JP5530816B2 - Fluid filled vibration isolator - Google Patents

Fluid filled vibration isolator Download PDF

Info

Publication number
JP5530816B2
JP5530816B2 JP2010131301A JP2010131301A JP5530816B2 JP 5530816 B2 JP5530816 B2 JP 5530816B2 JP 2010131301 A JP2010131301 A JP 2010131301A JP 2010131301 A JP2010131301 A JP 2010131301A JP 5530816 B2 JP5530816 B2 JP 5530816B2
Authority
JP
Japan
Prior art keywords
hole
rubber film
fluid
chamber
movable rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010131301A
Other languages
Japanese (ja)
Other versions
JP2011256930A (en
Inventor
頼重 清水
雄一 小川
明雄 佐伯
亮太 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2010131301A priority Critical patent/JP5530816B2/en
Publication of JP2011256930A publication Critical patent/JP2011256930A/en
Application granted granted Critical
Publication of JP5530816B2 publication Critical patent/JP5530816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Description

本発明は、自動車のエンジンマウント等に適用される防振装置に係り、特に内部に封入された流体の流動作用による防振効果が発揮される流体封入式防振装置に関するものである。   The present invention relates to an anti-vibration device applied to an engine mount or the like of an automobile, and more particularly to a fluid-filled vibration-proof device that exhibits an anti-vibration effect due to a fluid action of a fluid enclosed inside.

従来から、自動車のパワーユニットと車両ボデーのような振動伝達系を構成する部材間に介装されてそれらの部材を相互に防振連結する防振装置の一種として、特開昭57−9340号公報(特許文献1)等に示されている如き流体封入式の防振装置が知られている。かかる流体封入式防振装置は、第一の取付金具と第二の取付金具を本体ゴム弾性体で連結すると共に、本体ゴム弾性体の変形で振動が入力される受圧室と可撓性膜で容積変化が許容された平衡室とをオリフィス通路で連通せしめた構造とされている。   Conventionally, as a type of a vibration isolator which is interposed between members constituting a vibration transmission system such as a power unit of an automobile and a vehicle body and connects these members with each other for vibration isolation, Japanese Patent Application Laid-Open No. 57-9340 There is known a fluid-filled vibration isolator as disclosed in (Patent Document 1) and the like. Such a fluid-filled vibration isolator connects the first mounting bracket and the second mounting bracket with a main rubber elastic body, and includes a pressure receiving chamber and a flexible membrane into which vibration is input due to deformation of the main rubber elastic body. The balance chamber is allowed to change in volume and communicated with an orifice passage.

ところで、このような流体封入式防振装置では、オリフィス通路を通じての流体流動作用に基づく防振効果の発揮される周波数域が予めチューニングされた特定周波数域に限られることから、広い周波数域の振動に対して有効な防振特性を得難い。このような問題に対して、従来では、特開昭61−59035号公報(特許文献2)に示されているように負圧を利用して流体室の壁ばね剛性を変更制御することで防振特性を切り替えたり、特開平8−21480号公報(特許文献3)に示されているようにアクチュエータ駆動の切換弁で異なる周波数域にチューニングされた複数のオリフィス通路を選択的に切換制御することで防振特性を切り替えることが、提案されている。   By the way, in such a fluid-filled vibration isolator, since the frequency region where the vibration isolating effect based on the fluid flow action through the orifice passage is exhibited is limited to a specific frequency region tuned in advance, It is difficult to obtain effective anti-vibration characteristics. Conventionally, this problem can be prevented by changing and controlling the wall spring rigidity of the fluid chamber using negative pressure as disclosed in Japanese Patent Application Laid-Open No. 61-59035 (Patent Document 2). Switching vibration characteristics, or selectively switching a plurality of orifice passages tuned to different frequency ranges with an actuator-driven switching valve as disclosed in JP-A-8-21480 (Patent Document 3) It has been proposed to switch the anti-vibration characteristics.

ところが、これら特許文献2や特許文献3に示された従来構造の流体封入式防振装置では、負圧源への接続制御又はオリフィス通路の切換制御のために切換弁とそれを作動させるアクチュエータや制御装置が必要となることから、装置の複雑化や大形化が避けられず、特性の切換制御も難しいという問題があった。   However, in the conventional fluid-filled vibration isolator shown in Patent Document 2 and Patent Document 3, a switching valve and an actuator for operating the switching valve for controlling the connection to the negative pressure source or switching the orifice passage, Since a control device is required, there is a problem that the device is complicated and large in size, and the characteristic switching control is difficult.

特開昭57−9340号公報Japanese Unexamined Patent Publication No. 57-9340 特開昭61−59035号公報JP-A-61-59035 特開平8−21480号公報JP-A-8-21480

ここにおいて、本発明は、上述の事情を背景として為されたものであって、その解決課題とするところは、入力振動に応じて防振特性が切り替えられる流体封入式防振装置を、簡単な構造をもって提供することにある。   Here, the present invention has been made in the background of the above-described circumstances, and the problem to be solved is to provide a fluid-filled vibration isolator whose vibration isolating characteristics can be switched according to input vibration. It is to provide with structure.

本発明の第一の態様は、第一の取付部材と第二の取付部材を本体ゴム弾性体によって連結して、壁部の一部が該本体ゴム弾性体で構成された受圧室と壁部の一部が可撓性膜で構成された平衡室を形成し、それら受圧室と平衡室に非圧縮性流体を封入すると共に、それら受圧室と平衡室を相互に連通するオリフィス通路を形成した流体封入式防振装置において、前記第二の取付部材で外周部分を固定的に支持されることにより前記受圧室の圧力が一方の面に及ぼされると共に前記平衡室の圧力が他方の面に及ぼされる状態で配設されてそれら両面に及ぼされる圧力差に応じて弾性変形せしめられる可動ゴム膜を設け、該可動ゴム膜に初期状態で開口している貫通孔を形成すると共に、該貫通孔の少なくとも一方の開口部分において該貫通孔の周縁部分から該可動ゴム膜の面上に突出して弾性変形に基づき該貫通孔を覆蓋する弁片を該可動ゴム膜に一体形成しており、該弁片が初期形状において該貫通孔の開口部から離隔して該貫通孔を連通状態に保持するようになっていると共に、該弁片が該受圧室と該平衡室の相対的な圧力変動に基づいて弾性変形して該貫通孔の開口部に接近し該貫通孔を遮断するようになっていることを特徴とする流体封入式防振装置である。 According to a first aspect of the present invention, a pressure receiving chamber and a wall portion in which a first mounting member and a second mounting member are connected by a main rubber elastic body, and a part of the wall portion is configured by the main rubber elastic body. Formed an equilibrium chamber partly composed of a flexible membrane, sealed an incompressible fluid in the pressure receiving chamber and the equilibrium chamber, and formed an orifice passage communicating the pressure receiving chamber and the equilibrium chamber with each other. In the fluid filled type vibration damping device, the outer peripheral portion is fixedly supported by the second mounting member, whereby the pressure in the pressure receiving chamber is exerted on one surface and the pressure in the equilibrium chamber is exerted on the other surface. A movable rubber film that is arranged in a state that is elastically deformed in accordance with a pressure difference exerted on both surfaces of the movable rubber film is formed, and a through-hole that is open in an initial state is formed in the movable rubber film. The circumference of the through hole in at least one opening portion A valve piece for covering the through hole based from a portion projecting on the surface of the movable rubber film to the elastic deformation forms integrally the movable rubber film, the valve piece from the opening of the through hole in the initial shape The through hole is separated and held in a communicating state, and the valve piece is elastically deformed based on a relative pressure fluctuation between the pressure receiving chamber and the equilibrium chamber, and is formed in the opening of the through hole. A fluid-filled vibration isolator that approaches and blocks the through-hole .

本態様の流体封入式防振装置では、振動入力時に惹起される受圧室と平衡室との相対的な圧力変動に基づいて、可動ゴム膜に形成された貫通孔を通じての流体流動が生ぜしめられる。そして、受圧室と平衡室の相対圧力は、直接に或いは流体流動圧として弁片やゴム弾性膜にも及ぼされることとなり、その作用圧力が大きくなると弁片及び/又は可動ゴム膜の弾性変形に基づいて貫通孔の開口部分が弁片によって覆蓋されることとなる。それ故、入力される振動に応じて、例えば低周波でも大振幅振動であったり小振幅でも高周波振動であったりして、貫通孔を流動する流体圧力が大きい場合には、ゴム弾性膜の貫通孔が閉じられた状態となって、貫通孔を通じての流体流動が大幅に制限され或いは実質的に阻止される。   In the fluid-filled vibration isolator of this aspect, fluid flow through the through-hole formed in the movable rubber film is generated based on the relative pressure fluctuation between the pressure receiving chamber and the equilibrium chamber caused when vibration is input. . The relative pressure between the pressure receiving chamber and the equilibrium chamber is also applied to the valve piece and the rubber elastic membrane directly or as fluid flow pressure. When the operating pressure increases, the valve piece and / or the movable rubber membrane is elastically deformed. Based on this, the opening portion of the through hole is covered with the valve piece. Therefore, depending on the input vibration, if the fluid pressure flowing through the through hole is large, such as low frequency or large amplitude vibration or small amplitude or high frequency vibration, the rubber elastic membrane will penetrate. With the hole closed, fluid flow through the through hole is greatly limited or substantially prevented.

従って、可動ゴム膜に形成された貫通孔を通じての流体流動が許容されることによって発揮される、貫通孔を通じての流体流動作用に基づく防振効果が有効な防振特性と、かかる貫通孔を通じての流体流動が阻止されることによって発揮される、オリフィス通路を通じての流体流動作用に基づく防振効果が有効な防振特性とが、特別な外部の圧力源やアクチュエータ等を必要としない簡単な構造をもって、入力振動に応じて切り替えられて発揮され得るのである。   Accordingly, the anti-vibration property based on the fluid flow action through the through-hole, which is exhibited by allowing fluid flow through the through-hole formed in the movable rubber film, and the through-hole through The anti-vibration characteristics that are effective when the fluid flow is blocked and the anti-vibration effect based on the fluid flow action through the orifice passage is effective, with a simple structure that does not require a special external pressure source or actuator. It can be switched and exhibited according to the input vibration.

しかも、本態様の流体封入式防振装置では、貫通孔が弁片で覆蓋されて貫通孔を通じての流体流動が阻止された状態下において、受圧室と平衡室の相対的な圧力差に基づいて可動ゴム膜の全体の弾性変形が生ぜしめられることとなる。それ故、この可動ゴム膜の全体の弾性変形に基づいて、受圧室の圧力吸収作用や流体流動作用による低動ばね効果などの所定の防振効果も効果的に発揮され得るのである。   Moreover, in the fluid-filled vibration isolator of this aspect, based on the relative pressure difference between the pressure receiving chamber and the equilibrium chamber in a state where the through hole is covered with the valve piece and fluid flow through the through hole is blocked. The entire elastic deformation of the movable rubber film is caused. Therefore, based on the elastic deformation of the entire movable rubber film, a predetermined vibration-proofing effect such as a low dynamic spring effect due to the pressure absorbing action and fluid flow action of the pressure receiving chamber can be effectively exhibited.

本発明の第二の態様は、前記第一の態様に係る流体封入式防振装置において、前記可動ゴム膜に対して、前記第二の取付部材で支持された外周部分に沿って、その内周側を周方向に延びる薄肉部が形成されていると共に、該薄肉部よりも内周側に前記貫通孔が形成されているものである。   According to a second aspect of the present invention, in the fluid-filled vibration isolator according to the first aspect, an inner portion of the fluid rubber film is supported along the outer peripheral portion supported by the second mounting member. A thin wall portion extending in the circumferential direction is formed on the circumferential side, and the through hole is formed on the inner circumferential side of the thin wall portion.

本態様の流体封入式防振装置では、可動ゴム膜の外周部分に薄肉部が形成されており、この薄肉部よりも内周側に貫通孔が形成されていることから、特に貫通孔が弁片で覆蓋された状態下、受圧室と平衡室の圧力差が可動ゴム膜に及ぼされることにより、かかる可動ゴム膜において、ばねが柔らかくされた薄肉部の内周側の領域(即ち、貫通孔の形成部分を含む広い領域)の全体が大きな面積をもって弾性変形することとなる。その結果、可動ゴム膜の弾性変形に基づく高周波数域に至るまでの低動ばね効果が一層効果的に発揮され得るのである。   In the fluid-filled vibration isolator of this aspect, the thin portion is formed on the outer peripheral portion of the movable rubber film, and the through hole is formed on the inner peripheral side from this thin portion. When the pressure difference between the pressure receiving chamber and the equilibrium chamber is exerted on the movable rubber film under the state of being covered with a piece, in the movable rubber film, the region on the inner peripheral side of the thin wall portion where the spring is softened (that is, the through hole The entire large area including the portion where the film is formed is elastically deformed with a large area. As a result, the low dynamic spring effect up to the high frequency range based on the elastic deformation of the movable rubber film can be more effectively exhibited.

本発明の第三の態様は、前記第一又は第二の態様に係る流体封入式防振装置において、前記可動ゴム膜における前記貫通孔の開口部分には、前記弁片に対する対岸部分において該可動ゴム膜の面上に該弁片よりも小さな突出高さで突出するシール片が一体形成されているものである。   According to a third aspect of the present invention, in the fluid-filled vibration isolator according to the first or second aspect, the movable rubber film has an opening portion of the through-hole in the opposite bank portion with respect to the valve piece. A seal piece projecting at a projecting height smaller than the valve piece is integrally formed on the surface of the rubber film.

本態様の流体封入式防振装置では、弁片が貫通孔を塞ぐ際に、該弁片が当接する貫通孔の対岸部分がシール片によって柔らかくされていることで、弁片の打ち当りに伴う打音や衝撃が軽減されると共に、貫通孔の弁片による閉塞精度も高くなって(当接部分の密閉性能が向上される)貫通孔の覆蓋に基づく防振特性の切り替え効果の向上も図られ得る。なお、対岸部分とは、貫通孔の周縁部分における弁片の形成領域の対岸部分をいう。また、シール片は、先細断面形状とされることで、上述の如き効果が一層効果的に発揮され得る。   In the fluid-filled vibration isolator of this aspect, when the valve piece closes the through hole, the opposite shore portion of the through hole with which the valve piece abuts is softened by the seal piece, which accompanies the hitting of the valve piece. The impact sound and impact are reduced, and the accuracy of closing the through hole with the valve piece is improved (the sealing performance of the contact portion is improved). Can be. In addition, an opposite bank part means the opposite bank part of the formation area of the valve piece in the peripheral part of a through-hole. Moreover, the above-mentioned effect can be exhibited more effectively by the sealing piece having a tapered cross-sectional shape.

本発明の第四の態様は、前記第一〜三の何れか一の態様に係る流体封入式防振装置において、前記貫通孔が、前記可動ゴム膜の平面視において長孔形状とされていると共に、該貫通孔において長辺方向に延びて短辺方向で対向する一対の長辺側周縁部分の一方に対して前記弁片が突設されており、該弁片が該貫通孔における該一対の長辺側周縁部分の他方に当接されることで該貫通孔が覆蓋されるようになっているものである。   According to a fourth aspect of the present invention, in the fluid-filled vibration isolator according to any one of the first to third aspects, the through hole has a long hole shape in plan view of the movable rubber film. In addition, the valve piece protrudes from one of the pair of long side peripheral portions extending in the long side direction and opposed in the short side direction in the through hole, and the valve piece is the pair in the through hole. The through-hole is covered by being brought into contact with the other of the long side peripheral portions.

本態様の流体封入式防振装置では、貫通孔を長孔形状とすることで、貫通孔の流路断面積を長孔方向に確保しつつ、弁片も貫通孔の長孔方向に延設することによって弁片における貫通孔の覆蓋方向への弾性変形を容易と為して、弁片の貫通孔に対する覆蓋作動の安定化を図ることが出来る。   In the fluid-filled vibration isolator of this aspect, the through hole has a long hole shape, so that the flow passage cross-sectional area of the through hole is secured in the long hole direction and the valve piece extends in the long hole direction of the through hole. By doing so, it is possible to facilitate elastic deformation of the through hole in the valve piece in the cover direction, and it is possible to stabilize the cover operation for the through hole of the valve piece.

本発明の第五の態様は、前記第一〜四の何れか一の態様に係る流体封入式防振装置において、前記可動ゴム膜には、前記弁片における前記貫通孔と反対側の基端部分に沿って延びる肉抜溝が形成されているものである。   According to a fifth aspect of the present invention, in the fluid-filled vibration isolator according to any one of the first to fourth aspects, the movable rubber film has a proximal end opposite to the through hole in the valve piece. A cutout groove extending along the portion is formed.

本態様の流体封入式防振装置では、可動ゴム膜の肉厚寸法に拘わらず、弁片の基端部分に形成した肉抜溝の大きさや形状,深さ等を適当に調節することで、弁片の貫通孔を覆蓋する方向への弾性変形を容易に調節することが可能となる。それ故、弁片による貫通孔の覆蓋の条件、換言すれば弁片による貫通孔の覆蓋に基づく防振特性の切り替え条件の設計自由度が一層大きくされ得る。   In the fluid-filled vibration isolator of this aspect, regardless of the wall thickness of the movable rubber film, by appropriately adjusting the size, shape, depth, etc. of the hollow groove formed in the base end portion of the valve piece, It is possible to easily adjust the elastic deformation in the direction of covering the through hole of the valve piece. Therefore, the degree of freedom in designing the condition for switching the through hole by the valve piece, in other words, the condition for switching the anti-vibration characteristic based on the cover of the through hole by the valve piece can be further increased.

本発明の第六の態様は、前記第一〜五の何れか一の態様に係る流体封入式防振装置において、前記可動ゴム膜において前記弁片を前記貫通孔における両方の開口部分にそれぞれ設けたものである。   According to a sixth aspect of the present invention, in the fluid-filled vibration isolator according to any one of the first to fifth aspects, the valve pieces are provided in both opening portions of the through hole in the movable rubber film, respectively. It is a thing.

本態様の流体封入式防振装置においては、受圧室が平衡室に対して相対的に負圧となる場合と正圧となる場合との何れの相対的圧力状態下においても、貫通孔の両方の開口部分に設けた弁体による貫通孔の覆蓋作用に基づいて、貫通孔の閉塞状態の発現が可能となる。それ故、貫通孔の閉塞に基づいて発揮される防振特性の切換効果が一層顕著に達成され得る。   In the fluid-filled vibration isolator of this aspect, both the through-holes are present under any relative pressure state, in which the pressure receiving chamber has a negative pressure relative to the equilibrium chamber and a positive pressure. Based on the cover-covering action of the through-hole by the valve body provided in the opening portion, the through-hole can be closed. Therefore, the switching effect of the anti-vibration characteristic exhibited based on the blocking of the through hole can be achieved more remarkably.

本発明の第七の態様は、前記第一〜六の何れか一の態様に係る流体封入式防振装置において、前記ゴム弾性膜における一方の面が前記受圧室に直接に晒されていると共に、該ゴム弾性膜における他方の面が前記平衡室に直接に晒されており、該ゴム弾性膜で該受圧室と該平衡室を仕切る仕切壁の一部が構成されているものである。   According to a seventh aspect of the present invention, in the fluid filled type vibration damping device according to any one of the first to sixth aspects, one surface of the rubber elastic film is directly exposed to the pressure receiving chamber. The other surface of the rubber elastic membrane is directly exposed to the equilibrium chamber, and the rubber elastic membrane constitutes a part of a partition wall that partitions the pressure receiving chamber and the equilibrium chamber.

本態様の流体封入式防振装置では、振動入力に伴う受圧室と平衡室の相対的な圧力差がダイレクトに可動ゴム膜の両面に及ぼされることから、可動ゴム膜やそこに形成された弁片に対して、かかる圧力差が一層効率的に及ぼされることとなり、目的とする弁片の作動や可動ゴム膜の作用に基づく防振特性を、一層確実に且つ効率的に得ることが可能となる。   In the fluid filled type vibration isolator of this aspect, the relative pressure difference between the pressure receiving chamber and the equilibrium chamber due to vibration input is directly exerted on both surfaces of the movable rubber film, so that the movable rubber film and the valve formed there This pressure difference is exerted more efficiently on the piece, and it is possible to more reliably and efficiently obtain the anti-vibration characteristics based on the intended operation of the valve piece and the action of the movable rubber film. Become.

本発明の第八の態様は、前記第一〜六の何れか一の態様に係る流体封入式防振装置において、前記可動ゴム膜における前記受圧室の圧力が及ぼされる面及び前記平衡室の圧力が及ぼされる面との何れかの面側に中間室が形成されていると共に、該中間室を該受圧室又は該平衡室に連通する高周波オリフィスが前記オリフィス通路より高周波数域にチューニングされて形成されており、該受圧室又は該平衡室の圧力が該高周波オリフィスから該中間室を介して該可動ゴム膜に及ぼされるようになっているものである。   According to an eighth aspect of the present invention, in the fluid-filled vibration isolator according to any one of the first to sixth aspects, the surface of the movable rubber film to which the pressure of the pressure receiving chamber is exerted and the pressure of the equilibrium chamber An intermediate chamber is formed on either side of the surface on which the pressure is exerted, and a high frequency orifice that communicates the intermediate chamber with the pressure receiving chamber or the equilibrium chamber is tuned to a higher frequency region than the orifice passage. The pressure of the pressure receiving chamber or the equilibrium chamber is applied to the movable rubber film from the high frequency orifice through the intermediate chamber.

本態様の流体封入式防振装置では、振動入力時に、可動ゴム膜に形成された貫通孔を通じての流体流動や可動ゴム膜の弾性変形に基づく流体流動に基づいて高周波オリフィスを通じての流体流動が生ぜしめられることから、かかる高周波オリフィスを通じて流動する流体の共振作用を利用して、オリフィス通路のチューニング周波数よりも高周波数域の振動に対して低動ばね効果等の防振効果を有利に得ることが可能となる。   In the fluid-filled vibration isolator of this aspect, at the time of vibration input, fluid flow through the high-frequency orifice occurs based on the fluid flow through the through hole formed in the movable rubber film and the fluid flow based on the elastic deformation of the movable rubber film. Therefore, by utilizing the resonance action of the fluid flowing through such a high-frequency orifice, it is possible to advantageously obtain an anti-vibration effect such as a low dynamic spring effect against vibration in a higher frequency range than the tuning frequency of the orifice passage. It becomes possible.

さらに、本発明に係る流体封入式防振装置では、可動ゴム膜に対して複数の貫通孔と弁体を設けても良い。更に、複数の弁体に対して互いに異なる弾性変形特性を設定し、貫通孔を覆蓋する条件をそれらの弁体間で異なるように設定することも可能である。これによれば、例えば複数の貫通孔を、異なる振動入力条件に応じて各別に連通/遮断状態に切り替えることが出来る。   Furthermore, in the fluid filled type vibration damping device according to the present invention, a plurality of through holes and a valve body may be provided for the movable rubber film. Further, different elastic deformation characteristics can be set for a plurality of valve bodies, and the conditions for covering the through-holes can be set to be different between the valve bodies. According to this, for example, a plurality of through-holes can be switched to the communication / blocking state individually according to different vibration input conditions.

また、前記第六の態様に記載のように一つの貫通孔の受圧室側と平衡室側の両方の開口部分に弁片を形成するに際しても、同様に、それら両方の弁片の弾性変形特性即ち貫通孔の覆蓋作動条件を相互に異ならせても良い。   Further, when the valve pieces are formed in both the pressure receiving chamber side and the equilibrium chamber side opening portions of one through hole as described in the sixth aspect, similarly, the elastic deformation characteristics of both the valve pieces are the same. That is, the cover operating conditions of the through holes may be different from each other.

更にまた、本発明に係る流体封入式防振装置の上記各態様においては、更に、弁片の貫通孔と反対側への弾性変形を制限するために、例えば弁片の貫通孔と反対側に位置して、弁片が貫通孔と反対側へ弾性変形した際に当接して弁片の反対側への倒れ変形を制限乃至は規制する規制当接部を設けても良い。このように弁片の貫通孔と反対側への変形を制限することで、弁片の耐久性の向上が図られ得る。   Furthermore, in each of the above aspects of the fluid filled type vibration damping device according to the present invention, in order to limit elastic deformation to the opposite side to the through hole of the valve piece, for example, on the opposite side of the through hole of the valve piece. There may be provided a regulating contact portion that is positioned and abuts when the valve piece is elastically deformed to the opposite side to the through hole and restricts or restricts the deformation of the valve piece to the opposite side. By limiting the deformation of the valve piece to the side opposite to the through hole, the durability of the valve piece can be improved.

本発明に従う構造とされた流体封入式防振装置においては、入力される振動に応じて、受圧室と平衡室の間に惹起される相対的な圧力差を利用して、ゴム弾性膜の貫通孔が連通状態と弁片による覆蓋状態とに切り換えられる。それ故、可動ゴム膜に形成された貫通孔を通じての流体流動が許容される状態で発揮される防振特性と、かかる貫通孔を通じての流体流動が阻止されることによって発揮される防振特性とが、特別な外部の圧力源やアクチュエータ等を必要としない簡単な構造をもって、入力振動に応じて切り替えられて発揮され得る。しかも、貫通孔が弁片で覆蓋された状態下では、可動ゴム膜の全体の弾性変形が許容されることから、この可動ゴム膜の全体の弾性変形に基づいて、広い周波数域に亘る低動ばね効果も得ることが可能となる。   In the fluid filled type vibration isolator constructed according to the present invention, the rubber elastic membrane is penetrated by utilizing the relative pressure difference caused between the pressure receiving chamber and the equilibrium chamber according to the input vibration. The hole is switched between the communication state and the cover state by the valve piece. Therefore, anti-vibration characteristics that are exhibited in a state in which fluid flow through the through-hole formed in the movable rubber film is allowed, and anti-vibration characteristics that are exhibited by preventing fluid flow through the through-hole. However, a simple structure that does not require a special external pressure source, actuator, or the like can be switched according to the input vibration. In addition, under the condition that the through hole is covered with the valve piece, the entire elastic deformation of the movable rubber film is allowed, and therefore, the low movement over a wide frequency range is based on the entire elastic deformation of the movable rubber film. A spring effect can also be obtained.

本発明の第一の実施形態としての自動車用エンジンマウントを示す縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS The longitudinal cross-sectional view which shows the engine mount for motor vehicles as 1st embodiment of this invention. 図1におけるII−II断面図。II-II sectional drawing in FIG. 図1に示された自動車用エンジンマウントを構成する可動ゴム膜の平面図。The top view of the movable rubber film which comprises the engine mount for motor vehicles shown by FIG. 図3におけるIV−IV断面図。IV-IV sectional drawing in FIG. 図1に示された自動車用エンジンマウントにおける防振特性の切換作動を説明するための縦断面説明図。The longitudinal cross-sectional explanatory drawing for demonstrating the switching operation | movement of the vibration proof characteristic in the engine mount for motor vehicles shown by FIG. 図1に示された自動車用エンジンマウントの防振特性の測定結果を比較例と併せて示すグラフ。The graph which shows the measurement result of the vibration proof characteristic of the engine mount for motor vehicles shown by FIG. 1 with the comparative example. 本発明の第二の実施形態としての自動車用エンジンマウントの要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of the engine mount for motor vehicles as 2nd embodiment of this invention. 本発明の第三の実施形態としての自動車用エンジンマウントの要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of the engine mount for motor vehicles as 3rd embodiment of this invention. 本発明の第四の実施形態としての自動車用エンジンマウントの要部を弾性変形状態で示す縦断面図。The longitudinal cross-sectional view which shows the principal part of the engine mount for motor vehicles as 4th embodiment of this invention in an elastically deformed state. 本発明の第五の実施形態としての自動車用エンジンマウントの要部を示す縦断面図。The longitudinal cross-sectional view which shows the principal part of the engine mount for motor vehicles as 5th embodiment of this invention.

以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.

先ず、図1〜2には、本発明に従う構造とされた流体封入式防振装置の第一の実施形態として、自動車用エンジンマウント10が示されている。このエンジンマウント10は、第一の取付部材としての第一の取付金具12と、第二の取付部材としての第二の取付金具14を、本体ゴム弾性体16によって相互に連結した構造とされている。そして、第一の取付金具12がパワーユニットに取り付けられると共に、第二の取付金具14が車両ボデーに取り付けられることにより、パワーユニットが車両ボデーに対して防振連結されて支持されるようになっている。   First, FIGS. 1 and 2 show an automobile engine mount 10 as a first embodiment of a fluid filled type vibration damping device having a structure according to the present invention. The engine mount 10 has a structure in which a first mounting bracket 12 as a first mounting member and a second mounting bracket 14 as a second mounting member are connected to each other by a main rubber elastic body 16. Yes. The first mounting bracket 12 is attached to the power unit, and the second mounting bracket 14 is attached to the vehicle body, so that the power unit is connected to the vehicle body in a vibration-proof manner and supported. .

なお、以下の説明において、上下方向とは、原則として、図1中の上下方向を言う。また、図1は自動車への装着前の状態を示すものであり、装着状態下では、パワーユニットの静的な分担支持荷重の入力で本体ゴム弾性体16が弾性変形して、第一の取付金具12と第二の取付金具14が、マウント中心軸(図1中の中央を上下に延びるマウント弾性主軸であって、本実施形態では第一及び第二の取付金具12,14や本体ゴム弾性体16の中心軸に等しい。)上で所定距離だけ相互に接近位置せしめられる。更にまた、かかる装着状態下、防振すべき主たる振動は、第一の取付金具12と第二の取付金具14とに対して、マウント中心軸方向に及ぼされることとなる。   In the following description, the vertical direction means the vertical direction in FIG. 1 in principle. FIG. 1 shows a state before being mounted on an automobile. Under the mounted state, the main rubber elastic body 16 is elastically deformed by the input of a static shared support load of the power unit, and the first mounting bracket 12 and the second mounting bracket 14 are mount center axes (mount elastic main shafts extending vertically in the center in FIG. 1; in this embodiment, the first and second mounting brackets 12 and 14 and the main rubber elastic body 16 equal to the central axis of 16). Furthermore, under such a mounting state, main vibrations to be vibrated are exerted on the first mounting bracket 12 and the second mounting bracket 14 in the mount central axis direction.

より詳細には、第一の取付金具12は、下方に向かって小径となる逆向きの略円錐台形状とされている。また、第一の取付金具12には、上端面の中央に開口して中心軸上を下方に延びるボルト穴22が形成されている。そして、このボルト穴22に螺着される図示しない取付用ボルトによって、第一の取付金具12が、直接に或いはインナブラケット等を介して、図示しないパワーユニットに取り付けられるようになっている。   More specifically, the first mounting member 12 has a substantially truncated cone shape in the reverse direction that decreases in diameter toward the lower side. Further, the first mounting member 12 is formed with a bolt hole 22 that opens to the center of the upper end surface and extends downward on the central axis. The first mounting bracket 12 is attached to a power unit (not shown) directly or via an inner bracket or the like by a mounting bolt (not shown) screwed into the bolt hole 22.

一方、第二の取付金具14は、大径の略円筒形状を有しており、その軸方向中間部分に段差部24が形成されている。この段差部24より下側が小径筒部26とされていると共に、段差部24より上側が大径筒部28とされている。   On the other hand, the second mounting bracket 14 has a large-diameter, generally cylindrical shape, and a step portion 24 is formed at an axially intermediate portion thereof. The lower side of the step portion 24 is a small diameter cylindrical portion 26 and the upper side of the step portion 24 is a large diameter cylindrical portion 28.

そして、これら第一の取付金具12と第二の取付金具14は、同一中心軸上に配置されており、第二の取付金具14の上側の開口部に対して第一の取付金具12が上方に離隔位置せしめられている。かかる配置状態下、第一の取付金具12と第二の取付金具14を弾性連結する本体ゴム弾性体16は、大径の略円錐台形状を有しており、その中央部分に対して第一の取付金具12が埋め込まれた状態で加硫接着されている。また、本体ゴム弾性体16の外周部分には、第二の取付金具14の大径筒部28が加硫接着されている。これにより、第一の取付金具12と第二の取付金具14が、それらの対向面間に配された本体ゴム弾性体16で連結されており、かかる本体ゴム弾性体16によって第二の取付金具14の上側開口部が流体密に閉塞されている。なお、本体ゴム弾性体16は、第一及び第二の取付金具12,14を備えた一体加硫成形品として形成されている。   The first mounting bracket 12 and the second mounting bracket 14 are arranged on the same central axis, and the first mounting bracket 12 is above the opening on the upper side of the second mounting bracket 14. Are separated from each other. Under such an arrangement, the main rubber elastic body 16 that elastically connects the first mounting bracket 12 and the second mounting bracket 14 has a large-diameter, generally truncated cone shape, and the first portion of the main rubber elastic body 16 has a first shape with respect to the central portion. The mounting bracket 12 is embedded and vulcanized and bonded. Further, the large-diameter cylindrical portion 28 of the second mounting bracket 14 is vulcanized and bonded to the outer peripheral portion of the main rubber elastic body 16. Thereby, the 1st mounting bracket 12 and the 2nd mounting bracket 14 are connected by the main body rubber elastic body 16 distribute | arranged between those opposing surfaces, and this main body rubber elastic body 16 is using the second mounting metal fitting. 14 upper openings are closed fluid tight. The main rubber elastic body 16 is formed as an integrally vulcanized molded product including the first and second mounting brackets 12 and 14.

また、本体ゴム弾性体16には、大径側端面に開口する大径凹所30が形成されている。大径凹所30は、下方に向かって拡径する逆向きの略すり鉢状とされており、大径凹所30の形成によって、本体ゴム弾性体16が、第一の取付金具12と第二の取付金具14の対向面間に、厚肉の略テーパ筒形状をもって配されている。   The main rubber elastic body 16 is formed with a large-diameter recess 30 that opens to the large-diameter side end face. The large-diameter recess 30 is formed in a reverse mortar shape that expands in the downward direction. By forming the large-diameter recess 30, the main rubber elastic body 16 is connected to the first mounting bracket 12 and the second mounting bracket 12. Between the opposing surfaces of the mounting bracket 14, a thick, substantially tapered cylindrical shape is arranged.

更にまた、本体ゴム弾性体16の外周部分に固着された第二の取付金具14には、その小径筒部26の内周面を全面に亘って覆うシールゴム層34が加硫接着されている。このシールゴム層34は、大径筒部28の内周面に加硫接着された本体ゴム弾性体16と一体形成されている。なお、第二の取付金具14における小径筒部26の上端近くに位置するシールゴム層34と本体ゴム弾性体16との境界部には、第二の取付金具14の下側開口部に臨む段差面35が形成されている。   Furthermore, a seal rubber layer 34 that covers the entire inner peripheral surface of the small-diameter cylindrical portion 26 is vulcanized and bonded to the second mounting member 14 fixed to the outer peripheral portion of the main rubber elastic body 16. The seal rubber layer 34 is integrally formed with the main rubber elastic body 16 vulcanized and bonded to the inner peripheral surface of the large-diameter cylindrical portion 28. A stepped surface facing the lower opening of the second mounting bracket 14 is located at the boundary between the seal rubber layer 34 located near the upper end of the small diameter cylindrical portion 26 and the main rubber elastic body 16 in the second mounting bracket 14. 35 is formed.

さらに、第二の取付金具14の下側開口部には、可撓性膜としてのダイヤフラム36が組み付けられている。このダイヤフラム36は、薄肉大径の略円板形状とされており、弾性変形が容易に許容されるように充分な弛みを有している。また、ダイヤフラム36の外周縁部には、円筒状の固定金具37が加硫接着されている。   Further, a diaphragm 36 as a flexible film is assembled to the lower opening of the second mounting bracket 14. The diaphragm 36 has a thin and large-diameter substantially disk shape, and has sufficient slack so that elastic deformation can be easily allowed. Further, a cylindrical fixing bracket 37 is vulcanized and bonded to the outer peripheral edge of the diaphragm 36.

そして、第二の取付金具14の下側開口部分に対して、固定金具37が嵌め入れられており、その後、小径筒部26が縮径加工されることにより、固定金具37がシールゴム層34を挟んで小径筒部26に嵌着固定されている。これにより、第二の取付金具14の下側開口部がダイヤフラム36で閉塞されている。   The fixing bracket 37 is fitted into the lower opening of the second mounting bracket 14, and then the diameter of the small diameter cylindrical portion 26 is reduced, so that the fixing bracket 37 attaches the seal rubber layer 34. It is fitted and fixed to the small-diameter cylindrical portion 26 with being sandwiched. As a result, the lower opening of the second mounting bracket 14 is closed by the diaphragm 36.

さらに、上述の如く第二の取付金具14の上側開口部が本体ゴム弾性体16で閉塞されると共に、下側開口部がダイヤフラム36で閉塞されることにより、それら本体ゴム弾性体16とダイヤフラム36の軸方向間には、外部空間に対して密閉された流体封入領域38が画成されている。そして、この流体封入領域38に対して、水,アルキレングリコール,ポリアルキレングリコール,シリコーン油やそれらの混合液等からなる非圧縮性流体が封入されている。なお、かかる封入流体は、特に制限されるものでないが、後述する流体の流動作用に基づく防振効果を効率的に得るためには、0.1Pa・s以下の低粘性流体が望ましい。   Further, as described above, the upper opening of the second mounting bracket 14 is closed by the main rubber elastic body 16 and the lower opening is closed by the diaphragm 36, so that the main rubber elastic body 16 and the diaphragm 36 are closed. Between these axial directions, a fluid sealing region 38 sealed with respect to the external space is defined. The fluid sealing region 38 is sealed with an incompressible fluid made of water, alkylene glycol, polyalkylene glycol, silicone oil, a mixture thereof, or the like. Such an enclosed fluid is not particularly limited, but a low-viscosity fluid of 0.1 Pa · s or less is desirable in order to efficiently obtain a vibration-proofing effect based on the fluid flow action described later.

また、上記流体封入領域38には、仕切部材40が収容されており、本体ゴム弾性体16とダイヤフラム36との軸方向中間部分において、軸直角方向に広がる状態で配設され、その外周面を第二の取付金具14で支持されている。これにより、流体封入領域38が、仕切部材40で仕切られて上下に二分されている。そして、仕切部材40の上方には、壁部の一部が本体ゴム弾性体16で構成された受圧室42が形成されており、第一の取付金具12と第二の取付金具14の間への振動入力時には、本体ゴム弾性体16の弾性変形に基づいて、この受圧室42に圧力変動が生ぜしめられるようになっている。また、仕切部材40の下方には、壁部の一部がダイヤフラム36で構成された平衡室44が形成されており、ダイヤフラム36の弾性的な変形に基づいて、この平衡室44の容積変化が容易に許容されるようになっている。   A partition member 40 is accommodated in the fluid sealing region 38, and is disposed in a state of spreading in a direction perpendicular to the axis at an axially intermediate portion between the main rubber elastic body 16 and the diaphragm 36. It is supported by the second mounting bracket 14. As a result, the fluid sealing region 38 is partitioned by the partition member 40 and is vertically divided into two. A pressure receiving chamber 42 having a part of the wall portion made of the main rubber elastic body 16 is formed above the partition member 40, and extends between the first mounting bracket 12 and the second mounting bracket 14. When the vibration is input, a pressure fluctuation is generated in the pressure receiving chamber 42 based on the elastic deformation of the main rubber elastic body 16. Also, below the partition member 40, an equilibrium chamber 44 having a part of the wall made of the diaphragm 36 is formed. Based on the elastic deformation of the diaphragm 36, the volume change of the equilibrium chamber 44 is changed. It is easily tolerated.

特に本実施形態では、かかる仕切部材40が、円環形状のオリフィス部材46と、円板形状の可動ゴム膜48と、円環板形状の保持部材50から構成されている。そして、それぞれ硬質樹脂や金属等の高剛性材で形成されたオリフィス部材46と保持部材50の間で、可動ゴム膜48の外周縁部が把持されることにより、オリフィス部材46の中央透孔を遮断するようにして可動ゴム膜48が組み付けられている。   Particularly in the present embodiment, the partition member 40 includes an annular orifice member 46, a disk-shaped movable rubber film 48, and an annular plate-shaped holding member 50. The outer peripheral edge of the movable rubber film 48 is gripped between the orifice member 46 and the holding member 50 each made of a highly rigid material such as hard resin or metal, so that the central through hole of the orifice member 46 is formed. A movable rubber film 48 is assembled so as to be blocked.

オリフィス部材46は、大径で厚肉の円環形状を有しており、それぞれ外周面に開口して周方向で一周弱の長さで延びる上側周溝52と下側周溝54が、軸方向で互いに所定距離を隔てて平行に形成されている。また、これら上側周溝52と下側周溝54は、周上の対応する一方の端部において、それら上下周溝52,54の隔壁部分に形成された接続孔56によって相互に連通されている。これにより、上側周溝52と下側周溝54が相互に直列的に接続されて、全体として周方向に一周以上の長さで延びる周溝が構成されている。更に、周溝の一方の端部となる上側周溝52の端部には、上方に向かって開口する上側通孔58が形成されていると共に、周溝の他方の端部となる下側周溝54の端部には、下方に向かって開口する下側通孔60が形成されている。   The orifice member 46 has an annular shape with a large diameter and a thick wall. Each of the upper circumferential groove 52 and the lower circumferential groove 54 that opens to the outer circumferential surface and extends a little less than one round in the circumferential direction has a shaft. They are formed parallel to each other at a predetermined distance in the direction. The upper circumferential groove 52 and the lower circumferential groove 54 are communicated with each other by a connection hole 56 formed in the partition wall portion of the upper and lower circumferential grooves 52 and 54 at one end corresponding to the circumference. . As a result, the upper circumferential groove 52 and the lower circumferential groove 54 are connected in series with each other, and a circumferential groove is formed that extends as a whole in a circumferential direction with a length of one or more rounds. Further, an upper through hole 58 that opens upward is formed at the end of the upper circumferential groove 52 that is one end of the circumferential groove, and a lower circumference that is the other end of the circumferential groove. A lower through hole 60 that opens downward is formed at the end of the groove 54.

そして、このオリフィス部材46が第二の取付金具14の下側開口部分から嵌め入れられており、その後、小径筒部26が縮径加工されることによって、オリフィス部材46がシールゴム層34を挟んで小径筒部26に嵌着固定されている。なお、かかる組付状態下、オリフィス部材46は、シールゴム層34の段差面35とダイヤフラム36の固定金具37との間で軸方向に挟まれて位置決めされている。これにより、オリフィス部材46の上下周溝52,54の外周開口が小径筒部26で流体密に覆蓋されており、以て、受圧室42と平衡室44とを相互に連通するオリフィス通路61が形成されている。   Then, the orifice member 46 is fitted from the lower opening portion of the second mounting bracket 14, and then, the orifice member 46 sandwiches the seal rubber layer 34 by reducing the diameter of the small diameter cylindrical portion 26. The small diameter cylindrical portion 26 is fixedly fitted. In this assembled state, the orifice member 46 is positioned between the stepped surface 35 of the seal rubber layer 34 and the fixture 37 of the diaphragm 36 in the axial direction. As a result, the outer peripheral openings of the upper and lower circumferential grooves 52 and 54 of the orifice member 46 are fluid-tightly covered with the small-diameter cylindrical portion 26, so that the orifice passage 61 that allows the pressure receiving chamber 42 and the equilibrium chamber 44 to communicate with each other is formed. Is formed.

特に本実施形態では、かかるオリフィス通路61を通じて流動する流体の共振作用に基づいて、エンジンシェイクに相当する10Hz程度の低周波大振幅振動に対して高減衰効果が発揮されるように、オリフィス通路61の流路長さや断面積が調節されてチューニングされている。   In particular, in the present embodiment, the orifice passage 61 is designed so that a high damping effect is exhibited with respect to a low-frequency large-amplitude vibration of about 10 Hz corresponding to an engine shake based on the resonance action of the fluid flowing through the orifice passage 61. The channel length and cross-sectional area are adjusted and tuned.

一方、前記可動ゴム膜48は、図3〜4にも単品図が示されているように、全体として円板形状を有しており、中央部分が円板形状の厚肉部62とされていると共に、外周部分が円環板形状の薄肉部64とされており、中央部分よりも外周部分の方が薄肉とされて弾性変形が容易に許容されるようになっている。更に、薄肉部64の外周縁部には、周方向の全周に亘って延びる環状保持部66が形成されている。この環状保持部66は、厚さ寸法が薄肉部64よりも大きくされており、特に本実施形態では、薄肉部64の厚さ寸法よりも大きな直径寸法の円形断面をもって全周に亘って一定断面形状で延びる環状保持部66が採用されている。   On the other hand, the movable rubber film 48 has a disc shape as a whole, as shown in FIGS. 3 to 4 as single items, and the central portion is a disc-shaped thick portion 62. In addition, the outer peripheral portion is an annular plate-shaped thin portion 64, and the outer peripheral portion is thinner than the central portion, so that elastic deformation is easily allowed. Further, an annular holding portion 66 extending over the entire circumference in the circumferential direction is formed on the outer peripheral edge portion of the thin portion 64. The annular holding part 66 has a thickness dimension larger than that of the thin part 64. In particular, in this embodiment, the annular holding part 66 has a circular cross section having a diameter larger than the thickness dimension of the thin part 64 and has a constant cross section over the entire circumference. An annular holding portion 66 that extends in a shape is employed.

さらに、厚肉部62には、その中央部分に貫通孔68が形成されている。貫通孔68は、厚肉部62の領域内に形成されており、薄肉部64には至っていない。この貫通孔68は、厚肉部62の径方向一方向(可動ゴム膜48の平面視を示す図3中の上下方向)に長く、それに直交する径方向に短い、平面視で長孔形状とされており、特に本実施形態では、図3の上下方向が長辺で左右方向が短辺の長方形状とされている。また、本実施形態の貫通孔68は、図4に示された短辺方向と平行な断面において可動ゴム膜48の中心軸に対して僅かに傾斜した傾斜孔とされている。このように傾斜孔とすることで、貫通孔68の孔長を厚肉部62の板厚よりも大きく設定でき、また後述する弁片(70)への圧力作用を調節できる等の技術的意義があるが、本発明の貫通孔68は、傾斜孔に限定されるものでなく、後述する図8〜9のように可動ゴム膜48の中心軸と平行に延びていても良い。   Furthermore, a through hole 68 is formed in the central portion of the thick portion 62. The through hole 68 is formed in the region of the thick portion 62 and does not reach the thin portion 64. The through-hole 68 is long in one radial direction of the thick portion 62 (the vertical direction in FIG. 3 showing the movable rubber film 48 in a plan view) and short in the radial direction perpendicular to the thick hole 62. In particular, in the present embodiment, a rectangular shape having a long side in the vertical direction and a short side in the horizontal direction in FIG. 3 is used. The through hole 68 of the present embodiment is an inclined hole that is slightly inclined with respect to the central axis of the movable rubber film 48 in a cross section parallel to the short side direction shown in FIG. By forming the inclined hole in this way, the technical significance such that the hole length of the through hole 68 can be set larger than the plate thickness of the thick portion 62 and the pressure action on the valve piece (70) described later can be adjusted. However, the through hole 68 of the present invention is not limited to the inclined hole, and may extend parallel to the central axis of the movable rubber film 48 as shown in FIGS.

また、貫通孔68の上側の開口部分には、その周縁において部分的に弁片70aが突出形成されている。かかる弁片70aは、貫通孔68において長辺方向に延びて短辺方向で対向する一対の長辺側周縁部分の一方に位置して、厚肉部62と一体形成されており、貫通孔68の上側の開口部分からその開口方向に向かって上方に突出している。即ち、弁片70aは、貫通孔68の一方の長片側周縁部分に沿って全長に亘って延びる薄板形状とされており、特に本実施形態では、先細断面形状とされている。   In addition, a valve piece 70a is partially formed at the periphery of the opening portion on the upper side of the through hole 68. The valve piece 70 a is integrally formed with the thick portion 62 and is positioned at one of a pair of long side peripheral portions extending in the long side direction and opposed in the short side direction in the through hole 68. It protrudes upward from the opening part on the upper side toward the opening direction. That is, the valve piece 70a has a thin plate shape that extends over the entire length along one long piece side peripheral portion of the through-hole 68, and particularly has a tapered cross-sectional shape in this embodiment.

更にまた、厚肉部62には、弁片70aにおける貫通孔68と反対側に位置して、弁片70aの基端部分に沿って、貫通孔68の長辺方向に延びる肉抜溝72aが形成されている。この肉抜溝72aにより、弁片70aの実質的な高さ寸法、即ち厚肉部62から独立した弾性変形が許容される高さ寸法が大きくされている。しかも、弁片70aにおける貫通孔68側の面は、貫通孔68の孔内面74を直線的に延長させた面として構成されており、それによっても、弁片70aの弾性変形が、厚肉部62から独立して容易に許容されるようになっている。   Furthermore, the thick wall portion 62 has a cutout groove 72a that is located on the opposite side of the valve piece 70a from the through hole 68 and extends in the long side direction of the through hole 68 along the proximal end portion of the valve piece 70a. Is formed. Due to the cutout groove 72a, the substantial height dimension of the valve piece 70a, that is, the height dimension at which elastic deformation independent of the thick part 62 is allowed is increased. Moreover, the surface on the through hole 68 side of the valve piece 70a is configured as a surface obtained by linearly extending the hole inner surface 74 of the through hole 68, and the elastic deformation of the valve piece 70a is also caused by the thick wall portion. Independent from 62, it is easily allowed.

特に、肉抜溝72aは、弁片70aにおける貫通孔68側に向かう倒れ込み状又は湾曲状の弾性変形を容易に許容し得ることとなる一方、弁片70aが貫通孔68と反対側に向かって倒れ込み状又は湾曲状に弾性変形した場合には、弁片70aが肉抜溝72aの開口角部に当接することとなり、弁片70aの貫通孔68と反対側への変形量を制限し得る。   In particular, the cutout groove 72a can easily allow the elastic deformation of the fall or curve toward the through hole 68 in the valve piece 70a, while the valve piece 70a faces the opposite side of the through hole 68. When elastically deforming into a fallen shape or a curved shape, the valve piece 70a comes into contact with the opening corner portion of the lightening groove 72a, and the deformation amount of the valve piece 70a on the side opposite to the through hole 68 can be limited.

一方、貫通孔68の上側の開口部分における一対の長辺側周縁部分のうち、弁片70aが形成されていない方には、シール片76aが厚肉部62と一体形成されている。このシール片76aは、貫通孔68の上側の開口部分を短辺方向に挟んで、弁片70aと対向位置して、長辺側周縁部分に沿って延びている。特に本実施形態では、かかるシール片76aが先細断面形状とされていると共に、その厚さ寸法及び突出高さ寸法が、何れも、弁片70aの厚さ寸法及び突出高さ寸法より小さくされている。   On the other hand, the seal piece 76a is integrally formed with the thick portion 62 on the side where the valve piece 70a is not formed among the pair of long side peripheral portions in the opening portion on the upper side of the through hole 68. The seal piece 76a extends along the long-side peripheral portion so as to face the valve piece 70a with the opening portion on the upper side of the through hole 68 sandwiched in the short-side direction. In particular, in the present embodiment, the seal piece 76a has a tapered cross-sectional shape, and the thickness dimension and the protruding height dimension are both smaller than the thickness dimension and the protruding height dimension of the valve piece 70a. Yes.

さらに、本実施形態では、貫通孔68の上側の開口部分に形成された上述の如き弁片70aや肉抜溝72a、シール片76aが、貫通孔68の下側の開口部分にも同様に、弁片70b、肉抜溝72b、シール片76bとして形成されている。   Further, in the present embodiment, the valve piece 70a, the fillet groove 72a, and the seal piece 76a as described above formed in the upper opening portion of the through hole 68 are similarly formed in the lower opening portion of the through hole 68. It is formed as a valve piece 70b, a fillet groove 72b, and a seal piece 76b.

そして、このような構造とされた可動ゴム膜48は、オリフィス部材46の中央透孔内で軸直角方向に広がって配設されており、その環状保持部66を、オリフィス部材46と保持部材50とによって固定的に把持されて組み付けられている。即ち、オリフィス部材46には、内周面上に突出する環状の上側把持部78が形成されている。一方、保持部材50は、オリフィス部材46の下面に重ね合わされて固定的に組み付けられており、オリフィス部材46の内周面から突出する環状の下側把持部80を構成している。これら上側把持部78と下側把持部80の軸方向対向面間で、可動ゴム膜48の環状保持部66が厚さ方向に挟持されて流体密に支持されているのである。なお、保持部材50は、例えばプレス成形金具によって構成され、オリフィス部材46と共に、シールゴム層34の段差面35とダイヤフラム36の固定金具37との間で軸方向に挟まれて位置決めされることで第二の取付金具14によって固定的に支持されている。   The movable rubber film 48 having such a structure is disposed so as to extend in the direction perpendicular to the axis in the central through hole of the orifice member 46, and the annular holding portion 66 is connected to the orifice member 46 and the holding member 50. And are fixedly held and assembled. That is, the orifice member 46 is formed with an annular upper gripping portion 78 protruding on the inner peripheral surface. On the other hand, the holding member 50 is fixedly assembled so as to overlap the lower surface of the orifice member 46, and constitutes an annular lower gripping portion 80 protruding from the inner peripheral surface of the orifice member 46. The annular holding portion 66 of the movable rubber film 48 is sandwiched in the thickness direction between the upper gripping portion 78 and the lower gripping portion 80 in the axial direction so as to be fluid-tightly supported. The holding member 50 is constituted by, for example, a press-molded metal fitting, and is positioned by being sandwiched in the axial direction between the stepped surface 35 of the seal rubber layer 34 and the fixing metal fitting 37 of the diaphragm 36 together with the orifice member 46. The second mounting bracket 14 is fixedly supported.

なお、可動ゴム膜48の環状保持部66を支持する上下の把持部78,80は、何れも、内周縁部における可動ゴム膜48に面する端面82,84が、可動ゴム膜48の表面から上下外方に向かって次第に湾曲しつつ離隔する湾曲断面形状とされている。これにより、可動ゴム膜48が、受圧室42側や平衡室44側に弾性変形することで、上下の把持部78,80に当接した場合でも、局部的な応力作用が回避されて亀裂の発生防止が図られている。   The upper and lower grips 78 and 80 that support the annular holding portion 66 of the movable rubber film 48 have end faces 82 and 84 facing the movable rubber film 48 at the inner peripheral edge from the surface of the movable rubber film 48. It is set as the curved cross-sectional shape which leaves | separates, curving gradually up and down outward. As a result, the movable rubber film 48 is elastically deformed toward the pressure receiving chamber 42 side or the equilibrium chamber 44 side, so that even when the movable rubber film 48 comes into contact with the upper and lower gripping portions 78 and 80, local stress action is avoided and cracks are prevented. Generation prevention is aimed at.

また、それら上下の把持部78,80の内周端面82,84は、何れも、可動ゴム膜48の薄肉部64の上下面上に位置せしめられており、厚肉部62からは外周側に所定距離だけ離隔して位置せしめられている。要するに、厚肉部62の外周側には、把持部78,80との間に、径方向の所定寸法に亘って薄肉部64が全周に亘って設けられているのである。これにより、可動ゴム膜48の外周縁部を上下把持部78,80で固定的に把持せしめた状態下でも、外周部分の全周に存在する薄肉部64により、厚肉部62を含む可動ゴム膜48の全体の受圧室42側や平衡室44側への弾性変形が容易に許容され得るようになっている。そして、可動ゴム膜48の上面及び下面には、把持部78の内周端面82内の透孔及び把持部80の内周端面84内の透孔をそれぞれ通じて、受圧室42の圧力及び平衡室44の圧力が直接に及ぼされるようになっている。要するに、本実施形態では、仕切部材40の中央部分が可動ゴム膜48の単体構造とされており、この可動ゴム膜48の厚肉部62及び薄肉部64によって、受圧室42と平衡室44を仕切る仕切壁の一部が構成されている。   Further, the inner peripheral end surfaces 82 and 84 of the upper and lower gripping portions 78 and 80 are both positioned on the upper and lower surfaces of the thin portion 64 of the movable rubber film 48, and from the thick portion 62 to the outer peripheral side. They are positioned a predetermined distance apart. In short, on the outer peripheral side of the thick part 62, the thin part 64 is provided over the entire circumference between the gripping parts 78 and 80 over a predetermined radial dimension. Thereby, even in a state where the outer peripheral edge portion of the movable rubber film 48 is fixedly held by the upper and lower holding portions 78 and 80, the movable rubber including the thick portion 62 is formed by the thin portion 64 existing all around the outer peripheral portion. Elastic deformation of the entire membrane 48 toward the pressure receiving chamber 42 side or the equilibrium chamber 44 side can be easily allowed. Then, the pressure and equilibrium of the pressure receiving chamber 42 are respectively passed through the upper and lower surfaces of the movable rubber film 48 through the through hole in the inner peripheral end surface 82 of the gripping portion 78 and the through hole in the inner peripheral end surface 84 of the gripping portion 80. The pressure in the chamber 44 is directly exerted. In short, in the present embodiment, the central portion of the partition member 40 has a single structure of the movable rubber film 48, and the pressure receiving chamber 42 and the equilibrium chamber 44 are formed by the thick part 62 and the thin part 64 of the movable rubber film 48. A part of the partition wall is formed.

以上のような構造とされたエンジンマウント10は、車両への装着下で振動が入力されると、受圧室42と平衡室44の間に相対的な圧力変動が惹起され、それに伴ってオリフィス通路61や貫通孔68を通じての流体流動が生ぜしめられる。ここにおいて、貫通孔68を通じての流体流動に伴って生ずる流体圧力が、貫通孔68の上下開口部に突設された弁片70a,70bに及ぼされて、弁片70a,70bが弾性変形せしめられる。そして、この流体圧力が大きくなると、弁片70a,70bが大きく弾性変形せしめられて、図5に示すように、貫通孔68側に向かって大きく変形し、対岸側に重ね合わされることとなる。その結果、貫通孔68の開口部が弁片70a,70bで覆蓋されて、貫通孔68を通じての流体流動が阻害されるのである。   In the engine mount 10 having the above-described structure, when vibration is input while being mounted on a vehicle, a relative pressure fluctuation is induced between the pressure receiving chamber 42 and the equilibrium chamber 44, and accordingly, the orifice passage is provided. The fluid flow through 61 and the through hole 68 is generated. Here, the fluid pressure generated as the fluid flows through the through hole 68 is exerted on the valve pieces 70a and 70b projecting from the upper and lower openings of the through hole 68, and the valve pieces 70a and 70b are elastically deformed. . And when this fluid pressure becomes large, the valve pieces 70a, 70b are greatly elastically deformed, and as shown in FIG. 5, they are greatly deformed toward the through-hole 68 side, and are superposed on the opposite bank side. As a result, the opening of the through hole 68 is covered with the valve pieces 70a and 70b, and the fluid flow through the through hole 68 is inhibited.

このように、本実施形態のエンジンマウント10では、入力される振動に応じて、貫通孔68が開口状態に維持されることで発揮される防振特性と、貫通孔68が覆蓋状態とされることで発揮される防振特性とが、選択的に発揮される。それ故、防振すべき振動に応じて、弁片70の弾性変形が適当に生ぜしめられるように、弁片70a,70bの肉厚や肉抜溝72a,72bの大きさ等を調節することで、入力振動に応じて、貫通孔68が開口状態で発揮される防振特性と、貫通孔68が覆蓋されることで発揮される防振特性とを、選択的に享受することが出来るのである。   Thus, in the engine mount 10 of the present embodiment, the anti-vibration characteristics that are exhibited by maintaining the through hole 68 in an open state and the through hole 68 are in a cover state according to the input vibration. Therefore, the anti-vibration property exhibited by this is selectively exhibited. Therefore, the thickness of the valve pieces 70a and 70b, the size of the cut-out grooves 72a and 72b, and the like are adjusted so that the elastic deformation of the valve piece 70 is appropriately generated according to the vibration to be vibrated. Thus, according to the input vibration, it is possible to selectively enjoy the anti-vibration characteristic exhibited when the through-hole 68 is open and the anti-vibration characteristic exhibited when the through-hole 68 is covered. is there.

具体的には、例えばエンジンシェイク等の低周波大振幅振動の入力時には、アイドリング振動等の中周波中振幅振動の入力時に比して、振動の加速度ひいては受圧室42に惹起される圧力変動の変化率(単位時間当りの変化量)が大きく、受圧室42と平衡室44の間に惹起される相対的な圧力変動に基づいて貫通孔68を流動せしめられる流体流量が多くなる。それ故、かかる流体流動によって弁片70a,70bに及ぼされる圧力が大きくなって弁片70a,70bの弾性変形量が大きくなり、貫通孔68が弁片70a,70bで覆蓋されるようになる。   Specifically, for example, when a low-frequency large-amplitude vibration such as an engine shake is input, a change in acceleration of the vibration and a pressure fluctuation caused in the pressure-receiving chamber 42 is compared with when a medium-frequency medium-amplitude vibration such as an idling vibration is input. The rate (the amount of change per unit time) is large, and the flow rate of fluid that can flow through the through-hole 68 based on the relative pressure fluctuation caused between the pressure receiving chamber 42 and the equilibrium chamber 44 increases. Therefore, the pressure exerted on the valve pieces 70a and 70b by such fluid flow increases, the amount of elastic deformation of the valve pieces 70a and 70b increases, and the through hole 68 is covered with the valve pieces 70a and 70b.

これにより、アイドリング振動等の中周波中振幅振動に対しては、貫通孔68を通じての流体流動に基づいて、即ち、受圧室42の圧力変動を平衡室44に逃がすことや流体の共振作用を利用することによって、マウント防振特性の低動ばね化を図り、以て、アイドリング振動に対して有効な振動絶縁作用による防振性能の向上効果を得ることが可能となる。一方、エンジンシェイク等の低周波大振幅振動に対しては、貫通孔68が弁片70a,70bで覆蓋されて、貫通孔68を通じての受圧室42から平衡室44への圧力変動の逃げが抑えられ、受圧室42と平衡室44との相対的な圧力変動が効率的に生ぜしめられることにより、オリフィス通路61を通じての流体流動量が確保されて、かかる流体の共振作用に基づく高減衰効果による防振性能を有利に得ることが出来るのである。   Thus, for medium frequency medium amplitude vibration such as idling vibration, based on the fluid flow through the through hole 68, that is, the pressure fluctuation in the pressure receiving chamber 42 is released to the equilibrium chamber 44 or the fluid resonance action is utilized. By doing so, it is possible to reduce the mount vibration isolating characteristics and to obtain an effect of improving the anti-vibration performance by the effective vibration insulating action against idling vibration. On the other hand, for low-frequency large-amplitude vibration such as engine shake, the through hole 68 is covered with the valve pieces 70a and 70b, and the escape of pressure fluctuation from the pressure receiving chamber 42 to the equilibrium chamber 44 through the through hole 68 is suppressed. As a result, the relative pressure fluctuation between the pressure receiving chamber 42 and the equilibrium chamber 44 is efficiently generated, so that the amount of fluid flow through the orifice passage 61 is secured, and the high damping effect based on the resonance action of the fluid is ensured. Anti-vibration performance can be advantageously obtained.

一方、走行こもり音等の高周波小振幅振動の入力時には、エンジンシェイク等の入力時と同様に振動の加速度ひいては貫通孔68を流動せしめられる流体の圧力勾配が大きくなる。それ故、貫通孔68を流動せしめられる流体によって弁片70a,70bに及ぼされる圧力が大きくなって弁片70a,70bの弾性変形量が大きくなり、貫通孔68が弁片70a,70bで覆蓋されるようになる。   On the other hand, at the time of inputting high-frequency small-amplitude vibration such as traveling noise, the acceleration of vibration and the pressure gradient of the fluid flowing through the through-hole 68 are increased as in the case of inputting engine shake or the like. Therefore, the pressure exerted on the valve pieces 70a and 70b by the fluid flowing through the through hole 68 increases, and the amount of elastic deformation of the valve pieces 70a and 70b increases, and the through hole 68 is covered with the valve pieces 70a and 70b. Become so.

かかる状態下では、貫通孔68を通じての流体流動が実質的に阻止されることとなるが、入力振動がオリフィス通路61のチューニング周波数を超えていることからオリフィス通路61の流動抵抗が著しく大きくなってオリフィス通路61を通じての流体流動は実質的に作用しない。一方、受圧室42と平衡室44の相対的な圧力変動は可動ゴム膜48の上下両面の各全面に対して及ぼされることから、可動ゴム膜48が受圧室42側や平衡室44側に繰り返し膨出して弾性変形せしめられる。そして、入力される走行こもり音等の振動は、その振幅がエンジンシェイク等に比して充分に小さいことから、かかる可動ゴム膜48の弾性変形に伴って生ぜしめられる受圧室42内で流動する流体共振作用や受圧室42の圧力吸収作用に基づいて、低動ばね効果による防振性能が発揮されるのである。   Under such a condition, the fluid flow through the through hole 68 is substantially prevented. However, since the input vibration exceeds the tuning frequency of the orifice passage 61, the flow resistance of the orifice passage 61 is remarkably increased. Fluid flow through the orifice passage 61 is substantially ineffective. On the other hand, since the relative pressure fluctuation between the pressure receiving chamber 42 and the equilibrium chamber 44 is exerted on the entire upper and lower surfaces of the movable rubber film 48, the movable rubber film 48 is repeatedly applied to the pressure receiving chamber 42 side and the equilibrium chamber 44 side. It bulges and elastically deforms. The input vibration such as a running-over sound flows in the pressure receiving chamber 42 generated by the elastic deformation of the movable rubber film 48 because its amplitude is sufficiently smaller than that of an engine shake or the like. Based on the fluid resonance action and the pressure absorption action of the pressure receiving chamber 42, the vibration isolation performance due to the low dynamic spring effect is exhibited.

しかも、本実施形態の可動ゴム膜48は、外周部分に形成された薄肉部64によって、上述の如き高周波小振幅振動の入力に際して、中央部分の厚肉部62の略全体が大きく弾性変形し得ることから、例えば弁片70等の局部的な弾性変形に伴う低動ばね効果に比して、低動ばね効果をより高周波数域までも有効に享受することが可能となる。これにより、例えば弁片70等の局部的な弾性変形に伴う低動ばね効果の反共振作用に起因する高動ばね化の軽減や回避も図られ得る。   Moreover, the movable rubber film 48 of the present embodiment is capable of elastically deforming substantially the entire thick portion 62 in the central portion when the high frequency small amplitude vibration as described above is input by the thin portion 64 formed in the outer peripheral portion. Therefore, it is possible to effectively enjoy the low dynamic spring effect even in a higher frequency range than the low dynamic spring effect associated with local elastic deformation of the valve piece 70 or the like. Thereby, for example, it is possible to reduce or avoid a high dynamic spring due to the anti-resonance action of the low dynamic spring effect accompanying local elastic deformation of the valve piece 70 or the like.

因みに、本実施形態に従う構造とされたエンジンマウント10について、振幅±0.05mmの振動を加えて、周波数を20Hz〜200Hzまで連続的に変化させた場合に発揮される動ばね定数を測定した結果を、図6に示す。なお、可動ゴム膜48に貫通孔68を形成していないエンジンマウントについても、同じ条件で実験を行い、その測定結果を、比較例(貫通孔なし)として図6に併せ示す。また、本発明に含まれるが、本実施形態とは異なり、可動ゴム膜48に厚肉部62と薄肉部64を形成することなく可動ゴム膜48の弾性変形領域の全体を一定厚さとした構造のエンジンマウントについても、同じ条件で実験を行い、その測定結果を、比較用実施例として図6に併せ示す。   Incidentally, as a result of measuring the dynamic spring constant exhibited when the frequency is continuously changed from 20 Hz to 200 Hz by applying vibration with an amplitude of ± 0.05 mm for the engine mount 10 having the structure according to the present embodiment. Is shown in FIG. Note that the engine mount in which the through-hole 68 is not formed in the movable rubber film 48 is also tested under the same conditions, and the measurement result is also shown in FIG. 6 as a comparative example (no through-hole). Although included in the present invention, unlike the present embodiment, a structure in which the entire elastic deformation region of the movable rubber film 48 has a constant thickness without forming the thick part 62 and the thin part 64 in the movable rubber film 48. For the engine mount, the experiment was performed under the same conditions, and the measurement results are also shown in FIG. 6 as a comparative example.

図6の実験結果データからも、本実施例及び比較用実施例の何れにおいても、比較例に比して、50Hz前後で充分な低動ばね効果が確認され得る。加えて、可動ゴム膜48の外周に薄肉部64を形成した本実施形態のエンジンマウント10では、比較用実施例に見られる75Hz程度の反共振によるであろう高動ばね化が回避されて、100Hzを超える非常に広い周波数域において、低動ばね効果による優れた防振性能が発揮されることが認められる。   From the experimental result data of FIG. 6, in both the present example and the comparative example, a sufficiently low dynamic spring effect can be confirmed at around 50 Hz as compared with the comparative example. In addition, in the engine mount 10 of the present embodiment in which the thin portion 64 is formed on the outer periphery of the movable rubber film 48, the high dynamic spring that would be caused by the anti-resonance of about 75 Hz seen in the comparative example is avoided, It is recognized that excellent vibration-proof performance due to the low dynamic spring effect is exhibited in a very wide frequency range exceeding 100 Hz.

なお、可動ゴム膜48の全体の弾性変形に基づいて発揮される低動ばね効果が期待される走行こもり音等の高周波小振幅振動は、エンジンシェイク等の低周波大振幅振動に比して、入力振動振幅が小さくて受圧室42に惹起される圧力変動も小さいことから、例えば、可動ゴム膜48の一方の面或いは両方の面に対して所定距離を隔てて対向位置し、可動ゴム膜48の受圧室42側や平衡室44側への膨出弾性変形量を制限する変位量制限板を設けることも可能である。要するに、走行こもり音等の高周波小振幅振動の入力時に惹起される受圧室42の圧力変動は充分に吸収し得る程度に、可動ゴム膜48の弾性変形量を許容しつつ、それよりも大きなエンジンシェイク等の低周波大振幅の振動入力時には可動ゴム膜48が変位量制限板に当接して膨出弾性変形を規制されることにより、受圧室42の圧力変動の逃げを抑えてオリフィス通路61の流体流動量の増大を図り、以て、オリフィス通路61を流動する流体の共振作用に基づく前述の高減衰効果の向上を図ることも可能である。   In addition, high-frequency small-amplitude vibrations such as a running-over sound that is expected to have a low dynamic spring effect that is exhibited based on the elastic deformation of the entire movable rubber film 48 is smaller than low-frequency large amplitude vibrations such as an engine shake. Since the input vibration amplitude is small and the pressure fluctuation induced in the pressure receiving chamber 42 is small, for example, the movable rubber film 48 is opposed to one or both surfaces of the movable rubber film 48 with a predetermined distance therebetween. It is also possible to provide a displacement amount limiting plate for limiting the amount of elastic deformation of the bulging toward the pressure receiving chamber 42 side or the equilibrium chamber 44 side. In short, an engine larger than that while allowing the amount of elastic deformation of the movable rubber film 48 to such an extent that the pressure fluctuation of the pressure receiving chamber 42 caused by the input of high-frequency small amplitude vibration such as traveling noise can be sufficiently absorbed. At the time of low-frequency large-amplitude vibration input such as a shake, the movable rubber film 48 abuts against the displacement amount limiting plate to restrict the bulging elastic deformation, thereby suppressing the escape of pressure fluctuation in the pressure receiving chamber 42 and the orifice passage 61. It is also possible to increase the amount of fluid flow, thereby improving the above-described high damping effect based on the resonance action of the fluid flowing in the orifice passage 61.

以上、本発明の第一の実施形態について詳述してきたが、本発明は係る実施形態の具体的な記載によって限定されるものでない。以下に本発明の別の実施形態を幾つか示すが、それらの実施形態のエンジンマウントでは、第一の実施形態と同様な構造とされた部材及び部位について、第一の実施形態と同じ符合を図中に付することで、重複した説明を省略する。   As mentioned above, although 1st embodiment of this invention has been explained in full detail, this invention is not limited by the specific description of this embodiment. Several other embodiments of the present invention will be described below. In the engine mounts of these embodiments, members and parts having the same structure as in the first embodiment have the same signs as in the first embodiment. A duplicate description will be omitted by attaching to the drawings.

図7には、本発明の第二の実施形態としてのエンジンマウント90の要部の縦断面図が示されている。本実施形態のエンジンマウント90では、可動ゴム膜48の外周部分に弾性変形容易な薄肉部が形成された第一の実施形態と異なり、可動ゴム膜48が、全体に亘って略一定の肉厚寸法を有する円板形状とされている。   FIG. 7 shows a longitudinal sectional view of a main part of an engine mount 90 as a second embodiment of the present invention. In the engine mount 90 of the present embodiment, unlike the first embodiment in which a thin-walled portion that is easily elastically deformed is formed on the outer peripheral portion of the movable rubber film 48, the movable rubber film 48 has a substantially constant thickness throughout. It is made into the disk shape which has a dimension.

また、貫通孔68の上下の開口部分における各一方の長辺側周縁部分には、第一の実施形態と同様に上下の弁片70a、70bが突出形成されているが、第一の実施形態と異なりそれら弁片70a、70bの背後(貫通孔68と反対側)に沿って延びる肉抜溝が設けられていない。代わりに、それら弁片70a、70bの背後には、弁片70a、70bの立ち上がり角部を埋めて補強する増肉部92a,92bが一体形成されている。   In addition, the upper and lower valve pieces 70a and 70b are formed to protrude from the peripheral edge of one long side of the upper and lower opening portions of the through hole 68 as in the first embodiment. Unlike the valve pieces 70a and 70b, there is no hollowing groove extending along the back (opposite the through hole 68). Instead, thickened portions 92a and 92b are formed integrally behind the valve pieces 70a and 70b to fill and reinforce the rising corners of the valve pieces 70a and 70b.

このような構造とされた本実施形態のエンジンマウント90では、第一の実施形態と同様な作用効果を発揮し得るが、弁片70a、70bの弾性変形特性を、それらの各背後に一体形成された増肉部92a,92bの大きさや形状を適当に調節することで容易にチューニングすることが可能となる。また、弁片70a、70bの少なくとも基端部分のばね剛性が、増肉部92a,92bで増強されていることから、可動ゴム膜48の外周部分に薄肉部を設けない構造であっても、貫通孔68の覆蓋状態にある弁片70a、70bの局部的な弾性変形の反共振作用による中乃至高周波数域での高動ばね化を軽減乃至は回避も図られ得る。   The engine mount 90 of this embodiment having such a structure can exhibit the same effects as those of the first embodiment, but the elastic deformation characteristics of the valve pieces 70a and 70b are integrally formed behind each of them. Tuning can be easily performed by appropriately adjusting the size and shape of the increased thickness portions 92a and 92b. Further, since the spring rigidity of at least the base end portions of the valve pieces 70a and 70b is enhanced by the thickened portions 92a and 92b, even if the thin portion is not provided in the outer peripheral portion of the movable rubber film 48, It is possible to reduce or avoid high dynamic springs in the middle to high frequency range due to the anti-resonant action of the local elastic deformation of the valve pieces 70a and 70b in the cover state of the through hole 68.

図8には、本発明の第三の実施形態としてのエンジンマウント96の要部の縦断面図が示されている。本実施形態のエンジンマウント96では、可動ゴム膜48の貫通孔68は、可動ゴム膜48の中心軸に対して傾斜せずに、板厚方向に直線的に貫通形成されている。また、本実施形態のエンジンマウント96では、可動ゴム膜48の上下の開口部分における両方の長辺側周縁部分に対して、それぞれ、弁片70a、70aが突出形成されている。また、各弁片70a、70aの背後には、それぞれ、第一の実施形態と同様に肉抜溝72a,72aが形成されている。   FIG. 8 shows a longitudinal sectional view of a main part of an engine mount 96 as a third embodiment of the present invention. In the engine mount 96 of the present embodiment, the through hole 68 of the movable rubber film 48 is linearly penetrated in the thickness direction without being inclined with respect to the central axis of the movable rubber film 48. Further, in the engine mount 96 of the present embodiment, valve pieces 70a and 70a are formed so as to protrude from both long side peripheral portions in the upper and lower opening portions of the movable rubber film 48, respectively. Further, behind the respective valve pieces 70a, 70a, the lightening grooves 72a, 72a are formed in the same manner as in the first embodiment.

このような構造とされた本実施形態のエンジンマウント96では、第一の実施形態と同様な作用効果を発揮し得るが、振動入力時において貫通孔68の上側開口部を挟んで両側に対向位置して形成された一対の弁片70a、70aが相互に接近方向に弾性変形して合掌状態で重ね合わされることで貫通孔68を覆蓋することとなる。それ故、弁片70aの弾性変形量を抑えることが出来、弁片70aによる貫通孔68の覆蓋と連通の切換作動が速やかに実現可能となると共に、弁片70aの耐久性の向上効果も発揮される。なお、弁片70a,70a自体の弾性変形による他、後述の図9に示すように可動ゴム膜48の弾性変形によって貫通孔68が覆蓋さされても良いし、弁片70a,70a自体の弾性変形と可動ゴム膜48の弾性変形とが協働することによって貫通孔68が覆蓋されても良い。それによって、本願発明の効果は有効に発揮され得る。   The engine mount 96 of this embodiment having such a structure can exhibit the same effects as those of the first embodiment, but at opposite positions on both sides of the upper opening of the through hole 68 during vibration input. The pair of valve pieces 70a, 70a formed in this manner are elastically deformed in the approaching direction and overlapped with each other so as to cover the through hole 68. Therefore, the amount of elastic deformation of the valve piece 70a can be suppressed, and the switching operation between the cover of the through hole 68 and the communication with the valve piece 70a can be quickly realized, and the effect of improving the durability of the valve piece 70a is also exhibited. Is done. In addition to the elastic deformation of the valve pieces 70a and 70a itself, the through hole 68 may be covered by the elastic deformation of the movable rubber film 48 as shown in FIG. 9 described later, or the elasticity of the valve pieces 70a and 70a itself. The through hole 68 may be covered by the cooperation of the deformation and the elastic deformation of the movable rubber film 48. Thereby, the effect of the present invention can be effectively exhibited.

図9には、本発明の第四の実施形態としてのエンジンマウント98の要部の縦断面図が示されている。なお、図9は、振動入力によって受圧室42の圧力が増大されて、可動ゴム膜48が平衡室44側に向かって膨出するように弾性変形せしめられた作動状態を概略的に示している。   FIG. 9 shows a longitudinal sectional view of a main part of an engine mount 98 as a fourth embodiment of the present invention. FIG. 9 schematically shows an operating state in which the pressure in the pressure receiving chamber 42 is increased by the vibration input, and the movable rubber film 48 is elastically deformed so as to bulge toward the equilibrium chamber 44 side. .

本実施形態のエンジンマウント98では、可動ゴム膜48の貫通孔68の上側及び下側の各開口部分において、それぞれ、一方の長辺側周縁部分に弁片100が突出形成されていると共に、他方の長辺側周縁部分にシール片102が突出形成されている。特に本実施形態の弁片100及びシール片102は、第一の実施形態のものに比して厚肉で大きなばね剛性をもって突出形成されている。そして、振動入力時に、受圧室42の圧力が平衡室44に比して相対的に増大されて、可動ゴム膜48が平衡室44側に向かって膨出するように弾性変形せしめられると、図9に示されているように、可動ゴム膜48自体の弾性変形に伴う湾曲状の歪みに基づいて弁片100の突出方向が、マウント中心軸に対して傾斜せしめられるようになっている。また、本実施形態では、シール片102も突出形成されていることから、弁片100と同様に、且つ弁片100と反対の傾斜方向をもって、マウント中心軸に対して傾斜せしめられるようになっている。   In the engine mount 98 of the present embodiment, a valve piece 100 is formed to protrude from one long side peripheral portion at each of the upper and lower opening portions of the through hole 68 of the movable rubber film 48, and the other. A seal piece 102 is formed so as to protrude from the peripheral portion of the long side. In particular, the valve piece 100 and the seal piece 102 of the present embodiment are formed so as to protrude thicker and with greater spring rigidity than those of the first embodiment. When the vibration is input, the pressure in the pressure receiving chamber 42 is relatively increased as compared with the equilibrium chamber 44, and the movable rubber film 48 is elastically deformed so as to bulge toward the equilibrium chamber 44. As shown in FIG. 9, the protruding direction of the valve piece 100 is inclined with respect to the mount center axis based on the curved distortion accompanying the elastic deformation of the movable rubber film 48 itself. In the present embodiment, since the seal piece 102 is also formed to protrude, the seal piece 102 can be inclined with respect to the mount center axis in the same direction as the valve piece 100 and with an inclination direction opposite to the valve piece 100. Yes.

その結果、弁片100自体が弾性変形しなくても、弁片100の基台部分をなす可動ゴム膜48が弾性変形することで、弁片100が貫通孔68側に傾斜して変形変位して、シール片102への当接により、貫通孔68を覆蓋するようになっている。従って、このような構造とされた本実施形態のエンジンマウント98にあっても、第一の実施形態と同様な作用効果を発揮し得るのである。なお、反対に、受圧室42の圧力が平衡室44に対して相対的に減少された場合も、可動ゴム膜48が上方に膨出するように弾性変形して同様に貫通孔68の覆蓋が実現される。   As a result, even if the valve piece 100 itself is not elastically deformed, the movable rubber film 48 forming the base portion of the valve piece 100 is elastically deformed, so that the valve piece 100 is inclined and deformed to the through hole 68 side. Thus, the through hole 68 is covered by the contact with the seal piece 102. Therefore, even in the engine mount 98 of this embodiment having such a structure, the same operational effects as those of the first embodiment can be exhibited. On the other hand, when the pressure in the pressure receiving chamber 42 is decreased relative to the equilibrium chamber 44, the movable rubber film 48 is elastically deformed so as to bulge upward, and the cover of the through hole 68 is similarly formed. Realized.

さらに、図10には、本発明の第五の実施形態としてのエンジンマウント106が示されている。本実施形態のエンジンマウント106では、仕切部材40に隔壁板108が軸方向に重ね合わされて固定的に設けられており、この隔壁板108が、可動ゴム膜48に対して受圧室42側に所定距離を隔てて対向位置して配設されている。これにより、可動ゴム膜48と隔壁板108の間には、受圧室42及び平衡室44の何れからも独立した中間室110が形成されている。   Further, FIG. 10 shows an engine mount 106 as a fifth embodiment of the present invention. In the engine mount 106 of the present embodiment, a partition plate 108 is fixedly provided on the partition member 40 so as to be overlapped in the axial direction, and the partition plate 108 is located on the pressure receiving chamber 42 side with respect to the movable rubber film 48. They are arranged facing each other at a distance. As a result, an intermediate chamber 110 independent from both the pressure receiving chamber 42 and the equilibrium chamber 44 is formed between the movable rubber film 48 and the partition plate 108.

そして、この中間室110の壁部の一部が可動ゴム膜48で構成されており、可動ゴム膜48を挟んで中間室110と平衡室44が仕切られている。   A part of the wall portion of the intermediate chamber 110 is formed of a movable rubber film 48, and the intermediate chamber 110 and the equilibrium chamber 44 are partitioned with the movable rubber film 48 interposed therebetween.

また、オリフィス部材46に形成された上側周溝52の長さ方向中間部分には、オリフィス通路61の長さ方向中間部分を中間室110に連通せしめる連通孔112が形成されている。これにより、オリフィス通路61を部分的に利用して、受圧室42と中間室110を相互に連通する高周波オリフィス114が形成されている。そして、この高周波オリフィス114は、オリフィス通路61よりも高周波数域にチューニングされており、例えばアイドリング振動に対応する中周波中振幅振動に対して、高周波オリフィス114を流動せしめられる流体の共振作用に基づいて低動ばね効果が発揮されるようにチューニングされている。   In addition, a communication hole 112 that allows the intermediate portion in the length direction of the orifice passage 61 to communicate with the intermediate chamber 110 is formed in the intermediate portion in the length direction of the upper circumferential groove 52 formed in the orifice member 46. As a result, the orifice passage 61 is partially used to form a high-frequency orifice 114 that allows the pressure receiving chamber 42 and the intermediate chamber 110 to communicate with each other. The high-frequency orifice 114 is tuned to a higher frequency range than the orifice passage 61, and is based on the resonance action of the fluid that causes the high-frequency orifice 114 to flow, for example, with respect to medium-frequency medium amplitude vibration corresponding to idling vibration. It is tuned to exhibit the low dynamic spring effect.

このようなエンジンマウント106においては、受圧室42側の圧力が、高周波オリフィス114と中間室110を通じて可動ゴム膜48に及ぼされることとなる。そして、可動ゴム膜48に及ぼされる受圧室42と平衡室44の相対的な圧力変動に基づいて、貫通孔68を通じての流体流動作用に基づく防振効果や、貫通孔68が弁片70a,70bで覆蓋された状態下で発揮される防振効果が、第一の実施形態と同様に弁片70a,70bによる貫通孔68の連通/遮断に基づいて選択的に発揮され得るのである。   In such an engine mount 106, the pressure on the pressure receiving chamber 42 side is exerted on the movable rubber film 48 through the high frequency orifice 114 and the intermediate chamber 110. Then, based on the relative pressure fluctuation between the pressure receiving chamber 42 and the equilibrium chamber 44 exerted on the movable rubber film 48, the anti-vibration effect based on the fluid flow action through the through hole 68, and the through hole 68 has the valve pieces 70a and 70b. The anti-vibration effect exhibited under the condition of being covered with can be selectively exerted based on the communication / blocking of the through-hole 68 by the valve pieces 70a and 70b as in the first embodiment.

なお、本発明においては、上記第五の実施形態に記載の仕切部材40を、隔壁板108や中間室110、高周波オリフィス114を含んで全体として上下反対に構成すること等により、可動ゴム膜48の上面を受圧室42に対して直接に晒す一方、可動ゴム膜48の平衡室44側に中間室110を位置して形成し、この中間室110を高周波オリフィス114を通じて平衡室44に連通せしめても良い。このような構造をもって形成しても、第五の実施形態と同様な作用効果が発揮され得る。   In the present invention, the movable rubber film 48 is configured by configuring the partition member 40 described in the fifth embodiment upside down including the partition plate 108, the intermediate chamber 110, and the high frequency orifice 114 as a whole. The intermediate chamber 110 is formed on the side of the equilibrium chamber 44 of the movable rubber film 48, and the intermediate chamber 110 is communicated with the equilibrium chamber 44 through the high-frequency orifice 114. Also good. Even if it forms with such a structure, the effect similar to 5th embodiment may be exhibited.

また、本発明では、可動ゴム膜48の貫通孔68の上側及び下側の何れか一方の開口部分だけに弁片が設けられていても良い。このように貫通孔68の上下の何れか一方の開口部分だけに弁片を形成した場合でも、かかる弁片が貫通孔68を覆蓋/開放することに基づく防振特性の切換効果は、有効に発揮され得る。   In the present invention, a valve piece may be provided only in one of the upper and lower opening portions of the through hole 68 of the movable rubber film 48. Thus, even when the valve piece is formed only in one of the upper and lower opening portions of the through hole 68, the switching effect of the anti-vibration characteristic based on the valve piece covering / opening the through hole 68 is effective. Can be demonstrated.

なお、そのように貫通孔68の上下の何れか一方の開口部分だけに弁片を形成するに際しては、下側開口部分によりも上側開口部分に弁片を形成することが有利である。蓋し、上側開口部分に形成した弁片は、段差乗り越え等に際して過大な衝撃荷重が入力された際に受圧室42に惹起される著しい負圧を、開放状態に保持された弁片によって貫通孔68を通じて平衡室44から流入許容される流体流動に基づいて速やかに逃がして、キャビテーションに起因する振動や衝撃の発生を軽減又は回避することにも資することが出来るからである。   When the valve piece is formed only in one of the upper and lower opening portions of the through hole 68 as described above, it is advantageous to form the valve piece in the upper opening portion rather than the lower opening portion. The valve piece that is covered and formed in the upper opening portion has a through-hole formed by the valve piece that is held in an open state due to a significant negative pressure that is induced in the pressure receiving chamber 42 when an excessive impact load is input when overcoming a step. This is because it is possible to quickly escape based on the fluid flow allowed to flow in from the equilibrium chamber 44 through 68 and to reduce or avoid the occurrence of vibration and impact due to cavitation.

10,86,90,96,98,106:エンジンマウント(流体封入式防振装置) 、12:第一の取付金具(第一の取付部材)、14 第二の取付金具(第二の取付部材)、16 本体ゴム弾性体、34:シールゴム層、36:ダイヤフラム(可撓性膜)、42:受圧室、44: 平衡室、48:可動ゴム膜、61:オリフィス通路、68:貫通孔、70:弁片、72:肉抜溝、76:シール片、100:弁片、102:シール片、110:中間室、114:高周波オリフィス 10, 86, 90, 96, 98, 106: engine mount (fluid-filled vibration isolator), 12: first mounting bracket (first mounting member), 14 second mounting bracket (second mounting member) ), 16 Main rubber elastic body, 34: Seal rubber layer, 36: Diaphragm (flexible membrane), 42: Pressure receiving chamber, 44: Equilibrium chamber, 48: Movable rubber membrane, 61: Orifice passage, 68: Through hole, 70 : Valve piece, 72: fillet groove, 76: seal piece, 100: valve piece, 102: seal piece, 110: intermediate chamber, 114: high frequency orifice

Claims (8)

第一の取付部材と第二の取付部材を本体ゴム弾性体によって連結して、壁部の一部が該本体ゴム弾性体で構成された受圧室と壁部の一部が可撓性膜で構成された平衡室を形成し、それら受圧室と平衡室に非圧縮性流体を封入すると共に、それら受圧室と平衡室を相互に連通するオリフィス通路を形成した流体封入式防振装置において、
前記第二の取付部材で外周部分を固定的に支持されることにより前記受圧室の圧力が一方の面に及ぼされると共に前記平衡室の圧力が他方の面に及ぼされる状態で配設されてそれら両面に及ぼされる圧力差に応じて弾性変形せしめられる可動ゴム膜を設け、
該可動ゴム膜に初期状態で開口している貫通孔を形成すると共に、該貫通孔の少なくとも一方の開口部分において該貫通孔の周縁部分から該可動ゴム膜の面上に突出して弾性変形に基づき該貫通孔を覆蓋する弁片を該可動ゴム膜に一体形成しており、
該弁片が初期形状において該貫通孔の開口部から離隔して該貫通孔を連通状態に保持するようになっていると共に、該弁片が該受圧室と該平衡室の相対的な圧力変動に基づいて弾性変形して該貫通孔の開口部に接近し該貫通孔を遮断するようになっている
ことを特徴とする流体封入式防振装置。
The first mounting member and the second mounting member are connected by a main rubber elastic body, and a pressure receiving chamber in which a part of the wall portion is configured by the main rubber elastic body and a part of the wall portion is a flexible film. In a fluid-filled vibration isolator that forms a configured equilibrium chamber, encloses an incompressible fluid in the pressure receiving chamber and the equilibrium chamber, and forms an orifice passage that interconnects the pressure receiving chamber and the equilibrium chamber.
The outer peripheral portion is fixedly supported by the second mounting member so that the pressure in the pressure receiving chamber is exerted on one surface and the pressure in the equilibrium chamber is exerted on the other surface. Provide a movable rubber film that is elastically deformed according to the pressure difference exerted on both sides,
The movable rubber film is formed with a through-hole that is open in an initial state, and at least one opening portion of the through-hole projects from the peripheral portion of the through-hole to the surface of the movable rubber film based on elastic deformation. A valve piece covering the through hole is formed integrally with the movable rubber film ;
The valve piece is separated from the opening of the through hole in an initial shape so as to keep the through hole in communication, and the valve piece has a relative pressure fluctuation between the pressure receiving chamber and the equilibrium chamber. A fluid-filled type vibration isolator which is elastically deformed based on the above and approaches the opening of the through hole to block the through hole .
前記可動ゴム膜において、前記第二の取付部材で支持された外周部分に沿って、その内周側を周方向に延びる薄肉部が形成されていると共に、該薄肉部よりも内周側に前記貫通孔が形成されている請求項1に記載の流体封入式防振装置。   In the movable rubber film, a thin portion extending in the circumferential direction on the inner peripheral side is formed along the outer peripheral portion supported by the second mounting member, and the inner peripheral side of the thin portion is closer to the inner peripheral side. The fluid-filled vibration isolator according to claim 1, wherein a through hole is formed. 前記可動ゴム膜における前記貫通孔の開口部分には、前記弁片に対する対岸部分において該可動ゴム膜の面上に該弁片よりも小さな突出高さで突出するシール片が一体形成されている請求項1又は2に記載の流体封入式防振装置。   The opening portion of the through hole in the movable rubber film is integrally formed with a seal piece that protrudes at a protruding height smaller than that of the valve piece on the surface of the movable rubber film at a portion opposite to the valve piece. Item 3. The fluid filled type vibration damping device according to Item 1 or 2. 前記貫通孔が、前記可動ゴム膜の平面視において長孔形状とされていると共に、該貫通孔において長辺方向に延びて短辺方向で対向する一対の長辺側周縁部分の一方に対して前記弁片が突設されており、該弁片が該貫通孔における該一対の長辺側周縁部分の他方に当接されることで該貫通孔が覆蓋されるようになっている請求項1〜3の何れか1項に記載の流体封入式防振装置。   The through hole has a long hole shape in a plan view of the movable rubber film, and extends in the long side direction in the through hole and faces one of a pair of long side side peripheral portions facing in the short side direction. 2. The valve piece is projected, and the through hole is covered by the valve piece coming into contact with the other of the pair of long side peripheral portions of the through hole. The fluid filled type vibration damping device according to any one of? 前記可動ゴム膜には、前記弁片における前記貫通孔と反対側の基端部分に沿って延びる肉抜溝が形成されている請求項1〜4の何れか1項に記載の流体封入式防振装置。   The fluid-filled type prevention according to any one of claims 1 to 4, wherein the movable rubber film is formed with a hollow groove extending along a base end portion of the valve piece opposite to the through hole. Shaker. 前記可動ゴム膜において、前記弁片を前記貫通孔における両方の開口部分にそれぞれ設けた請求項1乃至5の何れか一項に記載の流体封入式防振装置。   The fluid filled type vibration damping device according to any one of claims 1 to 5, wherein the movable rubber film is provided with the valve pieces at both opening portions of the through hole. 前記ゴム弾性膜における一方の面が前記受圧室に直接に晒されていると共に、該ゴム弾性膜における他方の面が前記平衡室に直接に晒されており、該ゴム弾性膜で該受圧室と該平衡室を仕切る仕切壁の一部が構成されている請求項1〜6の何れか1項に記載の流体封入式防振装置。   One surface of the rubber elastic membrane is directly exposed to the pressure receiving chamber, and the other surface of the rubber elastic membrane is directly exposed to the equilibrium chamber, and the rubber elastic membrane is connected to the pressure receiving chamber. The fluid-filled vibration isolator according to any one of claims 1 to 6, wherein a part of a partition wall that partitions the equilibrium chamber is configured. 前記可動ゴム膜における前記受圧室の圧力が及ぼされる面及び前記平衡室の圧力が及ぼされる面との何れかの面側に中間室が形成されていると共に、該中間室を該受圧室又は該平衡室に連通する高周波オリフィスが前記オリフィス通路より高周波数域にチューニングされて形成されており、該受圧室又は該平衡室の圧力が該高周波オリフィスから該中間室を介して該可動ゴム膜に及ぼされるようになっている請求項1〜6の何れか1項に記載の流体封入式防振装置。   An intermediate chamber is formed on either side of the surface of the movable rubber film to which the pressure of the pressure receiving chamber is applied and the surface of the equilibrium chamber to which pressure is applied, and the intermediate chamber is defined as the pressure receiving chamber or the pressure chamber. A high frequency orifice communicating with the equilibrium chamber is tuned to a higher frequency range than the orifice passage, and the pressure in the pressure receiving chamber or the equilibrium chamber is applied from the high frequency orifice to the movable rubber film through the intermediate chamber. The fluid-filled vibration isolator according to any one of claims 1 to 6.
JP2010131301A 2010-06-08 2010-06-08 Fluid filled vibration isolator Active JP5530816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010131301A JP5530816B2 (en) 2010-06-08 2010-06-08 Fluid filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010131301A JP5530816B2 (en) 2010-06-08 2010-06-08 Fluid filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2011256930A JP2011256930A (en) 2011-12-22
JP5530816B2 true JP5530816B2 (en) 2014-06-25

Family

ID=45473317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010131301A Active JP5530816B2 (en) 2010-06-08 2010-06-08 Fluid filled vibration isolator

Country Status (1)

Country Link
JP (1) JP5530816B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5925564B2 (en) * 2012-04-05 2016-05-25 東洋ゴム工業株式会社 Liquid-filled vibration isolator
JP5907782B2 (en) * 2012-04-05 2016-04-26 住友理工株式会社 Fluid filled vibration isolator
JP6066715B2 (en) * 2012-12-21 2017-01-25 山下ゴム株式会社 Liquid seal vibration isolator
US9945442B2 (en) 2013-11-11 2018-04-17 Bridgestone Corporation Vibration isolator
CN109163129B (en) * 2018-09-21 2022-06-10 奇瑞汽车股份有限公司 Cover plate structure of shell

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2594519Y2 (en) * 1993-05-17 1999-04-26 株式会社ソフト九九コーポレーション Application container
JP2004232731A (en) * 2003-01-30 2004-08-19 Matsushita Electric Works Ltd Semiconductor microvalve
JP4890305B2 (en) * 2007-03-15 2012-03-07 トヨタ自動車株式会社 Liquid filled vibration isolator
JP4741540B2 (en) * 2007-03-30 2011-08-03 東海ゴム工業株式会社 Fluid filled vibration isolator
JP4820793B2 (en) * 2007-09-28 2011-11-24 東海ゴム工業株式会社 Fluid filled vibration isolator
JP5050283B2 (en) * 2007-11-29 2012-10-17 東洋ゴム工業株式会社 Liquid-filled vibration isolator
JP2010084789A (en) * 2008-09-29 2010-04-15 Tokai Rubber Ind Ltd Fluid filled vibration isolator

Also Published As

Publication number Publication date
JP2011256930A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5095763B2 (en) Liquid-filled vibration isolator
JP5432132B2 (en) Fluid filled vibration isolator
JP5396431B2 (en) Fluid filled vibration isolator
JP2005172172A (en) Fluid filled vibration control device
JP5542565B2 (en) Fluid filled vibration isolator
JP5977141B2 (en) Fluid filled vibration isolator
JP5325602B2 (en) Fluid filled vibration isolator
JP2016125632A (en) Fluid sealed type vibration-proof device
JP5530816B2 (en) Fluid filled vibration isolator
JP2007085523A (en) Fluid-enclosed type vibration isolator
JP2009243510A (en) Fluid-filled type engine mount for automobile
JP5431982B2 (en) Liquid-filled vibration isolator
JP2005172173A (en) Series engine mount and its manufacturing method
JP4158110B2 (en) Pneumatic switching type fluid-filled engine mount
JP2007271004A (en) Fluid-sealed vibration isolating device
JP2004069005A (en) Fluid-sealed type vibration damper
JP4075066B2 (en) Fluid filled engine mount
JP5038210B2 (en) Fluid filled vibration isolator
JP4158108B2 (en) Pneumatic switching type fluid-filled engine mount
JP3728984B2 (en) Fluid filled vibration isolator
JP4158111B2 (en) Pneumatic switching type fluid-filled engine mount
JP2004218753A (en) Fluid sealing type vibration control device
JP2014190401A (en) Fluid sealed vibration isolation device
JP5154499B2 (en) Fluid filled vibration isolator
JP2010169121A (en) Fluid filled vibration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140421

R150 Certificate of patent or registration of utility model

Ref document number: 5530816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350