JP2009243510A - Fluid-filled type engine mount for automobile - Google Patents

Fluid-filled type engine mount for automobile Download PDF

Info

Publication number
JP2009243510A
JP2009243510A JP2008088170A JP2008088170A JP2009243510A JP 2009243510 A JP2009243510 A JP 2009243510A JP 2008088170 A JP2008088170 A JP 2008088170A JP 2008088170 A JP2008088170 A JP 2008088170A JP 2009243510 A JP2009243510 A JP 2009243510A
Authority
JP
Japan
Prior art keywords
orifice passage
idling
vibration
fluid
pressure receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008088170A
Other languages
Japanese (ja)
Inventor
Takanobu Minamino
高伸 南野
Shoji Akasa
彰治 赤佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2008088170A priority Critical patent/JP2009243510A/en
Publication of JP2009243510A publication Critical patent/JP2009243510A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid-filled type engine mount for an automobile capable of improving vehicle ride comfort by providing vibration isolation characteristics effective even for the vibration of a large amplitude generated at a lower frequency than that of idling base vibration in addition to the idling base vibration of a high frequency small amplitude in an idling state. <P>SOLUTION: This engine mount has a middle frequency orifice passage 86 tuned to a higher frequency zone than a shaking orifice passage 78 and a lower frequency zone than an idling orifice passage 84, is provided with flow rate regulating members 36, 38, 54, 56, 58, 60 so as to cover both openings 54, 56, 58 at a pressure receiving chamber 68 side of the idling and the middle frequency orifice passages 84, 86, and provided with a bulkhead elastic film 62 so as to cover an opening 46 at a balance chamber 70 side of the idling orifice passage 84. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車のパワーユニットを車両ボデーに防振支持させるエンジンマウントに係り、特に内部に封入された流体の流動作用に基づいて防振効果が発揮され得る自動車用の流体封入式エンジンマウントに関するものである。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine mount for supporting an automobile power unit on a vehicle body in an anti-vibration manner, and more particularly to an automobile fluid-filled engine mount capable of exhibiting an anti-vibration effect based on a fluid action of a fluid enclosed therein. It is.

従来から、自動車のパワーユニットと車両ボデーの間に介装されてパワーユニットを車両ボデーに対して防振支持せしめる自動車用エンジンマウントの一種として、流体封入式エンジンマウントが知られている。この流体封入式エンジンマウントでは、パワーユニットと車両ボデーの各一方に取り付けられる第一の取付部材と第二の取付部材が本体ゴム弾性体で連結されていると共に、壁部の一部が本体ゴム弾性体で構成された受圧室と壁部の一部が可撓性膜で構成された平衡室が形成されて、それら受圧室と平衡室に非圧縮性流体が封入されている。これら受圧室と平衡室はオリフィス通路を通じて相互に連通せしめられており、オリフィス通路を通じての流体の共振作用等の流動作用に基づいてオリフィス効果である防振効果が発揮されるようになっている。   2. Description of the Related Art Conventionally, a fluid-filled engine mount is known as a kind of automobile engine mount that is interposed between an automobile power unit and a vehicle body and supports the power unit against vibration against the vehicle body. In this fluid-filled engine mount, the first mounting member and the second mounting member that are attached to each of the power unit and the vehicle body are connected by the main rubber elastic body, and a part of the wall portion is main rubber elastic. A pressure receiving chamber constituted by a body and an equilibrium chamber in which a part of the wall portion is constituted by a flexible film are formed, and an incompressible fluid is sealed in the pressure receiving chamber and the equilibrium chamber. The pressure receiving chamber and the equilibrium chamber are communicated with each other through the orifice passage, and an anti-vibration effect that is an orifice effect is exhibited based on a fluid action such as a resonance action of the fluid through the orifice passage.

ところで、自動車用エンジンマウントにおいては、自動車の走行状態に応じて異なる周波数域や振幅の振動が入力されることから、複数の異なる振動に対して防振性能が要求される。かかる防振性能では、従来から知られているように、走行状態における「エンジンの剛体一次振動に相当する低周波大振幅のエンジンシェイク」と停車状態における「エンジンの爆発主成分に相当する高周波小振幅のアイドリング振動」が重視される。なお、これらエンジンシェイクやアイドリング振動に加えて、走行時のロードノイズ等に相当する、より高周波数域の微小振幅振動に対する走行こもり音の対策も検討される場合がある。具体的に例示すると、特許文献1(特開平09−310732号公報)に示されているように、オリフィス通路として、エンジンシェイクにチューニングした第一のオリフィス通路とアイドリング振動にチューニングした第二のオリフィス通路と走行こもり音にチューニングした第三のオリフィス通路を採用して、これら第二のオリフィス通路と第三のオリフィス通路における受圧室側または平衡室側の開口部分に可動部材を変位可能に配設すると共に、第三のオリフィス通路を切換手段で連通状態と遮断状態に切り換える構造が、提案されて検討されている。   By the way, in the engine mount for automobiles, vibrations having different frequency ranges and amplitudes are input depending on the running state of the automobile, and therefore, vibration isolation performance is required for a plurality of different vibrations. In such vibration-proof performance, as conventionally known, “low-frequency large-amplitude engine shake corresponding to the rigid primary vibration of the engine” in the running state and “high-frequency small amount corresponding to the engine explosion main component in the stopped state”. "Amplitude idling vibration" is emphasized. In addition to these engine shakes and idling vibrations, there are cases in which measures against running-over noise against minute amplitude vibrations in a higher frequency range, which corresponds to road noise during traveling, may be considered. Specifically, as shown in Patent Document 1 (Japanese Patent Laid-Open No. 09-310732), as an orifice passage, a first orifice passage tuned to engine shake and a second orifice tuned to idling vibration are used. Adopting a third orifice passage tuned to the passage and traveling noise, the movable member can be displaced in the opening part of the pressure receiving chamber side or the equilibrium chamber side in the second orifice passage and the third orifice passage. At the same time, a structure in which the third orifice passage is switched between the communication state and the cutoff state by the switching means has been proposed and studied.

ところが、本発明者が更なる検討を加えたところ、自動車のパワーユニットにおいては、アイドリング時に、エンジンの爆発に伴って発生する周期的な振動であるアイドリング基本振動(車両によって一次振動や二次振動等の場合がある。)の振幅よりも低周波数域で不定期に大きな振幅の振動が発生することがあり、これが車両乗り心地の低下に大きな問題となっていること、しかも、このアイドリング時の大振幅振動に関しては、振動周波数の相異等によりエンジンシェイクと同視することが実質的に困難であって、シェイク振動にチューニングされたオリフィス通路では対策困難であること、更に振幅の相異等によりアイドリング基本振動にチューニングされたオリフィス通路でも対策困難であることが、新たに分かったのである。   However, as a result of further studies by the present inventor, in the power unit of an automobile, the idling basic vibration (primary vibration, secondary vibration, etc. depending on the vehicle) that is a periodic vibration generated when the engine explodes during idling. In some cases, vibrations with a large amplitude may occur irregularly in a frequency range lower than the amplitude of the above-mentioned amplitude, and this is a major problem in reducing the ride comfort of the vehicle. As for amplitude vibration, it is practically difficult to identify with engine shake due to differences in vibration frequency, etc., and it is difficult to take countermeasures with orifice passages tuned to shake vibration, and idling due to differences in amplitude. It was newly found that even an orifice passage tuned to the fundamental vibration is difficult to take measures.

特開平09−310732号公報Japanese Patent Laid-Open No. 09-310732

ここにおいて、本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、アイドリング状態下、高周波小振幅のアイドリング基本振動に加えアイドリング基本振動よりも低周波数域で発生する大振幅の振動に対しても有効な防振特性が得られることによって、車両乗り心地の向上が図られ得る、新規な構造の自動車用の流体封入式エンジンマウントを提供することにある。   Here, the present invention has been made in the background as described above, and the problem to be solved is that, in the idling state, in addition to the idling fundamental vibration having a high frequency and a small amplitude, the frequency is lower than the idling fundamental vibration. To provide a fluid-filled engine mount for automobiles having a novel structure that can improve vehicle ride comfort by obtaining effective vibration-proof characteristics even for large-amplitude vibrations generated in the region. is there.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意な組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載されたもの、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. Further, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or an invention that can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized based on thought.

すなわち、本発明の特徴とするところは、自動車のパワーユニットと車両ボデーの一方に取り付けられる第一の取付部材と、それらパワーユニットと車両ボデーの他方に取り付けられる第二の取付部材を本体ゴム弾性体で連結せしめ、本体ゴム弾性体で壁部の一部が構成された受圧室と可撓性膜で壁部の一部が構成された平衡室とを形成してそれら受圧室と平衡室に非圧縮性流体を封入すると共に、それら受圧室と平衡室を相互に連通するオリフィス通路を設けた自動車用の流体封入式エンジンマウントにおいて、オリフィス通路として、エンジンシェイクに相当する低周波数域にチューニングしたシェイク用オリフィス通路と、アイドリング基本振動に相当する高周波数域にチューニングしたアイドリング用オリフィス通路と、シェイク用オリフィス通路のチューニング周波数よりも高周波数域で且つアイドリング用オリフィス通路のチューニング周波数よりも低周波数域にチューニングした中周波オリフィス通路を設けると共に、受圧室におけるアイドリング用オリフィス通路及び中周波オリフィス通路の両開口部を覆うように広がって流体流動量を制限する流量制限部材を設け、更に平衡室におけるアイドリング用オリフィス通路の開口部を覆うように広がってアイドリング用オリフィス通路と平衡室を仕切る弾性変形可能な隔壁弾性膜を設けた自動車用の流体封入式エンジンマウントにある。   That is, the feature of the present invention is that the main rubber elastic body includes a first attachment member attached to one of a power unit of an automobile and a vehicle body, and a second attachment member attached to the other of the power unit and the vehicle body. Connected to form a pressure receiving chamber with a part of the wall made of rubber elastic body and an equilibrium chamber with a part of the wall made of flexible membrane, and uncompressed into the pressure receiving chamber and the equilibrium chamber In a fluid-filled engine mount for automobiles that contains an orifice passage that encloses a fluid and communicates the pressure-receiving chamber and the equilibrium chamber with each other. For the shake, the orifice passage is tuned to a low frequency range corresponding to the engine shake. Orifice passage, orifice passage for idling tuned to a high frequency range equivalent to idling basic vibration, and for shake A medium frequency orifice passage tuned to a frequency range higher than the tuning frequency of the refis passage and lower than a tuning frequency of the idling orifice passage is provided, and both openings of the idling orifice passage and the medium frequency orifice passage in the pressure receiving chamber are provided. An elastically deformable partition wall that covers the idling orifice passage and the equilibration chamber is further provided so as to cover the opening portion of the idling orifice passage in the equilibration chamber. A fluid-filled engine mount for automobiles provided with an elastic membrane.

このような本発明に従う構造とされた自動車用の流体封入式エンジンマウントにおいては、走行状態下、低周波数域のエンジンシェイクが入力されると、受圧室と平衡室に相対的な圧力変動が生ぜしめられ、それら両室間においてシェイク用オリフィス通路を通じて流体流動作用が生ぜしめられる。ここで、エンジンシェイクの入力時には、中周波オリフィス通路とアイドリング用オリフィス通路における各受圧室側開口部を通じて流動せしめられる流体の量が流量制限部材で十分に制限されるようになっている。従って、受圧室における中周波及びアイドリング用オリフィス通路の各受圧室側開口部を通じての圧力漏れが抑えられて、シェイク用オリフィス通路の流体流動量が十分に確保される結果、かかる流体の共振作用等の流動作用に基づく防振効果(高減衰効果)が安定して得られる。   In such a fluid-filled engine mount for an automobile having a structure according to the present invention, when an engine shake in a low frequency region is input under running conditions, a relative pressure fluctuation occurs between the pressure receiving chamber and the equilibrium chamber. The fluid flow action is generated between the two chambers through the shaking orifice passage. Here, when the engine shake is input, the amount of fluid flowing through the pressure receiving chamber side openings in the medium frequency orifice passage and the idling orifice passage is sufficiently limited by the flow restricting member. Accordingly, the medium frequency in the pressure receiving chamber and the pressure leakage through each pressure receiving chamber side opening of the idling orifice passage are suppressed, and the fluid flow amount in the shake orifice passage is sufficiently ensured. The vibration-proofing effect (high damping effect) based on the fluid action of can be obtained stably.

また、アイドリング状態下、エンジンの爆発主成分に相当する周期的な高周波小振幅のアイドリング基本振動が入力された際には、それよりも低周波数域にチューニングされたシェイク用オリフィス通路が反共振的な作用により実質的に閉塞状態とされて、シェイク用オリフィス通路を通じての流体流動作用が有効に機能し得なくなる。一方、アイドリング基本振動の入力時には、中周波オリフィス通路とアイドリング用オリフィス通路において流量制限部材による流体流動量の制限機能が働かないようにされており、それによって、両オリフィス通路が受圧室に実質的に開口せしめられている程に、それら受圧室側開口部の流体流通抵抗が十分に小さくされている。ここで、中周波オリフィス通路ではアイドリング基本振動よりも低周波数域にチューニングされていることから、その反共振作用に起因して流体流動作用が有効に機能し得ない。従って、隔壁弾性膜の所期の変形作用に基づいて、アイドリング用オリフィス通路を通じての受圧室と平衡室の間における流体の共振作用等の流動作用が有効に生ぜしめられ、アイドリング基本振動に対して有効な防振効果(低動ばね化による振動絶縁効果)が発揮され得る。   Also, when idling fundamental vibrations with a high frequency and a small amplitude corresponding to the main explosion component of the engine are input under idling conditions, the shake orifice path tuned to a lower frequency range is anti-resonant. As a result, the fluid flow action through the shaking orifice passage cannot function effectively. On the other hand, when the basic idling vibration is input, the fluid flow amount restriction function by the flow restricting member is prevented from working in the medium frequency orifice passage and the idling orifice passage, so that both orifice passages are substantially connected to the pressure receiving chamber. The fluid flow resistance of these pressure receiving chamber side openings is made sufficiently small so that they are opened. Here, since the medium frequency orifice passage is tuned to a frequency lower than the idling fundamental vibration, the fluid flow action cannot function effectively due to the anti-resonance action. Therefore, based on the desired deformation action of the partition elastic membrane, a fluid action such as a resonance action of the fluid between the pressure receiving chamber and the equilibrium chamber through the idling orifice passage is effectively generated, and the idling fundamental vibration is prevented. An effective anti-vibration effect (vibration insulation effect due to low dynamic springs) can be exhibited.

そこにおいて、自動車のパワーユニットでは、アイドリング時にアイドリング基本振動よりも低周波数域で不定期に大振幅の振動が発生することがあるが、本発明に従う構造の流体封入式エンジンマウントによれば、かかる大振幅振動の防振対策が有効に図られ得る。   Therefore, in a power unit of an automobile, a large amplitude vibration may occur irregularly at a lower frequency range than an idling basic vibration during idling. However, according to the fluid-filled engine mount having the structure according to the present invention, such a large amount of vibration is generated. Anti-vibration measures against amplitude vibration can be effectively achieved.

すなわち、本構造の流体封入式エンジンマウントにおいては、エンジンシェイクよりも高周波数域で且つアイドリング基本振動よりも低周波数域にチューニングされた中周波オリフィス通路が設けられていることによって、上述のアイドリング時にアイドリング基本振動よりも低周波数域で不定期に発生する大振幅振動が、エンジンシェイクとアイドリング基本振動の間に位置する周波数を有する中周波大振幅振動として、中周波オリフィス通路のチューニング振動に設定され得る。ここで、中周波大振幅振動の入力時に、シェイク用オリフィス通路の流体流動作用は反共振により有効に機能し得ない。また、中周波オリフィス通路の流体流動量を確保するために上述の流量制限部材の流量制限機能が解除されるように設計すると、中周波オリフィス通路と共にアイドリング用オリフィス通路も受圧室に対して実質的に開口せしめられることとなるが、低動ばねによる振動絶縁効果を目的として設計されたアイドリング用オリフィス通路では、そのアイドリング時の大振幅振動に対して隔壁弾性膜の弾性変形による対応可能な圧力変化量を超えていることから、有効な流体流動作用が得られない。要するに、問題となるアイドリング状態でのアイドリング基本振動よりも低周波数域で生じる大振幅振動の入力に際して、中周波オリフィス通路の所期の流体流動量を損なわしめるような、受圧室におけるシェイク用又はアイドリング用オリフィス通路を通じての圧力漏れが防止されるのであり、従って、中周波オリフィス通路を通じての受圧室と平衡室の間における流体の共振作用等の流動作用が有効に生ぜしめられ、かかるアイドリング時の大振幅振動に対して優れた防振効果(高減衰効果)が発揮され得るのである。   That is, in the fluid-filled engine mount of this structure, the medium frequency orifice passage tuned to a higher frequency range than the engine shake and lower frequency range than the idling fundamental vibration is provided, so that the above-described idling can be performed. The large amplitude vibration that occurs irregularly in the lower frequency range than the idling fundamental vibration is set as the tuning vibration of the medium frequency orifice passage as the medium frequency large amplitude vibration having the frequency located between the engine shake and the idling fundamental vibration. obtain. Here, when the medium frequency large amplitude vibration is input, the fluid flow action of the shake orifice passage cannot function effectively due to anti-resonance. Further, if the above-described flow restricting member is designed to release the flow restricting function in order to secure the fluid flow rate in the medium frequency orifice passage, the idling orifice passage together with the medium frequency orifice passage is substantially free from the pressure receiving chamber. In the idling orifice passage designed for the purpose of vibration isolation by a low dynamic spring, the pressure change that can be accommodated by elastic deformation of the bulkhead elastic membrane against large amplitude vibration during idling Since the amount is exceeded, an effective fluid flow action cannot be obtained. In short, for the input of large amplitude vibrations that occur in the lower frequency range than the idling fundamental vibration in the idling state in question, for the purpose of shaking or idling in the pressure-receiving chamber that impairs the desired fluid flow rate of the medium frequency orifice passage Therefore, the fluid leakage action such as the resonance action of the fluid between the pressure receiving chamber and the equilibrium chamber through the medium frequency orifice passage is effectively generated, and the idling is greatly suppressed. An excellent anti-vibration effect (high damping effect) against amplitude vibration can be exhibited.

特に本構造では、隔壁弾性膜が、平衡室とアイドリング用オリフィス通路を仕切るようにしてアイドリング用オリフィス通路の平衡室の開口部に設けられていることによって、通路の流量制限部材としてよりも、平衡室の壁ばねチューニング手段として活用され得る。即ち、隔壁弾性膜と可撓性膜との合成ばねを含んでなる平衡室の壁ばね剛性のチューニングに際して、隔壁弾性膜のばね剛性が可撓性膜のばね剛性よりも大きくされることにより、エンジンシェイクや中周波大振幅振動の入力時に受圧室と平衡室の圧力差を大きくして、シェイク用オリフィス通路や中周波オリフィス通路による高減衰効果を有効に得ると共に、アイドリング基本振動の入力時に受圧室と平衡室の圧力差を小さくして、アイドリング用オリフィス通路による低動ばね特性に基づく振動絶縁効果を有効に得る構造が、一つの平衡室で実現され得る。即ち、シェイク用及び中周波オリフィス通路用とアイドリング用オリフィス通路用とにそれぞれ平衡室を設けたマウント構造と同等な作用効果を奏することから、目的とする防振特性を備えつつ、構造の簡略化が図られ得る。   In particular, in this structure, the partition elastic membrane is provided at the opening of the equilibrium chamber of the idling orifice passage so as to partition the equilibrium chamber and the idling orifice passage, so that the balance membrane is more balanced than the flow rate limiting member of the passage. It can be utilized as a chamber wall spring tuning means. That is, when tuning the wall spring stiffness of the equilibrium chamber including the composite spring of the partition elastic membrane and the flexible membrane, the spring stiffness of the partition elastic membrane is made larger than the spring stiffness of the flexible membrane, The pressure difference between the pressure receiving chamber and the equilibrium chamber is increased when engine shake or medium frequency large amplitude vibration is input to effectively obtain a high damping effect by the shake orifice passage and medium frequency orifice passage, and pressure is received when idling basic vibration is input. A structure that effectively reduces the pressure difference between the chamber and the equilibrium chamber and effectively obtains the vibration insulation effect based on the low dynamic spring characteristics by the idling orifice passage can be realized in one equilibrium chamber. In other words, it has the same effect as the mount structure with equilibration chambers for the shaker, medium frequency orifice passage, and idling orifice passage, so the structure can be simplified and the structure can be simplified. Can be achieved.

また、オリフィス通路のチューニングは、例えば、受圧室や平衡室の各壁ばね剛性、即ちそれら各室を単位容積だけ変化させるのに必要な圧力変化量に対応する本体ゴム弾性体や可撓性膜、隔壁弾性膜等の各弾性変形量に基づく特性値を考慮しつつ、オリフィス通路の通路長さと通路断面積や流量制限部材を設計変更することによって好適に実現され得る。そこにおいて、前述の如く可撓性膜と共に平衡室の好適な壁ばねチューニング手段として用いられ得る隔壁弾性膜が、アイドリング用オリフィス通路の平衡室の開口部に設けられていることから、可撓性膜と隔壁弾性膜との合成ばねからなる平衡室の壁ばねチューニングに際して、例えば、隔壁弾性膜がアイドリング用オリフィス通路の平衡室側開口部から受圧室側に離隔して設けられる場合に比して、アイドリング用オリフィス通路における平衡室側開口部から弾性ゴム膜に至る部分が平衡室に開口していることによる壁ばね剛性への影響を厳密に考慮する必要がなくなる。その結果、平衡室の壁ばね剛性のチューニング変更が容易とされ得、延いてはシェイク用や中周波、アイドリング用オリフィス通路のチューニング性能が向上され得る。これにより、L型、V型等のシリンダ配置形式や気筒数その他の車両構造に応じて、例えば、エンジンシェイクの周波数が変化したり、或いは、アイドリング基本振動が一次振動から二次振動になって、それに伴いアイドリング基本振動よりも低周波数側で発生する大振幅振動の周波数も変化したりする等の、防振すべき振動の周波数が異なる場合にも、各オリフィス通路のチューニング変更が容易に対処され得る。   Further, the tuning of the orifice passage may be performed by, for example, the body rubber elastic body or the flexible film corresponding to the rigidity of the wall springs of the pressure receiving chamber and the equilibrium chamber, that is, the amount of pressure change required to change each chamber by a unit volume. It can be suitably realized by changing the design of the passage length and passage cross-sectional area of the orifice passage and the flow restricting member while considering the characteristic values based on the respective elastic deformation amounts of the partition elastic membrane and the like. Therefore, as described above, the partition elastic membrane that can be used together with the flexible membrane as a suitable wall spring tuning means of the equilibrium chamber is provided at the opening of the equilibrium chamber of the idling orifice passage. When tuning the wall spring of the equilibrium chamber composed of the composite spring of the membrane and the partition elastic membrane, for example, as compared with the case where the partition elastic membrane is provided separately from the equilibrium chamber side opening of the idling orifice passage to the pressure receiving chamber side Further, it is not necessary to strictly consider the influence on the rigidity of the wall spring due to the opening from the equilibrium chamber side opening to the elastic rubber film in the idling orifice passage opening into the equilibrium chamber. As a result, the tuning change of the wall spring stiffness of the equilibrium chamber can be facilitated, and the tuning performance of the orifice passage for shaking, medium frequency, and idling can be improved. Thereby, for example, the frequency of the engine shake changes or the idling basic vibration changes from the primary vibration to the secondary vibration depending on the cylinder arrangement type such as L type and V type, the number of cylinders and other vehicle structures. Therefore, even if the frequency of vibration to be isolated is different, such as the frequency of large-amplitude vibration generated on the lower frequency side than the idling basic vibration, the tuning change of each orifice passage can be easily handled. Can be done.

それ故、本発明の自動車用の流体封入式エンジンマウントによれば、エンジンシェイクやアイドリング基本振動に対する防振特性が安定して得られることに加え、アイドリング状態下、アイドリング基本振動よりも低周波数域で不定期に発生する大振幅振動に対しても有効な防振特性が得られることによって、優れた車両乗り心地が実現され得るのである。   Therefore, according to the fluid-filled engine mount for automobiles of the present invention, in addition to being able to stably obtain vibration-proof characteristics against engine shake and idling basic vibration, in the idling state, lower frequency range than idling basic vibration. In this way, an effective vibration-proof characteristic can be obtained even for large-amplitude vibrations that occur irregularly, so that excellent vehicle riding comfort can be realized.

すなわち、本発明者が特許文献1(特開平09−310732号公報)等に示される如き従来構造の自動車用エンジンマウントの防振特性について鋭意検討したところ、アイドリング時にアイドリング基本振動よりも低周波数域で不定期に大きな振幅振動(中周波大振幅振動)が発生することがあり、かかる中周波大振幅振動に対して、それよりも低周波数域にチューニングされたシェイク用オリフィス通路では流体流動作用が有効に機能し得ないことに加えて、中周波大振幅振動はエンジンの剛体振動に近いモードとなることから、そもそも低動ばね化による振動絶縁を目的として設計されたアイドリング用オリフィス通路では防振効果が有効に機能し得ないのであり、これらオリフィス通路による防振効果の不機能が車両乗り心地に大きな問題となっていることが知見された。そこで、本発明者は、かかる中周波大振幅振動に対しては低動ばね化による振動絶縁効果でなく、高減衰による制振効果が必要であり、従来アイドリング時の振動を低動ばね化による振動絶縁効果で制振するという一般的な考えを逆にしなければ対応困難であるとの結論を導き出して、本発明を完成するに至り、制振効果の向上を成し得たのである。要するに、このようなアイドリング時に不定期に発生する大振幅振動に関しては、従来殆ど考慮されておらず、その制振が実現されていなかったのに対して、初めてアイドリング時の振動でありながら減衰で対策すべきであるということを、本発明者が新たに見い出したのであり、かかる知見に基づいて本発明を完成し得たのである。   That is, when the present inventor diligently studied the vibration isolating characteristics of a conventional engine mount for automobiles as disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 09-310732) and the like, a lower frequency range than the idling basic vibration during idling. Large amplitude vibrations (medium frequency large amplitude vibrations) may occur at irregular intervals, and fluid flow action is not generated in the shake orifice passage tuned to a lower frequency range than such medium frequency large amplitude vibrations. In addition to being unable to function effectively, medium-frequency large-amplitude vibration is a mode close to the rigid body vibration of the engine. Therefore, the idling orifice passage designed for the purpose of vibration isolation with low dynamic springs originally is vibration-proof. The effect cannot function effectively, and the non-function of the anti-vibration effect by these orifice passages is great for the vehicle ride comfort. It has been found that has become a problem. Therefore, the present inventor needs a vibration damping effect by high damping rather than a vibration insulation effect by low dynamic spring for such medium frequency large amplitude vibration, and vibration by idling vibration is conventionally reduced by low dynamic spring. The conclusion that it would be difficult to cope with it unless the general idea of damping with the vibration insulation effect was reversed was reached, and the present invention was completed, and the damping effect could be improved. In short, the large-amplitude vibrations that occur irregularly during idling have not been considered in the past, and vibration suppression has not been realized. The present inventor has newly found that countermeasures should be taken, and the present invention has been completed based on such knowledge.

また、本発明に係る自動車用の流体封入式エンジンマウントでは、受圧室におけるアイドリング用オリフィス通路及び中周波オリフィス通路の両開口部を覆う部分において、可動板を受圧室と平衡室の圧力差に基づいて変位可能とせしめ且つその変位量を拘束部材への当接により制限する状態で配設することによって、流量制限部材を構成した構造が、採用されても良い。このような構造によれば、アイドリング状態において、エンジンの爆発に伴って定常的に発生するアイドリング基本振動やアイドリング基本振動よりも低周波数域で不定期に発生する大振幅振動、また走行状態におけるエンジンシェイク等の各入力下で受圧室と平衡室の圧力差がそれぞれ異なることを利用して、アイドリング用及び中周波オリフィス通路の流量制限が有利に実現され得る。   Further, in the fluid-filled engine mount for automobiles according to the present invention, the movable plate is based on the pressure difference between the pressure receiving chamber and the equilibrium chamber in the portion covering both the opening portions of the idling orifice passage and the medium frequency orifice passage in the pressure receiving chamber. It is possible to adopt a structure in which the flow rate restricting member is configured by disposing it in a displaceable manner and disposing the displacement amount in a state where the displacement amount is restricted by contact with the restraining member. According to such a structure, in the idling state, the idling basic vibration that is constantly generated with the explosion of the engine, the large amplitude vibration that is irregularly generated in a lower frequency range than the idling basic vibration, and the engine in the running state By utilizing the fact that the pressure difference between the pressure receiving chamber and the equilibrium chamber is different under each input such as a shake, the flow restriction of the idling and medium frequency orifice passages can be advantageously realized.

すなわち、アイドリング基本振動に相当する高周波小振幅振動の振幅はエンジンシェイクに相当する低周波大振幅振動の振幅に比して充分に小さい。また、アイドリング時のアイドリング基本振動よりも低周波数域の大振幅振動に相当する中周波大振幅振動とかかるエンジンシェイクにおける振幅の大小関係においては、単純に比較されるものでなく、L型、V型等のシリンダ配置形式や気筒数その他の車両構造に応じて、大小関係が逆転したり同じになったりする場合もあると推考されるが、特に本構造の流量制限部材においては、中周波大振幅振動の振幅がエンジンシェイクの振幅に比して小さい自動車用エンジンマウントに対して好適に採用され得る。従って、アイドリング基本振動や中周波大振幅振動の入力時には、エンジンシェイクの入力に比して受圧室と平衡室の圧力差がそれ程大きくならないことから、可動板が大変位して拘束部材に積極的に当接することによる可動板の拘束変位が回避されて、可動板の変形による小変位に基づいて、アイドリング用及び中周波オリフィス通路の流体流動作用が充分に確保される態様が、好適に実現され得る。また、本構造によれば、可動板を受圧室の壁ばねチューニング手段として採用することも可能であり、それによって、中周波オリフィス通路やアイドリング用オリフィス通路におけるチューニング性能の更なる向上が図られ得る。   That is, the amplitude of the high-frequency small-amplitude vibration corresponding to the idling fundamental vibration is sufficiently smaller than the amplitude of the low-frequency large-amplitude vibration corresponding to the engine shake. In addition, the magnitude relationship between the amplitude of the medium-frequency large-amplitude vibration corresponding to the large-amplitude vibration in the lower frequency range than the idling basic vibration during idling and the amplitude of the engine shake is not simply compared. Depending on the cylinder arrangement type such as the type, the number of cylinders, and other vehicle structures, it is assumed that the magnitude relationship may be reversed or the same. The present invention can be suitably applied to an automobile engine mount in which the amplitude of the amplitude vibration is smaller than the amplitude of the engine shake. Therefore, when idling basic vibration or medium frequency large amplitude vibration is input, the pressure difference between the pressure receiving chamber and the equilibrium chamber is not so large compared to the input of the engine shake. A mode in which the restraint displacement of the movable plate due to contact with the movable plate is avoided and the fluid flow action of the idling and medium frequency orifice passages is sufficiently ensured based on the small displacement due to the deformation of the movable plate is suitably realized. obtain. Further, according to this structure, the movable plate can also be employed as a wall spring tuning means for the pressure receiving chamber, whereby the tuning performance in the medium frequency orifice passage and the idling orifice passage can be further improved. .

一方、エンジンシェイクに相当する低周波大振幅振動の入力時には、受圧室と平衡室の圧力差が大きくなって、可動板が大変位して拘束部材に当接せしめられることで、可動板が拘束変位される。その結果、アイドリング用及び中周波オリフィス通路の受圧室側開口部が可動板で実質的に覆蓋せしられて、アイドリング用及び中周波オリフィス通路の流体流動作用が有効に機能しないように制限される態様が、好適に実現され得るのである。   On the other hand, when a low-frequency large-amplitude vibration equivalent to an engine shake is input, the pressure difference between the pressure receiving chamber and the equilibrium chamber becomes large, and the movable plate is greatly displaced and brought into contact with the restraining member, so that the movable plate is restrained. Displaced. As a result, the pressure-receiving chamber side openings of the idling and medium frequency orifice passages are substantially covered with the movable plate, and the fluid flow action of the idling and medium frequency orifice passages is restricted so as not to function effectively. The aspect can be suitably realized.

また、本発明に係る自動車用の流体封入式エンジンマウントでは、受圧室と平衡室を仕切る仕切部材を設けて、仕切部材の外周部分を周方向に延びるようにシェイク用オリフィス通路を形成すると共に、仕切部材の中央部分において流量制限部材を受圧室に面するように配設し隔壁弾性膜を平衡室に面するように配設して、仕切部材における流量制限部材と隔壁弾性膜の間にアイドリング用オリフィス通路を形成すると共に、仕切部材における流量制限部材と平衡室に面する部分との間で隔壁弾性膜の周囲を延びるように中周波オリフィス通路を形成した構造が、採用されても良い。   Further, in the fluid-filled engine mount for an automobile according to the present invention, a partition member that partitions the pressure receiving chamber and the equilibrium chamber is provided, and the shaker orifice passage is formed so as to extend in the circumferential direction of the outer peripheral portion of the partition member. In the central part of the partition member, the flow restricting member is disposed so as to face the pressure receiving chamber, and the partition elastic membrane is disposed so as to face the equilibrium chamber, and the idling is performed between the flow restricting member and the partition elastic membrane in the partition member. A structure in which a medium-frequency orifice passage is formed so as to extend around the partition elastic membrane between the flow restricting member and the portion facing the equilibrium chamber in the partition member may be employed.

このような構造によれば、シェイク用オリフィス通路が仕切部材の外周部分に形成されていることで、通路長さが充分に確保され得て流体の流通抵抗が小さく設定され易くなり、低周波振動であるエンジンシェイクに対して要求される防振効果(高減衰効果)が一層得られ易くなる。また、流量制限部材や隔壁弾性膜が仕切部材の中央部分に形成されていることによって、仕切部材において流量制限部材や隔壁弾性膜の有効面積が大きく確保され得ることに加え、アイドリング用オリフィス通路や中周波オリフィス通路の通路断面積が大きく確保され易くなり、それによって、目的とするアイドリング基本振動に対する防振効果(低動ばね化による振動絶縁効果)やアイドリング時の中周波大振幅振動に対する防振効果(高減衰効果)が一層有利に発揮され得る。   According to such a structure, since the shaker orifice passage is formed in the outer peripheral portion of the partition member, the passage length can be sufficiently secured and the flow resistance of the fluid is easily set to be low, and the low frequency vibration Therefore, it is easier to obtain the anti-vibration effect (high damping effect) required for the engine shake. Further, since the flow restricting member and the partition elastic membrane are formed in the central portion of the partition member, the partition member can ensure a large effective area of the flow restricting member and the partition elastic membrane, It is easy to secure a large cross-sectional area of the medium-frequency orifice passage, so that the vibration-proofing effect against the desired basic idling vibration (vibration insulation effect by low dynamic springs) and the vibration prevention against medium-frequency large-amplitude vibration during idling The effect (high damping effect) can be exhibited more advantageously.

また、本発明に係る自動車用の流体封入式エンジンマウントでは、第二の取付部材が筒状部を備えており、筒状部の一方の開口部側に第一の取付部材を離隔配置して本体ゴム弾性体で弾性連結することによって筒状部の一方の開口部を流体密に閉塞すると共に、筒状部の他方の開口部側に可撓性膜を配設して筒状部の他方の開口部を可撓性膜で流体密に閉塞し、仕切部材を筒状部の内側に組み付けて筒状部の内側における本体ゴム弾性体と可撓性膜の間の領域を仕切部材で仕切ることで仕切部材を挟んだ両側に受圧室と平衡室を形成した構造が、採用されても良い。このような構造によれば、受圧室と平衡室が簡単な構造で実現され得て、コンパクト化や製造コストの低減化等が図られ得る。   Further, in the fluid-filled engine mount for automobiles according to the present invention, the second mounting member has a cylindrical portion, and the first mounting member is arranged separately on one opening side of the cylindrical portion. By elastically connecting with the main rubber elastic body, one opening of the cylindrical portion is fluid-tightly closed, and a flexible film is disposed on the other opening side of the cylindrical portion to provide the other end of the cylindrical portion. The opening is closed fluid-tightly with a flexible membrane, the partition member is assembled inside the tubular portion, and the region between the main rubber elastic body and the flexible membrane inside the tubular portion is partitioned by the partition member. Thus, a structure in which the pressure receiving chamber and the equilibrium chamber are formed on both sides of the partition member may be employed. According to such a structure, the pressure receiving chamber and the equilibrium chamber can be realized with a simple structure, and downsizing and reduction in manufacturing cost can be achieved.

以下、本発明を更に具体的に明らかにするために、本発明の一実施形態について図面を参照しつつ、詳細に説明する。先ず、図1には、本発明の自動車用の流体封入式エンジンマウントに係る一実施形態としての自動車用エンジンマウント10が示されている。この自動車用エンジンマウント10では、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14が本体ゴム弾性体16で相互に弾性連結されている。第一の取付金具12が図示しない自動車のパワーユニットに取り付けられると共に、第二の取付金具14が図示しない自動車の車両ボデーに取り付けられることによって、パワーユニットが自動車用エンジンマウント10を介して車両ボデーに防振支持されるようになっている。   Hereinafter, in order to clarify the present invention more specifically, an embodiment of the present invention will be described in detail with reference to the drawings. First, FIG. 1 shows an automobile engine mount 10 as an embodiment of the fluid-filled engine mount for automobiles of the present invention. In this automobile engine mount 10, a first mounting bracket 12 as a first mounting member and a second mounting bracket 14 as a second mounting member are elastically connected to each other by a main rubber elastic body 16. The first mounting bracket 12 is attached to a vehicle power unit (not shown), and the second mounting bracket 14 is attached to a vehicle body (not shown) of the vehicle, so that the power unit is protected from the vehicle body via the vehicle engine mount 10. It is designed to be supported.

なお、図1では、自動車に装着する前の自動車用エンジンマウント10の単体での状態が示されているが、自動車への装着状態では、パワーユニットの分担支持荷重がマウント軸方向(図1中、上下)に入力されることにより、第一の取付金具12と第二の取付金具14がマウント軸方向で相互に接近する方向に変位して、本体ゴム弾性体16が弾性変形する。また、かかる装着状態下、防振すべき主たる振動は、略マウント軸方向に入力されることとなる。以下の説明中、特に断りのない限り、上下方向は、マウント軸方向となる図1中の上下方向をいう。   In FIG. 1, the state of the vehicle engine mount 10 alone before being mounted on the vehicle is shown, but in the mounted state on the vehicle, the shared support load of the power unit is in the mount axis direction (in FIG. 1), the first mounting bracket 12 and the second mounting bracket 14 are displaced toward each other in the mount axis direction, and the main rubber elastic body 16 is elastically deformed. In addition, under such a mounted state, main vibrations to be vibrated are input substantially in the mount axis direction. In the following description, unless otherwise specified, the vertical direction refers to the vertical direction in FIG.

より詳細には、第一の取付金具12は、小径の略裁頭円錐台形状乃至は円柱形状を呈している。第一の取付金具12の軸直角方向中央部分には、上端面に開口する螺子穴18が形成されており、図示しないパワーユニット側の部材が固定ボルトを介して螺子穴18に螺着固定されることにより、第一の取付金具12がパワーユニットに取り付けられるようになっている。   More specifically, the first mounting member 12 has a substantially truncated truncated cone shape or a cylindrical shape with a small diameter. A screw hole 18 that opens to the upper end surface is formed in the central portion in the direction perpendicular to the axis of the first mounting bracket 12, and a member on the power unit side (not shown) is screwed and fixed to the screw hole 18 via a fixing bolt. Thus, the first mounting member 12 is attached to the power unit.

また、第二の取付金具14は、大径の略段付き円筒形状を有しており、軸方向中間部分において軸直角方向に円環形状に広がる段部20と、段部20の外周縁部から上方に延びる大径円筒形状の大径筒部22と、段部20の内周縁部から下方に延び大径筒部22よりも小径の小径筒部24を含んで構成されている。即ち、本実施形態の第二の取付金具14は、その略全体で筒状部を構成している。第二の取付金具14は、図示しないブラケット部材等を介して車両ボデー側の部材に取り付けられるようになっている。これら第一の取付金具12と第二の取付金具14が相互に同一中心軸上に配置されていると共に、第一の取付金具12が第二の取付金具14の大径筒部22の開口部分よりも上方に所定距離を隔てて位置せしめられている。第一の取付金具12と第二の取付金具14の間には、本体ゴム弾性体16が介装されている。   Further, the second mounting bracket 14 has a large-diameter substantially stepped cylindrical shape, and a step portion 20 spreading in an annular shape in a direction perpendicular to the axis at an intermediate portion in the axial direction, and an outer peripheral edge portion of the step portion 20 The large-diameter cylindrical portion 22 having a large-diameter cylindrical shape that extends upward from the inner periphery and the small-diameter cylindrical portion 24 that extends downward from the inner peripheral edge of the step portion 20 and has a smaller diameter than the large-diameter cylindrical portion 22 are configured. That is, the second mounting bracket 14 of the present embodiment constitutes a cylindrical portion substantially in its entirety. The second mounting bracket 14 is attached to a vehicle body side member via a bracket member (not shown). The first mounting bracket 12 and the second mounting bracket 14 are arranged on the same central axis, and the first mounting bracket 12 is an opening portion of the large-diameter cylindrical portion 22 of the second mounting bracket 14. It is positioned at a predetermined distance above the distance. A main rubber elastic body 16 is interposed between the first mounting bracket 12 and the second mounting bracket 14.

本体ゴム弾性体16は、全体として略裁頭円錐台形状を呈する厚肉のゴム弾性体であって、その上端部に対して第一の取付金具12の上端部分を除く略全体が埋め込まれるように加硫接着されていると共に、本体ゴム弾性体16の外周面に対して第二の取付金具14における大径筒部22の内周面や段部20の上端面の略全体が加硫接着されている。要するに、本体ゴム弾性体16が第一の取付金具12と第二の取付金具14を備えた一体加硫成形品として形成されており、それによって、第一の取付金具12と第二の取付金具14が本体ゴム弾性体16で連結されていると共に、第二の取付金具14の一方(図1中、上)の開口部が本体ゴム弾性体16で流体密に閉塞されている。また、本体ゴム弾性体16の下端面には、下方に開口する略逆すり鉢形状の大径凹所26が形成されている。更に、本体ゴム弾性体16には、大径凹所26の開口縁部から下方に延び出す薄肉のシールゴム層28が一体形成されて、第二の取付金具14の小径筒部24の内周面に被着形成されている。更にまた、大径凹所26の開口縁部とシールゴム層28の境界部分において、シールゴム層28よりも軸直角方向内方で且つ大径凹所26の開口縁部よりも軸直角方向外方の領域を軸直角方向に円環形状に広がる段差部30が形成されている。   The main rubber elastic body 16 is a thick rubber elastic body having a substantially truncated truncated cone shape as a whole, and the substantially entire portion excluding the upper end portion of the first mounting member 12 is embedded in the upper end portion thereof. In addition, the entire inner peripheral surface of the large-diameter cylindrical portion 22 and the upper end surface of the stepped portion 20 of the second mounting bracket 14 are vulcanized and bonded to the outer peripheral surface of the main rubber elastic body 16. Has been. In short, the main rubber elastic body 16 is formed as an integrally vulcanized molded product including the first mounting bracket 12 and the second mounting bracket 14, whereby the first mounting bracket 12 and the second mounting bracket are formed. 14 is connected by a main rubber elastic body 16, and one opening (in FIG. 1) of the second mounting bracket 14 is fluid-tightly closed by the main rubber elastic body 16. In addition, a substantially inverted mortar-shaped large-diameter recess 26 that opens downward is formed on the lower end surface of the main rubber elastic body 16. Further, the main rubber elastic body 16 is integrally formed with a thin seal rubber layer 28 extending downward from the opening edge of the large-diameter recess 26, and the inner peripheral surface of the small-diameter cylindrical portion 24 of the second mounting bracket 14. Is formed on the substrate. Furthermore, at the boundary between the opening edge of the large-diameter recess 26 and the seal rubber layer 28, the inner side is perpendicular to the seal rubber layer 28 and the outer side of the large-diameter recess 26 is axially perpendicular to the opening edge. A stepped portion 30 is formed that extends in an annular shape in the direction perpendicular to the axis.

このような本体ゴム弾性体16の一体加硫成形品には、仕切部材32が組み付けられている。仕切部材32は、全体として略円形ブロック形状を呈しており、金属材や合成樹脂材等からなる硬質部材を用いて形成されている。仕切部材32は、仕切部材本体34や第一蓋部材36、第二蓋部材38、支持リング40を含んで構成されている。   A partition member 32 is assembled to such an integrally vulcanized molded product of the main rubber elastic body 16. The partition member 32 has a substantially circular block shape as a whole, and is formed using a hard member made of a metal material, a synthetic resin material, or the like. The partition member 32 includes a partition member main body 34, a first lid member 36, a second lid member 38, and a support ring 40.

仕切部材本体34は略円形ブロック形状を呈しており、その軸直角方向の略中央部分には、仕切部材32の厚さ方向となる軸方向に略一定の円形断面で延びる中央流路42が形成されていると共に、中央流路42の上側端部と下側端部には、中央流路42よりも大径の略円形凹状を有しており且つ仕切部材本体34の上端面と下端面に開口する、上側嵌着凹所44と下側嵌着凹所46が形成されている。即ち、これら中央流路42や上側及び下側嵌着凹所44,46が円形ブロック形状を有する仕切部材本体34の軸直角方向中央部分に貫通形成されていることで、仕切部材本体34は、換言すると、軸直角方向の厚さ寸法が大きな厚肉の略円筒形状を有している。   The partition member main body 34 has a substantially circular block shape, and a central flow path 42 extending in a substantially constant circular cross section in the axial direction that is the thickness direction of the partition member 32 is formed in a substantially central portion in the direction perpendicular to the axis. In addition, the upper end and the lower end of the central flow path 42 have a substantially circular concave shape having a larger diameter than the central flow path 42, and are formed on the upper end surface and the lower end surface of the partition member body 34. An upper fitting recess 44 and a lower fitting recess 46 that are open are formed. That is, the central channel 42 and the upper and lower fitting recesses 44 and 46 are formed through the central portion in the direction perpendicular to the axis of the partition member main body 34 having a circular block shape. In other words, it has a thick, generally cylindrical shape with a large thickness dimension in the direction perpendicular to the axis.

仕切部材本体34の外周部分における軸方向上端部分と軸方向中間部分には、それぞれ仕切部材本体34の外周面に開口して周方向に一周弱の長さで延びる第一周溝48と第二周溝50が形成されている。第一周溝48は、仕切部材本体34の上端縁部に形成されていることで仕切部材本体34の上端面にも開口している。また、第一周溝48と第二周溝50における各周方向一方の端部間には、第一及び第二周溝48,50と同様に仕切部材本体34の外周面に開口して、仕切部材本体34を周方向に傾斜して又は軸方向に延びる接続用溝51が形成されており、接続用溝51を介して第一周溝48と第二周溝50が相互に連結されている。即ち、これら第一周溝48や第二周溝50、接続用溝51が協働して、仕切部材本体34の外周部分を周方向に二周弱の長さで螺旋状に延びる一つの周溝を構成している。また、第二周溝50の周上の一箇所または複数箇所には、仕切部材本体34を軸直角方向にトンネル状に延びて、第二周溝50と中央流路42を連通せしめる内側接続流路52が形成されている。   A first circumferential groove 48 and a second circumferential opening that open to the outer circumferential surface of the partition member main body 34 and extend in the circumferential direction with a length of a little less than one round are respectively formed in the axial upper end portion and the axial middle portion of the outer peripheral portion of the partition member main body 34. A circumferential groove 50 is formed. The first circumferential groove 48 is also formed at the upper edge of the partition member main body 34 so that it also opens at the upper end surface of the partition member main body 34. In addition, between the first circumferential groove 48 and the second circumferential groove 50 at one end in the circumferential direction, an opening is formed on the outer circumferential surface of the partition member main body 34 in the same manner as the first and second circumferential grooves 48 and 50. A connecting groove 51 is formed by inclining the partition member body 34 in the circumferential direction or extending in the axial direction, and the first circumferential groove 48 and the second circumferential groove 50 are connected to each other via the connecting groove 51. Yes. That is, the first circumferential groove 48, the second circumferential groove 50, and the connection groove 51 cooperate with each other so that the outer peripheral portion of the partition member main body 34 is spirally extended in the circumferential direction with a length of a little less than two rounds. A groove is formed. Further, at one place or a plurality of places on the circumference of the second circumferential groove 50, an inner connection flow in which the partition member main body 34 extends in a tunnel shape in a direction perpendicular to the axis and the second circumferential groove 50 and the central flow path 42 communicate with each other. A path 52 is formed.

また、第一蓋部材36は、周壁部の軸方向寸法が小さな浅底の略有底円筒形状を有しており、その外径寸法が仕切部材本体34の上側嵌着凹所44の内径寸法に比して僅かに小さくされていると共に、その軸方向寸法が上側嵌着凹所44の軸方向寸法と略同じとされている。また、第一蓋部材36の底壁部には、複数の小形の孔からなる通孔としての第一透孔54が貫通形成されている。   The first lid member 36 has a shallow, substantially bottomed cylindrical shape in which the axial dimension of the peripheral wall portion is small, and the outer diameter thereof is the inner diameter of the upper fitting recess 44 of the partition member main body 34. The axial dimension is made substantially the same as the axial dimension of the upper fitting recess 44. Further, a first through hole 54 as a through hole made up of a plurality of small holes is formed through the bottom wall portion of the first lid member 36.

更に、第二蓋部材38は、薄肉の略円板形状を有しており、その外径寸法が仕切部材本体34の外径寸法と略同じとされている。また、第二蓋部材38の軸直角方向中央部分には、複数の小形の孔からなる通孔としての第二透孔56が貫通形成されている。   Further, the second lid member 38 has a thin and substantially disk shape, and the outer diameter dimension thereof is substantially the same as the outer diameter dimension of the partition member main body 34. Further, a second through hole 56 as a through hole made up of a plurality of small holes is formed through the central portion of the second lid member 38 in the direction perpendicular to the axis.

この第一蓋部材36の周壁部が仕切部材本体34の上側嵌着凹所44の周壁部に圧入等で嵌着固定されて、第一蓋部材36の周壁部の下端部分及び底部の外周部分が上側嵌着凹所44の底部に軸方向で重ね合わされている。また、第二蓋部材38が、仕切部材本体34と略同心状に位置せしめられて、仕切部材本体34の上端面及び第一蓋部材36の上端面に軸方向で重ね合わされて、仕切部材本体34等との重ね合わせ部分において、図示しないボルトやリベット等の固定部材が第一蓋部材36を貫通して仕切部材本体34等に固定されている。   The peripheral wall portion of the first lid member 36 is fitted and fixed to the peripheral wall portion of the upper fitting recess 44 of the partition member main body 34 by press fitting or the like, and the lower end portion of the peripheral wall portion of the first lid member 36 and the outer peripheral portion of the bottom portion. Is superimposed on the bottom of the upper fitting recess 44 in the axial direction. In addition, the second lid member 38 is positioned substantially concentrically with the partition member main body 34, and is overlapped with the upper end surface of the partition member main body 34 and the upper end surface of the first lid member 36 in the axial direction. A fixing member such as a bolt or a rivet (not shown) penetrates through the first lid member 36 and is fixed to the partition member main body 34 and the like in the overlapping portion with 34 and the like.

これにより、第一蓋部材36と第二蓋部材38が互いに略同心状に位置せしめられた形態で仕切部材本体34における上部の軸直角方向中央部分に固定されており、仕切部材本体34における第一周溝48の上側開口部分が、第二蓋部材38の外周部分で覆蓋せしめられている。また、仕切部材本体34の中央流路42の上端部分が、第一及び第二蓋部材36,38で覆蓋せしめられていると共に、第一蓋部材36の開口部分が第二蓋部材38の軸直角方向中央部分で覆蓋せしめられていることによって、仕切部材32の軸直角方向中央部分の上部には、第一蓋部材36の底部の上端面や周壁部の内周面、第二蓋部材38の下端面が協働して、軸方向に略一定の円形断面で延びる収容空所58が形成されている。即ち、収容空所58の天壁部が第二蓋部材38における第一蓋部材36の開口を覆蓋する部分で構成されていると共に、収容空所58の底壁部が第一蓋部材36の底部で構成されており、更に収容空所58の周壁部が第一蓋部材36の周壁部で構成されている。ここで、第一蓋部材36の開口部分が第二蓋部材38で覆蓋されて収容空所58が構成されるのに先立って、可動板としての弾性ゴム板60が第一蓋部材36内に配されており、上述の如く収容空所58が構成されることによって、弾性ゴム板60が収容空所58に収容配置されている。   As a result, the first lid member 36 and the second lid member 38 are fixed to the central portion of the upper part of the partition member main body 34 in the axis-perpendicular direction so as to be positioned substantially concentrically with each other. The upper opening portion of the circumferential groove 48 is covered with the outer peripheral portion of the second lid member 38. The upper end portion of the central flow path 42 of the partition member main body 34 is covered with the first and second lid members 36 and 38, and the opening portion of the first lid member 36 is the axis of the second lid member 38. By covering with the central portion in the perpendicular direction, the upper end surface of the bottom portion of the first lid member 36, the inner peripheral surface of the peripheral wall portion, and the second lid member 38 are formed on the upper portion of the central portion in the direction perpendicular to the axis of the partition member 32. A housing cavity 58 extending in a substantially constant circular cross section in the axial direction is formed in cooperation with the lower end surfaces of the two. That is, the top wall portion of the accommodation space 58 is configured to cover the opening of the first lid member 36 in the second lid member 38, and the bottom wall portion of the accommodation space 58 is the first lid member 36. It is comprised by the bottom part, and the surrounding wall part of the accommodation space 58 is further comprised by the surrounding wall part of the 1st cover member 36. FIG. Here, before the opening portion of the first lid member 36 is covered with the second lid member 38 to form the accommodation space 58, the elastic rubber plate 60 as a movable plate is placed in the first lid member 36. The elastic rubber plate 60 is accommodated in the accommodating space 58 by configuring the accommodating space 58 as described above.

弾性ゴム板60は、ゴム弾性材からなり、厚さ寸法が全体に亘って略一定の円板形状を有している。弾性ゴム板60の軸方向に延びる厚さ寸法が、第一蓋部材36の底部と第二蓋部材38の軸方向の対向面間距離で表される収容空所58の軸方向の内法寸法に比して所定量だけ小さくされている。また、弾性ゴム板60の外径寸法が、第一蓋部材36の周壁部の内径寸法で表される収容空所58の軸直角方向の内法寸法に比して僅かに小さくされている。それによって、弾性ゴム板60が、主として軸方向への変位が許容された状態で、収容空所58に収容配置されている。   The elastic rubber plate 60 is made of a rubber elastic material and has a disk shape whose thickness dimension is substantially constant throughout. The axial dimension of the housing space 58 is expressed by the thickness dimension of the elastic rubber plate 60 extending in the axial direction expressed by the distance between the bottom surface of the first lid member 36 and the opposed surface of the second lid member 38 in the axial direction. It is made smaller by a predetermined amount than Further, the outer diameter of the elastic rubber plate 60 is slightly smaller than the inner dimension in the direction perpendicular to the axis of the housing space 58 represented by the inner diameter of the peripheral wall portion of the first lid member 36. Thereby, the elastic rubber plate 60 is accommodated in the accommodating space 58 in a state where displacement in the axial direction is mainly allowed.

また、支持リング40は、全体として大径の略円形リング状を呈している。特に、その軸直角方向に広がる幅方向中央部分が、軸方向に円筒状に延びる外周面を備えていて、かかる円筒状外周面の上端部分が、幅方向内側に円環形状に広がる上端部分(面)とされていると共に、円筒状外周面の下端部分が、幅方向外側に円環形状に広がる下端部分(面)とされている。かかる支持リング40の円筒状外周面(部)が仕切部材本体34の下側嵌着凹所46の周壁部に圧入固定されて、支持リング40の外周部分の上端面が、仕切部材本体34における下側嵌着凹所46の開口縁部周りの下端面に軸方向で重ね合わされている。   Further, the support ring 40 has a large-diameter, generally circular ring shape as a whole. In particular, the central portion in the width direction extending in the direction perpendicular to the axis includes an outer peripheral surface extending in a cylindrical shape in the axial direction, and the upper end portion of the cylindrical outer peripheral surface extends in an annular shape on the inner side in the width direction ( The lower end portion of the cylindrical outer peripheral surface is a lower end portion (surface) that spreads in an annular shape outward in the width direction. The cylindrical outer peripheral surface (part) of the support ring 40 is press-fitted and fixed to the peripheral wall portion of the lower fitting recess 46 of the partition member main body 34, and the upper end surface of the outer peripheral portion of the support ring 40 is in the partition member main body 34. It overlaps with the lower end surface around the opening edge of the lower fitting recess 46 in the axial direction.

ここで、仕切部材本体34と支持リング40の間には、隔壁弾性膜としての弾性ゴム膜62が挟み込まれている。弾性ゴム膜62は、ゴム弾性材からなり、略円板形状を有している。また、弾性ゴム膜62の外周縁部を含む外周部分が、中央部分よりも厚さ方向に大きく突出した円形断面等で周方向に延びていることによって、中央部分に比して厚肉とされている。この弾性ゴム膜62の外周部分の上端面が仕切部材本体34の下側嵌着凹所46の底面に重ね合わされていると共に、弾性ゴム膜62の外周部分の下端面が支持リング40の上端面に重ね合わされており、支持リング40と仕切部材本体34の圧入固定力に基づき、弾性ゴム膜62の外周部分が圧縮変形しつつ仕切部材本体34と支持リング40の間に挟み込まれて支持されている。これにより、弾性ゴム膜62が、その中央部分の変形が許容されつつ、仕切部材32の軸直角方向中央部分の下側に組み付けられていると共に、仕切部材本体34の中央流路42の下端部分が、弾性ゴム膜62で流体密に閉塞せしめられている。   Here, an elastic rubber film 62 as a partition elastic film is sandwiched between the partition member main body 34 and the support ring 40. The elastic rubber film 62 is made of a rubber elastic material and has a substantially disc shape. Further, the outer peripheral portion including the outer peripheral edge portion of the elastic rubber film 62 extends in the circumferential direction with a circular cross section or the like projecting larger in the thickness direction than the central portion, so that it is thicker than the central portion. ing. The upper end surface of the outer peripheral portion of the elastic rubber film 62 is superimposed on the bottom surface of the lower fitting recess 46 of the partition member main body 34, and the lower end surface of the outer peripheral portion of the elastic rubber film 62 is the upper end surface of the support ring 40. Based on the press-fit fixing force between the support ring 40 and the partition member body 34, the outer peripheral portion of the elastic rubber film 62 is sandwiched between and supported by the partition member body 34 and the support ring 40 while being compressed and deformed. Yes. Thereby, the elastic rubber film 62 is assembled to the lower side of the central portion in the direction perpendicular to the axis of the partition member 32 while allowing deformation of the central portion thereof, and the lower end portion of the central flow path 42 of the partition member main body 34. However, the elastic rubber film 62 is fluid-tightly closed.

これら弾性ゴム板60と弾性ゴム膜62が組み付けられた仕切部材32は、本体ゴム弾性体16の一体加硫成形品における第二の取付金具14の下側開口部から軸方向に差し入れられて、仕切部材32における第二蓋部材38の外周部分が、本体ゴム弾性体16の段差部30と軸方向に重ね合わされている。また、かかる第二の取付金具14の下側開口部には、可撓性膜としてのダイヤフラム64が組み付けられている。   The partition member 32 in which the elastic rubber plate 60 and the elastic rubber film 62 are assembled is inserted in the axial direction from the lower opening of the second mounting bracket 14 in the integrally vulcanized molded product of the main rubber elastic body 16, An outer peripheral portion of the second lid member 38 in the partition member 32 is overlapped with the step portion 30 of the main rubber elastic body 16 in the axial direction. In addition, a diaphragm 64 as a flexible film is assembled to the lower opening of the second mounting bracket 14.

ダイヤフラム64は、充分な弛みを有する薄肉の円形ゴム膜で形成されている。ダイヤフラム64の外周縁部には、固定部材としての大径の円筒形状を有する固定金具66の内周面が加硫接着されている。この固定金具66が第二の取付金具14の下側開口部から軸方向に差し入れられて、固定金具66の上端部分が、支持リング40乃至は仕切部材本体34で構成される仕切部材32の外周側の下端部と軸方向で重ね合わされている。   The diaphragm 64 is formed of a thin circular rubber film having sufficient slackness. The outer peripheral edge of the diaphragm 64 is vulcanized and bonded to the inner peripheral surface of a fixing metal fitting 66 having a large-diameter cylindrical shape as a fixing member. The fixing bracket 66 is inserted in the axial direction from the lower opening of the second mounting bracket 14, and the upper end portion of the fixing bracket 66 is the outer periphery of the partition member 32 constituted by the support ring 40 or the partition member body 34. It is overlapped with the lower end of the side in the axial direction.

そして、第二の取付金具14に八方絞り等の縮径加工が施されて、第二の取付金具14の縮径変形に伴い、第二の取付金具14の小径筒部24の内周面に被着されたシールゴム層28が、第二の取付金具14と仕切部材32および固定金具66の間で圧縮変形せしめられつつ仕切部材32および固定金具66の外周面に重ね合わされている。これにより、仕切部材32および固定金具66が、第二の取付金具14に嵌着固定されて、第二の取付金具14の下側開口部が、固定金具66を備えたダイヤフラム64で流体密に閉塞せしめられていると共に、第二の取付金具14の内側における本体ゴム弾性体16とダイヤフラム64の間の領域が、仕切部材32で流体密に二分されている。   Then, the second mounting bracket 14 is subjected to diameter reduction processing such as an eight-way drawing, and along with the diameter reduction deformation of the second mounting bracket 14, on the inner peripheral surface of the small diameter cylindrical portion 24 of the second mounting bracket 14. The adhered seal rubber layer 28 is superimposed on the outer peripheral surfaces of the partition member 32 and the fixing bracket 66 while being compressed and deformed between the second mounting bracket 14 and the partition member 32 and the fixing bracket 66. Thus, the partition member 32 and the fixing metal fitting 66 are fitted and fixed to the second attachment metal fitting 14, and the lower opening of the second attachment metal fitting 14 is fluid-tightened by the diaphragm 64 including the fixing metal fitting 66. The region between the main rubber elastic body 16 and the diaphragm 64 inside the second mounting member 14 is divided into two fluid-tight by a partition member 32 while being closed.

この仕切部材32を挟んだ軸方向一方(図1中、上)の側において、本体ゴム弾性体16の大径凹所26が仕切部材32で閉塞された領域には、壁部の一部が本体ゴム弾性体16で構成されて振動入力時に本体ゴム弾性体16の弾性変形に基づいて圧力変動が生ぜしめられる受圧室68が形成されている。また、仕切部材32を挟んだ軸方向他方(図1中、下)の側において、仕切部材32とダイヤフラム64の間の領域には、壁部の一部がダイヤフラム64で構成されてダイヤフラム64の弾性変形に基づき容積変化が容易に許容される平衡室70が形成されている。これら受圧室68と平衡室70には、非圧縮性流体が封入されている。封入される非圧縮性流体としては、例えば水やアルキレングリコール、ポリアルキレングリコール、シリコーン油等が採用されるが、特に流体の共振作用等の流動作用に基づく防振効果を有効に得るためには、0.1Pa・s以下の低粘性流体を採用することが望ましい。また、受圧室68や平衡室70への非圧縮性流体の封入は、例えば、第一及び第二の取付金具12,14を備えた本体ゴム弾性体16の一体加硫成形品に対する仕切部材32やダイヤフラム64の固定金具66の組み付けを非圧縮性流体中で行うことによって、好適に実現される。   On one side in the axial direction (on the upper side in FIG. 1) sandwiching the partition member 32, a part of the wall portion is in a region where the large-diameter recess 26 of the main rubber elastic body 16 is closed by the partition member 32. A pressure receiving chamber 68 is formed which is composed of the main rubber elastic body 16 and in which pressure fluctuation is generated based on elastic deformation of the main rubber elastic body 16 when vibration is input. Further, on the other side in the axial direction with respect to the partition member 32 (lower side in FIG. 1), a part of the wall portion is formed by the diaphragm 64 in the region between the partition member 32 and the diaphragm 64. An equilibrium chamber 70 in which a volume change is easily allowed based on elastic deformation is formed. The pressure receiving chamber 68 and the equilibrium chamber 70 are filled with an incompressible fluid. For example, water, alkylene glycol, polyalkylene glycol, silicone oil, or the like is employed as the incompressible fluid to be enclosed. In order to effectively obtain a vibration isolation effect based on a fluid action such as a resonance action of the fluid. It is desirable to employ a low viscosity fluid of 0.1 Pa · s or less. Further, the incompressible fluid is sealed in the pressure receiving chamber 68 and the equilibrium chamber 70, for example, the partition member 32 for the integrally vulcanized molded product of the main rubber elastic body 16 including the first and second mounting brackets 12 and 14. And the fixing metal fitting 66 of the diaphragm 64 is preferably realized by performing the assembly in an incompressible fluid.

また、上述の如く第二の取付金具14のシールゴム層28が、第二の取付金具14と仕切部材32の間で圧縮変形せしめられつつ仕切部材32の外周面に重ね合わされていることによって、仕切部材32の外周面における第一周溝48や第二周溝50、接続用溝51の各開口部が、シールゴム層28で流体密に覆蓋せしめられている。それによって、仕切部材32の外周部分における軸方向上端部と軸方向中間部には、第一周溝48および第二の取付金具14が協働してなる第一外周流路72と、第二周溝50および第二の取付金具14が協働してなる第二外周流路74が、それぞれ周方向に一周弱の長さでトンネル状に延びるようにして形成されている。更に、接続用溝51と第二の取付金具14が協働してなる外側接続流路76によって、これら第一外周流路72の周方向一方の端部と第二外周流路74の周方向一方の端部が相互に接続されている。   Further, as described above, the seal rubber layer 28 of the second mounting bracket 14 is superimposed on the outer peripheral surface of the partition member 32 while being compressed and deformed between the second mounting bracket 14 and the partition member 32. The openings of the first circumferential groove 48, the second circumferential groove 50, and the connection groove 51 on the outer circumferential surface of the member 32 are covered with a sealing rubber layer 28 in a fluid-tight manner. Thereby, the first outer peripheral flow path 72 formed by the cooperation of the first circumferential groove 48 and the second mounting bracket 14 at the upper end portion in the axial direction and the intermediate portion in the axial direction in the outer peripheral portion of the partition member 32, and the second A second outer peripheral flow path 74 formed by cooperation of the circumferential groove 50 and the second mounting bracket 14 is formed so as to extend in a tunnel shape with a length of slightly less than one round in the circumferential direction. Furthermore, the outer connection flow path 76 formed by the cooperation of the connection groove 51 and the second mounting bracket 14 causes one end of the first outer peripheral flow path 72 in the circumferential direction and the second outer peripheral flow path 74 in the circumferential direction. One end is connected to each other.

ここで、本実施形態のシェイク用オリフィス通路78が、第一外周流路72や第二外周流路74、外側接続流路76を含んで構成されていることによって、仕切部材32の外周部分を周方向に二周弱の長さで螺旋状に延びている。シェイク用オリフィス通路78の一方の端部が、第一外周流路72の周方向他方の端部に位置する第二蓋部材38に貫設された連通孔80を通じて受圧室68に接続されていると共に、シェイク用オリフィス通路78の他方の端部が、第二外周流路74の周方向他方の端部に位置する仕切部材本体34の下端部に貫設され、更に該下端部に支持リング40の外周部分が重ね合わされている場合にはその外周部分にも貫設された連通孔82を通じて平衡室70に接続されている。それによって、受圧室68と平衡室70の間におけるシェイク用オリフィス通路78を通じての流体流動が許容されるようになっている。   Here, the shaker orifice passage 78 of the present embodiment includes the first outer peripheral flow path 72, the second outer peripheral flow path 74, and the outer connection flow path 76, so that the outer peripheral portion of the partition member 32 is It extends in a spiral shape with a length of less than two rounds in the circumferential direction. One end of the shaker orifice passage 78 is connected to the pressure receiving chamber 68 through a communication hole 80 penetrating the second lid member 38 located at the other circumferential end of the first outer peripheral flow path 72. At the same time, the other end of the shake orifice passage 78 penetrates the lower end of the partition member main body 34 located at the other end in the circumferential direction of the second outer peripheral flow path 74, and the support ring 40 further extends to the lower end. When the outer peripheral portions of the two are superposed, they are connected to the equilibrium chamber 70 through a communication hole 82 penetrating the outer peripheral portion. Thereby, fluid flow through the shake orifice passage 78 between the pressure receiving chamber 68 and the equilibrium chamber 70 is allowed.

さらに、仕切部材32の中央部分に形成された中央流路42が、自動車用エンジンマウント10の軸方向で、第一及び第二蓋部材36,38にて構成される収容空所58に収容配置された弾性ゴム板60を挟んで受圧室68と対向位置せしめられていると共に、弾性ゴム膜62を挟んで平衡室70と対向位置せしめられている。弾性ゴム板60では、その一方(図1中、上)の面に対して、第二蓋部材38の第二透孔56を通じて受圧室68の圧力が及ぼされるようになっていると共に、その他方(図1中、下)の面に対して、第一蓋部材36の第一透孔54を通じて、弾性ゴム膜62の弾性変形による中央流路42の圧力伝達を介して平衡室70の圧力が及ぼされ、また中央流路42や内側接続流路52、第二外周流路74から後述する仕切部材32に形成された連通孔88を通じて平衡室70の圧力が及ぼされるようになっている。一方、弾性ゴム膜62では、その一方(図1中、上)の面に対して、収容空所58における弾性ゴム板60の変形変位による中央流路42の圧力伝達を介して受圧室68の圧力が及ぼされるようになっていると共に、その他方(図1中、下)の面に対して平衡室70の圧力が及ぼされるようになっている。   Further, the central flow path 42 formed in the central portion of the partition member 32 is accommodated in the accommodating space 58 constituted by the first and second lid members 36 and 38 in the axial direction of the automobile engine mount 10. The elastic rubber plate 60 is positioned opposite the pressure receiving chamber 68, and the elastic rubber film 62 is positioned opposite the equilibrium chamber 70. In the elastic rubber plate 60, the pressure of the pressure receiving chamber 68 is applied to one surface (the upper side in FIG. 1) through the second through hole 56 of the second lid member 38, and the other side. The pressure in the equilibrium chamber 70 is applied to the surface (lower in FIG. 1) through the first through hole 54 of the first lid member 36 through the pressure transmission of the central flow path 42 due to the elastic deformation of the elastic rubber film 62. Further, the pressure in the equilibrium chamber 70 is exerted from the central flow path 42, the inner connection flow path 52, and the second outer peripheral flow path 74 through a communication hole 88 formed in the partition member 32 described later. On the other hand, in the elastic rubber film 62, the pressure receiving chamber 68 has a surface (on the upper side in FIG. 1) of the pressure receiving chamber 68 through pressure transmission of the central flow path 42 due to deformation and displacement of the elastic rubber plate 60 in the accommodation space 58. A pressure is applied, and the pressure of the equilibrium chamber 70 is applied to the other surface (lower side in FIG. 1).

従って、受圧室68と平衡室70の圧力差に基づいて、弾性ゴム板60が収容空所58内で変形変位せしめられることによって、受圧室68と平衡室70の間における中央流路42や内側接続流路52、第二外周流路74を通じての流体流動作用が有効に生ぜしめられるようになっている。更に、弾性ゴム板60の収容空所58内での変形変位に加えて、弾性ゴム膜62が有効に弾性変形せしめられることによって、受圧室68と平衡室70の間における中央流路42を通じての流体流動作用が有効に生ぜしめられるようになっている。換言すると、弾性ゴム板60が、収容空所58の底壁部を構成する第一蓋部材36の底部または収容空所58の天壁部を構成する第二蓋部材38の中央部分に当接せしめられて、第一透孔54または第二透孔56が弾性ゴム板60で閉塞されたり、或いは弾性ゴム膜62に所期の弾性変形が生ぜしめられないことによって、中央流路42の流体流動作用が有効に機能し得ないこととなる。また、弾性ゴム板60が第一蓋部材36の底部や第二蓋部材38の中央部分に当接せしめられて第一透孔54や第二透孔56が閉塞されることで、中央流路42や内側接続流路52、第二外周流路74を通じての流体流動作用も有効に機能し得ないこととなる。   Therefore, the elastic rubber plate 60 is deformed and displaced in the accommodation space 58 based on the pressure difference between the pressure receiving chamber 68 and the equilibrium chamber 70, so that the central flow path 42 and the inner side between the pressure receiving chamber 68 and the equilibrium chamber 70 are changed. The fluid flow action through the connection flow path 52 and the second outer peripheral flow path 74 is effectively generated. Furthermore, in addition to the deformation displacement in the accommodation space 58 of the elastic rubber plate 60, the elastic rubber film 62 is effectively elastically deformed, so that the pressure between the pressure receiving chamber 68 and the equilibrium chamber 70 through the central flow path 42. The fluid flow action is effectively generated. In other words, the elastic rubber plate 60 abuts against the bottom portion of the first lid member 36 constituting the bottom wall portion of the accommodation space 58 or the central portion of the second lid member 38 constituting the top wall portion of the accommodation space 58. As a result, the first through-hole 54 or the second through-hole 56 is blocked by the elastic rubber plate 60 or the elastic rubber film 62 does not cause the desired elastic deformation, so that the fluid in the central channel 42 The fluid action cannot function effectively. Further, the elastic rubber plate 60 is brought into contact with the bottom portion of the first lid member 36 and the central portion of the second lid member 38 so that the first through hole 54 and the second through hole 56 are closed, whereby the central flow path is formed. Therefore, the fluid flow action through 42, the inner connection flow path 52, and the second outer peripheral flow path 74 cannot function effectively.

そこにおいて、本実施形態のアイドリング用オリフィス通路84が、仕切部材32の中央流路42により構成されている。特に、アイドリング用オリフィス通路84の受圧室68側の開口部が、仕切部材32の収容空所58や第一及び第二透孔54,56を含んで構成されていることによって、弾性ゴム板60で覆われた状態で形成されている。また、アイドリング用オリフィス通路84の平衡室70側の開口部が、仕切部材32の下側嵌着凹所46で構成されて、弾性ゴム膜62によって流体密に閉塞されている。   Therefore, the idling orifice passage 84 of the present embodiment is constituted by the central flow path 42 of the partition member 32. In particular, the opening on the pressure receiving chamber 68 side of the idling orifice passage 84 includes the accommodation space 58 of the partition member 32 and the first and second through holes 54, 56. It is formed in a state covered with. Further, the opening on the equilibrium chamber 70 side of the idling orifice passage 84 is formed by the lower fitting recess 46 of the partition member 32 and is fluid-tightly closed by the elastic rubber film 62.

さらに、本実施形態の中周波オリフィス通路86が、仕切部材32の中央流路42や内側接続流路52、第二外周流路74の全体に満たない長さで延びる周上の一部を含んで構成されている。ここで、中周波オリフィス通路86の受圧室68側の開口部が、アイドリング用オリフィス通路84と同様に、仕切部材32の収容空所58や第一及び第二透孔54,56を含んで構成されて、弾性ゴム板60で覆われた状態で形成されている。また、中周波オリフィス通路86の平衡室70側の開口部が、第二外周流路74における連通孔82の形成部分を除いた仕切部材本体32の下端部に貫設され、更に該下端部に支持リング40の外周部分が重ね合わされている場合にはその外周部分にも貫設された連通孔88によって構成されて、かかる連通孔88を通じて平衡室70に接続されている。   Further, the medium frequency orifice passage 86 of the present embodiment includes a part of the circumference extending with a length less than the entire central flow path 42, inner connection flow path 52, and second outer peripheral flow path 74 of the partition member 32. It consists of Here, the opening on the pressure receiving chamber 68 side of the medium frequency orifice passage 86 includes the accommodation space 58 of the partition member 32 and the first and second through holes 54 and 56, similarly to the idling orifice passage 84. And formed in a state covered with the elastic rubber plate 60. Further, the opening on the equilibrium chamber 70 side of the intermediate frequency orifice passage 86 is provided in the lower end portion of the partition member main body 32 excluding the portion where the communication hole 82 is formed in the second outer peripheral flow path 74, and further on the lower end portion. When the outer peripheral part of the support ring 40 is overlapped, it is constituted by a communication hole 88 penetrating through the outer peripheral part, and is connected to the equilibrium chamber 70 through the communication hole 88.

すなわち、本実施形態の自動車用エンジンマウント10の機能的モデル図が図2にも示されているように、受圧室68と平衡室70を連通せしめるオリフィス通路として、シェイク用オリフィス通路78とアイドリング用オリフィス通路84と中周波オリフィス通路86の3つが採用されており、特に本実施形態では、シェイク用オリフィス通路78と中周波オリフィス通路86が第二外周流路74を共用して構成されていると共に、中周波オリフィス通路86とアイドリング用オリフィス通路84が中央流路84を共用して構成されている。   That is, as the functional model diagram of the automobile engine mount 10 of this embodiment is also shown in FIG. 2, as the orifice passage for communicating the pressure receiving chamber 68 and the equilibrium chamber 70, the shaker orifice passage 78 and the idling passage are used. The orifice passage 84 and the medium frequency orifice passage 86 are employed. In particular, in this embodiment, the shake orifice passage 78 and the medium frequency orifice passage 86 are configured to share the second outer peripheral passage 74. The intermediate frequency orifice passage 86 and the idling orifice passage 84 are configured to share the central flow path 84.

また、シェイク用オリフィス通路78が、仕切部材32の外周部分を周方向に延びるように形成されている。更に、仕切部材32の中央部分において、弾性ゴム板60が第一及び第二蓋部材36,38で構成されてなる収容空所58に収容配置された状態で受圧室68に面するように配設されていると共に、弾性ゴム膜62が平衡室70に面するように配設されており、それら弾性ゴム板60と弾性ゴム膜62の間でマウント軸方向に延びる中央流路42によって、アイドリング用オリフィス通路84が形成されている。更にまた、中周波オリフィス通路86が、仕切部材32における弾性ゴム板60と平衡室70に面する下端部分との間で弾性ゴム膜62の周囲を延びるように形成されている。   A shake orifice passage 78 is formed so as to extend in the circumferential direction on the outer peripheral portion of the partition member 32. Further, in the central portion of the partition member 32, the elastic rubber plate 60 is disposed so as to face the pressure receiving chamber 68 in a state where the elastic rubber plate 60 is accommodated in the accommodation space 58 formed by the first and second lid members 36 and 38. The elastic rubber film 62 is disposed so as to face the equilibrium chamber 70, and the idling is performed by the central flow path 42 extending in the mount axis direction between the elastic rubber plate 60 and the elastic rubber film 62. An orifice passage 84 is formed. Furthermore, an intermediate frequency orifice passage 86 is formed so as to extend around the elastic rubber film 62 between the elastic rubber plate 60 in the partition member 32 and the lower end portion facing the equilibrium chamber 70.

その結果、受圧室68におけるアイドリング用オリフィス通路84および中周波オリフィス通路86の両開口部を覆う部分において、弾性ゴム板60が第一及び第二蓋部材36,38で構成されてなる収容空所58に収容配置された状態で配設され、弾性ゴム板60が、第一及び第二蓋部材36,38の第一及び第二透孔54,56と収容空所58を通じて及ぼされる受圧室68と平衡室70の圧力差に基づいて、収容空所58内を変位可能とされ、また、第一又は第二蓋部材36,38に当接されて、弾性ゴム板60の変位量が制限されると共に、第一又は第二透孔54,56が弾性ゴム板60で覆蓋せしめられることによって、アイドリング用オリフィス通路84および中周波オリフィス通路86を通じて流動せしめられる各流体の量が制限されるようになっている。このことからも明らかなように、弾性ゴム板60の変位量を拘束する拘束部材が第一及び第二蓋部材36,38を含んで構成されていると共に、アイドリング用及び中周波オリフィス通路84,86の流体流動量を制限する流量制限部材が、弾性ゴム板60や第一及び第二蓋部材36,38、第一及び第二透孔54,56、収容空所58を含んで構成されている。   As a result, in the portion that covers both openings of the idling orifice passage 84 and the medium frequency orifice passage 86 in the pressure receiving chamber 68, the accommodation space in which the elastic rubber plate 60 is constituted by the first and second lid members 36 and 38. 58, the elastic rubber plate 60 is accommodated and disposed in the first and second cover members 36 and 38. The pressure receiving chamber 68 is provided through the first and second through holes 54 and 56 of the first and second lid members 36 and the accommodating space 58. Based on the pressure difference between the balance chamber 70 and the balance chamber 70, the inside of the accommodation space 58 can be displaced, and the displacement amount of the elastic rubber plate 60 is limited by contacting the first or second lid member 36, 38. At the same time, the first or second through holes 54 and 56 are covered with the elastic rubber plate 60, so that the amount of each fluid allowed to flow through the idling orifice passage 84 and the medium frequency orifice passage 86 is reduced. It is adapted to be limited. As is clear from this, the restraining member for restraining the amount of displacement of the elastic rubber plate 60 includes the first and second lid members 36, 38, the idling and medium frequency orifice passages 84, The flow restricting member 86 that restricts the fluid flow amount 86 includes the elastic rubber plate 60, the first and second lid members 36 and 38, the first and second through holes 54 and 56, and the accommodation space 58. Yes.

このような構造とされた自動車用エンジンマウント10においては、シェイク用オリフィス通路78を通じて流動せしめられる流体の共振周波数が、エンジンシェイクに相当する10Hz程度の低周波数域にチューニングされている。また、エンジンシェイクはエンジンの剛体一次振動に相当してその振幅が大きいことから、エンジンシェイク時に受圧室68と平衡室70の圧力差が大きくなることを利用して、弾性ゴム板60が第一又は第二蓋部材36,38に当接せしめられて、第一又は第二透孔54,56が弾性ゴム板60で閉塞されるように設計されている。   In the automobile engine mount 10 having such a structure, the resonance frequency of the fluid flowing through the shake orifice passage 78 is tuned to a low frequency range of about 10 Hz corresponding to the engine shake. Also, since the amplitude of the engine shake is large corresponding to the rigid primary vibration of the engine, the elastic rubber plate 60 is used for the first by utilizing the fact that the pressure difference between the pressure receiving chamber 68 and the equilibrium chamber 70 becomes large during the engine shake. Alternatively, the first or second through holes 54 and 56 are designed to be closed by the elastic rubber plate 60 by being brought into contact with the second lid members 36 and 38.

これにより、自動車の走行状態下、エンジンシェイクに相当する低周波大振幅振動が入力されると、弾性ゴム板60が第一又は第二蓋部材36,38への当接により拘束変位されると共に、第一又は第二透孔54,56が閉塞せしめられることによって、アイドリング用及び中周波オリフィス通路84,86の流体流動量が制限される。それ故、受圧室68のアイドリング用及び中周波オリフィス通路84,86を通じての圧力漏れが抑えられて、受圧室68と平衡室70の圧力差が有効に惹起せしめられ、シェイク用オリフィス通路78の流体流動量が充分に確保され得る。このシェイク用オリフィス通路78を通じて流動せしめられる流体の共振作用に基づいて、エンジンシェイクに対して優れた防振効果(高減衰効果)が発揮され得る。   As a result, when a low-frequency large-amplitude vibration corresponding to an engine shake is input under the traveling state of the automobile, the elastic rubber plate 60 is restrained and displaced by contact with the first or second lid member 36, 38. By closing the first or second through holes 54, 56, the fluid flow amount in the idling and medium frequency orifice passages 84, 86 is limited. Therefore, the pressure leakage through the idling of the pressure receiving chamber 68 and the medium frequency orifice passages 84 and 86 is suppressed, and the pressure difference between the pressure receiving chamber 68 and the equilibrium chamber 70 is effectively induced, and the fluid in the shake orifice orifice passage 78 is obtained. A sufficient amount of flow can be secured. Based on the resonance action of the fluid flowing through the shake orifice passage 78, an excellent anti-vibration effect (high damping effect) can be exhibited against the engine shake.

また、アイドリング用オリフィス通路84を通じて流動せしめられる流体の共振周波数が、アイドリング時にエンジンの爆発に伴って周期的に発生するアイドリング基本振動に相当する20〜30Hz程度の高周波数域にチューニングされている。また、かかるアイドリング基本振動の振幅は前述のエンジンシェイクの振幅に比して充分に小さいことから、受圧室68と平衡室70の圧力差がそれ程大きくならないことを利用して、アイドリング基本振動の入力時に、弾性ゴム板60の第一又は第二蓋部材36,38への当接を抑えて、弾性ゴム板60が収容空所58内を積極的に小変位せしめられるように設計されている。より望ましくは、弾性ゴム板60の共振周波数がアイドリング基本振動に相当する高周波数域にチューニングされることによって、弾性ゴム板60の小変位が一層積極的に生ぜしめられ得る。また、アイドリング用オリフィス通路84の平衡室70側開口部に設けられた弾性ゴム膜62の共振周波数をアイドリング基本振動に相当する高周波数域にチューニングすることで、アイドリング基本振動の入力時に弾性ゴム膜62が積極的に弾性変形せしめられるようにしても良い。   In addition, the resonance frequency of the fluid that flows through the idling orifice passage 84 is tuned to a high frequency range of about 20 to 30 Hz corresponding to the idling basic vibration periodically generated with the explosion of the engine during idling. Further, since the amplitude of the idling basic vibration is sufficiently smaller than the amplitude of the engine shake described above, the idling basic vibration is input by utilizing the fact that the pressure difference between the pressure receiving chamber 68 and the equilibrium chamber 70 does not become so large. Sometimes, the elastic rubber plate 60 is designed to be positively displaced in the accommodation space 58 by suppressing the contact of the elastic rubber plate 60 with the first or second lid members 36 and 38. More desirably, the small displacement of the elastic rubber plate 60 can be generated more positively by tuning the resonance frequency of the elastic rubber plate 60 to a high frequency range corresponding to the idling fundamental vibration. In addition, by tuning the resonance frequency of the elastic rubber film 62 provided in the equilibrium chamber 70 side opening of the orifice passage 84 for idling to a high frequency range corresponding to the basic idling vibration, the elastic rubber film is input when the idling basic vibration is input. 62 may be positively elastically deformed.

これにより、アイドリング状態でアイドリング基本振動に相当する高周波小振幅振動が入力された場合には、シェイク用オリフィス通路78が反共振的な作用によって流体流通抵抗が著しく大きくなって実質的に閉塞状態とされるが、収容空所58における弾性ゴム板60の変形による小変位と弾性ゴム膜62の弾性変形に基づいて、受圧室68と平衡室70の間におけるアイドリング用オリフィス通路84を通じての流体流動作用である共振作用が発揮される。また、収容空所58における弾性ゴム板60の小変位に伴い、アイドリング用オリフィス通路84と共に中周波オリフィス通路86も受圧室68に対して実質的に開口せしめられるが、後述の如く中周波オリフィス通路86のチューニング周波数がアイドリング基本振動よりも低周波数域に設定されているため、中周波オリフィス通路86が反共振作用により実質的に閉塞状態とされる。その結果、受圧室68の圧力が中周波オリフィス通路86を通じて漏れ出すおそれがないことから、受圧室68と平衡室70の間に圧力差が有効に惹起せしめられて、弾性ゴム板60の小変位と弾性ゴム膜62の変形に基づきアイドリング用オリフィス通路84の流体流動量が充分に確保され得、アイドリング基本振動に対して有効な防振効果(低動ばね特性に基づく振動絶縁効果)が発揮され得る。   As a result, when a high-frequency small-amplitude vibration corresponding to the idling fundamental vibration is input in the idling state, the fluid flow resistance is significantly increased due to the anti-resonant action of the shaking orifice passage 78 and the substantially closed state is obtained. However, based on the small displacement caused by the deformation of the elastic rubber plate 60 in the accommodation space 58 and the elastic deformation of the elastic rubber film 62, the fluid flow action through the idling orifice passage 84 between the pressure receiving chamber 68 and the equilibrium chamber 70. The resonance effect is exhibited. Further, along with the small displacement of the elastic rubber plate 60 in the accommodation space 58, the medium frequency orifice passage 86 as well as the idling orifice passage 84 is substantially opened to the pressure receiving chamber 68. Since the tuning frequency 86 is set in a lower frequency range than the idling fundamental vibration, the medium frequency orifice passage 86 is substantially closed by an anti-resonant action. As a result, there is no possibility that the pressure in the pressure receiving chamber 68 leaks out through the medium frequency orifice passage 86, so that a pressure difference is effectively induced between the pressure receiving chamber 68 and the equilibrium chamber 70, and the elastic rubber plate 60 is small displaced. As a result, the fluid flow amount of the idling orifice passage 84 can be sufficiently secured based on the deformation of the elastic rubber film 62, and an effective anti-vibration effect (vibration insulation effect based on the low dynamic spring characteristics) can be exhibited against the idling basic vibration. obtain.

ところで、本発明者が検討したところ、自動車用エンジンマウント10では、アイドリング状態下、アイドリング基本振動よりも低周波域で大振幅の振動が非周期的に入力される場合があることがわかった。また、かかる大振幅振動は、エンジンシェイクよりも高周波数域で発生すると共に、その振幅がアイドリング基本振動に相当する高周波振動の振幅に比して充分に大きいことがわかった。このような場合に、シェイク用オリフィス通路78が反共振作用に起因して実質的に閉塞状態とされていると共に、低動ばねによる振動絶縁を目的として設計されたアイドリング用オリフィス通路86では、弾性ゴム膜62の変形に際して対応可能な圧力変化量を超えていることから、流体流動作用が有効に機能し得ない。   By the way, as a result of investigation by the present inventor, it has been found that in the engine mount 10 for an automobile, a large amplitude vibration may be input aperiodically in an idling state at a frequency lower than the idling basic vibration. Further, it has been found that such large amplitude vibration is generated in a higher frequency range than the engine shake, and that the amplitude is sufficiently larger than the amplitude of the high frequency vibration corresponding to the idling basic vibration. In such a case, the shaker orifice passage 78 is substantially closed due to the anti-resonance action, and the idling orifice passage 86 designed for the purpose of vibration isolation by the low dynamic spring is elastic. Since the amount of pressure change that can be dealt with when the rubber film 62 is deformed is exceeded, the fluid flow action cannot function effectively.

そこにおいて、本実施形態に係る自動車用エンジンマウント10では、中周波オリフィス通路86を通じて流動せしめられる流体の共振周波数が、問題となるアイドリング状態でアイドリング基本振動よりも低周波数域で発生する大振幅振動としての中周波大振幅振動に相当する11〜15Hz程度の中周波数域にチューニングされている。また、中周波大振幅振動の振幅は前述のエンジンシェイクの振幅に比して小さくされており、受圧室68と平衡室70の圧力差がそれ程大きくならないことを利用して、中周波大振幅振動の入力時に、弾性ゴム板60の第一又は第二蓋部材36,38への当接を抑えて、弾性ゴム板60が収容空所58内を小変位せしめられるように設計されている。   Therefore, in the automobile engine mount 10 according to the present embodiment, the resonance frequency of the fluid that flows through the medium frequency orifice passage 86 is large amplitude vibration that is generated in a lower frequency range than the idling fundamental vibration in the idling state in question. Is tuned to a medium frequency range of about 11 to 15 Hz corresponding to medium frequency large amplitude vibration. Further, the amplitude of the medium frequency large amplitude vibration is made smaller than the amplitude of the engine shake described above, and the fact that the pressure difference between the pressure receiving chamber 68 and the equilibrium chamber 70 does not become so large, the medium frequency large amplitude vibration. Is designed so that the elastic rubber plate 60 can be slightly displaced in the accommodation space 58 by suppressing the contact of the elastic rubber plate 60 with the first or second lid members 36 and 38.

従って、アイドリング時に中周波大振幅振動が入力された場合に、収容空所58における弾性ゴム板60の変形変位に基づいて、受圧室68と平衡室70の間における中周波オリフィス通路86を通じての流体流動作用である共振作用が有効に発揮され得る。それ故、そのようなアイドリング時に不定期で発生する大振幅振動に対しても有効な防振効果(高減衰効果)が発揮され得て、優れた車両乗り心地が実現され得るのである。   Therefore, when medium-frequency large-amplitude vibration is input during idling, the fluid passing through the medium-frequency orifice passage 86 between the pressure receiving chamber 68 and the equilibrium chamber 70 is based on the deformation displacement of the elastic rubber plate 60 in the accommodation space 58. A resonance action which is a fluid action can be effectively exhibited. Therefore, an effective anti-vibration effect (high damping effect) can be exhibited even for large-amplitude vibrations that occur irregularly during such idling, and excellent vehicle riding comfort can be realized.

特に本実施形態におけるシェイク用オリフィス通路78や中周波オリフィス通路84、アイドリング用オリフィス通路86のチューニングは、受圧室68や平衡室70の各壁ばね剛性、即ちそれら各室68,70を単位容積だけ変化させるのに必要な圧力変化量に対応する本体ゴム弾性体16やダイヤフラム64等の各弾性変形量に基づく特性値を考慮しつつ、各オリフィス通路78,84,86の通路長さと通路断面積を調節することによって行われている。なお、オリフィス通路78,84,86のチューニング周波数は、オリフィス通路78,84,86を通じて伝達される圧力変動の位相が変化して略共振状態となる周波数をいう。   In particular, the tuning of the shake orifice passage 78, the medium frequency orifice passage 84, and the idling orifice passage 86 in this embodiment is performed by adjusting the rigidity of the wall springs of the pressure receiving chamber 68 and the equilibrium chamber 70, that is, the chambers 68 and 70 by a unit volume. The passage length and passage cross-sectional area of each of the orifice passages 78, 84, 86 are taken into consideration while considering the characteristic values based on the respective elastic deformation amounts of the main rubber elastic body 16 and the diaphragm 64 corresponding to the amount of pressure change required for changing. Is done by adjusting. The tuning frequency of the orifice passages 78, 84, and 86 is a frequency at which the phase of pressure fluctuation transmitted through the orifice passages 78, 84, and 86 changes to bring about a substantially resonant state.

ここで、本実施形態では、弾性ゴム膜62がアイドリング用オリフィス通路84の平衡室70の開口部に設けられていることによって、平衡室70の壁ばねチューニング手段として、好適に採用され得る。即ち、本実施形態では、弾性ゴム膜62とダイヤフラム64との合成ばねを含んでなる平衡室70の壁ばね剛性のチューニングに際して、弾性ゴム膜62のばね剛性がダイヤフラム64のばね剛性に比して大きくされている。これにより、例示の如きエンジンシェイクや中周波大振幅振動の入力時に受圧室68と平衡室70の圧力差が大きくされて、シェイク用及び中周波オリフィス通路78,86による高減衰効果が有効に発揮され得ると共に、アイドリング基本振動の入力時に受圧室68と平衡室70の圧力差が小さくされて、アイドリング用オリフィス通路84による低動ばね特性に基づく振動絶縁効果が有効に発揮され得るのである。   Here, in the present embodiment, the elastic rubber film 62 is provided in the opening of the equilibrium chamber 70 of the idling orifice passage 84, so that it can be suitably employed as a wall spring tuning means of the equilibrium chamber 70. That is, in the present embodiment, when tuning the wall spring rigidity of the equilibrium chamber 70 including the composite spring of the elastic rubber film 62 and the diaphragm 64, the spring rigidity of the elastic rubber film 62 is larger than the spring rigidity of the diaphragm 64. It has been enlarged. As a result, the pressure difference between the pressure receiving chamber 68 and the equilibrium chamber 70 is increased at the time of input of engine shake or medium frequency large amplitude vibration as illustrated, and the high damping effect by the shake and medium frequency orifice passages 78 and 86 is effectively exhibited. In addition, the pressure difference between the pressure receiving chamber 68 and the equilibrium chamber 70 can be reduced when the idling basic vibration is input, and the vibration isolation effect based on the low dynamic spring characteristic by the idling orifice passage 84 can be effectively exhibited.

また、ダイヤフラム64と共に平衡室70の壁ばねチューニング手段として用いられる弾性ゴム膜62が、アイドリング用オリフィス通路84の平衡室70の開口部に設けられていることから、平衡室70の壁ばねチューニングに際して、例えば、弾性ゴム膜がアイドリング用オリフィス通路の平衡室側開口部から受圧室側に離隔して設けられる場合に比して、アイドリング用オリフィス通路における平衡室側開口部から弾性ゴム膜に至る部分が平衡室に開口していることによる壁ばね剛性への影響を厳密に考慮する必要がなくなる。その結果、平衡室70の壁ばね剛性のチューニング変更が容易とされ得、延いてはシェイク用や中周波、アイドリング用オリフィス通路78,84,86のチューニング性能が向上され得る。   Further, since the elastic rubber film 62 used as a wall spring tuning means of the equilibrium chamber 70 together with the diaphragm 64 is provided at the opening of the equilibrium chamber 70 of the idling orifice passage 84, the wall spring tuning of the equilibrium chamber 70 is performed. For example, compared with the case where the elastic rubber film is provided separately from the equilibrium chamber side opening of the idling orifice passage to the pressure receiving chamber side, the portion extending from the equilibrium chamber side opening to the elastic rubber film in the idling orifice passage Therefore, it is not necessary to strictly consider the influence on the wall spring stiffness due to the opening in the equilibrium chamber. As a result, the tuning change of the wall spring rigidity of the equilibrium chamber 70 can be facilitated, and the tuning performance of the orifice passages 78, 84, 86 for shaking, idling and idling can be improved.

因みに、本実施形態に従う構造とされた自動車用エンジンマウント10における防振特性の一具体例を以下に示す。かかる具体例は、自動車用エンジンマウント10に対してパワーユニットの分担支持荷重に相当する静的荷重を中心軸上で第一の取付金具12と第二の取付金具14の間に及ぼした状態下で、それら第一の取付金具12と第二の取付金具14の間に振動を入力せしめた場合の防振特性を示すものである。   Incidentally, a specific example of the anti-vibration characteristic in the automobile engine mount 10 having the structure according to the present embodiment will be shown below. In such a specific example, a static load corresponding to the shared support load of the power unit is applied to the automobile engine mount 10 on the central axis between the first mounting bracket 12 and the second mounting bracket 14. The anti-vibration characteristics when vibration is input between the first mounting bracket 12 and the second mounting bracket 14 are shown.

かくの如き防振特性の一具体例においては、シェイク用オリフィス通路78をエンジンシェイクに相当する低周波大振幅振動(周波数:f1=10Hz程度、振幅:±1.0mm)にチューニングした。また、アイドリング用オリフィス通路84においては、アイドリング基本振動に相当する高周波小振幅振動(周波数:f2=20〜30Hz程度、振幅:±0.1mm)の入力時に弾性ゴム板60の変形変位および弾性ゴム膜62の変形による流体の共振作用に基づく防振効果(低動ばねによる振動絶縁効果)が、発揮されるように、且つエンジンシェイクに相当する低周波大振幅振動に対しては弾性ゴム板60の拘束変位によるアイドリング用及び中周波オリフィス通路84,86の流量制限が機能することに基づいて、発揮されないようにチューニングした。このようなチューニングを施したことにより、防振特性としての減衰係数:C1が図3にも示されているように、エンジンシェイクに相当する低周波大振幅振動に対しては、シェイク用オリフィス通路78による高減衰効果が発揮されて、優れた防振効果が実現され得る。一方、防振特性としての絶対ばね定数:K1が図4にも示されているように、アイドリング基本振動に相当する高周波小振幅振動に対しては、弾性ゴム板60の変形変位および弾性ゴム膜62の変形による流体の共振作用に基づいて低動ばねによる優れた防振効果(振動絶縁効果)が発揮され得る。更に、中周波オリフィス通路86においては、アイドリング状態でのアイドリング基本振動よりも低周波側で不定期に発生する大振幅振動に相当する中周波大振幅振動(周波数:f3=11〜15Hz程度、振幅:±0.5mm程度)の入力時に弾性ゴム板60の変形変位による流体の共振作用に基づく防振効果(高減衰効果)が、発揮されるように、且つエンジンシェイクに相当する低周波大振幅振動に対しては弾性ゴム板60の拘束変位によるアイドリング用及び中周波オリフィス通路84,86の流量制限が機能することに基づいて、発揮されないようにチューニングした。このようなチューニングを施したことにより、防振特性としての減衰係数:C2が図4にも示されているように、アイドリング状態でのアイドリング基本振動よりも低周波側で不定期に発生する大振幅振動に相当する中周波大振幅振動に対しては、弾性ゴム板60の変形変位による中周波オリフィス通路86の共振作用に基づいて高減衰効果が発揮されて優れた防振効果が実現され得る。因みに、非圧縮性流体を封入しないでゴム単体からなる従来構造の自動車用エンジンマウントについての防振特性としての絶対ばね定数を比較例として図4に併せ示す。   In one specific example of such vibration isolation characteristics, the shake orifice passage 78 is tuned to low frequency large amplitude vibration (frequency: about f1 = 10 Hz, amplitude: ± 1.0 mm) corresponding to engine shake. Further, in the idling orifice passage 84, deformation and displacement of the elastic rubber plate 60 and elastic rubber when high-frequency small-amplitude vibration (frequency: about f2 = 20 to 30 Hz, amplitude: ± 0.1 mm) corresponding to idling basic vibration is input. The elastic rubber plate 60 is used to exhibit a vibration isolation effect (vibration insulation effect due to the low dynamic spring) based on the resonance action of the fluid due to the deformation of the film 62 and to low frequency large amplitude vibration corresponding to an engine shake. Based on the fact that the flow restriction for idling and medium frequency orifice passages 84 and 86 due to the restraining displacement of the medium is functioning, tuning was performed so as not to be exhibited. By performing such tuning, as shown in FIG. 3, the damping coefficient C1 as an anti-vibration characteristic is shown in FIG. The high damping effect by 78 can be exhibited and an excellent anti-vibration effect can be realized. On the other hand, as shown in FIG. 4, the absolute spring constant: K1 as an anti-vibration characteristic, the deformation displacement of the elastic rubber plate 60 and the elastic rubber film against high-frequency small-amplitude vibration corresponding to the idling basic vibration. Based on the resonance action of the fluid due to the deformation of 62, the excellent vibration isolation effect (vibration insulation effect) by the low dynamic spring can be exhibited. Further, in the medium frequency orifice passage 86, medium frequency large amplitude vibration (frequency: f3 = about 11 to 15 Hz, amplitude corresponding to large amplitude vibration that is irregularly generated on the low frequency side from the idling basic vibration in the idling state. : Low frequency large amplitude corresponding to the engine shake so that the vibration isolation effect (high damping effect) based on the resonance action of the fluid due to the deformation displacement of the elastic rubber plate 60 is exerted at the time of input of about ± 0.5 mm) The vibration was tuned so as not to be exerted on the basis of the function of the idling due to the restrained displacement of the elastic rubber plate 60 and the flow restriction of the medium frequency orifice passages 84 and 86. As a result of such tuning, the damping coefficient C2 as an anti-vibration characteristic is irregularly generated on the lower frequency side than the idling basic vibration in the idling state as shown in FIG. For medium-frequency large-amplitude vibration corresponding to amplitude vibration, a high damping effect is exhibited based on the resonance action of the medium-frequency orifice passage 86 due to deformation displacement of the elastic rubber plate 60, and an excellent vibration-proofing effect can be realized. . Incidentally, an absolute spring constant as an anti-vibration characteristic for an automobile engine mount having a conventional structure made of a single rubber without enclosing an incompressible fluid is also shown in FIG. 4 as a comparative example.

以上、本発明の実施形態について詳述してきたが、かかる実施形態における具体的な記載によって、本発明は、何等限定されるものでなく、当業者の知識に基づいて種々なる変更、修正、改良等を加えた態様で実施可能であり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。   The embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific descriptions in the embodiments, and various changes, modifications, and improvements based on the knowledge of those skilled in the art. Needless to say, any of these embodiments can be included in the scope of the present invention without departing from the spirit of the present invention.

例えば、前記実施形態では、弾性ゴム板60や第一及び第二蓋部材36,38等を含んでなるアイドリング用及び中周波オリフィス通路84,86の流量制限部材と、アイドリング用オリフィス通路84の平衡室70の開口部に設けられる弾性ゴム膜62とが、仕切部材32の中央部分における略マウント中心軸上で軸方向に対向位置せしめられていたが、これら流量制限部材と弾性ゴム膜は互いに軸方向で対向しない位置に設けられていても良いし、流量制限部材と弾性ゴム膜の少なくとも一方が、マウント中心軸から偏倚した位置に設けられても良い。   For example, in the above-described embodiment, the balance between the idling orifice passage 84 and the idling orifice passage 84 and the flow limiting member of the idling and medium frequency orifice passages 84 and 86 including the elastic rubber plate 60, the first and second lid members 36 and 38, and the like. The elastic rubber film 62 provided at the opening of the chamber 70 is positioned to face the axial direction substantially on the center axis of the mount in the central portion of the partition member 32. It may be provided at a position that does not oppose in the direction, or at least one of the flow restricting member and the elastic rubber film may be provided at a position deviated from the mount center axis.

また、前記実施形態では、アイドリング用及び中周波オリフィス通路84,86の流量制限部材が、エンジンシェイクや中周波大振幅振動、アイドリング基本振動時における受圧室68と平衡室70の圧力差がそれぞれ異なることを利用して、弾性ゴム板60の変形変位が収容空所58内を許容および制限されることで実現されていたが、例えばかかる可動板タイプの弾性ゴム板60に代えて、アイドリング用オリフィス通路84の開口部に設けられる弾性ゴム膜62と同様に、受圧室と平衡室の圧力差に基づいて弾性変形せしめられる可動膜タイプのゴム膜を採用し、ゴム膜が第一及び第二蓋部材やその他の拘束部材に当接せしめられてその変形量が制限されることでアイドリング用及び中周波オリフィス通路の流量が制限されても良い。   In the above-described embodiment, the flow restriction members for the idling and medium frequency orifice passages 84 and 86 have different pressure differences between the pressure receiving chamber 68 and the equilibrium chamber 70 during engine shake, medium frequency large amplitude vibration, and idling basic vibration. By utilizing this, the deformation displacement of the elastic rubber plate 60 has been realized by allowing and restricting the inside of the accommodation space 58. For example, instead of the movable plate type elastic rubber plate 60, an idling orifice Similar to the elastic rubber film 62 provided at the opening of the passage 84, a movable film type rubber film that is elastically deformed based on a pressure difference between the pressure receiving chamber and the equilibrium chamber is employed, and the rubber film is the first and second lids. The flow rate of the idling and medium frequency orifice passages may be limited by abutting against a member or other restraining member and limiting the amount of deformation.

さらに、アイドリング用及び中周波オリフィス通路84,86の流量制限部材として、例えば、電磁式アクチュエータ等の駆動手段の出力部材に加振板を設けて、加振板をアイドリング用及び中周波オリフィス通路の受圧室側開口部を覆うように配設せしめ、エンジンシェイクや中周波大振幅振動、アイドリング基本振動の各入力に応じて加振板を加振制御せしめることによって、アイドリング用及び中周波オリフィス通路の流量制限を実現する構造も採用可能である。特に本構造の流量制限部材では、可動板構造の流量制限部材のような振幅依存性がないことから、例えばエンジンシェイクと中周波大振幅振動における振幅に大きな差がない自動車用エンジンマウントに対して好適に採用され得る。   Further, as a flow restricting member for the idling and medium frequency orifice passages 84 and 86, for example, a vibration plate is provided on the output member of the driving means such as an electromagnetic actuator, and the vibration plate is used for the idling and medium frequency orifice passages. It is arranged so as to cover the pressure receiving chamber side opening, and by controlling the vibration plate according to each input of engine shake, medium frequency large amplitude vibration, and idling basic vibration, the idling and medium frequency orifice passages are controlled. A structure that realizes flow restriction can also be adopted. In particular, the flow restricting member of this structure is not dependent on the amplitude as the flow restricting member of the movable plate structure. For example, for an engine mount for automobiles that does not have a large difference in amplitude between engine shake and medium frequency large amplitude vibration. It can be suitably employed.

また、前記実施形態では、弾性ゴム板60が全体に亘って略一定の厚さ寸法の円板形状とされていると共に、収容空所58における弾性ゴム板60の打ち当たり部分としての第一蓋部材36の底部や第二蓋部材38の中央部分も平坦な円板形状とされていたが、例えば、弾性ゴム板における第一又は第二蓋部材への当接面と第一又は第二蓋部材における弾性ゴム板への当接面の少なくとも一方に突起や凹所等を設けて、当接面積の減少に基づき当接打音を低減せしめることも可能である。   Further, in the embodiment, the elastic rubber plate 60 has a disk shape with a substantially constant thickness throughout, and the first lid as a hitting portion of the elastic rubber plate 60 in the accommodation space 58. The bottom part of the member 36 and the central part of the second lid member 38 are also formed in a flat disk shape. For example, the contact surface of the elastic rubber plate with the first or second lid member and the first or second lid It is also possible to provide a protrusion, a recess, or the like on at least one of the contact surfaces of the member with the elastic rubber plate to reduce the contact sound based on the decrease in the contact area.

また、弾性ゴム板の主たる変位方向となる軸方向において、弾性ゴム板と第一又は第二蓋部材の何れか一方に位置決め突起を突設すると共に、他方に位置決め用孔を形成して、位置決め突起を位置決め用孔に挿通配置した状態で弾性ゴム板の軸方向変位を許容せしめたり、或いは、弾性ゴム板に突設した弾性突起を予圧縮をもって第一又は第二蓋部材に当接せしめて、弾性突起の変形変位により弾性ゴム板の軸方向変位を許容せしめても良い。それによって、弾性ゴム板の軸直角方向の変位量制限手段が、位置決め用突起を位置決め用孔に挿通せしめてなる軸直角方向の係止機構や、弾性突起を収容空所の壁部(第一又は第二蓋部材)に予圧縮をもって当接する当接機構により構成され得る。   Further, in the axial direction, which is the main displacement direction of the elastic rubber plate, a positioning projection is provided on either the elastic rubber plate or the first or second lid member, and a positioning hole is formed on the other to position the elastic rubber plate. Allow the elastic rubber plate to move in the axial direction with the protrusion inserted through the positioning hole, or allow the elastic protrusion protruding from the elastic rubber plate to contact the first or second lid member with pre-compression. The axial displacement of the elastic rubber plate may be allowed by the deformation displacement of the elastic protrusion. As a result, the displacement limit means for the elastic rubber plate in the direction perpendicular to the axis causes the locking mechanism in the direction perpendicular to the axis by inserting the positioning protrusion into the positioning hole, and the wall portion of the housing cavity (first Alternatively, it may be configured by a contact mechanism that contacts the second lid member) with pre-compression.

また、前記実施形態では、シェイク用オリフィス通路78と中周波オリフィス通路86が第二外周流路74を共用して構成されていると共に、中周波オリフィス通路86とアイドリング用オリフィス通路84が中央流路42を共用して構成されていたが、これら各通路を、それぞれ独立して形成することも勿論可能である。   In the above-described embodiment, the shake orifice passage 78 and the medium frequency orifice passage 86 are configured to share the second outer peripheral flow path 74, and the medium frequency orifice passage 86 and the idling orifice passage 84 are the central flow path. However, it is of course possible to form each of these passages independently.

その他、シェイク用オリフィス通路78やアイドリング用オリフィス通路84、中周波オリフィス通路86、弾性ゴム膜62、アイドリング用及び中周波オリフィス通路84,86の流量制限部材、仕切部材32等における形状や大きさ、構造、数、配置等の形態は、要求される防振効果や製作性等に応じて適宜に設計変更され得るものであり、前記実施形態に限定されるものでない。   In addition, the shape and size of the shake orifice passage 78, the idling orifice passage 84, the medium frequency orifice passage 86, the elastic rubber film 62, the flow restricting member for the idling and medium frequency orifice passages 84, 86, the partition member 32, etc. The form of the structure, number, arrangement, etc. can be appropriately changed in design according to the required anti-vibration effect, manufacturability, etc., and is not limited to the above embodiment.

本発明の一実施形態としての自動車用エンジンマウントの縦断面図。The longitudinal cross-sectional view of the engine mount for motor vehicles as one Embodiment of this invention. 同自動車用エンジンマウントの機能的構成のモデル図。The model figure of the functional structure of the engine mount for the vehicles. 同自動車用エンジンマウントにおいてエンジンシェイクに相当する低周波数域の防振特性を表すグラフ。The graph showing the anti-vibration characteristic of the low frequency range equivalent to an engine shake in the engine mount for the said cars. 同自動車用エンジンマウントにおいて中周波大振幅振動乃至はアイドリング基本振動に相当する中乃至は高周波数域の防振特性を表すグラフ。6 is a graph showing a vibration proof characteristic in a medium to high frequency range corresponding to medium frequency large amplitude vibration or idling basic vibration in the engine mount for the automobile.

符号の説明Explanation of symbols

10:自動車用エンジンマウント、12:第一の取付金具、14:第二の取付金具、16:本体ゴム弾性体、36:第一蓋部材、38:第二蓋部材、46:下側嵌着凹所、54:第一透孔、56:第二透孔、58:収容空所、60:弾性ゴム板、62:弾性ゴム膜、64:ダイヤフラム、68:受圧室、70:平衡室、78:シェイク用オリフィス通路、84:アイドリング用オリフィス通路、86:中周波オリフィス通路 10: Automotive engine mount, 12: First mounting bracket, 14: Second mounting bracket, 16: Rubber elastic body, 36: First lid member, 38: Second lid member, 46: Lower fitting Recess, 54: first through hole, 56: second through hole, 58: accommodating space, 60: elastic rubber plate, 62: elastic rubber film, 64: diaphragm, 68: pressure receiving chamber, 70: equilibrium chamber, 78 : Shake orifice passage, 84: Idle orifice passage, 86: Medium frequency orifice passage

Claims (4)

自動車のパワーユニットと車両ボデーの一方に取り付けられる第一の取付部材と、それらパワーユニットと車両ボデーの他方に取り付けられる第二の取付部材を本体ゴム弾性体で連結せしめ、該本体ゴム弾性体で壁部の一部が構成された受圧室と可撓性膜で壁部の一部が構成された平衡室とを形成してそれら受圧室と平衡室に非圧縮性流体を封入すると共に、それら受圧室と平衡室を相互に連通するオリフィス通路を設けた自動車用の流体封入式エンジンマウントにおいて、
前記オリフィス通路として、エンジンシェイクに相当する低周波数域にチューニングしたシェイク用オリフィス通路と、アイドリング基本振動に相当する高周波数域にチューニングしたアイドリング用オリフィス通路と、該シェイク用オリフィス通路のチューニング周波数よりも高周波数域で且つ該アイドリング用オリフィス通路のチューニング周波数よりも低周波数域にチューニングした中周波オリフィス通路を設けると共に、前記受圧室における該アイドリング用オリフィス通路及び該中周波オリフィス通路の両開口部を覆うように広がって流体流動量を制限する流量制限部材を設け、更に前記平衡室における該アイドリング用オリフィス通路の開口部を覆うように広がって該アイドリング用オリフィス通路と該平衡室を仕切る弾性変形可能な隔壁弾性膜を設けたことを特徴とする自動車用の流体封入式エンジンマウント。
A first attachment member attached to one of the power unit of the automobile and the vehicle body and a second attachment member attached to the other of the power unit and the vehicle body are connected by a main rubber elastic body, and the wall portion is formed by the main rubber elastic body. Forming a pressure receiving chamber in which a part of the wall is formed and an equilibrium chamber in which a part of the wall portion is formed of a flexible membrane, and incompressible fluid is enclosed in the pressure receiving chamber and the equilibrium chamber, and the pressure receiving chambers In a fluid-filled engine mount for automobiles provided with an orifice passage that communicates with the equilibrium chamber,
As the orifice passage, a shake orifice passage tuned to a low frequency range corresponding to an engine shake, an idling orifice passage tuned to a high frequency range corresponding to idling fundamental vibration, and a tuning frequency of the shake orifice passage An intermediate frequency orifice passage tuned to a high frequency region and a frequency region lower than the tuning frequency of the idling orifice passage is provided, and both the opening orifices of the idling orifice passage and the intermediate frequency orifice passage in the pressure receiving chamber are covered. A flow restricting member that expands and restricts the amount of fluid flow, and further expands so as to cover the opening of the idling orifice passage in the equilibrium chamber and elastically deforms the idling orifice passage and the equilibrium chamber. Fluid-filled engine mount for a motor vehicle, characterized in that a capacity septum elastic membrane.
前記受圧室における前記アイドリング用オリフィス通路及び前記中周波オリフィス通路の両開口部を覆う部分において、可動板を該受圧室と前記平衡室の圧力差に基づいて変位可能とせしめ且つその変位量を拘束部材への当接により制限する状態で配設することによって、前記流量制限部材を構成した請求項1に記載の自動車用の流体封入式エンジンマウント。   The movable plate can be displaced based on the pressure difference between the pressure receiving chamber and the equilibrium chamber at the portion of the pressure receiving chamber that covers both openings of the idling orifice passage and the medium frequency orifice passage, and the amount of displacement is restricted. The fluid-filled engine mount for an automobile according to claim 1, wherein the flow restricting member is configured by being arranged in a state of being restricted by contact with the member. 前記受圧室と前記平衡室を仕切る仕切部材を設けて、該仕切部材の外周部分を周方向に延びるように前記シェイク用オリフィス通路を形成すると共に、該仕切部材の中央部分において前記流量制限部材を該受圧室に面するように配設し前記隔壁弾性膜を該平衡室に面するように配設して、該仕切部材における該流量制限部材と該隔壁弾性膜の間に前記アイドリング用オリフィス通路を形成すると共に、該仕切部材における該流量制限部材と該平衡室に面する部分との間で該隔壁弾性膜の周囲を延びるように前記中周波オリフィス通路を形成した請求項1又は2に記載の自動車用の流体封入式エンジンマウント。   A partition member for partitioning the pressure receiving chamber and the equilibrium chamber is provided, the shake orifice orifice passage is formed so as to extend in the circumferential direction of the outer peripheral portion of the partition member, and the flow rate restricting member is provided at a central portion of the partition member. The idling orifice passage is disposed between the flow restricting member and the partition elastic membrane in the partition member, the partition elastic membrane being disposed so as to face the pressure receiving chamber and the partition elastic membrane facing the equilibrium chamber. The intermediate frequency orifice passage is formed so as to extend around the partition elastic membrane between the flow restricting member of the partition member and the portion facing the equilibrium chamber. Fluid-filled engine mount for automobiles. 前記第二の取付部材が筒状部を備えており、該筒状部の一方の開口部側に前記第一の取付部材を離隔配置して前記本体ゴム弾性体で弾性連結することによって該筒状部の該一方の開口部を流体密に閉塞すると共に、該筒状部の他方の開口部側に前記可撓性膜を配設して該筒状部の該他方の開口部を該可撓性膜で流体密に閉塞し、前記仕切部材を該筒状部の内側に組み付けて該筒状部の内側における該本体ゴム弾性体と該可撓性膜の間の領域を該仕切部材で仕切ることで該仕切部材を挟んだ両側に前記受圧室と前記平衡室を形成した請求項3に記載の自動車用の流体封入式エンジンマウント。   The second mounting member includes a cylindrical portion, and the first mounting member is spaced from one opening side of the cylindrical portion and elastically connected by the main rubber elastic body. The one opening of the cylindrical portion is fluid-tightly closed, and the flexible film is disposed on the other opening side of the cylindrical portion to allow the other opening of the cylindrical portion to A fluid tightly closed with a flexible membrane, the partition member is assembled inside the cylindrical portion, and a region between the main rubber elastic body and the flexible membrane inside the cylindrical portion is covered with the partition member. The fluid-filled engine mount for an automobile according to claim 3, wherein the pressure receiving chamber and the equilibrium chamber are formed on both sides of the partition member by partitioning.
JP2008088170A 2008-03-28 2008-03-28 Fluid-filled type engine mount for automobile Pending JP2009243510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008088170A JP2009243510A (en) 2008-03-28 2008-03-28 Fluid-filled type engine mount for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008088170A JP2009243510A (en) 2008-03-28 2008-03-28 Fluid-filled type engine mount for automobile

Publications (1)

Publication Number Publication Date
JP2009243510A true JP2009243510A (en) 2009-10-22

Family

ID=41305664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008088170A Pending JP2009243510A (en) 2008-03-28 2008-03-28 Fluid-filled type engine mount for automobile

Country Status (1)

Country Link
JP (1) JP2009243510A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208688A (en) * 2010-03-29 2011-10-20 Tokai Rubber Ind Ltd Fluid-sealed vibration control device
JP2011208685A (en) * 2010-03-29 2011-10-20 Tokai Rubber Ind Ltd Fluid-sealed vibration control device
CN103161875A (en) * 2011-12-14 2013-06-19 东海橡塑工业株式会社 Fluid-filled type vibration damping device
JP2015055339A (en) * 2013-09-13 2015-03-23 住友理工株式会社 Fluid sealed type vibration control device
US9222541B2 (en) 2012-06-12 2015-12-29 Sumitomo Riko Company Limited Fluid-filled vibration damping device
US9341227B2 (en) 2012-01-31 2016-05-17 Sumitomo Riko Company Limited Fluid-filled vibration damping device
US9970506B2 (en) 2011-12-27 2018-05-15 Sumitomo Riko Company Limited Fluid-filled vibration damping device
JP2020051474A (en) * 2018-09-25 2020-04-02 住友理工株式会社 Fluid-encapsulated vibration controller

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208688A (en) * 2010-03-29 2011-10-20 Tokai Rubber Ind Ltd Fluid-sealed vibration control device
JP2011208685A (en) * 2010-03-29 2011-10-20 Tokai Rubber Ind Ltd Fluid-sealed vibration control device
CN103161875A (en) * 2011-12-14 2013-06-19 东海橡塑工业株式会社 Fluid-filled type vibration damping device
JP2013124700A (en) * 2011-12-14 2013-06-24 Tokai Rubber Ind Ltd Fluid filled type vibration control device
US8882090B2 (en) 2011-12-14 2014-11-11 Tokai Rubber Industries, Ltd. Fluid-filled type vibration damping device
US9970506B2 (en) 2011-12-27 2018-05-15 Sumitomo Riko Company Limited Fluid-filled vibration damping device
US9341227B2 (en) 2012-01-31 2016-05-17 Sumitomo Riko Company Limited Fluid-filled vibration damping device
US9222541B2 (en) 2012-06-12 2015-12-29 Sumitomo Riko Company Limited Fluid-filled vibration damping device
JP2015055339A (en) * 2013-09-13 2015-03-23 住友理工株式会社 Fluid sealed type vibration control device
JP2020051474A (en) * 2018-09-25 2020-04-02 住友理工株式会社 Fluid-encapsulated vibration controller
JP7146546B2 (en) 2018-09-25 2022-10-04 住友理工株式会社 Fluid-filled anti-vibration device

Similar Documents

Publication Publication Date Title
JP4228219B2 (en) Fluid filled vibration isolator
JP4348553B2 (en) Fluid-filled vibration isolator and manufacturing method thereof
JP2005172172A (en) Fluid filled vibration control device
JP5977141B2 (en) Fluid filled vibration isolator
JP2009243510A (en) Fluid-filled type engine mount for automobile
JP6431795B2 (en) Fluid filled vibration isolator
WO2013176117A1 (en) Vibration damping device
JP5916550B2 (en) Fluid filled vibration isolator
JP2008002618A (en) Fluid filled vibration isolating device
JP6240523B2 (en) Fluid filled vibration isolator
JP2007085523A (en) Fluid-enclosed type vibration isolator
JP2009243511A (en) Fluid-filled engine mount for automobile
JP4158110B2 (en) Pneumatic switching type fluid-filled engine mount
JP5060846B2 (en) Fluid filled vibration isolator
JP4075066B2 (en) Fluid filled engine mount
JP4871902B2 (en) Fluid filled vibration isolator
JP2008163970A (en) Fluid-sealed vibration control device
JP2013160265A (en) Fluid-sealed vibration-damping device
JP4158111B2 (en) Pneumatic switching type fluid-filled engine mount
JP2009243543A (en) Fluid sealed type vibration isolator
JP5108659B2 (en) Fluid filled vibration isolator
JP2007051768A (en) Fluid-filled engine mount
JP3994397B2 (en) Fluid filled vibration isolator
JP5014239B2 (en) Fluid filled vibration isolator
JP2006234111A (en) Fluid sealing type vibration isolator