JP2009243511A - Fluid-filled engine mount for automobile - Google Patents
Fluid-filled engine mount for automobile Download PDFInfo
- Publication number
- JP2009243511A JP2009243511A JP2008088174A JP2008088174A JP2009243511A JP 2009243511 A JP2009243511 A JP 2009243511A JP 2008088174 A JP2008088174 A JP 2008088174A JP 2008088174 A JP2008088174 A JP 2008088174A JP 2009243511 A JP2009243511 A JP 2009243511A
- Authority
- JP
- Japan
- Prior art keywords
- movable plate
- fluid
- vibration
- pressure
- equilibrium chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
- Combined Devices Of Dampers And Springs (AREA)
Abstract
Description
本発明は、自動車のパワーユニットを車両ボデーに防振支持させるエンジンマウントに係り、特に内部に封入された流体の流動作用に基づいて防振効果が発揮され得る流体封入式エンジンマウントに関するものである。 The present invention relates to an engine mount for vibration-proofing and supporting a power unit of an automobile on a vehicle body, and more particularly to a fluid-filled engine mount capable of exhibiting a vibration-proofing effect based on the flow action of a fluid sealed inside.
従来から、自動車のパワーユニットと車両ボデーの間に介装されてパワーユニットを車両ボデーに対して防振支持せしめる自動車用エンジンマウントの一種として、流体封入式エンジンマウントが知られている。この流体封入式エンジンマウントでは、パワーユニットと車両ボデーの各一方に取り付けられる第一の取付部材と第二の取付部材が本体ゴム弾性体で連結されていると共に、壁部の一部が本体ゴム弾性体で構成された受圧室と壁部の一部が可撓性膜で構成された平衡室が形成されて、それら受圧室と平衡室に非圧縮性流体が封入されている。これら受圧室と平衡室はオリフィス通路を通じて相互に連通せしめられており、オリフィス通路を通じての流体の共振作用等の流動作用に基づいてオリフィス効果である防振効果が発揮されるようになっている。 2. Description of the Related Art Conventionally, a fluid-filled engine mount is known as a kind of automobile engine mount that is interposed between an automobile power unit and a vehicle body and supports the power unit against vibration against the vehicle body. In this fluid-filled engine mount, the first mounting member and the second mounting member that are attached to each of the power unit and the vehicle body are connected by the main rubber elastic body, and a part of the wall portion is main rubber elastic. A pressure receiving chamber constituted by a body and an equilibrium chamber in which a part of the wall portion is constituted by a flexible film are formed, and an incompressible fluid is sealed in the pressure receiving chamber and the equilibrium chamber. The pressure receiving chamber and the equilibrium chamber are communicated with each other through the orifice passage, and an anti-vibration effect that is an orifice effect is exhibited based on a fluid action such as a resonance action of the fluid through the orifice passage.
ところで、自動車用エンジンマウントにおいては、自動車の走行状態等に応じて異なる周波数域や振幅の振動が入力されることから、複数の異なる振動に対して防振性能が要求される。例えば、エンジンシェイク等の低周波大振幅振動に対する防振性能や、アイドリング振動や走行こもり音等の中周波乃至高周波小振幅振動に対する防振性能が、同時に要求されることがある。しかし、オリフィス通路による有効な防振効果は特定のチューニング周波数域で発揮されるため、チューニング周波数よりも高周波側の振動が入力されると、オリフィス通路を通じての流体の反共振作用によって流動抵抗が著しく増大してしまい、マウント特性が大幅に高動ばね化してマウント剛性が大きくなることにより防振性能が低下する問題があった。 By the way, in the engine mount for automobiles, vibrations having different frequency ranges and amplitudes are input depending on the running state of the automobile and the like, and therefore, anti-vibration performance is required for a plurality of different vibrations. For example, there may be a demand for vibration-proof performance against low-frequency large-amplitude vibrations such as engine shakes, and vibration-proof performance against medium to high-frequency small-amplitude vibrations such as idling vibrations and traveling noises. However, since the effective vibration isolation effect by the orifice passage is exhibited in a specific tuning frequency range, when vibration on the higher frequency side than the tuning frequency is input, the flow resistance becomes remarkably due to the anti-resonant action of the fluid through the orifice passage. There is a problem that the vibration-proof performance is deteriorated due to the increase in mount characteristics and the fact that the mount characteristics are greatly increased and the mount rigidity is increased.
そこで、かかる問題に対処するために、例えば、特許文献1(特開昭57−9340号公報)や特許文献2(特開昭61−55429号公報)等には、低周波大振幅振動に対して有効なオリフィス効果が得られるようにオリフィス通路をチューニングすることに加えて、受圧室と平衡室を仕切る仕切部材の内部に可動板を所定量だけ変位可能に配設すると共に、仕切部材に通孔を形成し、通孔を通じて可動板の各一方の面に受圧室と平衡室の圧力を及ぼしてそれら両室間の圧力差に伴う可動板の小変位によって受圧室の圧力変動を吸収する液圧吸収機構を設けた構造が提案されている。これにより、オリフィス通路のチューニング周波数よりも高周波側の振動入力時に、可動板の小変位で受圧室の圧力変動が吸収されることによって、オリフィス通路の反共振作用に起因する高動ばね化が回避され得る。 In order to deal with this problem, for example, Patent Document 1 (Japanese Patent Laid-Open No. 57-9340), Patent Document 2 (Japanese Patent Laid-Open No. 61-55429), etc. In addition to tuning the orifice passage so that an effective orifice effect can be obtained, a movable plate is disposed within the partition member that partitions the pressure receiving chamber and the equilibrium chamber so that the movable plate can be displaced by a predetermined amount, and is passed through the partition member. A liquid that forms a hole and applies pressure in the pressure receiving chamber and the equilibrium chamber to one side of the movable plate through the through hole and absorbs pressure fluctuations in the pressure receiving chamber due to a small displacement of the movable plate due to a pressure difference between the two chambers. A structure provided with a pressure absorbing mechanism has been proposed. As a result, when a vibration is input at a frequency higher than the tuning frequency of the orifice passage, the fluctuation of the pressure in the pressure receiving chamber is absorbed by a small displacement of the movable plate, thereby avoiding a high dynamic spring caused by the anti-resonance action of the orifice passage. Can be done.
特に、上述の可動板の変位を利用した液圧吸収機構においては、低周波大振幅振動の入力に際して可動板の仕切部材への当接により通孔が確実に覆蓋され得ることから、例えば、所定量だけ変形可能な可動膜を受圧室と平衡室の間に配設して、可動膜の弾性変形に基づいて受圧室の圧力変動を吸収するようにした可動膜タイプの液圧吸収機構に比して、かかる低周波大振幅振動の入力時における受圧室の圧力変動が、当該液圧吸収機構によって不必要に吸収されることが抑えられる。それ故、オリフィス通路の流体流動量が充分に確保されて、低周波大振幅振動に対してオリフィス効果による優れた防振効果が発揮され得る利点がある。 In particular, in the hydraulic pressure absorption mechanism using the displacement of the movable plate described above, the through hole can be reliably covered by the contact of the movable plate with the partition member when the low frequency large amplitude vibration is input. Compared to a movable membrane type hydraulic pressure absorption mechanism, a movable membrane that can be deformed only by a fixed amount is arranged between the pressure receiving chamber and the equilibrium chamber to absorb pressure fluctuations in the pressure receiving chamber based on elastic deformation of the movable membrane. Thus, it is possible to suppress the pressure fluctuation of the pressure receiving chamber when the low frequency large amplitude vibration is input from being unnecessarily absorbed by the hydraulic pressure absorbing mechanism. Therefore, there is an advantage that the fluid flow amount in the orifice passage is sufficiently secured, and an excellent vibration-proofing effect due to the orifice effect can be exhibited against low-frequency large-amplitude vibration.
ところが、本発明者等が検討したところ、かくの如きオリフィス通路と液圧吸収機構を組み合わせた流体封入式エンジンマウントにおいても、未だ要求される防振効果を充分に達成し得ない場合があることが、新たに分かった。それは、オリフィス通路のチューニング周波数よりも高周波数域で大振幅の振動が入力される場合があることが判ったからである。例えば、自動車用エンジンマウントでは、アイドリング状態下において、エンジンの爆発に伴う周期的なアイドリング基本振動とは異なり、不定期に衝撃的振動が発生する場合があり、この不定期な衝撃的振動はアイドリング基本振動より大振幅であることが多い。また、外的衝撃荷重との相互作用等に起因して、オリフィス通路のチューニング周波数よりも高周波数域で大振幅振動が入力されることもある。このようにオリフィス通路のチューニング周波数よりも高周波数域で大振幅振動が入力された場合には、最早、液圧吸収機構が有効に機能し得ないことから、マウント防振性能が低下して車両乗り心地が悪化してしまうという問題があったのである。 However, as a result of investigations by the present inventors, even in a fluid-filled engine mount that combines such an orifice passage and a hydraulic pressure absorption mechanism, the required vibration isolation effect may still not be sufficiently achieved. But I found out anew. This is because it has been found that vibration with a large amplitude may be input in a frequency range higher than the tuning frequency of the orifice passage. For example, in an engine mount for automobiles, in the idling state, unlike the basic idling vibration that accompanies the explosion of the engine, the shock vibration may occur irregularly. The amplitude is often larger than the fundamental vibration. Further, due to the interaction with the external impact load or the like, a large amplitude vibration may be input in a frequency range higher than the tuning frequency of the orifice passage. In this way, when large amplitude vibration is input in a frequency range higher than the tuning frequency of the orifice passage, since the hydraulic pressure absorption mechanism cannot function effectively anymore, the anti-vibration performance of the mount decreases and the vehicle There was a problem that the ride comfort deteriorated.
なお、このようなオリフィス通路のチューニング周波数を超えた周波数域の大振幅振動に対して液圧吸収機構による機能が発揮されるように、可動板の変位許容量を大きくすることも考えられるが、そうすると、液圧吸収作用が望ましくない、オリフィス通路のチューニング振動の入力時までにも受圧室の圧力変動が吸収されてしまい、低周波大振幅振動に対して発揮されるオリフィス効果による防振性能の低下につながることから、有効な方策でない。 Although it is conceivable to increase the displacement allowance of the movable plate so that the function of the hydraulic pressure absorption mechanism is exerted for such a large amplitude vibration in the frequency range exceeding the tuning frequency of the orifice passage, As a result, the fluid pressure absorption action is not desirable, and the pressure fluctuation in the pressure receiving chamber is absorbed even at the time of input of tuning vibration of the orifice passage, and the vibration damping performance due to the orifice effect exerted against the low frequency large amplitude vibration is reduced. It is not an effective measure because it leads to a decline.
ここにおいて、本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、低周波大振幅振動に対して発揮されるオリフィス通路を通じての流体流動作用による防振性能や、中乃至高周波数域の小振幅振動に対して発揮される可動板による液圧吸収性能を、何れも充分に確保しつつ、オリフィス通路のチューニング周波数よりも高周波数域で大振幅振動が入力された場合にも、オリフィス通路の反共振作用等に起因する防振性能の著しい低下が回避されて、良好な防振性能が発揮され得る、新規な構造の自動車用の流体封入式エンジンマウントを提供することにある。 Here, the present invention has been made in the background as described above, and the problem to be solved is to prevent the fluid flow through the orifice passage that is exerted against the low-frequency large-amplitude vibration. Large amplitude vibration in the higher frequency range than the tuning frequency of the orifice passage, while ensuring sufficient vibration performance and hydraulic pressure absorption performance by the movable plate that is exhibited for small amplitude vibration in the middle to high frequency range In the case of an input, a fluid-filled engine for automobiles with a novel structure that can prevent a significant decrease in vibration-proof performance due to the anti-resonant action of the orifice passage, etc., and can exhibit good vibration-proof performance To provide a mount.
以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意な組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載されたもの、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。 Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. Further, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or an invention that can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized based on thought.
すなわち、本発明の特徴とするところは、自動車のパワーユニットと車両ボデーの一方に取り付けられる第一の取付部材と、それらパワーユニットと車両ボデーの他方に取り付けられる第二の取付部材を本体ゴム弾性体で連結せしめ、本体ゴム弾性体で壁部の一部が構成された受圧室と可撓性膜で壁部の一部が構成された平衡室とを形成してそれら受圧室と平衡室に非圧縮性流体を封入すると共に、それら受圧室と平衡室を相互に連通するオリフィス通路を設ける一方、受圧室と平衡室を仕切る仕切部材に可動板配設領域を形成して可動板配設領域に可動板を収容配置せしめ、可動板の各一方の面を受圧室又は平衡室に臨ませる通孔を設けることにより受圧室の圧力変動を変位によって吸収する液圧吸収機構を構成した自動車用の流体封入式エンジンマウントであって、可動板配設領域の平衡室側の壁部を貫通して可動板配設領域を平衡室に連通せしめる圧逃し用孔を、その少なくとも一部が可動板の当接面を外れて連通状態に維持される状態で形成すると共に、圧逃し用孔の平衡室側の開口部分に対して当接および離隔方向に変位可能な弁体を設け、更に弁体を付勢して圧逃し用孔を弁体で弾性的に閉塞せしめる付勢手段を設けた自動車用の流体封入式エンジンマウントにある。 That is, the feature of the present invention is that the main rubber elastic body includes a first attachment member attached to one of a power unit of an automobile and a vehicle body, and a second attachment member attached to the other of the power unit and the vehicle body. Connected to form a pressure receiving chamber with a part of the wall made of rubber elastic body and an equilibrium chamber with a part of the wall made of flexible membrane, and uncompressed into the pressure receiving chamber and the equilibrium chamber In addition to enclosing a fluid, an orifice passage that connects the pressure receiving chamber and the equilibrium chamber to each other is provided, and a movable plate arrangement region is formed in a partition member that partitions the pressure reception chamber and the equilibrium chamber, and the movable plate arrangement region is movable. Fluid sealing for automobiles with a hydraulic pressure absorption mechanism that absorbs fluctuations in pressure in the pressure receiving chamber by displacement by placing and arranging plates and providing through holes that allow each side of the movable plate to face the pressure receiving chamber or the equilibrium chamber formula A pressure relief hole that penetrates the wall of the movable plate arrangement area on the side of the equilibrium chamber and communicates the movable plate arrangement area with the equilibrium chamber, at least part of which is a contact surface of the movable plate And a valve body that is displaceable in a contact and separation direction with respect to the opening portion of the pressure relief hole on the equilibrium chamber side, and further biases the valve body. Thus, there is a fluid-filled engine mount for an automobile provided with an urging means for elastically closing the pressure relief hole with a valve body.
このような本発明に従う構造とされた自動車用の流体封入式エンジンマウントにおいては、オリフィス通路のチューニング振動である低周波大振幅振動よりも高周波側で小振幅の振動が入力された際に、可動板が可動板配設領域内を変位して受圧室の圧力変動が吸収されることによって、オリフィス通路の反共振的な作用に起因する高動ばね化が回避され得る。特に、このような可動板構造の液圧吸収機構では、低周波大振幅振動の入力における受圧室と平衡室の大きな圧力差により、可動板を可動板配設領域の壁部に当接せしめて拘束変位させると共に、通孔を可動板で覆蓋せしめて通孔を通じての受圧室の圧力漏れを防止することができる。それによって、オリフィス通路のチューニング周波数域の振動の入力時に、液圧吸収機構による受圧室の液圧吸収(逃げ)が抑えられて、オリフィス通路の流体流動量が充分に確保され得、オリフィス効果による目的とする防振効果(例えば、エンジンシェイクに対する高減衰効果)が安定して得られる。 In such a fluid-filled engine mount for automobiles structured in accordance with the present invention, it is movable when a small amplitude vibration is input on the high frequency side rather than the low frequency large amplitude vibration that is the tuning vibration of the orifice passage. Since the plate is displaced in the movable plate disposition region and the pressure fluctuation in the pressure receiving chamber is absorbed, the high dynamic spring due to the anti-resonant action of the orifice passage can be avoided. In particular, in the hydraulic pressure absorption mechanism having such a movable plate structure, the movable plate is brought into contact with the wall portion of the movable plate arrangement region due to a large pressure difference between the pressure receiving chamber and the equilibrium chamber at the input of the low frequency large amplitude vibration. In addition to being restrained and displaced, the through hole can be covered with a movable plate to prevent pressure leakage in the pressure receiving chamber through the through hole. As a result, when the vibration in the tuning frequency range of the orifice passage is input, the fluid pressure absorption (escape) of the pressure receiving chamber by the fluid pressure absorbing mechanism is suppressed, and the fluid flow amount in the orifice passage can be sufficiently secured. A target vibration-proof effect (for example, a high damping effect against engine shake) can be stably obtained.
ここにおいて、可動板配設領域の平衡室側の壁部には、圧逃し用孔が貫通形成されているが、この圧逃し用孔の平衡室側の開口部分に対して、弁体が付勢手段の付勢力に基づき当接せしめられていることによって、可動板配設領域、延いては受圧室と平衡室の間における圧逃し用孔を通じての連通が遮断されている。それ故、オリフィス通路のチューニング周波数域で大振幅振動が入力された場合や、それより高周波数域で小振幅振動が入力された場合には、かかる圧逃し用孔が遮断状態に維持されて、エンジンシェイク等の低周波大振幅振動入力時でのオリフィス通路における流体流動量が確保されて流体の共振作用が発揮されると共に、アイドリング基本振動等の中乃至高周波小振幅振動の入力時での可動板の変位に伴う圧力吸収機能が発揮されることに基づいて、目的とする防振性能が発揮される。 Here, a pressure relief hole is formed through the wall on the equilibrium chamber side of the movable plate arrangement region. A valve element is attached to the opening portion of the pressure relief hole on the equilibrium chamber side. By being brought into contact with each other based on the urging force of the urging means, the communication through the pressure relief hole between the movable plate arrangement region and the pressure receiving chamber and the equilibrium chamber is blocked. Therefore, when a large amplitude vibration is input in the tuning frequency range of the orifice passage, or when a small amplitude vibration is input in a higher frequency range, the pressure relief hole is maintained in a shut-off state, Ensuring fluid flow in the orifice passage when low-frequency large-amplitude vibration is input, such as engine shake, and exhibiting fluid resonance, and movable when medium to high-frequency small-amplitude vibration is input Based on the fact that the pressure absorbing function accompanying the displacement of the plate is exhibited, the intended vibration-proof performance is exhibited.
一方、オリフィス通路のチューニング周波数よりも高周波側で大振幅の振動が入力されると、オリフィス通路は実質的に閉塞状態にあり、且つ可動板の小変位に基づく液圧吸収機構では充分な圧力吸収が達成され得ないこととなる。この状況下では、受圧室の圧力変動が大きくなることから、受圧室に惹起される大きな圧力が圧逃し用孔を通じて、該圧逃し用孔を外方(平衡室側)から蓋する弁体に対して及ぼされることとなり、かかる圧力作用によって弁体が付勢力に抗して圧逃し用孔の平衡室側の開口部分から離隔せしめられる。その結果、可動板配設領域と平衡室の間における圧逃し用孔を通じての連通が許容されることとなり、受圧室と平衡室がオリフィス通路や可動板を介することなる別通路としての圧逃し孔を通じて短絡状態とされる。而して、この圧逃し用孔を通じて受圧室の圧力が平衡室に逃がされることにより、オリフィス通路のチューニング周波数よりも高周波の大振幅振動に伴って惹起される受圧室の大きな圧力変動が低減されて、それに伴うマウントの剛体化や回避され、マウントの防振性能が有効に発揮され得ることとなるのである。 On the other hand, when a vibration with a large amplitude is input at a frequency higher than the tuning frequency of the orifice passage, the orifice passage is substantially closed and the hydraulic pressure absorption mechanism based on the small displacement of the movable plate is sufficient to absorb the pressure. Cannot be achieved. Under this circumstance, the pressure fluctuation in the pressure receiving chamber becomes large, so that a large pressure induced in the pressure receiving chamber passes through the pressure relief hole to the valve body that covers the pressure relief hole from the outside (equilibrium chamber side). Therefore, the valve element is separated from the opening portion of the pressure relief hole on the equilibrium chamber side against the urging force by the pressure action. As a result, communication through the pressure relief hole between the movable plate arrangement region and the equilibrium chamber is allowed, and the pressure relief hole as a separate passage in which the pressure receiving chamber and the equilibrium chamber pass through the orifice passage and the movable plate. Through a short circuit. Thus, when the pressure in the pressure receiving chamber is released to the equilibrium chamber through this pressure relief hole, large pressure fluctuations in the pressure receiving chamber caused by large amplitude vibrations higher than the tuning frequency of the orifice passage are reduced. Thus, the rigid body of the mount and the avoidance thereof can be avoided, and the vibration isolation performance of the mount can be effectively exhibited.
特に、圧逃し用孔は、その少なくとも一部が可動板配設領域の壁部における可動板の当接面を外れて連通状態に維持される状態で形成されていることによって、圧逃し用孔における可動板配設領域、延いては受圧室側の開口部分の全体が可動板で覆蓋されることが阻止される。即ち、圧逃し用孔が受圧室側に対して常に開口せしめられているのであり、それによって、問題となる高い周波数域における大振幅振動の入力時に、受圧室の圧力が弁体に確実に及ぼされて、圧逃し用孔を通じての受圧室と平衡室間の短絡が確実に為され得る。しかも、弁体が圧逃し用孔の平衡室側の開口部分に設けられていることから、弁体の配設スペースを、可動板等によって制限されることなく効率的に確保することが可能となる。加えて、可動板の配設領域を利用して、圧逃し用孔を通じての流体流動通路を確保することが出来ることから、圧逃し用孔の形成に際してのマウント構造の複雑化やマウントサイズの大型化などの問題も効果的に回避され得る。 In particular, the pressure relief hole is formed in a state in which at least a part thereof is maintained in a communication state by removing the contact surface of the movable plate in the wall portion of the movable plate arrangement region. The movable plate disposing region in FIG. 1, and thus the entire opening portion on the pressure receiving chamber side is prevented from being covered with the movable plate. In other words, the pressure relief hole is always opened with respect to the pressure receiving chamber side, so that the pressure in the pressure receiving chamber is surely exerted on the valve body when large amplitude vibration is input in a high frequency range which is a problem. Thus, a short circuit between the pressure receiving chamber and the equilibrium chamber through the pressure relief hole can be reliably performed. In addition, since the valve body is provided in the opening portion on the equilibrium chamber side of the pressure relief hole, the space for disposing the valve body can be efficiently secured without being limited by the movable plate or the like. Become. In addition, since the fluid flow passage through the pressure relief hole can be secured by using the movable plate arrangement area, the mounting structure becomes complicated and the mount size becomes large when forming the pressure relief hole. Problems such as conversion can be effectively avoided.
なお、オリフィス通路のチューニング振動である低周波大振幅振動に際してはオリフィス通路を通じての流体流動作用が生ぜしめられることで、また、該チューニング周波数よりも高周波側で小振幅の振動に際しては可動板の変位による液圧吸収作用が機能することによって、何れの振動入力においても、前述の高周波数域での大振幅振動の入力時ほどに大きな圧力が弁体に及ぼされることがない。その結果、低周波大振幅振動や高周波小振幅振動の入力時には、弁体における圧逃し用孔の開口部分への当接により圧逃し用孔を通じての受圧室と平衡室の遮断状態が維持されて、受圧室と平衡室の短絡に起因する所期のオリフィス効果や液圧吸収機構の機能による防振効果への悪影響が回避され得る。 When low-frequency large-amplitude vibration, which is tuning vibration of the orifice passage, a fluid flow action occurs through the orifice passage, and when the vibration is smaller than the tuning frequency on the high-frequency side, the displacement of the movable plate As a result of the function of absorbing the hydraulic pressure by the above-described function, a large pressure is not exerted on the valve body in any vibration input as in the case of the large amplitude vibration input in the above-described high frequency range. As a result, when low-frequency large-amplitude vibration or high-frequency small-amplitude vibration is input, the pressure receiving chamber and the equilibrium chamber are kept disconnected from each other by contact with the opening of the pressure relief hole in the valve body. In addition, an adverse effect on the anti-vibration effect due to the intended orifice effect and the function of the hydraulic pressure absorption mechanism due to the short circuit between the pressure receiving chamber and the equilibrium chamber can be avoided.
また、防振上で問題となる中乃至高周波数域の大振幅振動の入力時においては、オリフィス通路の流体流動抵抗が著しく増大した状態にあり、且つ可動板の変位に伴う液圧吸収機能も望めないことから、受圧室に対して大きな圧力変動が惹起されることとなる。この大きな圧力変動の作用によって弁体が開くように、圧逃し用孔に当接せしめられる弁体の当接用付勢力を調節することとなる。即ち、低周波大振幅振動や中乃至高周波小振幅振動の入力時に弁体の圧逃し用孔の開口部への当接状態が安定して維持される程度に付勢力を当該振動時の受圧室の圧力に比して大きく設定する一方、オリフィス通路のチューニング周波数より高周波域の大振幅振動(高周波大振幅振動)の入力時に弁体の圧逃し用孔の開口部からの離隔が速やかに発現されるように付勢力を当該振動時の受圧室の圧力に比して小さく設定される。それによって、圧逃し用孔の遮断状態と連通状態が、目的とする受圧室と平衡室の圧力差に基づいて確実に為される。 In addition, when a large amplitude vibration in the middle to high frequency range, which is a problem in terms of vibration isolation, is input, the fluid flow resistance in the orifice passage is remarkably increased, and the hydraulic pressure absorbing function accompanying the displacement of the movable plate is also provided. Since it cannot be expected, a large pressure fluctuation is induced in the pressure receiving chamber. The abutting biasing force of the valve body that is brought into contact with the pressure relief hole is adjusted so that the valve body is opened by the action of the large pressure fluctuation. That is, when receiving low-frequency large-amplitude vibration or medium-to-high-frequency small-amplitude vibration, the pressure receiving chamber at the time of vibration is applied to such an extent that the contact state with the opening of the pressure relief hole of the valve body is stably maintained. On the other hand, when a large amplitude vibration in the high frequency range (high frequency large amplitude vibration) is input from the tuning frequency of the orifice passage, the separation from the opening of the pressure relief hole of the valve body is quickly manifested. Thus, the urging force is set to be smaller than the pressure in the pressure receiving chamber during the vibration. Thereby, the shut-off state and the communication state of the pressure relief hole are surely made based on the pressure difference between the target pressure receiving chamber and the equilibrium chamber.
それ故、本発明の自動車用の流体封入式エンジンマウントによれば、オリフィス効果や液圧吸収機構による防振効果が充分に得られつつ、オリフィス通路のチューニング周波数よりも高周波側で大振幅振動が入力された場合にも、圧逃し用孔を通じての受圧室と平衡室の短絡状態により、受圧室の圧力増大に伴うマウント剛体化が回避されて、防振性能の向上が図られ得るのである。 Therefore, according to the fluid-filled engine mount for automobiles of the present invention, a large-amplitude vibration is generated on the higher frequency side than the tuning frequency of the orifice passage while sufficiently obtaining the vibration-proofing effect by the orifice effect and the hydraulic pressure absorption mechanism. Even when the pressure is input, due to the short circuit between the pressure receiving chamber and the equilibrium chamber through the pressure relief hole, the rigid mounting due to the increase in pressure in the pressure receiving chamber is avoided, and the vibration isolation performance can be improved.
また、本発明に係る自動車用の流体封入式エンジンマウントでは、第二の取付部材に支持せしめられて平衡室側から仕切部材に向かって突出する弾性突出部材がゴム弾性体で形成されており、弾性突出部材の突出先端部分が仕切部材における圧逃し用孔の平衡室側の開口部に対して弾性的に当接されることによって、弁体と付勢手段が何れも弾性突出部材によって構成されている構造が、採用されても良い。このような構造によれば、弁体と付勢手段が一体構造とされ得て、製造に際しての作業効率が向上され得る。 Further, in the fluid-filled engine mount for automobiles according to the present invention, the elastic protruding member that is supported by the second mounting member and protrudes from the equilibrium chamber side toward the partition member is formed of a rubber elastic body, Both the valve body and the urging means are constituted by the elastic protruding member by elastically abutting the protruding tip portion of the elastic protruding member against the opening on the equilibrium chamber side of the pressure relief hole in the partition member. A structure may be adopted. According to such a structure, the valve body and the urging means can be made into an integral structure, and the working efficiency in manufacturing can be improved.
また、本発明に係る自動車用の流体封入式エンジンマウントでは、第二の取付部材が筒状部を備えており、筒状部の一方の開口部側に離隔して第一の取付部材が配設されて本体ゴム弾性体で連結されていると共に、可撓性膜の外周縁部に環状の固定部材が固着されて固定部材が第二の取付部材の筒状部の他方の開口部側に固定されることによって筒状部の他方の開口部が可撓性膜で覆蓋されており、仕切部材が第二の取付部材の筒状部の内側に組み付けられて仕切部材と本体ゴム弾性体の間に受圧室が形成されていると共に仕切部材と可撓性膜の間に平衡室が形成されている一方、弁体が固定部材に配設されている構造が、採用されても良い。このような構造によれば、可撓性膜を第二の取付部材に固定する固定部材が弁体の固定部材としても利用されて、弁体の固定部材を別途用意して第二の取付部材に組み付ける必要がなくなることから、コンパクト化や製造コストの低減化等が図られ得る。 Further, in the fluid-filled engine mount for automobiles according to the present invention, the second mounting member has a cylindrical portion, and the first mounting member is arranged apart from one opening side of the cylindrical portion. And is connected by a rubber elastic body, and an annular fixing member is fixed to the outer peripheral edge of the flexible membrane so that the fixing member is on the other opening side of the cylindrical portion of the second mounting member. By fixing, the other opening part of the cylindrical part is covered with a flexible film, and the partition member is assembled inside the cylindrical part of the second mounting member so that the partition member and the main rubber elastic body A structure in which a pressure receiving chamber is formed therebetween and an equilibrium chamber is formed between the partition member and the flexible membrane, while the valve body is disposed on the fixed member may be employed. According to such a structure, the fixing member for fixing the flexible membrane to the second mounting member is also used as the fixing member for the valve body. Therefore, it is possible to reduce the size and the manufacturing cost.
また、本発明に係る自動車用の流体封入式エンジンマウントでは、可動板配設領域の平衡室側の壁部が、可動板配設領域に配設される可動板よりも外周側に大きな形状とされていると共に、可動板配設領域の平衡室側の壁部の外周部分において周方向に複数の圧逃し用孔が形成されている構造が、採用されても良い。このような構造によれば、圧逃し用孔を、その少なくとも一部が可動板配設領域の壁部における可動板の当接面を外れて連通状態に維持される状態で形成する態様が、好適に実現され得る。また、より好適には、可動板を挟んで径方向で対向位置するようにして外周側に外れた領域に圧逃し用孔の複数が形成される構造が採用され得、より一層好適には、圧逃し用孔が複数の異なる径方向で互いに対向位置するように形成される構造が採用され得る。 Further, in the fluid-filled engine mount for automobiles according to the present invention, the wall portion on the equilibrium chamber side of the movable plate disposition region has a larger shape on the outer peripheral side than the movable plate disposed in the movable plate disposition region. In addition, a structure in which a plurality of pressure relief holes are formed in the circumferential direction in the outer peripheral portion of the wall portion on the equilibrium chamber side of the movable plate arrangement region may be employed. According to such a structure, an aspect in which the pressure relief hole is formed in a state in which at least a part thereof is maintained in a communication state by removing the contact surface of the movable plate in the wall portion of the movable plate arrangement region. It can be suitably realized. More preferably, a structure in which a plurality of pressure relief holes are formed in a region deviated to the outer peripheral side so as to be opposed to each other in the radial direction across the movable plate can be adopted, and more preferably, A structure in which the pressure relief holes are formed so as to face each other in a plurality of different radial directions may be employed.
また、本発明に係る自動車用の流体封入式エンジンマウントでは、可動板配設領域において、可動板を板厚方向に直交する面内での変位量を制限して圧逃し用孔の可動板による閉塞を防止する可動板の変位量制限手段が設けられている構造が、採用されても良い。このような構造によれば、圧逃し用孔の開口部分の全体が可動板で覆蓋されることが一層確実に防止され得る。また、液圧吸収機構における可動板の所期の変位量制限も実現され得て、目的とするオリフィス効果または液圧吸収作用に基づく防振効果がより安定して得られる。 Further, in the fluid-filled engine mount for automobiles according to the present invention, the displacement of the movable plate within the plane perpendicular to the plate thickness direction is limited in the movable plate disposition region, and the movable plate of the pressure relief hole is used. A structure in which a displacement amount limiting means for the movable plate for preventing the blockage may be employed. According to such a structure, it is possible to more reliably prevent the entire opening portion of the pressure relief hole from being covered with the movable plate. In addition, the desired displacement amount limitation of the movable plate in the hydraulic pressure absorbing mechanism can be realized, and the target orifice effect or the vibration isolation effect based on the hydraulic pressure absorbing action can be obtained more stably.
また、本発明に係る自動車用の流体封入式エンジンマウントでは、オリフィス通路として、エンジンシェイクに相当する低周波数域にチューニングしたシェイク用オリフィス通路が採用されていると共に、アイドリング状態におけるエンジンの爆発主成分による定常的なアイドリング基本振動よりも低周波数域で発生する大振幅振動の入力に際して弁体が付勢手段による付勢力に抗して開口せしめられるようになっている構造が、採用されても良い。 Further, in the fluid-filled engine mount for automobiles according to the present invention, the orifice passage for shaking tuned to a low frequency region corresponding to the engine shake is adopted as the orifice passage, and the main component of the engine explosion in the idling state is adopted. A structure may be adopted in which the valve body is opened against the urging force by the urging means when inputting large amplitude vibration generated in a lower frequency range than the steady idling fundamental vibration caused by .
すなわち、本発明者が自動車用エンジンマウントの防振特性について鋭意検討したところ、アイドリング時において、アイドリング基本振動(エンジンの爆発に伴って発生する定常的な振動)より低周波数域で大きな振幅振動が不定期に発生することがあり、これが車両乗り心地に大きな問題となっていることが知見された。而して、本発明の自動車用の流体封入式エンジンマウントにおいては、オリフィス通路による低周波数域の大振幅振動に対する防振効果と、可動板の変位に伴う中乃至高周波数域の小振幅振動に対する防振効果とが、何れも効果的に発揮されることに加え、アイドリング状態下で及ぼされる大振幅振動に対しても、弁体の開作動によって受圧室の大幅な圧力増大に伴うマウントばね剛性の著しい増大が回避され得て、良好な乗り心地が達成され得るのである。 That is, when the present inventor diligently examined the vibration isolation characteristics of the engine mount for automobiles, when idling, a large amplitude vibration is generated in a lower frequency range than the idling basic vibration (steady vibration generated due to the engine explosion). It has been found that this may occur irregularly, and this is a major problem in vehicle comfort. Thus, in the fluid-filled engine mount for automobiles of the present invention, the vibration-proofing effect against the low-frequency large-amplitude vibration caused by the orifice passage, and the small-to-high-frequency vibration in the middle to high frequency accompanying the displacement of the movable plate. The anti-vibration effect is exhibited effectively, and the stiffness of the mount spring that accompanies a large increase in pressure in the pressure-receiving chamber due to the opening of the valve element against large-amplitude vibration exerted under idling conditions. Can be avoided and a good ride can be achieved.
以下、本発明を更に具体的に明らかにするために、本発明の一実施形態について図面を参照しつつ、詳細に説明する。先ず、図1には、本発明の自動車用の流体封入式エンジンマウントに係る一実施形態としての自動車用エンジンマウント10が示されている。この自動車用エンジンマウント10では、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14が本体ゴム弾性体16で相互に弾性連結されている。第一の取付金具12が図示しない自動車のパワーユニットに取り付けられると共に、第二の取付金具14が図示しない自動車の車両ボデーに取り付けられることによって、パワーユニットが自動車用エンジンマウント10を介して車両ボデーに防振支持されるようになっている。
Hereinafter, in order to clarify the present invention more specifically, an embodiment of the present invention will be described in detail with reference to the drawings. First, FIG. 1 shows an
なお、図1では、自動車に装着する前の自動車用エンジンマウント10の単体での状態が示されているが、自動車への装着状態では、パワーユニットの分担支持荷重がマウント軸方向(図1中、上下)に入力されることにより、第一の取付金具12と第二の取付金具14がマウント軸方向で相互に接近する方向に変位して、本体ゴム弾性体16が弾性変形する。また、かかる装着状態下、防振すべき主たる振動は、略マウント軸方向に入力されることとなる。以下の説明中、特に断りのない限り、上下方向は、マウント軸方向となる図1中の上下方向をいう。
In FIG. 1, the state of the
より詳細には、第一の取付金具12は、小径の略裁頭円錐台形状乃至は円柱形状を呈している。第一の取付金具12の軸直角方向中央部分には、上端面に開口する螺子穴18が形成されており、図示しないパワーユニット側の部材が固定ボルトを介して螺子穴18に螺着固定されることにより、第一の取付金具12がパワーユニットに取り付けられるようになっている。
More specifically, the first mounting
また、第二の取付金具14は、大径の略円筒形状を有しており、その略全体で筒状部を構成している。第二の取付金具14の下端部には、軸直角方向外方に広がる円環形状の段部20が形成されていると共に、段部20の外周縁部には、下方に向かって大径リング状のかしめ筒部22が突設されている。第二の取付金具14は、図示しないブラケット部材等を介して車両ボデー側の部材に取り付けられるようになっている。これら第一の取付金具12と第二の取付金具14が相互に同一中心軸上に配置されていると共に、第一の取付金具12が第二の取付金具14の上側の開口部分よりも上方に所定距離を隔てて位置せしめられている。第一の取付金具12と第二の取付金具14の間には、本体ゴム弾性体16が介装されている。
Further, the second mounting
本体ゴム弾性体16は、全体として略裁頭円錐台形状を呈する厚肉のゴム弾性体であって、その上端部に対して第一の取付金具12の上端部分を除く略全体が埋め込まれるように加硫接着されていると共に、本体ゴム弾性体16の外周面に対して第二の取付金具14における段部20やかしめ筒部22を除いた内周面の略全体が加硫接着されている。要するに、本体ゴム弾性体16が第一の取付金具12と第二の取付金具14を備えた一体加硫成形品として形成されており、それによって、第一の取付金具12と第二の取付金具14が本体ゴム弾性体16で連結されていると共に、第二の取付金具14の一方(図1中、上)の開口部が本体ゴム弾性体16で流体密に閉塞されている。また、本体ゴム弾性体16の下端面には、下方に開口する略逆すり鉢形状の大径凹所24が形成されている。更に、本体ゴム弾性体16には、大径凹所24の開口縁部から下方に延び出す薄肉のシールゴム層26が一体形成されて、第二の取付金具14の下端部乃至は段部20の内周面に被着形成されている。
The main rubber
このような本体ゴム弾性体16の一体加硫成形品には、仕切部材28が組み付けられている。仕切部材28は、図2〜4にも示されているように、全体として略円形ブロック形状を呈しており、金属材や合成樹脂材等からなる硬質部材を用いて形成されている。仕切部材28は、仕切部材本体30と蓋部材32を含んで構成されている。
A
仕切部材本体30は、略円形ブロック形状を呈しており、厚さ方向となる軸方向(図1,3中、上下)の中間部分から上端面と下端面に開口する円形凹状の上側凹所34と下側凹所36が形成されている。本実施形態では、上側凹所34と下側凹所36が仕切部材本体30の軸直角方向中央部分に形成されていると共に、両凹所34,36の形状や大きさが互いに略同じとされている。それによって、両凹所34,36の底部間における仕切部材本体30の軸方向の略中央部分が、円板形状の中央底部38とされている。換言すると、仕切部材本体30の外周部分が薄肉且つ大径の略円筒形状を有する外側筒部40とされて、外側筒部40の軸方向中央部分の内側に中央底部38が軸直角方向に広がるように形成されていて、外側筒部40における中央底部38を挟んだ上側の内周面と中央底部38の上端面が協働して、上側凹所34を構成していると共に、外側筒部40における中央底部38を挟んだ下側の内周面と中央底部38の下端面が協働して、下側凹所36を構成している。本実施形態では、外側筒部40の外周面が、下方に向かって径寸法が次第に小さくなるテーパ形状を有している。
The partition member
仕切部材本体30の外側筒部40における中央底部38を挟んだ下側部分には、連通窓42が形成されている。連通窓42は、外側筒部40の厚さ方向となる軸直角方向(図1,3中、左右)に貫通形成されていると共に、外側筒部40の下端面に開口する切欠き状を呈しており、周方向に所定の長さ(本実施形態では、外側筒部40の1/4周弱)で延びている。また、外側筒部40において連通窓42の周方向一方(図4中、下)の端部と隣接する外周面には、軸直角方向外方に僅かに突出して周方向に僅かな長さで延びる略円弧形状の仕切突部44が一体形成されている。仕切突部44の突出先端面は、外側筒部40のテーパ外周面と同様に軸方向に対して傾斜し、且つ周方向に延びる円弧形状とされている。更に、外側筒部40には、ボルトやリベット等を固定するための固定用穴46が、上端面に開口して、周方向に適当な間隔を隔てて複数設けられている。
A
仕切部材本体30の中央底部38には、通孔としての複数の第一透孔48および第二透孔50が貫通形成されている。第一透孔48は、略半円形状を有しており、中央底部38の軸直角方向中央部分の周りに等間隔に複数(本実施形態では8つ)設けられている。各第一透孔48の直線状の縁部が、周方向一方の側で互いに向き合うようにして離隔配置されていると共に、各第一透孔48の円弧状の縁部が、周方向他方の側で互いに向き合うようにして離隔配置されている。更に、それら第一透孔48の軸直角方向外方には、第二透孔50が周方向で等間隔に複数(本実施形態では8つ)設けられている。第二透孔50は、軸直角方向外方に向かって周方向寸法が次第に大きくなる略扇形状を呈している。
A plurality of first through
一方、蓋部材32は、薄肉の略円板形状を有しており、その外径寸法が、仕切部材本体30の最大外径寸法である外側筒部40の上端部分の外径寸法に比して十分に大きくされている。また、蓋部材32の軸直角方向中央部分には、円形状の位置決め用孔52が貫設されている。更に、蓋部材32の外周縁部付近の外周側には、周方向に円弧形状に延びる連通孔54が貫設されている。更にまた、蓋部材32の連通孔54を避けた外周側において仕切部材本体30の外側筒部40における各固定用穴46と対応する位置には、円形状の挿通孔56が貫設されている。
On the other hand, the
さらに、蓋部材32における位置決め用孔52よりも外周側で挿通孔56よりも内周側の軸直角方向中間部分には、通孔としての複数の第一透孔58および第二透孔60が貫通形成されている。第一透孔58は、略円弧形状を有しており、蓋部材32の位置決め用孔52の周りに等間隔に複数(本実施形態では4つ)設けられている。また、それら第一透孔58の軸直角方向外方には、第二透孔60が周方向で等間隔に複数(本実施形態では8つ)設けられている。第二透孔60は、仕切部材本体30の第二透孔50と同様に、軸直角方向外方に向かって周方向寸法が次第に大きくなる略扇形状を呈している。
Further, a plurality of first through-
仕切部材本体30の外側筒部40における全ての固定用穴46上に蓋部材32の全ての挿通孔56が位置せしめられるように、仕切部材本体30と蓋部材32が周方向で位置合わせされつつ、外側筒部40の上端部分と蓋部材32における各挿通孔56を貫通配置せしめた周状部分が軸方向で重ね合わされて、ボルトやリベット等の固定部材が各挿通孔56を通じて各固定用穴46に固定されている。これにより、仕切部材本体30と蓋部材32が互いに略同心状に位置せしめられた形態で固定されて、仕切部材28が構成されている。
The
かかる仕切部材28では、仕切部材本体30の仕切突部44が蓋部材32の外周縁部よりも軸直角方向内方に位置せしめられていると共に、仕切突部44を挟んだ周方向一方の側(図4中、上)に仕切部材本体30の連通窓42が位置せしめられ、仕切部材28を挟んだ周方向他方の側(図4中、下)に蓋部材32の連通孔54が位置せしめられている。また、連通孔54における内周縁部から軸直角方向中間部分にかけて仕切部材本体30の外側筒部40の上端部分で覆われていることで、連通孔54の蓋部材32の下端面への開口部分が、連通孔54の軸直角方向中間部分から外周縁部にかけての部位とされている。また、仕切部材本体30の各第一透孔48と蓋部材32の各第一透孔58の周方向端部や仕切部材本体30の各第二透孔50と蓋部材32の各第二透孔60が、それぞれ軸方向で投影するように位置せしめられている。
In such a
さらに、仕切部材本体30の上側凹所34の開口部分が、蓋部材32における仕切部材本体30の外側筒部40に重ね合わされた部位よりも内側で覆蓋せしめられることによって、仕切部材28の内部には、中央底部38の上端面や外側筒部40の内周面、蓋部材32の下端面が協働して、軸方向に略一定の円形断面で延びる可動板配設領域としての収容空所62が形成されている。即ち、収容空所62の天壁部が蓋部材32における上側凹所34の覆蓋部分で構成されていると共に、収容空所62の底壁部が仕切部材本体30の中央底部38で構成されており、更に収容空所62の周壁部が仕切部材本体30の上側凹所34の周壁部で構成されている。ここで、仕切部材本体30の上側凹所34の開口部分が蓋部材32で覆蓋されて収容空所62が構成されるのに先立って、可動板としての弾性ゴム板64が上側凹所34内に配されており、上述の如く収容空所62が構成されることによって、弾性ゴム板64が収容空所62に収容配置されている。
Further, the opening portion of the
弾性ゴム板64は、ゴム弾性材からなり、全体として厚肉の略円板形状を有している。特に本実施形態では、弾性ゴム板64における軸直角方向中央部分から外周部分乃至は外周部分付近にかけて中央円板部66とされており、全体に亘って略一定の厚さ寸法で軸直角方向に広がる厚肉の円板形状を有している。また、中央円板部66の軸直角方向外方に離隔位置せしめられて弾性ゴム板64の外周縁部および外周部分を構成する外周環状部68においては、その厚さ寸法が軸直角方向外方に向かって次第に小さくされている。外周環状部68の軸直角方向中間部分には、軸方向の両端面に開口して周方向に連続して延びる溝状部が形成されていることで、外周環状部68の内周縁部および外周縁部が、外周環状部68の軸直角方向中間部分よりも軸方向両側に突出して周方向に連続して延びるリブ状を呈している。また、外周環状部68は、弾性ゴム板64の外周円上を平坦に広がる形状とされても良いが、本実施形態では、弾性ゴム板64の外周円上を厚さ方向一方の側に盛り上がる部分と厚さ方向他方の側に盛り上がる部分とが周方向で交互に発現せしめられるようにして周方向に起伏を設けたうねり(波打ち)形状とされている。また、弾性ゴム板64における中央円板部66と外周環状部68の間を構成する円環形状の部分が、それら中央円板部66や外周環状部68に比して厚さ寸法が十分に小さくされた薄板状部70とされており、この薄板状部70を介して中央円板部66と外周環状部68が接続されている。なお、薄板状部70は、中央円板部66と同様に全体に亘って平坦形状とされても良く、或いは外周環状部68と同様に周方向にうねった湾曲形状とされても良い。
The
また、弾性ゴム板64における中央円板部66の軸直角方向中央部分の上端面には、弾性ゴム板64と一体形成された略円柱形状の位置決め突起72が突設されている。更に、弾性ゴム板64における中央円板部66の下端面には、弾性ゴム板64と一体形成された弾性突起74が突設されている。本実施形態の弾性突起74は、半円状や山状等の軸方向断面で周方向に延びる突条にて構成されて、中央円板部66と同心状に軸直角方向に離隔して複数設けられているが、例えば、半球状や山状等の先細り状の小形突起からなる突部で構成し、中央円板部66上に距離を隔てて複数設けられても良い。また、必要に応じて、弾性突起を中央円板部の上端面に設けることも可能である。
Further, a substantially
特に本実施形態では、弾性ゴム板64における中央円板部66の軸方向に延びる厚さ寸法が、仕切部材本体30の中央底部38と蓋部材32の軸方向の対向面間距離で表される収容空所62の軸方向の内法寸法に比して僅かに小さくされている。また、弾性ゴム板64の外径寸法が、仕切部材本体30の上側凹所34の内径寸法で表される収容空所62の軸直角方向の内法寸法に比して所定量だけ小さくされている。
In particular, in the present embodiment, the thickness dimension of the
この弾性ゴム板64が収容空所62に収容されて、弾性ゴム板64の位置決め突起72が蓋部材32の位置決め用孔52に挿通配置されていることで、弾性ゴム板64が、仕切部材28に対して略同心状に位置せしめられた形態で軸直角方向に位置決めされている。また、弾性ゴム板64の中央円板部66の上端面が、収容空所62の天壁部を構成する蓋部材32に当接されている一方、中央円板部66の下端面に突設された弾性突起74では、収容空所62の底壁部を構成する仕切部材本体30の中央底部38と天壁部(蓋部材32)の間で予圧縮が及ぼされつつ中央底部38に当接せしめられていることによって、弾性突起74の中央底部38への当接作用により弾性ゴム板64の軸直角方向の変位が制限されていると共に、弾性突起74の軸方向の変形変位に基づいて弾性ゴム板64の軸方向の変位が許容されている。要するに、本実施形態では、弾性ゴム板64の軸直角方向の変位量制限手段が、弾性ゴム板64の位置決め用突起72を蓋部材32の位置決め用孔52に挿通せしめてなる軸直角方向の係止機構や、弾性ゴム板64に突設された弾性突起74が収容空所62の壁部(中央底部38)に予圧縮をもって当接される当接機構を含んで構成されている。
The
かくの如き弾性ゴム板64における収容空所62への収容状態下、弾性ゴム板64の外径寸法が収容空所62の軸直角方向の内法寸法に比して小さくされていることによって、収容空所62の周壁部を構成する仕切部材本体30の上側凹所34の周壁部と弾性ゴム板64(外側環状部68)の外周縁部との軸直角方向対向面間には、全周に亘って隙間が設けられている。このことからも明らかなように、収容空所62の底壁部を構成する仕切部材本体30の中央底部38が、収容空所62に配設される弾性ゴム板64よりも一回り大きな円板形状とされている。また、弾性ゴム板64の中央円板部66の上下端面が、蓋部材32の第一透孔58と仕切部材本体30の第一透孔48に軸方向で対向位置せしめられていると共に、弾性ゴム板64の薄板状部70の上下端面が、蓋部材32の第二透孔60と仕切部材本体30の第二透孔50に軸方向で対向位置せしめられている。更に、弾性ゴム板64の外側環状部68の軸直角方向内側部分が、仕切部材本体30や蓋部材32の各第二透孔50,60の軸直角方向外側部分と軸方向で対向位置せしめられている。また、かかる周方向でうねった形状の外周環状部68において、軸方向上方に盛り上がる部分の先端が蓋部材32に当接せしめられている一方、軸方向下方に盛り上がる部分の先端が仕切部材本体30の中央底部38に当接せしめられている。
Under such a state that the
弾性ゴム板64を収容せしめた仕切部材28は、本体ゴム弾性体16の一体加硫成形品における第二の取付金具14の下側開口部から軸方向に差し入れられて、仕切部材28における蓋部材32の外周部分が、第二の取付金具14のかしめ筒部22に嵌め込まれて、第二の取付金具14の段部20と軸方向に重ね合わされている。また、かかる第二の取付金具14の下側開口部には、可撓性膜としてのダイヤフラム76が組み付けられている。
The
ダイヤフラム76は、充分な弛みを有する薄肉の円形ゴム膜で形成されている。ダイヤフラム76の外周縁部には、固定部材としての固定金具78が加硫接着されている。固定金具78は、全体として大径の略円環形状を有するプレス成形品からなり、大径の略円筒形状を有する筒壁部80と筒壁部80の上端部分から径方向(軸直角方向)外方に延び出す外フランジ状部82と筒壁部80の下端部分から径方向内方に延び出す内フランジ状部84を含んで構成されている。特に、筒壁部80が、仕切部材本体30の外径寸法よりも大径とされていると共に、下方に向かって径寸法が次第に小さくなるテーパ筒状とされて、仕切部材本体30のテーパ外周面と略同じテーパ角度でマウント軸方向に対して傾斜していることで、仕切部材本体30の外周面に対応した形状とされている。また、固定金具78の外フランジ状部82の外径寸法が、蓋部材32の外径寸法と略同じとされている。更に、固定金具78の内フランジ状部84の内径寸法が、仕切部材本体30の中央底部38の外径寸法よりも小さくされている。
The diaphragm 76 is formed of a thin circular rubber film having sufficient slackness. A fixing
固定金具78の内フランジ状部84の内周縁部に対してダイヤフラム76の外周縁部が加硫接着されている。更に、外フランジ状部82の内周縁面や筒壁部80の内外周面、内フランジ状部84の上下端面には、ダイヤフラム76と一体成形された薄肉のシールゴム層86が加硫成形により被着されている。即ち、ダイヤフラム76やシールゴム層86が、固定金具78を備えた一体加硫成形品とされている。
The outer peripheral edge portion of the diaphragm 76 is vulcanized and bonded to the inner peripheral edge portion of the inner flange-shaped
ダイヤフラム76の固定金具78が第二の取付金具14の下側開口部から軸方向に差し入れられて、固定金具78の外フランジ状部82が、第二の取付金具14のかしめ筒部22に嵌め込まれて、蓋部材32の外周部分と軸方向で重ね合わされている。また、固定金具78の内フランジ状部84の軸直角方向中間部分が、内フランジ状部84の上端面に被着されたシールゴム層86を介して仕切部材本体32の外側筒部40の下端部分と軸方向で重ね合わされている。
The fixing
而して、第二の取付金具14のかしめ筒部22にかしめ加工が施されて、蓋部材32の外周部分と固定金具78の外フランジ状部82が第二の取付金具14にかしめ固定されていることによって、仕切部材28やダイヤフラム76が、第二の取付金具14の下側開口部を覆蓋して第二の取付金具14に固定的に組み付けられている。
Thus, the
また、仕切部材28や固定金具78が第二の取付金具14にかしめ固定されていることに伴い、第二の取付金具14に被着されたシールゴム層26が、第二の取付金具14と蓋部材32の間で圧縮変形されつつ、蓋部材32の外周部分に重ね合わされていることによって、本体ゴム弾性体16の大径凹所24の開口部分が仕切部材28で流体密に封止されている。更に、固定金具78の内フランジ状部84の上端面に被着されたシールゴム層86が、仕切部材本体30の外側筒部40と内フランジ状部84の間で圧縮変形されつつ、外側筒部40の下端部分に重ね合わされていることによって、仕切部材本体30の下側凹所36とダイヤフラム76と内フランジ状部84で区画された領域が流体密に封止されている。
In addition, as the
これにより、仕切部材28を挟んだ軸方向一方(図1中、上)の側において、本体ゴム弾性体16の大径凹所24が仕切部材28で閉塞された領域には、壁部の一部が本体ゴム弾性体16で構成されて振動入力時に本体ゴム弾性体16の弾性変形に基づいて圧力変動が生ぜしめられる受圧室88が形成されている。また、仕切部材28を挟んだ軸方向他方(図1中、下)の側において、仕切部材本体30の下側凹所36とダイヤフラム76と内フランジ状部84で区画された領域には、壁部の一部がダイヤフラム76で構成されてダイヤフラム76の弾性変形に基づき容積変化が容易に許容される平衡室90が形成されている。これら受圧室88と平衡室90には、非圧縮性流体が封入されている。封入される非圧縮性流体としては、例えば水やアルキレングリコール、ポリアルキレングリコール、シリコーン油等が採用されるが、特に流体の共振作用等の流動作用に基づく防振効果を有効に得るためには、0.1Pa・s以下の低粘性流体を採用することが望ましい。また、受圧室88や平衡室90への非圧縮性流体の封入は、例えば、第一及び第二の取付金具12,14を備えた本体ゴム弾性体16の一体加硫成形品に対する仕切部材28やダイヤフラム76の組み付けを非圧縮性流体中で行うことによって、好適に実現される。
Thereby, on one side in the axial direction (upward in FIG. 1) sandwiching the
また、蓋部材32と固定金具78の内フランジ状部84の軸方向対向面間において、仕切部材本体30の外側筒部40と固定金具78の筒壁部80が軸直角方向に所定距離を隔てて対向位置せしめられている。また、外側筒部40に突設された仕切突部44の外周面が、固定金具78の筒壁部80の内周面に被着されたシールゴム層86の表面に重ね合わされている。そして、仕切部材28および固定金具78が第二の取付金具14にかしめ固定されることに伴い、上述の如く固定金具78の内フランジ状部84の上端面に被着されたシールゴム層86が、仕切部材本体30の外側筒部40と内フランジ状部84の間で圧縮変形されつつ、外側筒部40の下端部分に重ね合わされていると共に、固定金具78における外フランジ状部82の内周縁部乃至は筒壁部80の上端部分に被着されたシールゴム層86が、第二の取付金具14と蓋部材32の外周部分の間で圧縮変形されつつ、蓋部材32の外周部分に重ね合わされている。更に、固定金具78の筒壁部80の内周面に被着されたシールゴム層86における周上の一部が、外側筒部40に突設された仕切突部44と固定金具78の間で圧縮変形されつつ、仕切突部44に重ね合わされている。なお、仕切部材本体30の外側筒部40に形成された切欠き状の連通窓42においては、その下端開口部がシールゴム層86を介して固定金具78の内フランジ状部84で覆蓋されているのみであり、連通窓42が外側筒部40を軸直角方向に貫通する形態は維持されている。
Further, between the
それによって、蓋部材32と固定金具78の内フランジ状部84の軸方向対向面間における仕切部材本体30の外側筒部40と固定金具78の筒壁部80の軸直角方向対向面間において、周方向に延びる環状領域が流体密に閉塞されており、また、かかる環状領域の周上の一部が仕切突部44で流体密に仕切られている。この環状領域によって仕切部材28の外周部分を周方向に一周弱の長さで延びるオリフィス通路92が構成されている。また、オリフィス通路92の一方の端部が、蓋部材32に形成された連通孔54を通じて受圧室88に接続されていると共に、オリフィス通路92の他方の端部が、仕切部材本体30の外側筒部40に形成された連通窓42を通じて平衡室90に接続されていることによって、受圧室88と平衡室90の間におけるオリフィス通路92を通じての流体流動が許容されるようになっている。
Thereby, between the outer
特に本実施形態では、オリフィス通路92を通じて流動せしめられる流体の共振周波数が、例えば、該流体の共振作用に基づいてエンジンシェイク等に相当する10Hz程度の低周波数域の振動に対して有効な防振効果(高減衰効果)が発揮されるようにチューニングされている。かかるオリフィス通路92のチューニングは、例えば、受圧室88や平衡室90の各壁ばね剛性、即ちそれら各室88,90を単位容積だけ変化させるのに必要な圧力変化量に対応する本体ゴム弾性体16やダイヤフラム76等の各弾性変形量に基づく特性値を考慮しつつ、オリフィス通路92の通路長さと通路断面積を調節することによって行うことが可能であり、一般に、オリフィス通路92を通じて伝達される圧力変動の位相が変化して略共振状態となる周波数を、オリフィス通路92のチューニング周波数として把握することが出来る。
In particular, in the present embodiment, the anti-vibration effective for the low frequency region vibration of about 10 Hz corresponding to the engine shake or the like based on the resonance action of the fluid flowing through the
また、仕切部材28の収容空所62に収容配置された弾性ゴム板64では、その一方(図1中、上)の面に対して、蓋部材32における第一及び第二透孔58,60を通じて受圧室88の圧力が及ぼされるようになっていると共に、その他方(図1中、下)の面に対して、仕切部材本体30の中央底部38における第一及び第二透孔48,50を通じて平衡室90の圧力が及ぼされるようになっている。これにより、受圧室88と平衡室90の圧力差に基づいて、弾性ゴム板64の弾性突起74の変形変位により中央円板部66が軸方向に変位せしめられたり、弾性ゴム板64の薄板状部70や外側環状部68が変形変位せしめられたりすることとなる。それによって、収容空所62における弾性ゴム板64の軸方向の変形変位が実現され得て、かかる変形変位に基づき受圧室88の圧力変動が吸収されるのである。このことからも明らかなように、受圧室88の圧力変動を変位によって吸収する液圧吸収機構が、弾性ゴム板64や収容空所62、蓋部材32や仕切部材本体30に形成される各第一及び第二透孔48,50,58,60を含んで構成されている。
Further, in the
なお、弾性ゴム板64の変位に伴って第一及び第二透孔48,50,58,60を通じて受圧室88と平衡室90の間で流動せしめられる流体の共振周波数は、アイドリング基本振動よりも高周波数域となるように設計され、より好適には走行こもり音等の更に高周波数域となるように設計される。これにより、弾性ゴム板64の変位に伴って惹起される流体流動の反共振作用が回避されて、液圧吸収機能が充分に広い周波数域の小振幅振動に対して発揮される。尤も、弾性ゴム板64の変位に伴って第一及び第二透孔48,50,58,60を通じて受圧室88と平衡室90の間で流動せしめられる流体の共振周波数を、特定の防振すべき振動周波数(例えばアイドリング振動周波数等)にチューニングしても良い。これにより、チューニング周波数域の振動に対して、流体の共振作用を利用して一層効果的な防振効果を得ることが可能となる。
The resonance frequency of the fluid that flows between the
なお、かかる弾性ゴム板64の収容空所62への収容状態下、弾性ゴム板64の中央円板部66の上端面が蓋部材32の第一透孔58周りの下端面に当接せしめられていると共に、中央円板部66の下端面が仕切部材本体30の中央底部38の第一透孔48周りの上端面に弾性突起74を介して当接せしめられていたり、或いは僅かな隙間を隔てて対向位置せしめられていることによって、蓋部材32と仕切部材本体30の各第一透孔48,58が中央円板部66で略覆蓋されている。一方、蓋部材32の第二透孔60と中央底部38の第二透孔50の軸方向間に位置せしめられる弾性ゴム板64の薄板状部70が、収容空所62の軸方向中間部分に位置せしめられていることで蓋部材32や中央底部38に何れも当接しておらず、また、蓋部材32の第二透孔60と中央底部38の第二透孔50の軸方向間に位置せしめられる弾性ゴム板64の外側環状部68においては、周方向にうねり形状とされていることで、蓋部材32の第二透孔60周りの下端面に当接する部分と中央底部38の第二透孔50周りの上端面に当接する部分とが周方向で交互に位置せしめられている。これにより、弾性ゴム板64の当接打音の軽減等が図られている。
Note that the upper end surface of the
そこにおいて、収容空所62の平衡室90側の壁部を構成する仕切部材本体30の中央底部38において、弾性ゴム板64よりも軸直角方向外方に位置せしめられる外周部分には、圧逃し用孔としての短絡用孔94が貫通形成されている。本実施形態の短絡用孔94は、軸直角方向断面が小径の略円形状とされて、マウント軸方向と平行な中央底部38の厚さ方向(図1,3中、上下)に略一定の当該円形断面で連続して延びており、中央底部38における収容空所62に面する上端面と平衡室90に面する下端面に、何れも開口せしめられている。また、このような短絡用孔94が、中央底部38における第二透孔50よりも軸直角方向外方の外周部分において、周方向で等間隔に複数(本実施形態では、8つ)形成されている。
Therefore, in the
特に本実施形態では、これら短絡用孔94が、収容空所62に収容配置された弾性ゴム板64よりも軸直角方向外方に位置せしめられていると共に、弾性ゴム板64の位置決め用突起72における蓋部材32の位置決め用孔52への挿通配置等による前述の如き弾性ゴム板64の軸直角方向の変位量制限手段で、弾性ゴム板64の軸直角方向変位が制限されている。これにより、短絡用孔94の収容空所62への開口部分が、弾性ゴム板64で覆蓋せしめられることが阻止されて、短絡用孔94が収容空所62に対して常時開口せしめられている。要するに、これら複数の短絡用孔94が、中央底部38における弾性ゴム板64の当接面を外れて収容空所62との連通状態が維持せしめられる状態で形成されている。
In particular, in the present embodiment, the short-
さらに、ダイヤフラム76の固定金具78の内フランジ状部84には、弾性突出部材としてのゴム弁体96が設けられている。本実施形態のゴム弁体96は、ダイヤフラム76やシールゴム層86と一体形成されたゴム弾性材からなり、内フランジ状部84の内周縁部から仕切部材本体30の中央底部38の各短絡用孔94に向かって突設されて、平衡室90内を上下方向に延びる小径の略円柱形状を呈している。即ち、ゴム弁体96が、固定金具78の内フランジ状部84において、仕切部材本体30の短絡用孔94に対応した数(本実施形態では8つ)だけ突設されていると共に、仕切部材本体30の各短絡用孔94と対応する位置に設けられているため周方向で等間隔に配されている。また、図4にも示されているように、ゴム弁体96の突出先端面が略円形状とされていると共に、かかる突出先端面の外径寸法が、短絡用孔94の外径寸法よりも大きくされている。
Further, a
このようなゴム弁体96においては、仕切部材28と固定金具78が第二の取付金具14にかしめ固定されることに伴い、ゴム弁体96の突出先端面が、仕切部材本体30の中央底部38の下端面に開口する短絡用孔94の平衡室90側の開口面を覆うようにして、該開口部分の周りの中央底部38の下端面に当接されている。更に、ゴム弁体96が固定金具78の内フランジ状部84と仕切部材本体30の中央底部38の間で圧縮変形せしめられることで、ゴム弁体96の突出先端面が、予圧縮力をもって中央底部38における短絡用孔94の平衡室90側の開口部分の周りに当接せしめられている。特に、かかる当接状態下、ゴム弁体96が、固定金具78の内フランジ状部84に加硫接着される基端部分から中央底部38に当接される突出先端部分に向かってマウント軸方向に対して次第に軸直角方向外方に向かうように傾斜せしめられている。なお、このゴム弁体96の傾斜形状は、固定金具78が第二の取付金具14に取り付けられる前の状態から有していても良いし、或いは固定金具78の第二の取付金具14への取り付け前の状態下、軸方向に延びているゴム弁体96が中央底部38への当接に伴い弾性変形せしめられることによって有するようにしても良い。
In such a
すなわち、ゴム弁体96の突出先端部分は、仕切部材本体30の中央底部38と固定金具78の内フランジ状部84の軸方向対向面間で予圧縮により変形せしめられるゴム弁体96の弾性を利用して、内フランジ状部84から中央底部38に向かって付勢せしめられた形態で、中央底部38における短絡用孔94の開口部分の周りに当接せしめられているのである。その結果、中央底部38の各短絡用孔94における平衡室90側の開口部分がゴム弁体96で弾性的に閉塞せしめられて、収容空所62と平衡室90の間における短絡用孔94を通じての連通が遮断せしめられている。上述の説明からも明らかなように、本実施形態では、短絡用孔94の平衡室90側の開口部分に設けられる弁体と、該弁体を付勢して短絡用孔94を弁体で弾性的に閉塞せしめる付勢手段が、何れもゴム弁体96によって構成されている。
That is, the protruding tip portion of the
ここで、受圧室88から収容空所62および短絡用孔94を通じてゴム弁体96に及ぼされる圧力が、ゴム弁体96の突出先端部分を固定金具78から仕切部材本体30に向かって付勢せしめる付勢力(本実施形態では、圧縮変形せしめられたゴム弁体96の弾性復元力)よりも大きくなると、ゴム弁体96が中央底部38における短絡用孔94の開口部分から離隔する方向に変形変位せしめられて、収容領域62と平衡室90の間における短絡用孔94を通じての連通状態が許容される。特に本実施形態では、ゴム弁体96に及ぼす付勢力が、エンジンシェイク等に相当する低周波大振幅の振動入力時やアイドリング振動等に相当する中乃至高周波小振幅の振動入力時に受圧室88に生ぜしめられる圧力変動に比して大きくされている一方、アイドリング振動時において、エンジンの爆発成分に対応する周期的な主振動であるアイドリング基本振動よりも低周波数域の11〜15Hz程度の周波数帯でアイドリング振動の通常よりも大きな振幅の不定期な振動が入力された際に、受圧室88に生ぜしめられる圧力の大きさに比して小さくされている。
Here, the pressure exerted on the
上述の如き構造とされた自動車用エンジンマウント10においては、エンジンシェイク等の低周波大振幅振動が入力された場合に、かかる振幅が大きいことから、低動ばねによる振動絶縁を目的とした弾性ゴム板64の収容空所62における変位では、受圧室88の圧力変動が有効に吸収し得ない。一方、かかるエンジンシェイク等の振幅振動時に生ぜしめられる受圧室88の圧力の大きさが、アイドリング時でアイドリング基本振動よりも低周波数域で大振幅の振動入力時における受圧室88の圧力に比して小さくされていることに加えて、ゴム弁体96の突出先端部分を仕切部材本体30の中央底部38における短絡用孔94の平衡室90側開口部分の周りに当接するように付勢せしめる付勢力が、かかるエンジンシェイク時の受圧室88の圧力に比して大きくされていることから、ゴム弁体96が中央底部38における短絡用孔94の平衡室90側開口部分の周りに当接せしめられて、収容空所62と平衡室90の間における短絡用孔94を通じての連通が遮断される状態が維持されている。これにより、受圧室88の圧力が、弾性ゴム板64の変形変位により吸収されたり、収容空所62から短絡用孔94を通じて漏れ出したりすることが抑えられることから、受圧室88と平衡室90の間に圧力差が有効に惹起せしめられて、オリフィス通路92を通じて流動せしめられる流体の量が十分に確保され得る。それによって、かかる流体の共振作用等の流動作用に基づく防振効果(高減衰効果)が安定して得られるのである。
In the
また、アイドリング振動等の中乃至高周波数域の小振幅振動が入力された場合には、オリフィス通路92は、反共振的な作用によって流体流通抵抗が著しく大きくなって実質的に閉塞状態とされる。ここで、低動ばねによる振動絶縁を目的として設計された弾性ゴム板64における収容空所62内の小変位に基づいて、受圧室88の圧力変動が有効に吸収される。
When a small amplitude vibration in a medium to high frequency range such as idling vibration is input, the
尤も、かかるアイドリング時に生ぜしめられる受圧室88の圧力変動の大きさが、アイドリング基本振動(一般に、エンジンの爆発に伴う一次や二次の周期振動)では比較的に小さいことから、短絡用孔94がゴム弁体96で遮断状態に維持される。しかし、アイドリング基本振動の振幅は小さいことから、短絡用孔94を通じての流体流動を必要とすることなく、弾性ゴム板64の変形や変位によって受圧室88の液圧吸収作用が発揮されて、アイドリング基本振動に対して有効な防振効果(低動ばね特性に基づく振動絶縁効果)が発揮される。
However, since the magnitude of the pressure fluctuation of the
また、その際、弾性ゴム板64の変位に伴って受圧室88と平衡室90の間に許容される流体流動の流路長さや流路断面積を適当に設定して、かかる流体流動の共振作用により、アイドリング基本振動に対する低動ばね効果を得ることも可能である。この場合には、短絡用孔94がゴム弁体96で遮断状態に維持されることから、流体流動の共振作用に基づくアイドリング基本振動への防振効果が、短絡用孔94によって阻害されることもない。
At this time, the flow length and the cross-sectional area of the fluid flow allowed between the
ところで、本発明者が検討したところ、自動車用エンジンマウント10では、アイドリング時において、アイドリング基本振動よりも低周波側で大振幅の振動が非周期的に入力される場合があることがわかった。このような場合では、オリフィス通路92が反共振作用に起因して実質的に閉塞状態とされていると共に、弾性ゴム板64の変形変位による受圧室88の圧力吸収機能は、その対応可能な圧力変化量を超えていることから有効に機能し得ない。
By the way, as a result of investigation by the present inventor, it has been found that in the
そこにおいて、本実施形態に係る自動車用エンジンマウント10では、上述の如き大振幅のアイドリング振動である高周波数域の大振幅振動(アイドリング大振幅振動)が入力された際に、受圧室88の大きな圧力が収容空所64から短絡用孔94を通じてゴム弁体96に及ぼされることにより、ゴム弁体96が付勢力に抗して変形変位せしめられて仕切部材本体30の中央底部38における短絡用孔94の平衡室90側開口部分の周りから離隔せしめられて、受圧室88と平衡室90が収容空所62および短絡用孔94を通じて短絡せしめられる。要するに、本実施形態では、ゴム弁体96において、それ自体の弾性に基づいて短絡用孔94を塞ぐ付勢力が、かかるアイドリング大振幅振動の入力時における受圧室88の発生圧力(正圧力)の大きさに比して小さくされている。
Therefore, in the
その結果、従来問題となっていたアイドリング大振幅振動の入力に際してのエンジンマウント10の著しい剛体化に伴う防振性能の大幅な低下が回避されるのであり、アイドリング大振幅振動に対しても良好な防振性能が発揮されるのである。なお、この短絡用孔94が開口せしめられることによって短絡用孔94を通じての流体流路の流路断面積や流路長さを適当に設定することにより、かかる流体の共振作用に基づいて、アイドリング大振幅振動に対して一層効果的な防振効果を得ることも可能である。その場合には、一般に、アイドリング大振幅振動に相当する周波数域で高減衰効果が発揮されるようにチューニングすることが有効である。
As a result, it is possible to avoid a significant decrease in the vibration proof performance due to the significant rigid body of the
特に、弾性ゴム板64が位置決め用突起72の蓋部材32に対する係合位置決め作用によって収容空所62内の中央に位置決め保持されている一方、短絡用孔94が収容空所62の中央底部38における弾性ゴム板64の当接面を外れた位置に形成されていることで、短絡用孔94における収容空所62への連通状態が弾性ゴム板64で阻害されることなく安定して確保されている。しかも、中央底部38の外周部分において複数の短絡用孔94が形成されており、且つ弾性ゴム板64の外径寸法が中央底部38に形成されたそれら複数の短絡用孔94は、弾性ゴム板64の外径寸法よりも大きな円周上に形成されている。これにより、たとえ弾性ゴム板64が収容空所62内で径方向に変位し得たとしても、弾性ゴム板64内の収容空ョ62内における何れの変位位置においても、少なくとも一つの短絡用孔94の少なくとも一部が開口状態に維持され得るようになっている。これにより、問題となるアイドリング大振幅振動の入力時における短絡用孔94を通じての受圧室88と平衡室90間の短絡が、確実に為され得て、高い信頼性が発揮されるようになっているのである。
In particular, the
従って、本実施形態の自動車用エンジンマウント10によれば、エンジンシェイクやアイドリング基本振動に対する防振効果が安定して発揮され得ると共に、例示の如きアイドリング大振幅振動の入力時においても、短絡用孔94を通じての受圧室88と平衡室90の短絡によって、優れた防振効果が得られるのである。
Therefore, according to the
因みに、本実施形態の自動車用エンジンマウント10における具体的な防振特性を例示する。以下に示す防振特性は、上述の実施形態に従う構造とされた自動車用エンジンマウント10に対してパワーユニットの分担支持荷重に相当する静的荷重を中心軸上で第一の取付金具12と第二の取付金具14の間に及ぼした状態下で行なった。
Incidentally, the concrete vibration-proof characteristic in the
第一の具体的な例示においては、オリフィス通路92をエンジンシェイクに相当する低周波大振幅振動(周波数:f1=10Hz程度,振幅:±1.0mm)にチューニングすると共に、可動板としての弾性ゴム板64の変位に基づいて透孔48,50,58,60等を通じて流体が流動せしめられる流体流路をアイドリング基本振動に相当する高周波小振幅振動(周波数:f2=20〜30Hz程度,振幅:±0.1mm)の入力時に流体の共振作用に基づく液圧吸収機能(低動ばね効果)が発揮されるように、且つエンジンシェイクに相当する低周波大振幅振動に対しては弾性ゴム板64の変位量制限で機能しないようにチューニングした。このようなチューニングを施したことにより、図5に示されているように、低周波大振幅振動に対しては、エンジンシェイクに相当する周波数域でオリフィス通路92による高減衰効果が発揮されて優れた防振効果が実現される。一方、高周波小振幅振動に対しては、図6に示されているように、アイドリング基本振動に相当する周波数域で弾性ゴム板64の変位に伴う流体流動作用に基づいて低動ばねによる優れた防振効果が発揮される。更に、一層高周波数:f3となる例えば走行こもり音等の振動入力時には、弾性ゴム板64による液圧吸収機能も充分に発揮され得ないものの、受圧室88の圧力増大に伴ってゴム弁体96が開放されることで、受圧室88の著しい圧力増加が短絡用孔94を通じて平衡室90に逃がされることにより、マウント特性の著しい剛体化が回避されて優れた防振性能が発揮され得るのである。因みに、短絡用孔94を設けていない従来構造のエンジンマウントについて、同様な実験を行なった場合の測定結果を、図6に比較例として併せ示す。
In the first specific example, the
第二の具体的な例示においては、第一の具体的な例示と同様に、オリフィス通路92をエンジンシェイクに相当する低周波大振幅振動(周波数:f1=10Hz程度,振幅:±1.0mm)にチューニングすると共に、可動板としての弾性ゴム板64の変位に基づいて透孔48,50,58,60等を通じて流体が流動せしめられる流体流路をアイドリング基本振動に相当する高周波小振幅振動(周波数:f2=20〜30Hz程度,振幅:±0.1mm)の入力時に流体の共振作用に基づく液圧吸収機能(低動ばね効果)が発揮されるように、且つエンジンシェイクに相当する低周波大振幅振動に対しては弾性ゴム板64の変位量制限で機能しないようにチューニングした。一方、弾性ゴム板64の開放によって連通状態とされる短絡用孔94を通じての流体流路をアイドリング大振幅振動に相当する中周波大振幅振動(周波数が11〜15Hz程度で、振幅が±0.5mm程度)の入力時に流体の共振作用に基づく高減衰効果が発揮されるようにチューニングした。このようなチューニングを施したことにより、エンジンシェイクに対するオリフィス通路92による高減衰効果と、アイドリング基本振動に対する弾性ゴム板64の変位に基づく低動ばね効果(振動絶縁効果)とは、第一の具体的な例示と同様に何れも有効に発揮され得たのであり、それに加えて、アイドリング大振幅振動に対しては、受圧室88の圧力増大に伴ってゴム弁体96が開放されることで生ぜしめられる短絡用孔94を通じての流体流動に基づく高減衰効果が発揮されて、優れた防振効果が発揮され得たのである。
In the second specific example, similarly to the first specific example, the low-frequency large-amplitude vibration (frequency: about f1 = 10 Hz, amplitude: ± 1.0 mm) corresponding to the engine shake in the
要するに、本発明に従って構成されたエンジンマウント10においては、そのチューニングによって、3つ以上の周波数域でそれぞれ要求される各種の防振特性に対して容易に且つ効果的に対応することが可能となるのである。
In short, in the
以上、本発明の実施形態について詳述してきたが、かかる実施形態における具体的な記載によって、本発明は、何等限定されるものでなく、当業者の知識に基づいて種々なる変更、修正、改良等を加えた態様で実施可能であり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。 The embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific descriptions in the embodiments, and various changes, modifications, and improvements based on the knowledge of those skilled in the art. Needless to say, any of these embodiments can be included in the scope of the present invention without departing from the spirit of the present invention.
例えば、前記実施形態とは別の本発明の一実施形態として、中央に透孔が設けられたドーナツ円板状の弾性ゴム板を採用し、この透孔の形成位置に対応する仕切部材本体の中央底部の軸直角方向中央部分に短絡用孔を貫通形成することも可能である。なお、その場合には、短絡用孔を覆蓋するための弁体構造として、例えば、付勢手段としての金属板ばねを仕切部材やダイヤフラムの固定金具等に支持させると共に、ダイヤフラムと別体形成されたゴム弾性材等からなる弁体を金属板ばねの自由端に設けて、弁体を中央底部の当該中央部分における短絡用孔の平衡室側開口部分に対して平衡室側から重ね合わせるようにして当接および離隔方向に変位可能に設けると共に、短絡用孔を金属板ばねの付勢力により弁体で弾性的に閉塞せしめる態様等が採用可能である。 For example, as one embodiment of the present invention different from the above embodiment, a donut disk-shaped elastic rubber plate provided with a through hole in the center is adopted, and the partition member body corresponding to the formation position of this through hole is adopted. It is also possible to form a short-circuiting hole in the central portion in the direction perpendicular to the axis at the center bottom. In this case, as a valve body structure for covering the short-circuit hole, for example, a metal leaf spring as an urging means is supported by a partition member, a diaphragm fixing bracket or the like, and formed separately from the diaphragm. A valve body made of rubber elastic material or the like is provided at the free end of the metal leaf spring so that the valve body is superposed from the equilibrium chamber side on the equilibrium chamber side opening of the short-circuit hole in the central portion of the center bottom. For example, it is possible to adopt a mode in which the short-circuiting hole is elastically closed by the valve body by the urging force of the metal plate spring.
また、前記実施形態では、収容空所62において弾性ゴム板64を板厚方向に直交する軸直角方向の変位量を制限する手段が、弾性ゴム板64の位置決め用突起72を蓋部材32の位置決め用孔52に挿通せしめてなる軸直角方向の係止機構や、弾性ゴム板64に突設された弾性突起74が収容空所62の壁部(中央底部38)に予圧縮をもって当接される当接機構を含んで構成されていたが、これに限定されるものでなく、例えば、弾性ゴム板の外周側で短絡用孔よりも内周側に位置して制限突部を中央底部の内面に突設したり、或いは中央底部の内面の外周側に段差を設けて、短絡用孔の開口部分の配設領域の厚さ方向の内法寸法を、弾性ゴム板の板厚寸法よりも小さくしたり等して、弾性ゴム板の変位量制限手段を構成することも可能である。
In the embodiment, the means for restricting the displacement amount of the
また、前記実施形態では、オリフィス通路92がエンジンシェイクにチューニングされると共に、アイドリング振動の防振対策用に弾性ゴム板64やゴム弁体96が設計されていたが、例えば、低速こもりや中速こもり、高速こもりその他問題となる振動に応じて、オリフィス通路のチューニング振動や弾性ゴム板、ゴム弁体の設計が設定変更され得る。そこにおいて、例えば、短絡用孔を、仕切部材の内部を周方向や径方向等に延びる内部流路形態や平衡室側に突出する筒状形態等をもって形成することで流路長さを大きく設定すること等も可能である。
In the above-described embodiment, the
また、例えば、周方向に円弧形状に延びるゴム弁体で複数の短絡用孔を閉塞せしめたり、或いは弾性ゴム板を全体に亘って厚さ寸法が一定の円板形状で構成しても良い。 Further, for example, a plurality of short-circuiting holes may be closed with a rubber valve element extending in an arc shape in the circumferential direction, or the elastic rubber plate may be formed in a disk shape with a constant thickness dimension throughout.
その他、ゴム弁体96や短絡用孔94、弾性ゴム板64、仕切部材28、収容空所62、第一透孔48,58、第二透孔50,60、オリフィス通路92等における形状や大きさ、構造、数、配置等の形態は、要求される防振効果や製作性等に応じて適宜に設計変更され得るものであり、前記実施形態に限定されるものでない。
In addition, the shape and size of the
10:自動車用エンジンマウント、12:第一の取付金具、14:第二の取付金具、16:本体ゴム弾性体、28:仕切部材、38:中央底部、48:第一透孔、50:第二透孔、58:第一透孔、60:第二透孔、62:収容空所、64:弾性ゴム板、76:ダイヤフラム、88:受圧室、90:平衡室、92:オリフィス通路、94:短絡用孔、96:ゴム弁体 DESCRIPTION OF SYMBOLS 10: Engine mount for motor vehicles, 12: 1st mounting bracket, 14: 2nd mounting bracket, 16: Main body rubber elastic body, 28: Partition member, 38: Center bottom part, 48: 1st through-hole, 50: 1st Two through holes, 58: First through hole, 60: Second through hole, 62: Storage space, 64: Elastic rubber plate, 76: Diaphragm, 88: Pressure receiving chamber, 90: Equilibrium chamber, 92: Orifice passage, 94 : Short circuit hole, 96: Rubber disc
Claims (6)
前記可動板配設領域の前記平衡室側の壁部を貫通して該可動板配設領域を該平衡室に連通せしめる圧逃し用孔を、その少なくとも一部が該可動板の当接面を外れて連通状態に維持される状態で形成すると共に、該圧逃し用孔の該平衡室側の開口部分に対して当接および離隔方向に変位可能な弁体を設け、更に該弁体を付勢して該圧逃し用孔を該弁体で弾性的に閉塞せしめる付勢手段を設けたことを特徴とする自動車用の流体封入式エンジンマウント。 A first attachment member attached to one of the power unit of the automobile and the vehicle body and a second attachment member attached to the other of the power unit and the vehicle body are connected by a main rubber elastic body, and the wall portion is formed by the main rubber elastic body. Forming a pressure receiving chamber in which a part of the wall is formed and an equilibrium chamber in which a part of the wall portion is formed of a flexible membrane, and incompressible fluid is enclosed in the pressure receiving chamber and the equilibrium chamber, and the pressure receiving chambers And an orifice passage that communicates the equilibrium chamber with each other, a movable plate arrangement region is formed in a partition member that partitions the pressure receiving chamber and the equilibrium chamber, and the movable plate is accommodated in the movable plate arrangement region. A fluid-filled engine mount for an automobile having a fluid pressure absorption mechanism that absorbs a pressure variation in the pressure receiving chamber by displacement by providing a through hole for allowing one surface of the movable plate to face the pressure receiving chamber or the equilibrium chamber. So ,
A pressure relief hole that penetrates the wall of the movable plate arrangement region on the side of the equilibrium chamber and communicates the movable plate arrangement region with the equilibrium chamber, at least a part of which is a contact surface of the movable plate. A valve body that is formed so as to be disconnected and maintained in communication and that can be displaced in a contact and separation direction with respect to the opening portion of the pressure relief hole on the side of the equilibrium chamber is provided. A fluid-filled engine mount for an automobile, comprising urging means for resiliently closing the pressure relief hole with the valve body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008088174A JP2009243511A (en) | 2008-03-28 | 2008-03-28 | Fluid-filled engine mount for automobile |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008088174A JP2009243511A (en) | 2008-03-28 | 2008-03-28 | Fluid-filled engine mount for automobile |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009243511A true JP2009243511A (en) | 2009-10-22 |
Family
ID=41305665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008088174A Pending JP2009243511A (en) | 2008-03-28 | 2008-03-28 | Fluid-filled engine mount for automobile |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009243511A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011094750A (en) * | 2009-10-30 | 2011-05-12 | Tokai Rubber Ind Ltd | Fluid filled active type engine mount |
JP2012237366A (en) * | 2011-05-11 | 2012-12-06 | Tokai Rubber Ind Ltd | Fluid-filled damping device |
CN103758917A (en) * | 2013-12-30 | 2014-04-30 | 长城汽车股份有限公司 | Engine hydraulic suspension and vehicle comprising the same |
US8783668B2 (en) | 2011-05-23 | 2014-07-22 | Tokai Rubber Industries, Ltd. | Fluid-filled type vibration damping device |
CN105134863A (en) * | 2015-09-23 | 2015-12-09 | 无锡市中捷减震器有限公司 | Automobile chassis closed type hydraulic suspension shock-absorbing device |
CN109838496A (en) * | 2017-11-24 | 2019-06-04 | 现代自动车株式会社 | Engine mounting for vehicle |
-
2008
- 2008-03-28 JP JP2008088174A patent/JP2009243511A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011094750A (en) * | 2009-10-30 | 2011-05-12 | Tokai Rubber Ind Ltd | Fluid filled active type engine mount |
JP2012237366A (en) * | 2011-05-11 | 2012-12-06 | Tokai Rubber Ind Ltd | Fluid-filled damping device |
US8783668B2 (en) | 2011-05-23 | 2014-07-22 | Tokai Rubber Industries, Ltd. | Fluid-filled type vibration damping device |
DE112012000231B4 (en) * | 2011-05-23 | 2017-11-09 | Sumitomo Riko Company Limited | Fluid-filled vibration control device |
CN103758917A (en) * | 2013-12-30 | 2014-04-30 | 长城汽车股份有限公司 | Engine hydraulic suspension and vehicle comprising the same |
CN103758917B (en) * | 2013-12-30 | 2016-02-03 | 长城汽车股份有限公司 | Engine hydraulic mount and there is the vehicle of this engine hydraulic mount |
CN105134863A (en) * | 2015-09-23 | 2015-12-09 | 无锡市中捷减震器有限公司 | Automobile chassis closed type hydraulic suspension shock-absorbing device |
CN109838496A (en) * | 2017-11-24 | 2019-06-04 | 现代自动车株式会社 | Engine mounting for vehicle |
CN109838496B (en) * | 2017-11-24 | 2021-11-26 | 现代自动车株式会社 | Engine mount for vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5846939B2 (en) | Fluid filled vibration isolator | |
JP5882125B2 (en) | Liquid-filled vibration isolator | |
JP5535958B2 (en) | Liquid-filled vibration isolator | |
JP5916550B2 (en) | Fluid filled vibration isolator | |
JP2008002618A (en) | Fluid filled vibration isolating device | |
JP2007271001A (en) | Fluid-sealed vibration isolating device | |
JP2015145701A (en) | Fluid sealed vibration control device | |
JP2012026510A (en) | Fluid filled vibration prevention device | |
JP2009243510A (en) | Fluid-filled type engine mount for automobile | |
JP2009243511A (en) | Fluid-filled engine mount for automobile | |
JP5060846B2 (en) | Fluid filled vibration isolator | |
JP2007085523A (en) | Fluid-enclosed type vibration isolator | |
JP2008190602A (en) | Fluid-sealed vibration isolating device | |
JP5431982B2 (en) | Liquid-filled vibration isolator | |
JP2013210093A (en) | Fluid-filled vibration isolation device | |
JP2009243543A (en) | Fluid sealed type vibration isolator | |
JP2008163970A (en) | Fluid-sealed vibration control device | |
JP2007271004A (en) | Fluid-sealed vibration isolating device | |
JP2013148192A (en) | Fluid sealing type vibration-proof device | |
JP5543031B2 (en) | Fluid filled vibration isolator | |
JP4871902B2 (en) | Fluid filled vibration isolator | |
JP4075066B2 (en) | Fluid filled engine mount | |
JP5108658B2 (en) | Fluid filled vibration isolator | |
JP4792414B2 (en) | Fluid filled vibration isolator | |
JP5899039B2 (en) | Fluid filled vibration isolator |