JP4075066B2 - Fluid filled engine mount - Google Patents
Fluid filled engine mount Download PDFInfo
- Publication number
- JP4075066B2 JP4075066B2 JP2004040495A JP2004040495A JP4075066B2 JP 4075066 B2 JP4075066 B2 JP 4075066B2 JP 2004040495 A JP2004040495 A JP 2004040495A JP 2004040495 A JP2004040495 A JP 2004040495A JP 4075066 B2 JP4075066 B2 JP 4075066B2
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- movable
- fluid
- outer peripheral
- orifice passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Combined Devices Of Dampers And Springs (AREA)
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
Description
本発明は、自動車においてパワーユニットを車両ボデーに対して防振支持せしめるエンジンマウントに係り、特に内部に封入された非圧縮性流体の流動作用を利用してエンジンシェイクやアイドリング振動などの複数の乃至は広い周波数域の振動に対して有効な防振効果を発揮し得る、流体封入式のエンジンマウントに関するものである。 The present invention relates to an engine mount for supporting a power unit on a vehicle body in a vibration-proof manner in an automobile, and in particular, using a flow action of an incompressible fluid sealed inside, a plurality of or shakes such as an engine shake and idling vibration. The present invention relates to a fluid-filled engine mount that can exhibit an effective vibration-proofing effect against vibrations in a wide frequency range.
従来から、自動車用のエンジンマウントの一種として、パワーユニットと車両ボデーの各一方に取り付けられる第一の取付部材と第二の取付部材を本体ゴム弾性体で連結せしめて、該本体ゴム弾性体で壁部の一部が構成された受圧室と、可撓性膜で壁部の一部が構成された平衡室を形成し、それら受圧室と平衡室に非圧縮性流体を封入すると共に、それら受圧室と平衡室を相互に連通するオリフィス通路を設けた流体封入式のエンジンマウントが知られている。このようなエンジンマウントにおいては、オリフィス通路を流動せしめられる非圧縮性流体の流動作用に基づいて優れた防振効果を得ることが可能となる。 Conventionally, as a kind of automobile engine mount, a first attachment member and a second attachment member attached to one of a power unit and a vehicle body are connected by a main rubber elastic body, and the main rubber elastic body is used as a wall. Forming a pressure receiving chamber in which a part of the part is configured, and an equilibrium chamber in which a part of the wall is configured by a flexible membrane, enclosing the incompressible fluid in the pressure receiving chamber and the equilibrium chamber, and receiving the pressure 2. Description of the Related Art A fluid-filled engine mount having an orifice passage that communicates a chamber and an equilibrium chamber with each other is known. In such an engine mount, an excellent vibration isolation effect can be obtained based on the flow action of the incompressible fluid that is allowed to flow in the orifice passage.
ところで、自動車用のエンジンマウントにおいては、自動車の走行状態等に応じて防振すべき振動の周波数等が異なる。ところが、オリフィス通路を流動せしめられる流体の共振作用に基づいて発揮される防振効果は、予めオリフィス通路がチューニングされた比較的狭い周波数域に限られる。なお、特開2000−310274号公報等において、互いに異なる周波数域にチューニングせしめた第一及び第二のオリフィス通路を設けると共に、高周波数域にチューニングした方の第二のオリフィス通路を開閉する弁体とアクチュエータを設けて、車両の走行状態に応じて第二のオリフィス通路を連通/遮断することにより防振特性を能動的に切り換えるようにしたセミアクティブタイプのエンジンマウントも提案されているが、このようなエンジンマウントでは、弁体とアクチュエータを組み付けなければならないことから構造が複雑で製造が難しく高価になるという問題がある。 By the way, in the engine mount for automobiles, the frequency of vibrations to be vibrated differs depending on the running state of the automobile. However, the anti-vibration effect exhibited based on the resonance action of the fluid flowing through the orifice passage is limited to a relatively narrow frequency range in which the orifice passage is tuned in advance. In addition, in JP 2000-310274 A, etc., a valve body that provides first and second orifice passages tuned to different frequency ranges and opens and closes the second orifice passage tuned to a high frequency range. A semi-active type engine mount has been proposed in which the anti-vibration characteristics are actively switched by connecting / blocking the second orifice passage according to the running state of the vehicle. In such an engine mount, there is a problem that the structure is complicated and the manufacture is difficult and expensive because the valve body and the actuator must be assembled.
そこで、例えば特許文献1(特開2000−274480号公報)および特許文献2(特開平5−280576号公報)において、第一のオリフィス通路によって相互に連通された受圧室および平衡室とは別に中間室を形成して、受圧室および平衡室の何れか一方を該中間室に対して連通せしめる第二のオリフィス通路を形成し、第一のオリフィス通路よりも第二のオリフィス通路を高周波数域にチューニングすると共に、受圧室および平衡室の他方と中間室を仕切る隔壁を可動ゴム膜または可動板で構成した構造の流体封入式のエンジンマウントが提案されている。このようなエンジンマウントでは、第二のオリフィス通路を通じての流体流動量が、可動ゴム膜の弾性や可動板の拘束によって制限されることとなる。 Therefore, for example, in Patent Document 1 (Japanese Patent Laid-Open No. 2000-274480) and Patent Document 2 (Japanese Patent Laid-Open No. 5-280576), an intermediate is provided separately from the pressure receiving chamber and the equilibrium chamber communicated with each other by the first orifice passage. Forming a chamber, forming a second orifice passage for communicating any one of the pressure receiving chamber and the equilibrium chamber with the intermediate chamber, and setting the second orifice passage to a higher frequency region than the first orifice passage. In addition to tuning, a fluid-filled engine mount having a structure in which a partition wall that partitions the other of the pressure receiving chamber and the equilibrium chamber and the intermediate chamber is configured by a movable rubber film or a movable plate has been proposed. In such an engine mount, the amount of fluid flow through the second orifice passage is limited by the elasticity of the movable rubber film and the restraint of the movable plate.
それ故、一般に振幅の大きいエンジンシェイク等の低周波数域では、第二のオリフィス通路を通じての流体流動が制限されて第一のオリフィス通路を通じての流体流動が有効に生ぜしめられることとなり、第一のオリフィス通路を流動せしめられる流体の共振作用によって発揮される高減衰特性に基づいて防振性能を得ることが出来る。一方、一般に振幅の小さいアイドリング振動等の中乃至高周波数域では、第二のオリフィス通路を流動せしめられる流体の共振作用によって発揮される低動ばね特性に基づいて防振性能を得ることが出来るのである。 Therefore, in general, in a low frequency region such as an engine shake having a large amplitude, the fluid flow through the second orifice passage is limited, and the fluid flow through the first orifice passage is effectively generated. Anti-vibration performance can be obtained based on the high damping characteristics exhibited by the resonant action of the fluid flowing through the orifice passage. On the other hand, generally in the middle to high frequency range such as idling vibration having a small amplitude, the vibration isolation performance can be obtained based on the low dynamic spring characteristic exhibited by the resonance action of the fluid flowing through the second orifice passage. is there.
しかしながら、近年では一層高度な防振性能が要求されるようになってきていることから、これら特許文献1や特許文献2に記載のエンジンマウントでも、要求される防振性能を未だ十分に実現できない場合がある。そこにおいて特に要求されるのが、停車状態で問題となるアイドリング振動等の中乃至高周波数域の中振幅振動に対する防振性能を十分に維持しつつ、走行時において何れもエンジンシェイクとして問題となる、段差乗り越え等に際して入力される低周波大振幅振動と、通常走行に際して入力される低周波小振幅振動との、両方の低周波振動に対して有効な防振性能を実現することである。 However, in recent years, since a higher level of vibration isolation performance has been required, even with the engine mounts described in Patent Document 1 and Patent Document 2, the required vibration isolation performance cannot be realized sufficiently yet. There is a case. What is particularly required there is a problem as an engine shake during running while maintaining sufficient anti-vibration performance against medium to high frequency vibrations such as idling vibration, which is a problem when the vehicle is stopped. It is to realize an effective vibration-proofing performance for both low-frequency vibrations, such as low-frequency large-amplitude vibrations that are input when climbing over a level difference and low-frequency small-amplitude vibrations that are input during normal travel.
すなわち、車種等によっても相違するが、一般に、アイドリング振動は20〜40Hz程度の中乃至高周波数域で±0.1〜±0.25mm程度の中振幅であり、段差乗り越え等に際して及ぼされる大振幅のエンジンシェイクは10Hz前後の低周波数域で±1mm程度の大振幅であり、通常走行に際して及ぼされる小振幅のエンジンシェイクは10Hz前後の低周波数域で±0.1mm程度の小振幅とされる。また、アイドリング振動等の中乃至高周波数域の振動に対して有効な防振効果を得るためには低動ばね特性が要求される一方、エンジンシェイク等の低周波数域の振動に対して有効な防振効果を得るためには高減衰特性が要求されることとなる。 That is, although it differs depending on the vehicle type, etc., in general, the idling vibration has a medium amplitude of about ± 0.1 to ± 0.25 mm in a medium to high frequency range of about 20 to 40 Hz, and a large amplitude exerted upon overcoming a step. The engine shake has a large amplitude of about ± 1 mm in the low frequency region around 10 Hz, and the small amplitude engine shake exerted during normal driving has a small amplitude of about ± 0.1 mm in the low frequency region around 10 Hz. In addition, in order to obtain an effective anti-vibration effect for medium to high frequency vibration such as idling vibration, low dynamic spring characteristics are required, while effective for low frequency vibration such as engine shake. In order to obtain an anti-vibration effect, high attenuation characteristics are required.
ところが、上述の特許文献1に記載の如き、可動ゴム膜で第二のオリフィス通路を通じての流体流動量を制限する構造のエンジンマウントでは、可動ゴム膜の弾性変形量に対応した量だけ第二のオリフィス通路を通じての流体流動が生ぜしめられることとなるが、可動ゴム膜は変形量が小さい段階でもその変形にはフックの法則に従う圧力変動が必要となることから、段差乗り越え時のエンジンシェイクに比して振幅が小さいアイドリング振動では、可動ゴム膜を十分に変形させることが難しい。それ故、第二のオリフィス通路を通じての流体流動量が確保され難く、アイドリング振動に対する防振効果を十分に得ることが難しいという問題がある。なお、第二のオリフィス通路を通じての流体流動量を増大させるために、可動ゴム膜のばね定数を小さくすることも考えられるが、第一のオリフィス通路を通じての流体流動量を確保するために、可動ゴム膜のばね定数をそれ程小さく設定することは困難である。 However, in the engine mount having a structure in which the fluid flow amount through the second orifice passage is limited by the movable rubber film as described in Patent Document 1 described above, the second amount is equal to the elastic deformation amount of the movable rubber film. Although fluid flow through the orifice passage is generated, the movable rubber membrane requires pressure fluctuation according to Hook's law even when the amount of deformation is small. In idling vibration having a small amplitude, it is difficult to sufficiently deform the movable rubber film. Therefore, there is a problem that it is difficult to secure a fluid flow amount through the second orifice passage, and it is difficult to obtain a sufficient anti-vibration effect against idling vibration. In order to increase the fluid flow amount through the second orifice passage, it is conceivable to reduce the spring constant of the movable rubber film. However, in order to secure the fluid flow amount through the first orifice passage, the movable rubber membrane is movable. It is difficult to set the spring constant of the rubber film so small.
また、上述の特許文献2に記載の如き、可動板で第二のオリフィス通路を通じての流体流動量を制限する構造のエンジンマウントでは、可動板の初期変位に殆ど抵抗力が働かないことから、振幅が比較的小さいアイドリング振動の入力時においても、可動板の変位が有効に生ぜしめられて、第二のオリフィス通路を通じての流体流動量が確保されることにより、有効な防振効果を得ることができる。しかしながら、可動板には、その外周縁部に変位を許容するための隙間を設ける必要があり、この隙間を通じて受圧室から圧力が逃げるおそれがある。特に、通常走行時のエンジンシェイク等の小振幅振動の場合には、かかる可動板の外周縁部の隙間からの圧力の逃げに伴って受圧室の圧力変動ひいては第一のオリフィス通路を通じての流体流動量が大幅に低下してしまうこととなり、第一のオリフィス通路を通じての流体流動に基づく防振効果を有効に得ることが難しいという問題があったのである。 Further, in the engine mount having a structure in which the fluid flow amount through the second orifice passage is limited by the movable plate as described in Patent Document 2 described above, since the resistance force hardly acts on the initial displacement of the movable plate, the amplitude Even when idling vibration is relatively small, the displacement of the movable plate is effectively generated and the amount of fluid flow through the second orifice passage is ensured, so that an effective vibration isolation effect can be obtained. it can. However, it is necessary to provide a gap for allowing displacement at the outer peripheral edge of the movable plate, and the pressure may escape from the pressure receiving chamber through this gap. In particular, in the case of small amplitude vibration such as an engine shake during normal running, the pressure fluctuation in the pressure receiving chamber and the fluid flow through the first orifice passage as the pressure escapes from the gap at the outer peripheral edge of the movable plate. As a result, there is a problem that it is difficult to effectively obtain a vibration isolation effect based on the fluid flow through the first orifice passage.
ここにおいて、本発明は上述の如き事情を背景として為されたものであって、その解決課題とするところは、自動車のエンジンマウントにおいて要求される次の3種類の振動に対して、何れも、高度な防振性能を得ることの出来る、アクチュエータ等が必要とされない受動型の新規な構造とされた流体封入式エンジンマウントを提供することにある。
(1)段差乗越え時に発生するエンジンシェイク等に相当する低周波数域の大振幅振動に対する高減衰特性に基づく優れた防振性能
(2)通常走行時に発生するエンジンシェイク等に相当する低周波数域の小振幅振動に対する高減衰特性に基づく優れた防振性能
(3)停車時に発生するアイドリング振動等に相当する中乃至高周波数域の中振幅振動に対する低動ばね特性に基づく優れた防振性能
Here, the present invention has been made in the background as described above, and the problem to be solved is that for any of the following three types of vibration required in an engine mount of an automobile, It is an object of the present invention to provide a fluid-filled engine mount having a novel passive structure that can obtain a high level of vibration isolation performance and does not require an actuator or the like.
(1) Excellent anti-vibration performance based on high damping characteristics against large amplitude vibrations in the low frequency range corresponding to engine shake that occurs when stepping over a step, etc. (2) Low frequency range that corresponds to engine shake that occurs during normal driving Excellent anti-vibration performance based on high damping characteristics against small-amplitude vibration (3) Excellent anti-vibration performance based on low dynamic spring characteristics against medium-amplitude vibration corresponding to idling vibration generated when the vehicle is stopped
以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載されたもの、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。 Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. Further, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or an invention that can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized based on thought.
すなわち、本発明の特徴とするところは、(a)パワーユニット側部材と車両ボデー側部材の一方に取り付けられる第一の取付部材と、(b)それらパワーユニッ側部材と車両ボデー側部材の他方に取り付けられる第二の取付部材と、(c)前記第一の取付部材と前記第二の取付部材を弾性的に連結する本体ゴム弾性体と、(d)該本体ゴム弾性体によって壁部の一部が構成されて非圧縮性流体が封入された受圧室と、(e)壁部の一部が可撓性膜で構成されて容積変化が許容される平衡室と、(f)前記受圧室と前記平衡室を相互に連通せしめる第一のオリフィス通路と、(g)前記受圧室および前記平衡室とは別に形成されて非圧縮性流体が封入された中間室と、(h)中央部分が硬質の中央可動板部とされていると共に、外周部分が変形容易な外周可動ゴム膜部とされており、該中央可動板部および該外周可動ゴム膜部における変位乃至は変形が許容されるように配設されることにより、前記受圧室および前記平衡室の何れか一方と前記中間室とを仕切る隔壁を構成する可動仕切部材と、(i)前記受圧室および前記平衡室の何れか他方と前記中間室とを相互に連通せしめる、前記第一のオリフィス通路よりも高周波数域にチューニングされた第二のオリフィス通路とを、有すると共に、前記可動仕切部材における前記中央可動板部に硬質の拘束プレートを配設し、該拘束プレートの外周縁部に対して前記外周可動ゴム膜部を接着せしめて、前記可動仕切部材における前記拘束プレートが配設された前記中央可動板部の外周部分の複数箇所において板厚方向の両側に突出する弾性当接突部を形成し、前記第二の取付部材又は該第二の取付部材によって支持せしめた変位規制部材に対して該弾性当接突部を離隔して対向位置せしめて、該弾性当接突部の該変位規制部材への当接によって該中央可動板部の変位量を緩衝的に制限する変位量制限手段を設けると共に、前記中央可動板部の外周部分の複数箇所において前記弾性当接突部と一体的に形成されて該弾性当接突部より大きな突出高さで板厚方向の両側に突出する当接支持部を設けて、該当接支持部を前記変位規制部材に対して当接状態として該当接支持部によって該中央可動板部の前記拘束プレートを弾性的に支持せしめた流体封入式エンジンマウントにある。
That is, the features of the present invention are: (a) a first attachment member attached to one of the power unit side member and the vehicle body side member; and (b) the other of the power unit side member and the vehicle body side member. A second mounting member to be mounted; (c) a main rubber elastic body that elastically connects the first mounting member and the second mounting member; and (d) one of the wall portions by the main rubber elastic body. A pressure receiving chamber in which an incompressible fluid is enclosed, (e) an equilibrium chamber in which a part of the wall portion is formed of a flexible film and volume change is allowed, and (f) the pressure receiving chamber A first orifice passage that allows the equilibrium chamber to communicate with each other; (g) an intermediate chamber that is formed separately from the pressure receiving chamber and the equilibrium chamber and encloses an incompressible fluid; It is a rigid central movable plate and the outer periphery is changed. The outer peripheral movable rubber film part is an easy outer peripheral movable rubber film part, and is disposed so as to allow displacement or deformation in the central movable plate part and the outer peripheral movable rubber film part, so that the pressure receiving chamber and the equilibrium chamber are A movable partition member constituting a partition partitioning one of the intermediate chamber and the intermediate chamber; and (i) the first orifice passage that allows the other of the pressure receiving chamber and the equilibrium chamber and the intermediate chamber to communicate with each other. A second orifice passage tuned to a higher frequency range, and a hard restraint plate is disposed on the central movable plate portion of the movable partition member , with respect to the outer peripheral edge portion of the restraint plate. The outer peripheral movable rubber film part is bonded and protrudes on both sides in the plate thickness direction at a plurality of locations on the outer peripheral part of the central movable plate part where the restraint plate is disposed in the movable partition member. The elastic contact protrusion is formed so that the elastic contact protrusion is separated from and opposed to the displacement regulating member supported by the second attachment member or the second attachment member. Displacement amount limiting means for bufferingly limiting the displacement amount of the central movable plate portion by abutting the contact protrusion with the displacement restricting member is provided, and the elastic contact is provided at a plurality of locations on the outer peripheral portion of the central movable plate portion. A contact support portion that is formed integrally with the contact protrusion and protrudes on both sides in the plate thickness direction with a protrusion height larger than the elastic contact protrusion is provided, and the contact support portion with respect to the displacement regulating member is provided. In the fluid-filled engine mount, the restraint plate of the central movable plate portion is elastically supported by the corresponding contact support portion as a contact state .
このような本発明に従う構造とされた流体封入式エンジンマウントにおいては、入力される防振すべき振動の周波数や振幅の相違に応じて次のような防振特性が発揮されることとなり、それによって、それら各種の異なる振動に対して、何れも、有効な防振効果が発揮されるのである。
(1)段差乗越え時に発生するエンジンシェイク等に相当する低周波大振幅振動に対しては、中央可動板部と外周可動ゴム膜部からなる可動仕切部材の変位乃至は変形による液圧吸収が追従し得ずに、第二のオリフィス通路を通じての流体流動量が有効に制限されることとなり、受圧室から平衡室への第二のオリフィス通路を通じての圧力の逃げが、受圧室に対して有効な圧力変動を生ぜしめるために実質的に問題とならない程度に抑えられる。これにより、受圧室と平衡室の間には、相対的な圧力変動が有効に生ぜしめられる。それ故、第一のオリフィス通路を通じての流体流動量が有利に確保され得て、該第一のオリフィス通路を流動せしめられる流体の共振作用に基づく高減衰効果が発揮され、優れた防振性能が実現されることとなる。
(2)通常走行時に発生するエンジンシェイク等に相当する低周波小振幅振動に対しては、可動仕切部材の変形乃至は変位を伴って第二のオリフィス通路を通じて受圧室から平衡室に圧力が逃げてしまう、可動仕切部材による受圧室の圧力吸収作用が懸念されるが、中央可動板部の外周側における流体密性が外周可動ゴム膜部によって確保されていることと、中央可動板部が硬質とされて可動仕切部材の変形量が抑えられるようになっていることから、受圧室には未だ十分に有効な圧力変動が惹起されることとなる。それ故、上述の低周波大振幅振動の場合と同様に、受圧室と平衡室の間での相対的な圧力変動が有効に惹起されて、第一のオリフィス通路を通じての流体流動量が有利に確保され得、該第一のオリフィス通路を流動せしめられる流体の共振作用に基づく高減衰効果が発揮されることにより、優れた防振性能が実現されることとなる。
(3)停車時に発生するアイドリング振動等に相当する中乃至高周波数域の中振幅振動に対しては、第一のオリフィス通路が反共振作用で実質的に閉塞状態となることから、中乃至高周波数域にチューニングされた第二のオリフィス通路を通じての流体流動に基づいて発揮される低動ばね作用により、第一のオリフィス通路の反共振作用に起因する著しい動ばね定数の増大を抑えて良好な防振性能を維持することが期待される。一方、上述の低周波小振幅振動の場合と同様に、第二のオリフィス通路と受圧室または平衡室の間に配設された可動仕切部材により、第二のオリフィス通路を流動せしめられる流体量が著しく制限されてしまうことが懸念される。しかしながら、防振すべき振動周波数域では、第二のオリフィス通路を通じての流体流動が共振状態となることにより、共振倍率に基づく流動エネルギーの増大によって可動仕切部材の弾性的な変位乃至は変形が大きく惹起されることとなる。これにより、第二のオリフィス通路を流動せしめられる流体流量が積極的に確保されて、第二のオリフィス通路を流動せしめられる流体の共振作用に基づく防振効果が有効に発揮され得るのである。
In such a fluid-filled engine mount having a structure according to the present invention, the following anti-vibration characteristics are exhibited according to the difference in the frequency and amplitude of vibration to be inputted, which Therefore, an effective anti-vibration effect can be exhibited against these various different vibrations.
(1) With respect to low-frequency large-amplitude vibration corresponding to engine shake or the like that occurs when stepping over a step, fluid pressure absorption due to displacement or deformation of the movable partition member composed of the central movable plate portion and the outer peripheral movable rubber film portion follows. However, the amount of fluid flow through the second orifice passage is effectively limited, and pressure relief from the pressure receiving chamber to the equilibrium chamber through the second orifice passage is effective for the pressure receiving chamber. It is suppressed to such an extent that it does not cause a problem in order to cause pressure fluctuation. Thereby, a relative pressure variation is effectively generated between the pressure receiving chamber and the equilibrium chamber. Therefore, the amount of fluid flow through the first orifice passage can be advantageously ensured, a high damping effect based on the resonance action of the fluid flowing through the first orifice passage is exhibited, and excellent vibration-proof performance is achieved. Will be realized.
(2) For low-frequency, small-amplitude vibration corresponding to engine shake or the like that occurs during normal running, pressure escapes from the pressure receiving chamber to the equilibrium chamber through the second orifice passage with deformation or displacement of the movable partition member. Although there is a concern about the pressure absorbing action of the pressure receiving chamber by the movable partition member, fluid tightness on the outer peripheral side of the central movable plate portion is ensured by the outer peripheral movable rubber film portion, and the central movable plate portion is hard. As a result, the amount of deformation of the movable partition member can be suppressed, so that a sufficiently effective pressure fluctuation is still induced in the pressure receiving chamber. Therefore, as in the case of the low-frequency large-amplitude vibration described above, the relative pressure fluctuation between the pressure receiving chamber and the equilibrium chamber is effectively induced, and the amount of fluid flow through the first orifice passage is advantageously increased. As a result, a high damping effect based on the resonance action of the fluid that can flow through the first orifice passage is exhibited, thereby realizing excellent vibration isolation performance.
(3) For medium to high frequency range medium amplitude vibration corresponding to idling vibration or the like generated when the vehicle is stopped, the first orifice passage is substantially closed due to anti-resonance action. The low dynamic spring action exerted on the basis of the fluid flow through the second orifice passage tuned in the frequency range is excellent in suppressing a significant increase in the dynamic spring constant due to the anti-resonant action of the first orifice passage. It is expected to maintain anti-vibration performance. On the other hand, as in the case of the low-frequency small-amplitude vibration described above, the amount of fluid that can be caused to flow through the second orifice passage by the movable partition member disposed between the second orifice passage and the pressure-receiving chamber or the equilibrium chamber. There is concern that it will be significantly limited. However, in the vibration frequency region to be damped, the fluid flow through the second orifice passage is in a resonance state, so that the elastic displacement or deformation of the movable partition member is large due to the increase in flow energy based on the resonance magnification. Will be triggered. As a result, a fluid flow rate capable of flowing through the second orifice passage is positively secured, and an anti-vibration effect based on the resonance action of the fluid flowing through the second orifice passage can be effectively exhibited.
なお、本発明において、より好適には、可動仕切部材における固有振動数、例えば中央可動板部の固有振動数や外周可動ゴム膜部の固有振動数を、第二のオリフィス通路のチューニング周波数と略同じ周波数域にチューニングするようにされる。これにより、アイドリング振動等に相当する中乃至高周波数域における第二のオリフィス通路を通じての流体流動量を、かかる流体自体の共振作用だけでなく、可動仕切部材の共振作用まで利用して、一層有利に確保することが可能となり、流体流動量の更なる増大とそれに伴う防振効果の更なる向上が可能となる。 In the present invention, more preferably, the natural frequency of the movable partition member, for example, the natural frequency of the central movable plate part or the natural frequency of the outer peripheral movable rubber film part is substantially equal to the tuning frequency of the second orifice passage. Tune to the same frequency range. As a result, the amount of fluid flow through the second orifice passage in the middle to high frequency range corresponding to idling vibration or the like is utilized not only for the resonance action of the fluid itself but also for the resonance action of the movable partition member. Therefore, it is possible to further increase the amount of fluid flow and further improve the vibration isolation effect.
また、本発明においては、変位量制限手段を設けたことによって、低周波大振幅振動入力時は勿論、低周波小振幅振動入力時においても受圧室の圧力変動の可動仕切部材による吸収を防ぐことができる。そして、第一のオリフィス通路を流動せしめられる流体の流動量の増大を図って、かかる流体の共振作用に基づく減衰効果の更なる向上と、それに伴う防振性能の更なる向上が図られ得る。なお、弾性当接突部が当接せしめられる変位規制部材は、例えば、第二の取付部材によって固定的に支持されることによって有利に構成され得、具体的には、第二の取付部材によって固定的に支持されて受圧室と平衡室とを仕切る隔壁を構成する仕切部材を利用すること等によって有利に構成され得る。
In the present invention, by providing the displacement restricting means, the low-frequency, large-amplitude vibration at the input as well, also at low frequency, small amplitude when vibration is input prevent absorption by the movable partition member of the pressure fluctuations of the pressure receiving chamber Can do. Further, the amount of fluid flowing through the first orifice passage can be increased, so that the damping effect based on the resonance action of the fluid can be further improved, and the vibration-proof performance associated therewith can be further improved. The displacement restricting member with which the elastic contact protrusion is brought into contact can be advantageously configured, for example, by being fixedly supported by the second attachment member, specifically, by the second attachment member. It can be advantageously configured by using a partition member that is fixedly supported and forms a partition wall that partitions the pressure receiving chamber and the equilibrium chamber.
更にまた、本発明においては、拘束プレートを採用したことにより、中央可動板部の不要な変形に起因する低周波数域の振動入力時における、受圧室の圧力変動の吸収が一層確実に抑えられ得ることとなり、それによって、第一のオリフィス通路や第二のオリフィス通路を通じて流動せしめられる流体の共振作用に基づく防振効果がより効果的に安定して発揮されるのである。なお、拘束プレートとしては硬質の合成樹脂材料や金属等からなる薄肉の板材が好適に採用される。また、中央可動板部は、かかる拘束プレートのみで構成し、その外周縁部に外周可動ゴム膜部を接着することで可動仕切部材を構成することも可能である。
Furthermore, in the present invention, by adopting the constraint plate, at the time of vibration input of a low frequency range due to unnecessary deformation of the central movable plate portion, the absorption of pressure fluctuations in the pressure receiving chamber can be suppressed more reliably As a result, the vibration isolation effect based on the resonance action of the fluid flowing through the first orifice passage and the second orifice passage is more effectively and stably exhibited. As the restraining plate, a thin plate material made of a hard synthetic resin material or a metal is preferably used. In addition, the central movable plate portion can be constituted by only the restraining plate, and the movable partition member can be constituted by adhering the outer peripheral movable rubber film portion to the outer peripheral edge portion thereof.
上述の説明から明らかなように、本発明に従う構造とされた流体封入式エンジンマウントにおいては、アクチュエータ等の切換手段を用いることなく第一、第二のオリフィス通路を効率的に機能せしめて、(1)段差乗越え時に発生するエンジンシェイク等に相当する低周波数域の大振幅振動に対する高減衰特性に基づく優れた防振性能と、(2)通常走行時に発生するエンジンシェイク等に相当する低周波数域の小振幅振動に対する高減衰特性に基づく優れた防振性能と、(3)停車時に発生するアイドリング振動等に相当する中乃至高周波数域の中振幅振動に対する低動ばね特性に基づく優れた防振性能とに対して、何れも有効な防振性能を発揮できるのである。 As is clear from the above description, in the fluid-filled engine mount structured according to the present invention, the first and second orifice passages function efficiently without using switching means such as an actuator ( 1) Excellent anti-vibration performance based on high damping characteristics against large-amplitude vibration in the low frequency range corresponding to engine shake that occurs when stepping over a step, and (2) Low frequency range that corresponds to engine shake that occurs during normal driving Excellent anti-vibration performance based on high damping characteristics against small-amplitude vibrations and (3) Excellent anti-vibration characteristics based on low dynamic spring characteristics against medium- to high-frequency medium-amplitude vibrations corresponding to idling vibrations generated when the vehicle is stopped Both of them can exhibit effective anti-vibration performance.
以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。 Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.
先ず、図1には、本発明の一実施形態としての自動車用防振マウント10が示されている。この防振マウント10は、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14が、本体ゴム弾性体16によって弾性的に連結された構造とされており、第一の取付金具12がパワーユニット側に取り付けられる一方、第二の取付金具14がブラケット18を介して自動車のボデー側に取り付けられることにより、パワーユニットをボデーに対して防振支持せしめるようになっている。なお、以下の説明において、上下方向は、原則として、図1における上下方向をいう。
First, FIG. 1 shows a
より詳細には、第一の取付金具12は、略逆円錐台形のブロック形状を有している。また、その大径側端面には、軸方向上方に突出するようにして取付ボルト20が一体形成されている。
More specifically, the first mounting
一方、第二の取付金具14は、全体として大径の略円筒形状を有している。また、第二の取付金具14は、その軸方向上側端部にくびれ部22を備えている。このくびれ部22は、径方向内方に凹んで周方向の全周に延びており、かかるくびれ部22によって、第二の取付金具14の軸方向上側開口部分が上方に向かって次第に拡開する逆テーパ形状とされている。
On the other hand, the second mounting
このような構造とされた第二の取付金具14には、その上部開口側に離隔して、第一の取付金具12が略同一中心軸上に配設されている。そして、これら第一の取付金具12と第二の取付金具14の間に本体ゴム弾性体16が配設されており、この本体ゴム弾性体16によって第一の取付金具12と第二の取付金具14が弾性的に連結されている。
In the second mounting
本体ゴム弾性体16は、全体として円錐台形状を有しており、第一の取付金具12が小径側端面から差し込まれるようにして本体ゴム弾性体16に加硫接着されている。また、本体ゴム弾性体16の大径側端部外周面には、第二の取付金具14の軸方向上側の開口部分が重ね合わされて加硫接着されている。これにより、第一の取付金具12におけるテーパ状の外周面と第二の取付金具14のくびれ部22における逆テーパ状の内周面とが互いに対向位置せしめられて、かかる対向面間に本体ゴム弾性体16が介在せしめられている。なお、本実施形態では、本体ゴム弾性体16が、第一の取付金具12と第二の取付金具14を備えた一体加硫成形品とされている。
The main rubber
また、このように第二の取付金具14の開口部が本体ゴム弾性体16の外周面に加硫接着されることにより、第二の取付金具14の軸方向上側の開口部が本体ゴム弾性体16によって流体密に閉塞されている。なお、本体ゴム弾性体16の大径側端面には、すり鉢状の大径凹所24が形成されて、第二の取付金具14内に開口せしめられている。
Further, the opening of the second mounting
更にまた、第二の取付金具14の内周面には、シールゴム層26が被着形成されている。このシールゴム層26は、本体ゴム弾性体16と一体形成されており、かかるシールゴム層26によって第二の取付金具14の内周面が略全面に亘って覆われている。
Furthermore, a
さらに、第二の取付金具14には、その軸方向下方の開口部から、仕切部材28と、可撓性膜としてのゴムダイヤフラム30が、順次に嵌め込まれて、第二の取付金具14に対して嵌着固定されている。なお、ゴムダイヤフラム30の外周縁部には、円筒形状の固定筒金具32が加硫接着されており、この固定筒金具32が第二の取付金具14の下端開口部に嵌着固定されることによって、第二の取付金具14の下端開口が流体密に覆蓋されている。
Furthermore, a
これにより、仕切部材28の軸方向上側には、壁部の一部が本体ゴム弾性体16で構成された受圧室34が形成されている一方、仕切部材28の軸方向下側には、壁部の一部がゴムダイヤフラム30で構成された平衡室36が形成されている。また、これら受圧室34および平衡室36は、外部空間に対して流体密に仕切られており、それぞれ、水やアルキレングリコール,ポリアルキレングリコール,シリコーン油等の非圧縮性流体が封入されている。
Accordingly, a
そして、受圧室34においては、振動入力時に本体ゴム弾性体16の弾性変形に基づいて積極的な圧力変動が生ぜしめられるようになっている。一方、平衡室36は、ゴムダイヤフラム30の変形が容易に許容されて容積可変とされることにより、圧力変動が速やかに吸収されるようになっている。
In the
ここにおいて、仕切部材28は、厚肉の略円板形状を有する仕切ブロック38を備えている。かかる仕切ブロック38には、図2及び図3に示すように、その上端面の中央部分において、開口凹所としての中央凹所40が、略円形の凹陥形状をもって形成されている。
Here, the
また、仕切ブロック38には、外周面に開口して周方向に屈曲等して延びる周方向凹溝42が形成されており、この周方向凹溝42の両端部が軸方向各一方の面に開口せしめられている。
In addition, the
更にまた、仕切ブロック38の中央凹所40は、深さ方向中間部分に段差面44が設けられて、底部側の小径凹部46と開口側の大径凹部48からなる段付円形凹所とされている。また、段差面44には、幅方向の中間部分を周方向の全周に亘って連続して延びる溝状の環状凹所50が形成されていると共に、かかる環状凹所50が、内周壁部の適数箇所に形成された連通溝52によって、小径凹部46に接続されている。
Furthermore, the
そして、かかる大径凹部48に対して、可動仕切部材54が組み付けられていると共に、可動仕切部材54の上方から、蓋板金具56が仕切ブロック38の上面に重ね合わされて組み付けられている。
The
可動仕切部材54は、図4及び図5に示すように、円形の略薄板形状のゴム弾性板58を有しており、ゴム弾性板58の外周面に対して円形の嵌着金具60が加硫接着されている。そして、この嵌着金具60が仕切ブロック38の大径凹部48に対して圧入されることにより、中央凹所40の開口が可動仕切部材54によって流体密に覆蓋されており、以て、可動仕切部材54の上方に受圧室34が形成されている一方、可動仕切部材54の下方には、密閉状態の中間室61が形成されている。
As shown in FIGS. 4 and 5, the
また、ゴム弾性板58は、仕切ブロック38における段差面44の略内周縁部上に位置せしめられる部分において、周方向に連続して若しくは不連続に延びる環状の弾性突部62が弾性当接突部として一体形成されている。また、かかる弾性突部62における周上の適数箇所(本実施形態では、4箇所)には、更に大きく上下両面に突出する略台地形状の当接支持部64が弾性当接突部として一体形成されている。なお、本実施形態では、ゴム弾性板58における上下両方の弾性突部62,62の突出先端面間の寸法が、嵌着金具60の軸方向寸法よりも僅かに小さく設定されていると共に、上下両方の当接支持部64,64の突出先端面間の寸法が、嵌着金具60の軸方向寸法と同じか僅かに大きく設定されている。
Further, the rubber
更にまた、可動仕切部材54には、ゴム弾性板58の中央部分に対して金属や合成樹脂からなる硬質の拘束プレート66が埋設状態で固着されている。特に本実施形態では、図6に示すように、拘束プレート66が、中央部分が僅かに凹んだ略浅皿形状とされており、薄肉ながら変形剛性の向上が図られている。また、拘束プレート66は、仕切ブロック38の中央凹所40の内径寸法よりも大きな外形寸法を有しており、拘束プレート66の外周縁部が、段差面44にまで延び出している。
Furthermore, a
なお、拘束プレート66の外周縁部には、上下の当接支持部64,64に対応する複数箇所に、それぞれ切欠68が設けられており、当接支持部64,64の形成部位を逃げるようにして拘束プレート66がゴム弾性板58に被着されている。また、拘束プレート66の中心には、円形孔70が貫設されてゴム弾性板58が充填されており、ゴム弾性板58に対する固着強度の向上が図られている。
In the outer peripheral edge of the
さらに、ゴム弾性板58の外周部分は、弾性突部62と嵌着金具60との間に位置する部分が薄肉とされている。これにより、外周可動ゴム膜部72が、所定幅で周方向に延びる円環板形状をもって形成されている。そして、この外周可動ゴム膜部72が、仕切ブロック38の段差面44に形成された環状凹所50の開口部上に位置せしめられている。
Further, the outer peripheral portion of the rubber
一方、蓋板金具56は、図7に示すように、全体として薄肉の略円板形状を有しており、径方向中間部分に僅かな段差部74が形成されて、外周縁部に対して中央部分が下方に突出せしめられている。そして、蓋板金具56は、仕切ブロック38の上面に重ね合わされて、段差部74が、仕切ブロック38の中央凹所40の開口部に嵌め込まれることにより、径方向に位置決めされて組み付けられている。
On the other hand, as shown in FIG. 7, the cover
また、蓋板金具56には、中央部分に円形の中央透孔76が貫設されていると共に、該中央透孔76の回りには、所定幅で周方向に延びる複数の外周透孔78が貫設されている。そして、蓋板金具56が仕切ブロック38に組み付けられた際、中央透孔76を通じて、拘束プレート66で補強されたゴム弾性板58の中央可動板部80が受圧室34に臨むようになっていると共に、外周透孔78を通じて、外周可動ゴム膜部72が受圧室34に臨むようになっている。
In addition, a circular central through
更にまた、蓋板金具56の外周縁部には、周上の一箇所に切欠窓82が設けられており、この切欠窓82が仕切ブロック38に設けられた周方向凹溝42の上側開口部に位置合わせされている。なお、切欠窓82と周方向凹溝42の上側開口部を相互に位置合わせするために、仕切ブロック38の上端面には周上の適当の部位に位置決め突起84が突設されていると共に、蓋板金具56の対応する部位に位置決め穴86が形成されており、それら位置決め突起84と位置決め穴86の係合作用で周方向の位置決めが実現されるようになっている。
Furthermore, a
而して、上述の如きゴム弾性板58および蓋板金具56の仕切ブロック38への組付状態下、ゴム弾性板58の各当接支持部64は、図8に示されているように、各先端面が、変位規制部材としての仕切ブロック38の段差面44または蓋板金具56の下面に対して当接されており、必要に応じて適当に圧縮されている。また、弾性突部62は、図9に示されているように、仕切ブロック38の段差面44または蓋板金具56の下面に対して僅かな隙間をもって位置せしめられている。そして、ゴム弾性板58に対して受圧室34の圧力変動が及ぼされた際には、ゴム弾性板58の上下面に及ぼされる受圧室34と中間室61の圧力差に基づいて、ゴム弾性板58の変位乃至は変形が生ぜしめられるようになっている。
Thus, under the state where the rubber
ここにおいて、ゴム弾性板58における中央可動板部80は、埋設固着せしめられた拘束プレート66によってその変形が規制されており、主として当接支持部64,64の弾性変形に基づいて許容される変位が生ぜしめられるようになっている。一方、外周可動ゴム膜部72は、薄肉とされて弾性変形が容易に許容されるようになっており、変形による変位が生ぜしめられるようになっている。なお、中央可動板部80の背後の空間と外周可動ゴム膜部72の背後の空間が、連通溝52によって連通状態に安定して維持されており、実質的に単一の中間室61として作用するようになっている。
Here, the deformation of the central
また、仕切ブロック38の外周面に形成された周方向凹溝42の開口部は、第二の取付金具14で流体密に覆蓋されている。そして、周方向凹溝42が覆蓋されることにより、受圧室34と平衡室36を相互に連通する第一のオリフィス通路88が、常時、連通せしめられた状態で形成されている。
Further, the opening of the
さらに、仕切ブロック38の上面に形成された小径凹部46の底面中央には、連通孔90が開口形成されており、もって中間室61と平衡室36を連通する第二のオリフィス通路92とされている。
Further, a
特に本実施形態では、具体的には、第一のオリフィス通路88を流動せしめられる流体の共振作用に基づき、エンジンシェイク等の10Hz前後の低周波数域の振動に対して高減衰特性が発揮されるようにチューニングされていると共に、第二のオリフィス通路92を流動せしめられる流体の共振作用に基づき、アイドリング振動等の20〜40Hz程度の中乃至高周波数域の振動に対して低動ばね効果が発揮されるようにチューニングされている。
In particular, in the present embodiment, specifically, a high damping characteristic is exhibited with respect to vibration in a low frequency region around 10 Hz, such as an engine shake, based on the resonance action of the fluid flowing through the
さらに、本実施形態においては、可動仕切部材54における中央可動板部80の固有振動数と外周可動ゴム膜部72の固有振動数との少なくとも一方が、第二のオリフィス通路92のチューニング周波数と略同じ周波数域にチューニングされていることが望ましい。
Further, in the present embodiment, at least one of the natural frequency of the central
すなわち、その走行時の段差の乗り越え等において入力される低周波大振幅振動に対しては、中央可動板部80と外周可動ゴム膜部72からなる可動仕切部材54の変位乃至は変形による液圧吸収が量的に追従し得ずに、第二のオリフィス通路92が実質的に閉塞状態となり、受圧室34から平衡室36への第二のオリフィス通路92を通じての圧力の逃げを抑えることができる。これにより、受圧室34と平衡室36の間には、相対的な圧力変動が有効に生ぜしめられることとなる。それ故、第一のオリフィス通路88を通じての流体流動量が有利に確保され得て、第一のオリフィス通路88を流動せしめられる流体の共振作用に基づく高減衰効果が発揮され、優れた防振性能が実現されることとなる。
That is, with respect to low-frequency large-amplitude vibration that is input when climbing over a level difference during traveling, the hydraulic pressure due to displacement or deformation of the
また、通常走行時に発生するエンジンシェイク等に相当する低周波小振幅振動に対しては、中央可動板部80の外周側における流体密性が外周可動ゴム膜部72によって確保されていることによって、小振幅振動の入力時にも可動板部の外周縁部での液圧の逃げが生じない。更に、中央可動板部80が硬質とされて可動仕切部材54の変形量が抑えられるようになっていることから、可動仕切部材54による液圧吸収を効果的に抑えることができる。それ故、受圧室34には十分に有効な圧力変動が惹起されることとなり、受圧室34と平衡室36の間での相対的な圧力変動が有効に惹起されて、第一のオリフィス通路88を通じての流体流動量が有利に確保され得、第一のオリフィス通路88を流動せしめられる流体の共振作用に基づく高減衰効果が発揮されることにより、優れた防振性能が実現されることとなる。
In addition, for low-frequency small-amplitude vibration corresponding to engine shake or the like that occurs during normal travel, fluid tightness on the outer peripheral side of the central
更にまた、停車時に発生するアイドリング振動等に相当する中乃至高周波数域の中振幅振動に対しては、第一のオリフィス通路88が反共振作用により実質的に閉塞状態となる。一方、中乃至高周波数域にチューニングされた第二のオリフィス通路92を通じての流体流動が共振状態となることにより、共振倍率に基づく流動エネルギーの増大によって可動仕切部材54の弾性的な変位乃至は変形が大きく惹起されることとなる。これにより、第二のオリフィス通路92を流動せしめられる流体流量が積極的に確保されて、第二のオリフィス通路92を流動せしめられる流体の共振作用に基づく防振効果が有効に発揮され得るのである。
Furthermore, the
更に、中央可動板部80の固有振動数や外周可動ゴム膜部72の固有振動数を、第二のオリフィス通路92のチューニング周波数と略同じ周波数域にチューニングすることによって、第二のオリフィス通路92を通じての流体流動量を、かかる流体自体の共振作用だけでなく、可動仕切部材54の共振作用まで利用して、一層有利に確保することが可能となり、流体流動量の更なる増大とそれに伴う防振効果の更なる向上も実現され得る。
Further, the
また、本実施形態では、可動仕切部材54に弾性当接突部としての弾性突部62および当接支持部76を突出形成することによって、可動仕切部材54の変位量を制限して、低周波小振幅振動の入力時の可動仕切部材54による圧力吸収を一層効果的に抑えることができる。
Further, in the present embodiment, the amount of displacement of the
更に、本実施形態では、中央可動板部80に硬質の拘束プレート66を固着せしめることによって、中央可動板部80の不要な変形に起因する低周波数域の振動入力時における、受圧室34の圧力変動の吸収が一層確実に抑えられ得ることとなる。それ故、第一のオリフィス通路88や第二のオリフィス通路92を通じて流動せしめられる流体の共振作用に基づく防振効果がより効果的に安定して発揮される。
Furthermore, in the present embodiment, the pressure of the
因みに、上述の如き本実施形態に従う構造とされた防振マウントについて、その防振性能(動的絶対ばね定数)の周波数特性を実測した結果を、図10に示す。また、かかる防振マウントにおける入力振動と伝達力の位相の実測値も図10に併せ示す。なお、測定に際しては、第一の取付金具12と第二の取付金具14の間に、パワーユニットの分担支持荷重に相当する1000Nの静的な初期荷重を加えて、エンジンシェイク(小振幅)やアイドリング振動に近い0.25mmの振幅(変位)の振動を加えた。
Incidentally, FIG. 10 shows the result of actual measurement of the frequency characteristics of the anti-vibration performance (dynamic absolute spring constant) of the anti-vibration mount having the structure according to the present embodiment as described above. Moreover, the measured value of the phase of the input vibration and transmission force in this vibration isolating mount is also shown in FIG. During measurement, an engine shake (small amplitude) or idling is applied between the first mounting
図10に示された結果からも、本実施形態の防振マウントにおいては、10Hzに近いエンジンシェイクに相当する低周波数域と、30Hzを少し越えたアイドリング振動に相当する中乃至高周波数域との、2つの周波数域で、何れも封入流体の共振現象が有効に発生しており、それぞれの周波数域で流体の共振作用に基づく防振性能の向上効果が充分に期待できることが認められる。 Also from the results shown in FIG. 10, in the vibration isolating mount of the present embodiment, there are a low frequency region corresponding to an engine shake close to 10 Hz and a medium to high frequency region corresponding to idling vibration slightly exceeding 30 Hz. It is recognized that the resonance phenomenon of the sealed fluid is effectively generated in both of the two frequency ranges, and that the effect of improving the vibration isolation performance based on the resonance action of the fluid can be sufficiently expected in each frequency range.
以上、本発明の一実施形態について詳述してきたが、これはあくまでも例示であって、本発明は、かかる実施形態における具体的な記載によって、何等、限定的に解釈されるものではない。 As mentioned above, although one Embodiment of this invention was explained in full detail, this is an illustration to the last, Comprising: This invention is not limited at all by the specific description in this Embodiment.
例えば、本実施形態においては、受圧室34に対して可動仕切部材54を隔てた反対側に中間室61を形成すると共に、かかる中間室61と平衡室36を連通せしめるように第二のオリフィス通路92を形成したが、中間室61の配置および第二のオリフィス通路92が連通せしめる液室は本実施形態のものに限定されない。具体的には、例えば、平衡室36に対して可動仕切部材54を隔てた反対側に中間室61を形成すると共に、第二のオリフィス通路92を中間室61と受圧室34を連通せしめるように形成しても良い。要するに、例えば、前記実施形態の防振マウント10において、仕切部材28を軸方向の上下を逆向きにつけても良い。
For example, in the present embodiment, the
加えて、前記実施形態では、本発明を自動車用のエンジンマウントに適用したものの具体例を示したが、その他、本発明は、自動車以外のエンジンマウント装置に対しても、有利に適用され得るものであることは勿論である。
In addition, in the said embodiment, although the specific example of what applied this invention to the engine mount for motor vehicles was shown, other than this, this invention can be applied advantageously also to engine mount apparatuses other than a motor vehicle. Of course.
10 防振マウント
12 第一の取付金具
14 第二の取付金具
16 本体ゴム弾性体
28 仕切部材
30 ゴムダイヤフラム
34 受圧室
36 平衡室
54 可動仕切部材
61 中間室
72 外周可動ゴム膜
80 中央可動板部
88 第一のオリフィス通路
92 第二のオリフィス通路
DESCRIPTION OF
Claims (3)
それらパワーユニット側部材と車両ボデー側部材の他方に取り付けられる第二の取付部材と、
前記第一の取付部材と前記第二の取付部材を弾性的に連結する本体ゴム弾性体と、
該本体ゴム弾性体によって壁部の一部が構成されて非圧縮性流体が封入された受圧室と、
壁部の一部が可撓性膜で構成されて容積変化が許容される平衡室と、
前記受圧室と前記平衡室を相互に連通せしめる第一のオリフィス通路と、
前記受圧室および前記平衡室とは別に形成されて非圧縮性流体が封入された中間室と、
中央部分が硬質の中央可動板部とされていると共に、外周部分が変形容易な外周可動ゴム膜部とされており、該中央可動板部および該外周可動ゴム膜部における変位乃至は変形が許容されるように配設されることにより、前記受圧室および前記平衡室の何れか一方と前記中間室とを仕切る隔壁を構成する可動仕切部材と、
前記受圧室および前記平衡室の何れか他方と前記中間室とを相互に連通せしめる、前記第一のオリフィス通路よりも高周波数域にチューニングされた第二のオリフィス通路と
を、有すると共に、
前記可動仕切部材における前記中央可動板部に硬質の拘束プレートを配設し、該拘束プレートの外周縁部に対して前記外周可動ゴム膜部を接着せしめて、
前記可動仕切部材における前記拘束プレートが配設された前記中央可動板部の外周部分の複数箇所において板厚方向の両側に突出する弾性当接突部を形成し、前記第二の取付部材又は該第二の取付部材によって支持せしめた変位規制部材に対して該弾性当接突部を離隔して対向位置せしめて、該弾性当接突部の該変位規制部材への当接によって該中央可動板部の変位量を緩衝的に制限する変位量制限手段を設けると共に、
前記中央可動板部の外周部分の複数箇所において前記弾性当接突部と一体的に形成されて該弾性当接突部より大きな突出高さで板厚方向の両側に突出する当接支持部を設けて、該当接支持部を前記変位規制部材に対して当接状態として該当接支持部によって該中央可動板部の前記拘束プレートを弾性的に支持せしめたことを特徴とする流体封入式エンジンマウント。 A first attachment member attached to one of the power unit side member and the vehicle body side member;
A second attachment member attached to the other of the power unit side member and the vehicle body side member;
A main rubber elastic body for elastically connecting the first mounting member and the second mounting member;
A pressure receiving chamber in which a part of the wall is constituted by the main rubber elastic body and in which an incompressible fluid is enclosed;
An equilibrium chamber in which a part of the wall is made of a flexible membrane and volume change is allowed;
A first orifice passage that allows the pressure receiving chamber and the equilibrium chamber to communicate with each other;
An intermediate chamber formed separately from the pressure receiving chamber and the equilibrium chamber and enclosing an incompressible fluid;
The central part is a hard central movable plate part, and the outer peripheral part is an easily movable outer peripheral movable rubber film part, and displacement or deformation in the central movable plate part and the outer peripheral movable rubber film part is allowed. A movable partition member constituting a partition partitioning either the pressure receiving chamber or the equilibrium chamber and the intermediate chamber,
Allowed to communicate with each other and any other and the intermediate chamber of the pressure-receiving chamber and the equilibrium chamber, and a second orifice passage that is tuned to a higher frequency band than the first orifice passage, which has,
A hard restraint plate is disposed on the central movable plate portion of the movable partition member, and the outer peripheral movable rubber film portion is adhered to the outer peripheral edge portion of the restraint plate,
Elastic contact protrusions that protrude on both sides in the plate thickness direction are formed at a plurality of locations on the outer peripheral portion of the central movable plate portion on which the restraint plate is disposed in the movable partition member, and the second mounting member or the The elastic contact projection is spaced apart from the displacement regulating member supported by the second mounting member, and the central movable plate is brought into contact with the displacement regulation member by contacting the elastic contact projection. Displacement amount limiting means for buffering the amount of displacement of the part is provided, and
Contact support portions that are integrally formed with the elastic contact protrusions at a plurality of locations on the outer peripheral portion of the central movable plate portion and protrude to both sides in the plate thickness direction with a protrusion height larger than the elastic contact protrusions. A fluid-filled engine mount characterized in that the restraint plate of the central movable plate portion is elastically supported by the contact support portion with the contact support portion in contact with the displacement regulating member. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004040495A JP4075066B2 (en) | 2004-02-17 | 2004-02-17 | Fluid filled engine mount |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004040495A JP4075066B2 (en) | 2004-02-17 | 2004-02-17 | Fluid filled engine mount |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005233243A JP2005233243A (en) | 2005-09-02 |
JP4075066B2 true JP4075066B2 (en) | 2008-04-16 |
Family
ID=35016423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004040495A Expired - Fee Related JP4075066B2 (en) | 2004-02-17 | 2004-02-17 | Fluid filled engine mount |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4075066B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4666632B2 (en) * | 2005-12-28 | 2011-04-06 | 株式会社ブリヂストン | Vibration isolator |
JP4861969B2 (en) * | 2007-11-30 | 2012-01-25 | 東海ゴム工業株式会社 | Fluid filled vibration isolator |
JP5014239B2 (en) * | 2008-04-28 | 2012-08-29 | 東海ゴム工業株式会社 | Fluid filled vibration isolator |
KR101632194B1 (en) | 2014-10-20 | 2016-07-01 | 지엠 글로벌 테크놀러지 오퍼레이션스 엘엘씨 | Decoupler Assembly for Hydraulic Mount |
KR101608596B1 (en) | 2014-10-20 | 2016-04-11 | 지엠 글로벌 테크놀러지 오퍼레이션스 엘엘씨 | Decoupler Assembly for Hydraulic Mount |
CN113464599B (en) * | 2021-07-02 | 2023-10-13 | 安徽誉林汽车部件有限公司 | Runner body structure in hydraulic suspension |
-
2004
- 2004-02-17 JP JP2004040495A patent/JP4075066B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005233243A (en) | 2005-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5095763B2 (en) | Liquid-filled vibration isolator | |
JP4688067B2 (en) | Fluid filled engine mount | |
JP4842086B2 (en) | Fluid filled vibration isolator | |
JP6431795B2 (en) | Fluid filled vibration isolator | |
JP2007271001A (en) | Fluid-sealed vibration isolating device | |
JP2015145701A (en) | Fluid sealed vibration control device | |
JP3849534B2 (en) | Fluid filled vibration isolator | |
JP2008002618A (en) | Fluid filled vibration isolating device | |
JP5325602B2 (en) | Fluid filled vibration isolator | |
JPH0285537A (en) | Fluid charged mount device | |
JP4120510B2 (en) | Fluid filled vibration isolator | |
JP2009243510A (en) | Fluid-filled type engine mount for automobile | |
JP2007085523A (en) | Fluid-enclosed type vibration isolator | |
JP5431982B2 (en) | Liquid-filled vibration isolator | |
JP2007139024A (en) | Fluid-sealed vibration control device | |
JP5530816B2 (en) | Fluid filled vibration isolator | |
JP2009243511A (en) | Fluid-filled engine mount for automobile | |
JP4075066B2 (en) | Fluid filled engine mount | |
JPH01238730A (en) | Fluid seal type mount device | |
JP4158110B2 (en) | Pneumatic switching type fluid-filled engine mount | |
JP6710123B2 (en) | Fluid filled type vibration damping device | |
JP4871902B2 (en) | Fluid filled vibration isolator | |
JPH05272575A (en) | Fluid-sealed mounting device | |
JP4158108B2 (en) | Pneumatic switching type fluid-filled engine mount | |
JP4158111B2 (en) | Pneumatic switching type fluid-filled engine mount |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070822 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070906 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080120 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110208 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120208 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130208 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140208 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |