8,9にも示されているように、厚肉の略円板形状を有していると共に、その中央部分には、所定の深さ寸法で軸方向に延びて軸方向一方(図1中、上)の端面に開口する円形状の中央凹所76が設けられている。また、第二仕切金具72の中央部分には、中央凹所76の底壁部に至らない深さ寸法で軸方向他方の端面に開口する凹所が設けられていることにより、第二仕切金具72の中央部分が薄肉の円板形状とされている。この円板形状の部分に、該部分よりも一回り小さな円形状の透孔78が貫設されている。   On the other hand, as shown in FIGS. 8 and 9, the second partition fitting 72 has a thick and substantially disk shape, and the central portion thereof has an axial direction with a predetermined depth dimension. A circular central recess 76 is provided which extends to the end face of one axial direction (upper in FIG. 1). Further, the central part of the second partition fitting 72 is provided with a recess that opens to the other end surface in the axial direction with a depth that does not reach the bottom wall portion of the central recess 76, whereby the second partition fitting The center part of 72 is made into the thin disk shape. A circular-shaped through-hole 78 that is slightly smaller than the disk portion is provided in the disk-shaped portion.

また、第二仕切金具72の外周部分が、周溝36の底壁部および幅方向他方(図1中、下)の壁部に対応した形状とされている。即ち、本実施形態では、第二仕切金具72の軸方向他方(図1中、下)の端部が軸方向中間部分および一方の端部よりも軸方向外方に突出する略L字状断面をもって、周方向に一周弱の長さで延びる溝状を呈している。この溝状部80の周方向一方の端部(図8中、下側に示された、溝状部80の右回り方向の端部)には、前述のオリフィス通路50の他方の端部を平衡室44に接続する切り欠き状の連通孔48が設けられている。   Moreover, the outer peripheral part of the 2nd partition metal fitting 72 is made into the shape corresponding to the wall part of the bottom wall part of the circumferential groove 36, and the width direction other side (lower in FIG. 1). In other words, in the present embodiment, the substantially other L-shaped cross section in which the other axial end (the lower side in FIG. 1) of the second partition fitting 72 projects axially outward from the axial intermediate portion and the one end. And has a groove shape extending in the circumferential direction with a length of a little less than one round. One end portion in the circumferential direction of the groove-shaped portion 80 (the end portion in the clockwise direction of the groove-shaped portion 80 shown on the lower side in FIG. 8) is connected to the other end portion of the orifice passage 50 described above. A notch-shaped communication hole 48 connected to the equilibrium chamber 44 is provided.

特に、第二仕切金具72の溝状部80における周方向一方の端部と他方の端部の間の溝状部80が形成されていない部分には、外周縁部から軸方向上方に立ち上がるようにして、薄肉板状の支持板部82が一体形成されている。支持板部82は、溝状部80における一方の端部と他方の端部の周方向間を第二仕切金具72の外周縁部に沿って連続して延びているため、全体として略円弧板形状を呈している。また、支持板部82の上端部分が、第二仕切金具72の上端部分と略同じ高さに設定されている。   In particular, in the groove-shaped portion 80 of the second partition fitting 72, a portion where the groove-shaped portion 80 between one end portion in the circumferential direction and the other end portion is not formed so as to rise upward in the axial direction from the outer peripheral edge portion. Thus, a thin plate-like support plate portion 82 is integrally formed. Since the support plate portion 82 continuously extends along the outer peripheral edge portion of the second partition fitting 72 between the one end portion and the other end portion of the groove-like portion 80 along the outer peripheral edge portion, the support plate portion 82 as a whole is a substantially arc plate. It has a shape. In addition, the upper end portion of the support plate portion 82 is set to be substantially the same height as the upper end portion of the second partition fitting 72.

この第二仕切金具72の溝状部80の両端部の周方向間における溝状部80が形成されていない箇所において、外周部分の支持板部82と径方向中間部分が径方向に所定距離を隔てて対向位置せしめられていることにより、第二仕切金具72の上端に開口して且つ周方向に略一定の矩形断面で連続して延びる周方向溝84が形成されている。かかる周方向溝84によって、溝状部80の周方向両端部が相互に連通せしめられている。   At a location where the groove-shaped portion 80 between the both ends of the groove-shaped portion 80 of the second partition fitting 72 is not formed, the support plate portion 82 and the radial intermediate portion of the outer peripheral portion have a predetermined distance in the radial direction. By being opposed to each other, a circumferential groove 84 is formed which opens at the upper end of the second partition fitting 72 and continuously extends in a substantially constant rectangular cross section in the circumferential direction. The circumferential grooves 84 allow both ends in the circumferential direction of the groove-shaped portion 80 to communicate with each other.

さらに、第二仕切金具72における周方向溝84を挟んで支持板部82と径方向で対向位置せしめられた部分には、径方向溝86が設けられている。径方向溝86は、第二仕切金具72の径方向に延びて、一方の端部が中央凹所76に案内されていると共に、他方の端部が周方向溝84に案内されている。特に本実施形態では、径方向溝86の幅寸法が、径方向内方から外方に向かって次第に大きくされている。   Further, a radial groove 86 is provided in a portion of the second partitioning metal 72 that is opposed to the support plate portion 82 in the radial direction across the circumferential groove 84. The radial groove 86 extends in the radial direction of the second partition member 72, and has one end portion guided to the central recess 76 and the other end portion guided to the circumferential groove 84. In particular, in the present embodiment, the width dimension of the radial groove 86 is gradually increased from the radially inner side to the outer side.

これら第一仕切金具70と第二仕切金具72が軸方向に重ね合わせられて、同心軸上に位置せしめられている。また、第一仕切金具70の連通孔46が、第二仕切金具72の連通孔48が形成された周方向端部と反対側の周方向端部と周方向で位置合わせされている。これにより、仕切部材32が構成されていると共に、第一仕切金具70の外周部分と第二仕切金具72の溝状部80が協働して周溝36を構成し、この周溝36が第二の取付金具14で覆蓋されていることによってオリフィス通路50が構成されている。第一仕切金具70と第二仕切金具72の間には、ゴム弾性膜68が配設されている。   The first partition member 70 and the second partition member 72 are overlapped in the axial direction and are positioned on the concentric shaft. Further, the communication hole 46 of the first partition fitting 70 is aligned with the circumferential end opposite to the circumferential end where the communication hole 48 of the second partition fitting 72 is formed in the circumferential direction. Thereby, the partition member 32 is configured, and the outer peripheral portion of the first partition fitting 70 and the groove-shaped portion 80 of the second partition fitting 72 cooperate to form the circumferential groove 36, and the circumferential groove 36 is the first groove. The orifice passage 50 is configured by being covered with the second mounting bracket 14. A rubber elastic film 68 is disposed between the first partition member 70 and the second partition member 72.

ゴム弾性膜68は、図10〜11にも示されているように、薄肉の略円板形状を有していると共に、ゴム弾性材を用いて形成されている。ゴム弾性膜68の外周縁部には、軸方向両側に突出する一対の弾性突部88,88が一体形成されている。各弾性突部88は、略一定の矩形断面で周方向の全周に亘って連続して延びている。一対の弾性突部88,88によって、ゴム弾性膜68の外周部分の厚さ寸法が、中央部分に比して大きくされている。特に、ゴム弾性膜68の外周部分の厚さ寸法が、第一仕切金具70の透孔74の周縁部と第二仕切金具72の透孔78の周縁部(中央凹所76の底壁部)の軸方向の離隔距離よりも僅かに大きくされている。また、ゴム弾性膜68の外径寸法が第二仕切金具72の中央凹所76の外径寸法と略同じ大きさとされている。   As shown in FIGS. 10 to 11, the rubber elastic film 68 has a thin and substantially disk shape and is formed using a rubber elastic material. A pair of elastic protrusions 88 and 88 projecting on both sides in the axial direction are integrally formed on the outer peripheral edge of the rubber elastic film 68. Each elastic protrusion 88 has a substantially constant rectangular cross section and extends continuously over the entire circumference in the circumferential direction. By the pair of elastic protrusions 88, 88, the thickness of the outer peripheral portion of the rubber elastic film 68 is made larger than that of the central portion. In particular, the thickness dimension of the outer peripheral portion of the rubber elastic film 68 is such that the peripheral portion of the through hole 74 of the first partition fitting 70 and the peripheral portion of the through hole 78 of the second partition fitting 72 (the bottom wall portion of the central recess 76). It is slightly larger than the axial separation distance. The outer diameter of the rubber elastic film 68 is substantially the same as the outer diameter of the central recess 76 of the second partition fitting 72.

このようなゴム弾性膜68が第二仕切金具72の中央凹所76に嵌め込まれて、ゴム弾性膜68の弾性突部88を含む外周部分が、第一仕切金具70の透孔74の周縁部と第二仕切金具72の透孔78の周縁部の間に全周に亘って挟み込まれている。第一仕切金具70および第二仕切金具72が軸方向に重ね合わせられて、マウント本体に組み付けられていることに基づき、ゴム弾性膜68の外周部分が第一仕切金具70と第二仕切金具72の間で軸方向に挟圧固定されて、第一仕切金具70の透孔74と第二仕切金具72の透孔78がゴム弾性膜68で流体密に覆蓋されている。   Such a rubber elastic film 68 is fitted in the central recess 76 of the second partition fitting 72, and the outer peripheral portion including the elastic protrusion 88 of the rubber elastic film 68 is the peripheral portion of the through hole 74 of the first partition fitting 70. And the peripheral edge of the through-hole 78 of the second divider 72 are sandwiched over the entire circumference. Based on the fact that the first partition member 70 and the second partition member 72 are overlapped in the axial direction and assembled to the mount body, the outer peripheral portion of the rubber elastic film 68 is the first partition member 70 and the second partition member 72. The through hole 74 of the first partition member 70 and the through hole 78 of the second partition member 72 are covered with a rubber elastic film 68 in a fluid-tight manner.

それによって、ゴム弾性膜68が仕切部材32の中央部分に配設されて、ゴム弾性膜68の一方の面に受圧室42の圧力が及ぼされると共に、ゴム弾性膜68の他方の面に平衡室44の圧力が及ぼされるようになっており、受圧室42の圧力がゴム弾性膜68の弾性変形に基づき吸収される圧力変動吸収機構が構成されている。特に本実施形態では、ゴム弾性膜68の固有振動数が、例えば走行こもり音等に相当する80〜100Hz前後の高周波の振動周波数域にチューニングされている。   As a result, the rubber elastic film 68 is disposed in the central portion of the partition member 32, and the pressure of the pressure receiving chamber 42 is exerted on one surface of the rubber elastic film 68, and the equilibrium chamber is formed on the other surface of the rubber elastic film 68. The pressure fluctuation absorbing mechanism is configured to absorb the pressure of the pressure receiving chamber 42 based on the elastic deformation of the rubber elastic film 68. In particular, in the present embodiment, the natural frequency of the rubber elastic film 68 is tuned to a high-frequency vibration frequency range of about 80 to 100 Hz corresponding to, for example, traveling boom noise.

そこにおいて、第二仕切金具72の上端部および支持板部82の上端部分に第一仕切金具70が密着状に重ね合わせられて、第二仕切金具72の周方向溝84が第一仕切金具70で流体密に覆蓋されていることにより、短絡流路90が形成されている。短絡流路90は、オリフィス通路50の周方向一方の端部が受圧室42に接続された第一仕切金具70の連通孔46と周方向他方の端部が平衡室44に接続された第二仕切金具72の連通孔48の間に形成されて、それらの間を周方向に延びている。要するに、本実施形態では、短絡流路90がオリフィス通路50とは別に形成されていることに加えて、短絡流路90の一方の端部が、オリフィス通路50の一方の連通孔48を通じて受圧室42に連通されていると共に、短絡流路90の他方の端部が、オリフィス通路50の他方の連通孔48を通じて平衡室44に連通されているのである。   In this case, the first partition fitting 70 is superimposed on the upper end portion of the second partition fitting 72 and the upper end portion of the support plate portion 82 so that the circumferential groove 84 of the second partition fitting 72 is the first partition fitting 70. Thus, the short-circuit channel 90 is formed. The short-circuit channel 90 includes a communication hole 46 of the first partition fitting 70 in which one end in the circumferential direction of the orifice passage 50 is connected to the pressure receiving chamber 42 and a second end in which the other end in the circumferential direction is connected to the equilibrium chamber 44. It is formed between the communication holes 48 of the partition fitting 72 and extends between them in the circumferential direction. In short, in the present embodiment, in addition to the short-circuit channel 90 being formed separately from the orifice passage 50, one end of the short-circuit channel 90 passes through one communication hole 48 of the orifice channel 50. 42, and the other end of the short-circuit channel 90 communicates with the equilibrium chamber 44 through the other communication hole 48 of the orifice passage 50.

さらに、第二仕切金具72に形成された径方向溝86においても第一仕切金具70で流体密に覆蓋されていることで、弁体収容部92が形成されている。本実施形態では、弁体収容部92の径方向外方の周壁部が、短絡流路90の幅方向壁部として機能する支持板部82を含んで構成されていることから、弁体収容部92が、実質的に短絡流路90の一部を含んで構成されている。   Further, the radial groove 86 formed in the second partition fitting 72 is also fluid-tightly covered with the first partition fitting 70, thereby forming a valve body accommodating portion 92. In the present embodiment, the radially outer peripheral wall portion of the valve body housing portion 92 is configured to include the support plate portion 82 that functions as the width direction wall portion of the short-circuit channel 90. 92 includes a part of the short-circuit channel 90 substantially.

このような弁体収容部92には、弾性弁としてのゴム弁94が収容配置されるようになっており、特にゴム弁94がゴム弾性膜68と一体形成されている。ゴム弁94は、ゴム弾性膜68の外周縁部における周上の一箇所から弁体収容部92内に向かって突出しており、全体として略矩形平板形状を有している。ゴム弁94の軸方向(図11中、右)の寸法が、ゴム弾性膜68の一対の弾性突部88,88を備えた外周部分の厚さ寸法と略同じとされてる。また、本実施形態では、ゴム弁94の幅寸法が、弁体収容部92の幅寸法の2/3以下とされており、該弁体収容部92の幅寸法に比して小さくされている。   In such a valve body accommodating portion 92, a rubber valve 94 as an elastic valve is accommodated and disposed. In particular, the rubber valve 94 is integrally formed with the rubber elastic film 68. The rubber valve 94 protrudes from one place on the outer peripheral edge of the rubber elastic film 68 toward the inside of the valve body housing portion 92, and has a substantially rectangular flat plate shape as a whole. The dimension of the rubber valve 94 in the axial direction (right in FIG. 11) is substantially the same as the thickness dimension of the outer peripheral portion provided with the pair of elastic protrusions 88, 88 of the rubber elastic film 68. Further, in this embodiment, the width dimension of the rubber valve 94 is set to 2/3 or less of the width dimension of the valve body accommodating portion 92, and is smaller than the width dimension of the valve body accommodating portion 92. .

さらに、ゴム弁94の径方向外方の突出寸法が、弁体収容部92の径寸法よりも僅かに大きくされている。これにより、弁体収容部92に配されるゴム弁94が、弁体収容部92の径方向外方の壁部の一部を構成する支持板部82に対して、ゴム弁94自体の弾性による締め代をもって押し付けられている。また、ゴム弁94の軸方向寸法が、ゴム弾性膜68の一対の弾性突部88,88を備えた外周部分の厚さ寸法と略同じとされてることから、弁体収容部92の軸方向寸法と略同じとされている。また、特に、ゴム弁94の軸方向寸法が弁体収容部92のそれよりも大きくされている場合には、第一仕切金具70と第二仕切金具72の間に弾性による締め代をもって押し付けられるようになっている。その結果、短絡流路90が、弁体収容部92の周方向の一部分を全体に亘って覆っていて、受圧室42と平衡室44を遮断する状態に保持されるようになっている。上述の説明からも明らかなように、短絡流路90の弁体収容部92に設けられた弁座が、支持板部82におけるゴム弁94の突出先端部分が押し付けられる部位により構成されている。   Further, the radially outward projecting dimension of the rubber valve 94 is slightly larger than the diameter dimension of the valve body accommodating portion 92. Thereby, the rubber valve 94 arranged in the valve body housing portion 92 is elastic against the support plate portion 82 constituting a part of the radially outer wall portion of the valve body housing portion 92. It is pressed with the allowance due to. Further, since the axial dimension of the rubber valve 94 is substantially the same as the thickness dimension of the outer peripheral portion provided with the pair of elastic protrusions 88, 88 of the rubber elastic film 68, the axial direction of the valve body accommodating section 92 is It is almost the same as the dimensions. In particular, when the axial dimension of the rubber valve 94 is larger than that of the valve body housing portion 92, the rubber valve 94 is pressed between the first partition fitting 70 and the second partition fitting 72 with an elastic tightening margin. It is like that. As a result, the short-circuit channel 90 covers a part of the valve body accommodating portion 92 in the circumferential direction, and is held in a state in which the pressure receiving chamber 42 and the equilibrium chamber 44 are shut off. As is clear from the above description, the valve seat provided in the valve body accommodating portion 92 of the short-circuit channel 90 is constituted by a portion where the protruding tip portion of the rubber valve 94 in the support plate portion 82 is pressed.

この弾性による締め代は、ゴム弁94や弁体収容部92における形状や大きさ、構造等に応じて設定変更されるものであり、本実施形態では、オリフィス通路50のチューニング周波数域のエンジンシェイクによる通常の大きさの振動入力下、ゴム弁94の変形が抑えられて、短絡流路90の遮断状態が維持されるように設定されている。   This elastic tightening allowance is changed according to the shape, size, structure, etc. of the rubber valve 94 and the valve body accommodating portion 92. In this embodiment, the engine shake in the tuning frequency range of the orifice passage 50 is used. Under the normal vibration input, the deformation of the rubber valve 94 is suppressed and the shut-off state of the short-circuit channel 90 is maintained.

さらに、段差を乗り越えたりスピードブレーカを走行する等して大きな振幅振動が入力されることに伴い、受圧室42に過大な負圧が生ぜしめられた際には、受圧室42に発生する負圧と平衡室44との圧力差に基づいてゴム弁94が、短絡流路90を開くように周方向に弾性変形して、短絡流路90が連通状態とされるように、ゴム弁94の弾性による締め代が設定されている。そして、受圧室42と平衡室44が短絡流路90を通じて相互に連通せしめられて、受圧室42の過大な負圧状態が解消された後には、受圧室42と平衡室44の圧力差が小さくなることに基づきゴム弁94の弾性を利用して、ゴム弁94が短絡流路90の支持板部82を押さえつける状態に戻り、短絡流路90の遮断状態が再び維持されることとなる。   Further, when an excessive negative pressure is generated in the pressure receiving chamber 42 due to a large amplitude vibration being input, such as over a step or running on a speed breaker, the negative pressure generated in the pressure receiving chamber 42 The rubber valve 94 is elastically deformed in the circumferential direction so as to open the short-circuit channel 90 based on the pressure difference between the balance valve 44 and the equilibrium chamber 44, and the elasticity of the rubber valve 94 is set so that the short-circuit channel 90 is in communication. The tightening allowance by is set. After the pressure receiving chamber 42 and the equilibrium chamber 44 are communicated with each other through the short-circuit channel 90 and the excessive negative pressure state of the pressure receiving chamber 42 is eliminated, the pressure difference between the pressure receiving chamber 42 and the equilibrium chamber 44 is small. Accordingly, the elasticity of the rubber valve 94 is utilized to return the rubber valve 94 to a state of pressing the support plate portion 82 of the short-circuit channel 90, and the shut-off state of the short-circuit channel 90 is maintained again.

特に本実施形態では、ゴム弾性膜68の外周部分から径方向外方に突出して一体形成されたゴム弁94が、その突出先端部分から基端部分にかけて幅寸法が次第に小さくされている。それによって、ゴム弁94の突出先端部分の断面積が基端部分の断面積に比して大きくされており、かかる断面積が大きな突出先端部分が、短絡流路90に設けられた弁座(支持板部82)に当接して短絡流路90を開閉する当接弁部96とされている一方、断面積が小さな基端部分が、ゴム弁94の主たる弾性変形を担う弾性変形部98とされている。なお、当接弁部96の最先端部分が、支持板部82への当接時の摩耗を少なくして耐久性を高める等の目的で、軸方向視半円断面とされている。   In particular, in the present embodiment, the rubber valve 94 integrally formed by projecting radially outward from the outer peripheral portion of the rubber elastic film 68 is gradually reduced in width from the projecting tip portion to the base end portion. Thereby, the cross-sectional area of the protruding tip portion of the rubber valve 94 is made larger than the cross-sectional area of the base end portion, and the protruding tip portion having such a large cross-sectional area is provided in the valve seat ( A contact valve portion 96 that contacts the support plate portion 82) to open and close the short-circuit channel 90, while a base end portion having a small cross-sectional area is an elastic deformation portion 98 that bears the main elastic deformation of the rubber valve 94; Has been. Note that the most distal portion of the contact valve portion 96 has a semicircular cross section viewed in the axial direction for the purpose of reducing wear during contact with the support plate portion 82 and improving durability.

上述の如き構造とされた自動車用エンジンマウント10においては、エンジンシェイク等の低周波大振幅振動の入力時に、受圧室42に対して比較的に大きな振幅の圧力変動が惹起されることとなる。その際、受圧室42の圧力変動が大きくて、ゴム弾性膜68の弾性変形では吸収され難い構造とされている。一方、低周波大振幅振動の入力でも、それが受圧室42に過大な負圧を発生させる程の大きさのものでなければ、ゴム弁94の支持板部82に対する弾性による締め代に基づき、短絡流路90の遮断状態が保持されている。これにより、ゴム弾性膜68の弾性変形による受圧室42の圧力吸収が抑えられたり、短絡流路90の連通状態による圧力漏れが抑えられて、オリフィス通路50を通じての流体流動量が十分に確保されることとなり、該流体の共振作用等の流動作用に基づいて所期の防振効果(高減衰効果)が安定して得られるのである。   In the automobile engine mount 10 having the above-described structure, a pressure fluctuation with a relatively large amplitude is induced in the pressure receiving chamber 42 when a low frequency large amplitude vibration such as an engine shake is input. At this time, the pressure variation in the pressure receiving chamber 42 is large, and the structure is difficult to be absorbed by the elastic deformation of the rubber elastic film 68. On the other hand, even if the input of the low frequency large amplitude vibration is not so large as to generate an excessive negative pressure in the pressure receiving chamber 42, based on the tightening allowance due to elasticity to the support plate portion 82 of the rubber valve 94, The shut-off state of the short-circuit channel 90 is maintained. Thereby, the pressure absorption of the pressure receiving chamber 42 due to the elastic deformation of the rubber elastic film 68 is suppressed, and the pressure leakage due to the communication state of the short-circuit channel 90 is suppressed, so that the fluid flow amount through the orifice passage 50 is sufficiently secured. Therefore, the desired vibration isolation effect (high damping effect) can be stably obtained based on the fluid action such as the resonance action of the fluid.

また、走行こもり音等の高周波小振幅振動の入力時には、それよりも低周波数域にチューニングされたオリフィス通路50が反共振的な作用によって流体流通抵抗が著しく大きくなって、実質的に閉塞状態とされることとなっても、ゴム弾性膜68の弾性変形による液圧吸収機能がはたらいて、受圧室42の圧力変動が吸収されることにより、オリフィス通路50の実質的な閉塞化に起因する著しい高動ばね化が回避されることとなる。それ故、高周波小振幅振動に対する良好な防振効果(低動ばね特性に基づく振動絶縁効果)が発揮されるのである。なお、高周波小振幅の振動入力時における短絡流路90の連通/遮断状態は特に限定されるものでないが、そのような小振幅時には、受圧室42と平衡室44の圧力差も比較的に小さくて、ゴム弁94が弾性変形し難いことから、一般に遮断状態とされている。   Further, when high-frequency small-amplitude vibration such as traveling noise is input, the orifice passage 50 tuned to a lower frequency range has a significantly increased fluid flow resistance due to an anti-resonant action, and is substantially in a closed state. Even if this is done, the hydraulic pressure absorption function due to the elastic deformation of the rubber elastic film 68 works, and the pressure fluctuations in the pressure receiving chamber 42 are absorbed, so that the orifice passage 50 is substantially blocked. High dynamic springs are avoided. Therefore, a good anti-vibration effect (vibration insulation effect based on low dynamic spring characteristics) against high-frequency small-amplitude vibration is exhibited. Note that the state of communication / interruption of the short-circuit channel 90 at the time of vibration input with high frequency and small amplitude is not particularly limited, but at such small amplitude, the pressure difference between the pressure receiving chamber 42 and the equilibrium chamber 44 is relatively small. Since the rubber valve 94 is not easily elastically deformed, it is generally in a shut-off state.

また、特に、スピードブレーカや凹凸状の荒れた路面等を走行すると、受圧室42に過大な圧力変動が惹起されて、オリフィス通路50の開口部付近に大きな負圧が発生する場合がある。   In particular, when the vehicle travels on a speed breaker, a rough road surface, or the like, excessive pressure fluctuations may be caused in the pressure receiving chamber 42 and a large negative pressure may be generated near the opening of the orifice passage 50.

そこで、受圧室42に発生する負圧と平衡室44との圧力差に基づいてゴム弁94に弾性変形を及ぼす力が、ゴム弁94を弁体収容部92の支持板部82に押しつけて短絡流路90を閉塞状態に保持し得るだけのゴム弁94の弾性力による締め代の力に比して大きくなると、図8の二点鎖線にも示されているように、ゴム弁94が該締め代の力に抗して受圧室42側の連通孔46に向かって周方向に弾性変形し、短絡流路90が連通状態とされて、受圧室42と平衡室44が短絡流路90を通じて相互に連通せしめられることとなり、受圧室42の過負圧状態が解消される。   Therefore, the force that elastically deforms the rubber valve 94 based on the pressure difference between the negative pressure generated in the pressure receiving chamber 42 and the equilibrium chamber 44 presses the rubber valve 94 against the support plate portion 82 of the valve body housing portion 92 and short-circuits. When it becomes larger than the tightening force due to the elastic force of the rubber valve 94 that can hold the flow path 90 in the closed state, the rubber valve 94 Against the tightening force, it is elastically deformed in the circumferential direction toward the communication hole 46 on the pressure receiving chamber 42 side, the short-circuit channel 90 is brought into communication, and the pressure-receiving chamber 42 and the equilibrium chamber 44 are connected through the short-circuit channel 90. As a result, the over-negative pressure state of the pressure receiving chamber 42 is eliminated.

特に本実施形態では、ゴム弁94の基端部分に断面積の小さな弾性変形部98が設けられている一方、ゴム弁94の先端部分に断面積の大きな当接弁部96が設けられていることによって、基端部分を基点とした比較的に大きなモーメントが設定される。これにより、受圧室42に過大な負圧が発生すると、ゴム弁94が効率良く周方向に弾性変形して、受圧室42の過負圧状態が速やかに解消され得るのである。   In particular, in the present embodiment, an elastic deformation portion 98 having a small cross-sectional area is provided at the base end portion of the rubber valve 94, while a contact valve portion 96 having a large cross-sectional area is provided at the tip portion of the rubber valve 94. Thus, a relatively large moment with the base end portion as a base point is set. Accordingly, when an excessive negative pressure is generated in the pressure receiving chamber 42, the rubber valve 94 is efficiently elastically deformed in the circumferential direction, and the over negative pressure state of the pressure receiving chamber 42 can be quickly eliminated.

従って、受圧室42の過負圧状態に起因するキャビテーションの発生が抑えられることから、該キャビテーション気泡の破裂に伴う衝撃的な異音や振動の発生が有利に抑えられるのである。   Therefore, since the occurrence of cavitation due to the overnegative pressure state of the pressure receiving chamber 42 is suppressed, the occurrence of shocking abnormal noise and vibration associated with the burst of the cavitation bubbles is advantageously suppressed.

而して、本実施形態に係る自動車用エンジンマウント10においては、オリフィス通路50と短絡流路90が互いに別体構造とされていることによって、オリフィス通路50を通じての流体の流動作用が、短絡流路90の連通/遮断状態による影響を直接に受けることが少なくされている。   Thus, in the automobile engine mount 10 according to the present embodiment, the orifice passage 50 and the short-circuit passage 90 are separated from each other, so that the fluid flow action through the orifice passage 50 can cause a short-circuit flow. The direct influence of the communication / blocking state of the road 90 is reduced.

また、短絡流路90を開閉するゴム弁94がゴム弾性膜68と一体形成されていることで、部品点数が削減されると共に、ゴム弁94の材料選択に際して、ゴム弾性膜68よりも大きな本体ゴム弾性体16のばね特性のチューニングに伴う影響を受けることがない。   Further, since the rubber valve 94 for opening and closing the short-circuit channel 90 is formed integrally with the rubber elastic film 68, the number of parts is reduced and the body larger than the rubber elastic film 68 is selected when selecting the material of the rubber valve 94. It is not affected by the tuning of the spring characteristics of the rubber elastic body 16.

しかも、ゴム弾性膜68の外周部分に弾性突部88,88が一体形成されて、大きな軸方向力で第一仕切金具70と第二仕切金具72の間に挟持固定されていることから、その外周部分に突設されたゴム弁94の弾性変形が、ゴム弾性膜68の変形に伴う影響を受けることが少なくされている。即ち、ゴム弁94の開閉作動の信頼性が向上される。   Moreover, since the elastic protrusions 88 and 88 are integrally formed on the outer peripheral portion of the rubber elastic film 68 and are sandwiched and fixed between the first partition fitting 70 and the second partition fitting 72 by a large axial force, The elastic deformation of the rubber valve 94 protruding from the outer peripheral portion is less affected by the deformation of the rubber elastic film 68. That is, the reliability of the opening / closing operation of the rubber valve 94 is improved.

それ故、ゴム弁94の安定した開閉作動に基づいて優れた防振性能が得られる構造が、部品点数の削減によって低コストに実現されるのであり、このことからも本実施形態に係る自動車用エンジンマウント10が、自動車用の流体封入式防振装置の技術分野に有利に適用されることが明らかである。   Therefore, a structure capable of obtaining excellent vibration isolation performance based on the stable opening / closing operation of the rubber valve 94 is realized at a low cost by reducing the number of parts, and also from this, for the automobile according to the present embodiment. It is clear that the engine mount 10 is advantageously applied to the technical field of fluid-filled vibration damping devices for automobiles.

以上、本発明の実施形態について詳述してきたが、これはあくまでも一実施形態であって、本発明が係る実施形態における具体的な記載によって、限定的に解釈されるものでないことは、理解されるべきである。以下に本発明に従う構造とされた流体封入式防振装置の別の具体例について説明するが、以下の説明において、前記実施形態と実質的に同一の構造とされた部材および部位については、図中に前記実施形態と同一の符号を付することにより、それらの詳細な説明を省略する。   As mentioned above, although embodiment of this invention was explained in full detail, this is one embodiment to the last, Comprising: It is understood that it is not limitedly interpreted by the specific description in embodiment which this invention concerns. Should be. In the following, another specific example of the fluid-filled vibration isolator having a structure according to the present invention will be described. In the following description, members and parts having substantially the same structure as the above-described embodiment will be described with reference to FIG. By attaching the same reference numerals as those in the above embodiment, detailed description thereof will be omitted.

例えば、前記実施形態に係るゴム弾性膜68やゴム弁94、短絡流路90、弁体収容部92等における形状や大きさ、構造、数、配置等は、要求される製作性や防振性能等に応じて適宜に設定変更されるものであって、例示の如きものに限定されるない。   For example, the shape, size, structure, number, arrangement, and the like of the rubber elastic film 68, the rubber valve 94, the short-circuit channel 90, the valve body accommodating portion 92, and the like according to the above embodiment are required for manufacturability and vibration isolation performance. The setting is appropriately changed according to the above, and is not limited to the example.

具体的に例えば、図12にも示されているように、第一仕切金具70の連通孔46と軸方向で対向位置せしめられた第二仕切金具72の部位に連通孔100を形成して、連通孔46,100間を軸方向に延びる短絡流路90を形成して、即ち短絡流路90を仕切部材32を厚さ方向に貫通して形成すると共に、ゴム弾性膜68と一体形成されたゴム弁94を、短絡流路90上に設けられた弁体収容部92において、仕切部材32の厚さ方向への弾性変形に基づいて短絡流路90を開閉するようにした構造が、採用されても良い。   Specifically, for example, as shown in FIG. 12, the communication hole 100 is formed in a portion of the second partition member 72 that is opposed to the communication hole 46 of the first partition member 70 in the axial direction, A short-circuit channel 90 extending in the axial direction is formed between the communication holes 46 and 100, that is, the short-circuit channel 90 is formed so as to penetrate the partition member 32 in the thickness direction, and is integrally formed with the rubber elastic film 68. A structure in which the rubber valve 94 is opened and closed based on elastic deformation in the thickness direction of the partition member 32 in the valve body accommodating portion 92 provided on the short-circuit channel 90 is employed. May be.

特に、図12に示されるように、ゴム弁94を受圧室42側から平衡室44側に向かって傾斜する断面形状とすることで、受圧室42の通常の圧力変動ではゴム弁94が弾性変形し難い構造とし、それによって、通常の圧力変動の領域での受圧室42の短絡流路90を通じての圧力漏れを抑えるようにしても良い。   In particular, as shown in FIG. 12, the rubber valve 94 has a cross-sectional shape inclined from the pressure receiving chamber 42 side toward the equilibrium chamber 44 side, so that the rubber valve 94 is elastically deformed in a normal pressure fluctuation in the pressure receiving chamber 42. It is possible to suppress the pressure leakage through the short-circuit channel 90 of the pressure receiving chamber 42 in the normal pressure fluctuation region.

また、前記実施形態では、ゴム弁94やそれに対応する短絡流路90が各一つ設けられていたが、例えばそれぞれ周方向に離隔して二つ以上設けることも可能であり、それによって、複数の短絡構造を用いて受圧室42の過負圧を一層速やかに解消することも可能である。   In the above embodiment, one rubber valve 94 and one corresponding short-circuit channel 90 are provided. However, for example, two or more rubber valves 94 can be provided apart from each other in the circumferential direction. It is also possible to eliminate the overnegative pressure in the pressure receiving chamber 42 more quickly using this short-circuit structure.

さらに、前記実施形態では、オリフィス通路50が一つ設けられていたが、オリフィス通路を二つ以上設けて、それぞれ異なる周波数域にチューニングすることにより、複数の乃至は広い周波数域の振動に対する防振効果を得るようにしても良い。   Furthermore, in the above-described embodiment, one orifice passage 50 is provided. However, by providing two or more orifice passages and tuning to different frequency ranges, vibration prevention for a plurality of or a wide frequency range is provided. You may make it acquire an effect.

また、ブラケット金具18はマウント10を自動車ボデーに対して固定するためのものであり、特にその形状等は限定されるものでなく、例えば、例示の如き固定脚部54に代えて、ブラケット本体52の外周面に対して、複数本の脚部を溶着固定すること等で、固定脚部を構成しても良い。   Further, the bracket metal fitting 18 is for fixing the mount 10 to the automobile body, and its shape and the like are not particularly limited. For example, instead of the fixed leg 54 as illustrated, the bracket main body 52 is used. The fixed leg portion may be configured by welding and fixing a plurality of leg portions to the outer peripheral surface of the base plate.

さらに、密閉空気室66や底蓋金具62等は必須の構成要件でない。かかる密閉空気室66に対して、例えば底蓋金具62に貫通ポートを形成することなどによって、外部管路を連通させて接続することも可能である。このような外部管路を設けることにより、密閉空気室66の空気圧を後から外部操作で調節したり制御することも可能となる。   Further, the sealed air chamber 66 and the bottom cover fitting 62 are not essential constituent requirements. It is also possible to connect the external air line to the sealed air chamber 66 by, for example, forming a through port in the bottom lid fitting 62. By providing such an external conduit, the air pressure in the sealed air chamber 66 can be adjusted or controlled later by an external operation.

加えて、前記実施形態では、本発明を自動車のエンジンマウントに適用したものの具体例について説明したが、本発明はボデーマウントやデフマウントの他、自動車以外の各種振動体の防振装置に対して、何れも、適用可能であることは言うまでもない。   In addition, in the above-described embodiment, a specific example of applying the present invention to an engine mount of an automobile has been described. However, the present invention is applied to a vibration isolator for various vibrating bodies other than an automobile in addition to a body mount and a differential mount. Needless to say, both are applicable.

本発明の一実施形態としての自動車用エンジンマウントの縦断面図であって、図6,7の各I−I断面に相当する図。It is a longitudinal cross-sectional view of the engine mount for motor vehicles as one Embodiment of this invention, Comprising: The figure corresponded to each II cross section of FIG. 同自動車用エンジンマウントの一部を構成する第一の一体加硫成形品の縦断面図。The longitudinal cross-sectional view of the 1st integral vulcanization molded product which comprises a part of engine mount for the vehicles. 同自動車用エンジンマウントの一部を構成する第二の一体加硫成形品の縦断面図。The longitudinal cross-sectional view of the 2nd integral vulcanization molded product which comprises a part of engine mount for the vehicles. 同自動車用エンジンマウントの一部を構成するブラケット金具の縦断面図。The longitudinal cross-sectional view of the bracket metal fitting which comprises a part of engine mount for the vehicles. 同自動車用エンジンマウントの一部を構成する底蓋金具の縦断面図。The longitudinal cross-sectional view of the bottom cover metal fitting which comprises a part of engine mount for the vehicles. 同自動車用エンジンマウントの一部を構成する仕切部材にゴム弾性膜を組み付けた状態を示す平面図。The top view which shows the state which assembled | attached the rubber elastic film to the partition member which comprises some engine mounts for the said cars. 同仕切部材の一部を構成する第一仕切金具を示す平面図。The top view which shows the 1st partition metal fitting which comprises a part of the partition member. 同仕切部材の一部を構成する第二仕切金具にゴム弾性膜を組み付けた状態を示す平面図。The top view which shows the state which assembled | attached the rubber elastic film to the 2nd partition metal fitting which comprises a part of the partition member. 図8のIX−IX断面図。IX-IX sectional drawing of FIG. 同ゴム弾性膜の平面図。The top view of the rubber elastic membrane. 図10のXI−XI断面図。XI-XI sectional drawing of FIG. 本発明の別の一具体例としての自動車用エンジンマウントの要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of the engine mount for motor vehicles as another specific example of this invention.

符号の説明Explanation of symbols

10:自動車用エンジンマウント、12:第一の取付金具、14:第二の取付金具、16:本体ゴム弾性体、32:仕切部材、34:ダイヤフラム、42:受圧室、44:平衡室、50:オリフィス通路、68:ゴム弾性膜、82:支持板部、90:短絡流路、92:弁体収容部、94:ゴム弁 10: Engine mount for automobile, 12: First mounting bracket, 14: Second mounting bracket, 16: Rubber elastic body, 32: Partition member, 34: Diaphragm, 42: Pressure receiving chamber, 44: Equilibrium chamber, 50 : Orifice passage, 68: Rubber elastic membrane, 82: Support plate part, 90: Short circuit flow path, 92: Valve body accommodating part, 94: Rubber valve

Claims (6)

第一の取付部材と第二の取付部材を本体ゴム弾性体で連結すると共に、該第二の取付部材で仕切部材を支持せしめて、該仕切部材を挟んだ両側に壁部の一部が該本体ゴム弾性体で構成された受圧室と壁部の一部が可撓性膜で構成された平衡室を形成して、それら受圧室や平衡室に非圧縮性流体を封入すると共に、該仕切部材の外周部分にそれら受圧室と平衡室を相互に連通せしめるオリフィス通路を形成する一方、該仕切部材の中央部分に可動ゴム膜を配設して、該可動ゴム膜の一方の面に該受圧室の圧力が及ぼされ且つ該可動ゴム膜の他方の面に該平衡室の圧力が及ぼされるようにして圧力変動吸収機構を構成した流体封入式防振装置において、
前記仕切部材における前記可動ゴム膜の外周側に前記オリフィス通路とは別に短絡流路を形成すると共に、該可動ゴム膜に弾性弁を一体形成して該弾性弁を該可動ゴム膜の外周面に突出させると共に、該短絡流路において該弾性弁を配設する弁体収容部を形成して該弁体収容部に設けた弁座に対して該弾性弁を弾性による締め代をもって押し付けることで該短絡流路を遮断状態に保持せしめるようにし、前記受圧室に発生する負圧と前記平衡室との圧力差に基づいて該弾性弁の弾性変形により該短絡流路が連通状態とされるようにしたことを特徴とする流体封入式防振装置。
The first mounting member and the second mounting member are connected by the main rubber elastic body, and the partition member is supported by the second mounting member, and a part of the wall portion is on both sides of the partition member. A pressure receiving chamber made of a rubber elastic body and an equilibrium chamber in which a part of the wall part is made of a flexible film are formed, and an incompressible fluid is sealed in the pressure receiving chamber and the equilibrium chamber, and the partition An orifice passage that allows the pressure receiving chamber and the equilibrium chamber to communicate with each other is formed in the outer peripheral portion of the member, and a movable rubber film is disposed in the central portion of the partition member, and the pressure receiving pressure is provided on one surface of the movable rubber film In a fluid-filled vibration isolator configured as a pressure fluctuation absorbing mechanism so that the pressure of the chamber is exerted and the pressure of the equilibrium chamber is exerted on the other surface of the movable rubber film,
A short-circuit channel is formed separately from the orifice passage on the outer peripheral side of the movable rubber film in the partition member, and an elastic valve is formed integrally with the movable rubber film so that the elastic valve is formed on the outer peripheral surface of the movable rubber film. And by projecting the elastic valve in the short-circuit channel to form the valve body housing portion and pressing the elastic valve against the valve seat provided in the valve body housing portion with an elastic tightening margin. The short-circuit channel is held in a shut-off state, and the short-circuit channel is brought into a communication state by elastic deformation of the elastic valve based on a pressure difference between the negative pressure generated in the pressure receiving chamber and the equilibrium chamber. A fluid-filled vibration isolator characterized by the above.
前記仕切部材の外周部分を周方向に一周より短い長さで周方向に延びて、その一方の周方向端部が前記受圧室に他方の周方向端部が前記平衡室に各々連通孔を通じて連通されることにより前記オリフィス通路が形成されていると共に、該オリフィス通路の周方向一方の端部と他方の端部との間で該オリフィス通路が形成されていない部分において周方向に延びるようにして前記短絡流路が形成されている請求項1に記載の流体封入式防振装置。   The outer circumferential portion of the partition member extends in the circumferential direction with a length shorter than one circumference in the circumferential direction, and one circumferential end thereof communicates with the pressure receiving chamber and the other circumferential end communicates with the equilibrium chamber through communication holes. Thus, the orifice passage is formed and extends in the circumferential direction at a portion where the orifice passage is not formed between one end and the other end in the circumferential direction of the orifice passage. The fluid-filled type vibration damping device according to claim 1, wherein the short-circuit channel is formed. 前記短絡流路の一方の端部が前記オリフィス通路の一方の連通孔を通じて前記受圧室に連通されていると共に、該短絡流路の他方の端部が該オリフィス通路の他方の連通孔を通じて前記平衡室に連通されている一方、該短絡流路上に設けた前記弁体収容部において前記弾性弁が前記仕切部材の周方向への弾性変形に基づいて該短絡流路を開閉するように配設されている請求項2に記載の流体封入式防振装置。   One end of the short-circuit channel is communicated with the pressure receiving chamber through one communication hole of the orifice passage, and the other end of the short-circuit channel is communicated with the equilibrium through the other communication hole of the orifice channel. The elastic valve is arranged to open and close the short-circuit channel based on elastic deformation in the circumferential direction of the partition member in the valve body housing portion provided on the short-circuit channel while communicating with the chamber. The fluid-filled vibration isolator according to claim 2. 前記短絡流路が前記仕切部材を厚さ方向に貫通して形成されていると共に、該短絡流路上に設けた前記弁体収容部において前記弾性弁が該仕切部材の厚さ方向への弾性変形に基づいて該短絡流路を開閉するように配設されている請求項2に記載の流体封入式防振装置。   The short-circuit channel is formed through the partition member in the thickness direction, and the elastic valve is elastically deformed in the thickness direction of the partition member in the valve body housing portion provided on the short-circuit channel. The fluid-filled vibration damping device according to claim 2, wherein the fluid-filled vibration damping device is arranged so as to open and close the short-circuit flow path. 前記可動ゴム膜から突出して一体形成された前記弾性弁が、その突出先端部分よりも該可動ゴム膜側の基端部分において断面積が小さくされており、その突出先端部分において前記短絡流路に設けられた前記弁座に当接して該短絡流路を開閉する当接弁部が設けられていると共に、その基端部分において弾性変形部が設けられている請求項1乃至4の何れか一項に記載の流体封入式防振装置。   The elastic valve integrally protruding and projecting from the movable rubber film has a smaller cross-sectional area at the base end portion on the movable rubber film side than the projecting distal end portion, and the projecting distal end portion is connected to the short-circuit channel. The contact valve part which contacts the said valve seat provided and opens and closes this short circuit flow path is provided, and the elastic deformation part is provided in the base end part. The fluid-filled vibration isolator according to the item. 自動車用エンジンマウントに適用されて、前記オリフィス通路が車両走行時に入力されるエンジンシェイクに相当する周波数域で減衰効果を発揮するようにチューニングされていると共に、該オリフィス通路が機能するエンジンシェイクの振動入力時には前記短絡流路が遮断状態に維持されるように前記弾性弁の弾性による締め代が設定されている請求項1乃至5の何れか一項に記載の流体封入式防振装置。   Applied to an automobile engine mount, the orifice passage is tuned so as to exhibit a damping effect in a frequency range corresponding to an engine shake input when the vehicle travels, and the vibration of the engine shake in which the orifice passage functions The fluid filled type vibration damping device according to any one of claims 1 to 5, wherein a tightening margin is set by elasticity of the elastic valve so that the short-circuit channel is maintained in a shut-off state at the time of input.
JP2006322262A 2006-11-29 2006-11-29 Fluid sealing type damping device Pending JP2008133937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006322262A JP2008133937A (en) 2006-11-29 2006-11-29 Fluid sealing type damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006322262A JP2008133937A (en) 2006-11-29 2006-11-29 Fluid sealing type damping device

Publications (1)

Publication Number Publication Date
JP2008133937A true JP2008133937A (en) 2008-06-12

Family

ID=39558914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006322262A Pending JP2008133937A (en) 2006-11-29 2006-11-29 Fluid sealing type damping device

Country Status (1)

Country Link
JP (1) JP2008133937A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002420A (en) * 2007-06-20 2009-01-08 Yamashita Rubber Co Ltd Liquid-sealed vibration control device
JP2010223314A (en) * 2009-03-23 2010-10-07 Bridgestone Corp Vibration isolator
JP2010223324A (en) * 2009-03-23 2010-10-07 Bridgestone Corp Vibration control device
DE102018116392A1 (en) * 2018-07-06 2020-01-09 Vibracoustic Gmbh HYDRAULIC DAMPING BEARING

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002420A (en) * 2007-06-20 2009-01-08 Yamashita Rubber Co Ltd Liquid-sealed vibration control device
JP4708398B2 (en) * 2007-06-20 2011-06-22 山下ゴム株式会社 Liquid seal vibration isolator
JP2010223314A (en) * 2009-03-23 2010-10-07 Bridgestone Corp Vibration isolator
JP2010223324A (en) * 2009-03-23 2010-10-07 Bridgestone Corp Vibration control device
DE102018116392A1 (en) * 2018-07-06 2020-01-09 Vibracoustic Gmbh HYDRAULIC DAMPING BEARING

Similar Documents

Publication Publication Date Title
JP4103008B2 (en) Fluid filled vibration isolator
JP4820792B2 (en) Fluid filled vibration isolator
JP4392667B2 (en) Fluid filled vibration isolator
JP2007107712A (en) Fluid sealing type vibration isolation device
JP5977141B2 (en) Fluid filled vibration isolator
JP4741540B2 (en) Fluid filled vibration isolator
JP2009243510A (en) Fluid-filled type engine mount for automobile
JP2007085523A (en) Fluid-enclosed type vibration isolator
JP6240482B2 (en) Fluid filled vibration isolator
WO2018168567A1 (en) Fluid-filled vibration-damping device
JP2008133937A (en) Fluid sealing type damping device
JP5060846B2 (en) Fluid filled vibration isolator
JP5907782B2 (en) Fluid filled vibration isolator
JP2007270866A (en) Fluid sealed vibration control device
JP2013160265A (en) Fluid-sealed vibration-damping device
JP2008185152A (en) Fluid filled vibration absorbing device and engine mount using the same
JP2008163970A (en) Fluid-sealed vibration control device
JP2008121811A (en) Fluid-sealed vibration isolator
JP4871902B2 (en) Fluid filled vibration isolator
JP5108658B2 (en) Fluid filled vibration isolator
JP4861998B2 (en) Fluid filled vibration isolator
JP2007270910A (en) Fluid-sealed type vibration control device
JP4158108B2 (en) Pneumatic switching type fluid-filled engine mount
JP4269952B2 (en) Fluid filled vibration isolator
JP2009085314A (en) Fluid-enclosed vibration isolator