JP2013148192A - Fluid sealing type vibration-proof device - Google Patents

Fluid sealing type vibration-proof device Download PDF

Info

Publication number
JP2013148192A
JP2013148192A JP2012010957A JP2012010957A JP2013148192A JP 2013148192 A JP2013148192 A JP 2013148192A JP 2012010957 A JP2012010957 A JP 2012010957A JP 2012010957 A JP2012010957 A JP 2012010957A JP 2013148192 A JP2013148192 A JP 2013148192A
Authority
JP
Japan
Prior art keywords
pressure receiving
receiving chamber
fluid
buffer
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012010957A
Other languages
Japanese (ja)
Other versions
JP5829135B2 (en
Inventor
Tomohiro Kanetani
知宏 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2012010957A priority Critical patent/JP5829135B2/en
Priority to PCT/JP2012/004723 priority patent/WO2013099051A1/en
Priority to CN201280049802.0A priority patent/CN103890443B/en
Publication of JP2013148192A publication Critical patent/JP2013148192A/en
Priority to US14/142,516 priority patent/US9970506B2/en
Application granted granted Critical
Publication of JP5829135B2 publication Critical patent/JP5829135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a new fluid sealing type vibration-proof device capable of reducing hitting sound due to contact of a movable member and abnormal noises caused by cavitation in an easily manufactured structure.SOLUTION: A hollow buffer 72 having an internal space 74 is stored and arranged in a storage space 64 of a partition member 36, and comes in contact with an internal face of a wall at a pressure receiving chamber 66 side and an equilibrium chamber 68 side. Liquid pressure of a pressure receiving chamber 66 is applied to one face of a movable member 92 arranged on the internal space 74 through a first window section 80 of the buffer 72 and a first communication hole 44 of the storage space 64, and liquid pressure of the equilibrium chamber 68 is applied to the other face through a second window section 82 of the buffer 72 and a second communication hole 60 of the storage space 64. A communication passage 96 communicated with the first communication hole 44 is formed on a wall of the buffer 72 at a pressure receiving chamber 66 side, and a shortcut passage 98 continuously communicating between the pressure receiving chamber 66 and the storage space 64 by including the first communication hole 44 and the communication passage 96 is formed.

Description

本発明は、例えば自動車のエンジンマウントやボデーマウント、メンバマウント等に用いられる防振装置に係り、特に内部に封入された流体の流動作用に基づく防振効果を利用する流体封入式防振装置に関するものである。   The present invention relates to an anti-vibration device used for, for example, an automobile engine mount, body mount, member mount, and the like, and more particularly, to a fluid-filled vibration-proof device using a vibration-proof effect based on a fluid action of a fluid sealed inside. Is.

従来から、振動伝達系を構成する部材間に介装される防振連結体乃至は防振支持体の一種として、防振装置が知られている。防振装置は、振動伝達系を構成する各一方の部材に取り付けられる第1の取付部材と第2の取付部材を本体ゴム弾性体によって弾性連結した構造を有している。また、防振装置としては、流体の流動作用を利用する流体封入式防振装置も知られている。この流体封入式防振装置は、第2の取付部材によって支持された仕切部材を挟んで受圧室と平衡室が形成されており、それら受圧室と平衡室に非圧縮性流体が封入されていると共に、受圧室と平衡室がオリフィス通路を通じて相互に連通された構造を有している。例えば、特開2009−243510号公報(特許文献1)に示されているのが、それである。   Conventionally, an anti-vibration device is known as a type of anti-vibration coupling body or anti-vibration support body interposed between members constituting a vibration transmission system. The vibration isolator has a structure in which a first attachment member and a second attachment member attached to one member constituting the vibration transmission system are elastically connected by a main rubber elastic body. As a vibration isolator, a fluid-filled vibration isolator using a fluid flow action is also known. In this fluid-filled vibration isolator, a pressure receiving chamber and an equilibrium chamber are formed across a partition member supported by a second mounting member, and an incompressible fluid is sealed in the pressure receiving chamber and the equilibrium chamber. At the same time, the pressure receiving chamber and the equilibrium chamber are connected to each other through the orifice passage. For example, it is shown in Unexamined-Japanese-Patent No. 2009-243510 (patent document 1).

また、流体封入式防振装置では、オリフィス通路がチューニングされた周波数の振動に対して、流体の流動作用に基づいた防振効果が有効に発揮される一方で、チューニング周波数を外れた周波数の振動に対しては、有効な防振効果が得られ難い。特に、チューニング周波数よりも高周波数の振動入力時には、オリフィス通路が反共振によって実質的に遮断されることから、高動ばね化による防振性能の低下が問題となる。そこで、特許文献1に記載の構造では、オリフィス通路のチューニング周波数よりも高周波数の振動入力時に、受圧室と平衡室の間で液圧の伝達を許容する流体流路を備えた液圧伝達機構が設けられている。この液圧伝達機構は、具体的には、仕切部材に形成された収容空所に可動部材(可動板)が収容配置されており、収容空所の壁部に貫通形成された連通孔(流体流路)を通じて可動部材の両面に受圧室の液圧と平衡室の液圧との各一方が及ぼされた構造を有している。そして、高周波小振幅振動の入力時には、可動部材が微小変位乃至は微小変形して、受圧室と平衡室の間で液圧の伝達が許容されると共に、オリフィス通路のチューニング周波数域の振動が入力されると、可動部材が連通孔を閉鎖して両室間での液圧の伝達が防止されるようになっている。これにより、オリフィス通路を通じた流体流動によって発揮される防振効果と、液圧伝達機構による液圧吸収作用で発揮される防振効果とを、選択的に且つ何れも有効に得ることができる。   In addition, the fluid-filled vibration isolator effectively exhibits the vibration isolation effect based on the fluid flow action against the vibration of the frequency at which the orifice passage is tuned, while the vibration at a frequency outside the tuning frequency. In contrast, it is difficult to obtain an effective anti-vibration effect. In particular, at the time of vibration input at a frequency higher than the tuning frequency, the orifice passage is substantially blocked by anti-resonance, which causes a problem of a reduction in vibration-proof performance due to the use of a high dynamic spring. Therefore, in the structure described in Patent Document 1, a hydraulic pressure transmission mechanism including a fluid flow path that allows transmission of hydraulic pressure between the pressure receiving chamber and the equilibrium chamber when a vibration having a frequency higher than the tuning frequency of the orifice passage is input. Is provided. Specifically, in this hydraulic pressure transmission mechanism, a movable member (movable plate) is accommodated in a housing space formed in the partition member, and a communication hole (fluid) formed through the wall portion of the housing space is formed. Each of the fluid pressure in the pressure receiving chamber and the fluid pressure in the equilibrium chamber is applied to both surfaces of the movable member through the flow path). When high-frequency small-amplitude vibration is input, the movable member is slightly displaced or deformed to allow hydraulic pressure to be transmitted between the pressure receiving chamber and the equilibrium chamber, and vibration in the tuning frequency range of the orifice passage is input. Then, the movable member closes the communication hole to prevent transmission of hydraulic pressure between the two chambers. As a result, the vibration isolation effect exhibited by the fluid flow through the orifice passage and the vibration isolation effect exhibited by the hydraulic pressure absorbing action by the hydraulic pressure transmission mechanism can be selectively and effectively obtained.

ところで、流体封入式防振装置では、衝撃的な大荷重が入力されて受圧室の圧力が大幅に低下した場合に、キャビテーションに起因する異音が発生して、自動車の乗室等において静粛性に悪影響を及ぼすという不具合がある。   By the way, in a fluid-filled vibration isolator, when a shocking large load is input and the pressure in the pressure receiving chamber drops significantly, abnormal noise is generated due to cavitation, resulting in quietness in the passenger compartment of an automobile. There is a problem of adversely affecting the system.

そこで、キャビテーション異音の抑制を目的として、特開2009−2420号公報(特許文献2)等には、受圧室と平衡室を隔てる仕切部材に短絡通路を形成すると共に、その短絡通路を連通状態と遮断状態に切り替えるリリーフバルブを設けた構造が提案されている。これによれば、受圧室の圧力が大幅に低下することで、リリーフバルブが開作動されて、短絡通路が連通状態に切り替えられることから、短絡通路を通じた流体流動により受圧室の負圧が速やかに解消されて、キャビテーション異音の発生が防止されるようになっている。   Therefore, for the purpose of suppressing cavitation noise, JP 2009-2420 A (Patent Document 2) and the like form a short-circuit path in a partition member that separates the pressure-receiving chamber and the equilibrium chamber, and the short-circuit path is in a communication state. A structure having a relief valve for switching to a shut-off state has been proposed. According to this, since the pressure in the pressure receiving chamber is greatly reduced, the relief valve is opened and the short-circuit path is switched to the communication state, so that the negative pressure in the pressure-receiving chamber is quickly increased by the fluid flow through the short-circuit path. Therefore, the occurrence of abnormal cavitation noise is prevented.

ところが、特許文献2に記載の構造では、硬質の仕切部材に短絡通路を形成するための加工が必要になると共に、特別なリリーフバルブを設ける必要があることから、構造の複雑化や部品点数の増加、更にはそれらに伴う流体封入式防振装置の大型化や組み付け工程数の増加等が問題になり易い。   However, the structure described in Patent Document 2 requires processing for forming a short-circuit passage in a hard partition member and requires a special relief valve, which complicates the structure and reduces the number of parts. Increasing the size of the fluid-filled vibration isolator and the increase in the number of assembly steps are likely to cause problems.

なお、リリーフバルブを設けることなく、短絡通路を常時連通状態で設けても、キャビテーション異音の低減効果を得ることは可能であるが、通常の振動入力に対する防振性能を確保するために、短絡通路の通路断面積を充分に小さく設定する必要がある。しかしながら、仕切部材が硬質且つ厚肉の部材とされている場合等には、断面積の小さな短絡通路を形成することは加工上の困難を伴うおそれがあり、かかる構造を採用し難い場合もあった。   Even if the short-circuit passage is always in a communicating state without providing a relief valve, it is possible to obtain an effect of reducing cavitation noise, but short-circuiting is necessary to ensure vibration-proof performance against normal vibration input. It is necessary to set the passage cross-sectional area of the passage sufficiently small. However, when the partition member is a hard and thick member, it may be difficult to form a short-circuit passage having a small cross-sectional area, and it may be difficult to adopt such a structure. It was.

特開2009−243510号公報JP 2009-243510 A 特開2009−2420号公報JP 2009-2420 A

本発明は、上述の事情を背景に為されたものであって、その解決課題は、製造容易な構造によって、可動部材の当接による打音とキャビテーションに起因する異音とを何れも低減することができる、新規な構造の流体封入式防振装置を提供することにある。   The present invention has been made in the background of the above-mentioned circumstances, and its solution is to reduce both the hitting sound caused by the abutment of the movable member and the abnormal noise caused by cavitation with an easily manufactured structure. An object of the present invention is to provide a fluid-filled vibration isolator having a novel structure.

すなわち、本発明の第1の態様は、第1の取付部材と第2の取付部材が本体ゴム弾性体によって弾性連結されていると共に、該第2の取付部材によって支持された仕切部材を挟んで壁部の一部が該本体ゴム弾性体で構成された受圧室と壁部の一部が可撓性膜で構成された平衡室とが形成されて、それら受圧室と平衡室に非圧縮性流体が封入されていると共に、それら受圧室と平衡室を相互に連通するオリフィス通路が形成されており、更に該仕切部材の内部には収容空所が形成されて、該収容空所に可動部材が収容配置されていると共に、該収容空所の壁部に形成された第1の連通孔と第2の連通孔を通じて該可動部材の両面に該受圧室の液圧と該平衡室の液圧の各一方が及ぼされている流体封入式防振装置において、前記収容空所には内部空所を備えた中空形状の緩衝体が収容配置されて、該緩衝体が該収容空所の前記受圧室側の壁内面と前記平衡室側の壁内面とに当接されていると共に、該緩衝体の該内部空所には前記可動部材が収容されており、該緩衝体に形成された第1の窓部が該収容空所の前記第1の連通孔に連通されることで該可動部材の一方の面に該受圧室の液圧が及ぼされていると共に、該緩衝体に形成された第2の窓部が該収容空所の前記第2の連通孔に連通されることで該可動部材の他方の面に該平衡室の液圧が及ぼされている一方、該緩衝体における該受圧室側の壁部には該第1の連通孔に連通される連通路が形成されており、該第1の連通孔と該連通路とを含んで該受圧室と該収容空所を常時連通する短絡通路が形成されていることを、特徴とする。   That is, according to the first aspect of the present invention, the first mounting member and the second mounting member are elastically connected by the main rubber elastic body, and the partition member supported by the second mounting member is sandwiched between the first mounting member and the second mounting member. A pressure receiving chamber in which a part of the wall portion is configured by the main rubber elastic body and an equilibrium chamber in which a part of the wall portion is configured by a flexible film are formed, and the pressure receiving chamber and the equilibrium chamber are incompressible. An orifice passage is formed in which fluid is sealed and the pressure receiving chamber and the equilibrium chamber communicate with each other. Further, a storage space is formed inside the partition member, and a movable member is formed in the storage space. And the hydraulic pressure of the pressure receiving chamber and the hydraulic pressure of the equilibrium chamber on both surfaces of the movable member through the first communication hole and the second communication hole formed in the wall portion of the storage space. In the fluid-filled type vibration damping device to which one of the A hollow-shaped shock absorber provided with a place is accommodated, and the shock absorber is brought into contact with the inner wall surface of the receiving space on the pressure receiving chamber side wall surface and the equilibrium chamber side wall inner surface; The movable member is accommodated in the internal space of the body, and the movable member is formed by communicating a first window formed in the buffer body with the first communication hole of the storage space. The fluid pressure of the pressure receiving chamber is exerted on one surface of the housing, and the second window portion formed in the buffer body is communicated with the second communication hole of the housing space, thereby moving the movable chamber. While the fluid pressure of the equilibrium chamber is exerted on the other surface of the member, a communication passage communicating with the first communication hole is formed in the wall portion of the buffer body on the pressure receiving chamber side, A short-circuit passage is formed, which includes the first communication hole and the communication passage, and always communicates the pressure receiving chamber and the accommodation space.

このような第1の態様に従う構造とされた流体封入式防振装置によれば、緩衝体が設けられていることによって、可動部材が収容空所の壁内面に当接する際の衝撃力が低減されて、当接打音が低減される。しかも、緩衝体が収容空所に非接着で配設されることによって、可動部材が緩衝体の壁部の一部に当接して衝撃力が及ぼされると、緩衝体の他の壁部が弾性変形することで内部摩擦等に基づいたエネルギー減衰作用が発揮されて、当接打音が効果的に防止される。   According to the fluid-filled vibration isolator having the structure according to the first aspect as described above, the shock force when the movable member comes into contact with the wall inner surface of the accommodation space is reduced by providing the buffer. Thus, the contact sound is reduced. In addition, when the shock absorber is non-adhered in the housing space and the movable member comes into contact with a part of the wall portion of the shock absorber and an impact force is exerted, the other wall portion of the shock absorber is elastic. By being deformed, an energy attenuating action based on internal friction or the like is exhibited, and the contact sound is effectively prevented.

また、緩衝体に連通路が形成されて、受圧室と収容空所が第1の連通孔と連通路とを含んで構成された短絡通路を通じて常時連通されている。それ故、受圧室の内圧が大幅に低下して可動部材が第2の窓部から離隔することによって、受圧室と平衡室が短絡通路を通じて相互に連通されて、受圧室への流体の流入により受圧室の圧力低下が速やかに低減乃至は解消される。その結果、受圧室の大幅な圧力低下時に問題となるキャビテーションに起因した異音の発生が防止される。   In addition, a communication passage is formed in the buffer body, and the pressure receiving chamber and the accommodation space are always communicated with each other through a short-circuit passage that includes the first communication hole and the communication passage. Therefore, when the internal pressure of the pressure receiving chamber is greatly reduced and the movable member is separated from the second window portion, the pressure receiving chamber and the equilibrium chamber are communicated with each other through the short-circuit path, and fluid flows into the pressure receiving chamber. The pressure drop in the pressure receiving chamber is quickly reduced or eliminated. As a result, the generation of abnormal noise due to cavitation that becomes a problem when the pressure in the pressure receiving chamber is significantly reduced is prevented.

このようなキャビテーション異音の防止構造(受圧室と平衡室の短絡機構)では、可動部材による液圧吸収作用を得るために仕切部材に形成された第1の連通孔が利用されており、仕切部材に特別な加工を要することなく、キャビテーション異音の発生を防止可能とされている。   In such a structure for preventing cavitation noise (short-circuit mechanism between the pressure receiving chamber and the equilibrium chamber), the first communication hole formed in the partition member is used in order to obtain the hydraulic pressure absorbing action by the movable member. Occurrence of cavitation noise can be prevented without requiring special processing of the member.

本発明の第2の態様は、第1の態様に記載された流体封入式防振装置において、前記緩衝体が、前記収容空所の前記受圧室側の壁内面と前記平衡室側の壁内面との各一方に当接して配置される一対の対向板部と、それら一対の対向板部を接続する一対の側板部とを有する一体的な帯形筒状体とされており、該受圧室側の対向板部に形成された前記連通路が、該一対の側板部の対向方向と直交する方向に延びて前記第1の窓部を介して前記第1の連通孔に連通されているものである。   According to a second aspect of the present invention, in the fluid-filled vibration isolator described in the first aspect, the buffer body includes a wall inner surface on the pressure receiving chamber side and a wall inner surface on the equilibrium chamber side of the housing space. And a pair of opposing plate portions disposed in contact with each other, and a pair of side plate portions connecting the pair of opposing plate portions, and the pressure receiving chamber The communication path formed in the opposing plate portion on the side extends in a direction orthogonal to the opposing direction of the pair of side plate portions and communicates with the first communication hole through the first window portion. It is.

第2の態様によれば、緩衝体が帯形筒状体とされていることによって比較的容易に弾性変形するようになっている。それ故、可動部材と一方の対向板部との当接時に、入力された衝撃力が一対の側板部および他方の対向板部を効率的に弾性変形させて、エネルギー減衰作用に基づく当接打音の低減効果が有利に発揮される。   According to the second aspect, the buffer body is a band-shaped cylindrical body, so that it is elastically deformed relatively easily. Therefore, when the movable member is brought into contact with one counter plate portion, the input impact force efficiently elastically deforms the pair of side plate portions and the other counter plate portion, thereby making contact with the base plate based on the energy damping action. The sound reduction effect is advantageously exhibited.

また、連通路が緩衝体の内部空所に短い経路で連通されて、流動摩擦等が低減されていることから、受圧室の大幅な圧力低下時に、流体が平衡室から受圧室にスムーズに流入して、受圧室の負圧が可及的速やかに緩和乃至は解消される。これにより、受圧室における気相の分離(キャビテーション)が効果的に抑制されて、キャビテーションに起因する異音の発生が防止される。   In addition, since the communication path communicates with the internal space of the buffer via a short path to reduce fluid friction and the like, fluid flows smoothly from the equilibrium chamber to the pressure receiving chamber when the pressure receiving chamber is greatly reduced in pressure. Thus, the negative pressure in the pressure receiving chamber is reduced or eliminated as quickly as possible. Thereby, the separation (cavitation) of the gas phase in the pressure receiving chamber is effectively suppressed, and the generation of abnormal noise due to cavitation is prevented.

本発明の第3の態様は、第1又は第2の態様に記載された流体封入式防振装置において、前記緩衝体が前記収容空所の周壁内面に対して離隔して配置されて隙間が形成されていると共に、前記連通路が該隙間に連通されているものである。   According to a third aspect of the present invention, in the fluid-filled vibration isolator described in the first or second aspect, the shock absorber is disposed separately from the inner surface of the peripheral wall of the housing space, and a gap is formed. The communication path is formed and communicated with the gap.

第3の態様によれば、緩衝体が収容空所の周壁内面に対して離隔していることによって、緩衝体が収容空所の周壁内面で拘束されることなく、容易に弾性変形を生じ得る態様で配設される。それ故、緩衝体の内部摩擦等に基づいた当接打音の低減効果がより効率的に発揮されて、静粛性の向上が図られる。   According to the third aspect, since the buffer body is separated from the inner surface of the peripheral wall of the housing space, the buffer body can be easily elastically deformed without being restrained by the inner surface of the peripheral wall of the housing space. Arranged in a manner. Therefore, the effect of reducing the contact hitting sound based on the internal friction of the buffer body is more efficiently exhibited, and the quietness is improved.

また、緩衝体と収容空所の周壁内面との間に形成された隙間に連通路が連通されることによって、内部空所での可動部材の位置等に係わらず、短絡通路による受圧室と収容空所との連通状態が安定して維持される。それ故、キャビテーション異音が問題となる受圧室の大幅な圧力低下時に、短絡通路を通じた流体流動による負圧緩和作用が安定して発揮されて、異音の発生が防止される。   Further, the communication path is communicated with a gap formed between the buffer body and the inner surface of the peripheral wall of the housing space, so that the pressure receiving chamber and the housing are accommodated by the short-circuit path regardless of the position of the movable member in the internal space. The communication with the empty space is stably maintained. Therefore, when a significant pressure drop occurs in the pressure receiving chamber where cavitation noise is a problem, the negative pressure relaxation action due to fluid flow through the short-circuit path is stably exhibited, and the generation of noise is prevented.

本発明の第4の態様は、第1〜第3の何れか1つの態様に記載された流体封入式防振装置において、前記緩衝体に形成された前記連通路が前記受圧室側に位置するように該緩衝体の前記収容空所内での向きを規定する規定手段が設けられているものである。   According to a fourth aspect of the present invention, in the fluid-filled vibration isolator described in any one of the first to third aspects, the communication path formed in the shock absorber is located on the pressure receiving chamber side. Thus, a defining means for defining the orientation of the buffer in the accommodation space is provided.

第4の態様によれば、収容空所に緩衝体を配設する際に、緩衝体の向きが規定手段によって規定されることから、緩衝体が誤った向きで取り付けられるのを防ぐことができて、例えば連通路が平衡室側に位置する等といった不具合を回避できる。これにより、目的とする防振性能とキャビテーション異音の防止効果とを、容易に且つ安定して得ることができる。   According to the fourth aspect, when the buffer body is disposed in the accommodation space, the direction of the buffer body is defined by the defining means, so that the buffer body can be prevented from being attached in the wrong direction. Thus, for example, it is possible to avoid problems such as the communication path being positioned on the equilibrium chamber side. As a result, it is possible to easily and stably obtain the target vibration-proof performance and the effect of preventing cavitation noise.

本発明の第5の態様は、第4の態様に記載された流体封入式防振装置において、前記仕切部材には前記収容空所内に前記平衡室側の壁部から前記受圧室側に向かって突出する係止突起が設けられていると共に、前記緩衝体の該平衡室側の壁部には係止孔が形成されており、該係止突起が該係止孔に挿入されることで前記規定手段と該緩衝体を該仕切部材に対して位置決めする位置決め手段とが構成されているものである。   According to a fifth aspect of the present invention, in the fluid-filled vibration isolator described in the fourth aspect, the partition member is provided in the housing space from the wall portion on the equilibrium chamber side toward the pressure receiving chamber side. A protruding locking projection is provided, and a locking hole is formed in the wall of the buffer body on the side of the equilibrium chamber, and the locking projection is inserted into the locking hole to thereby The defining means and the positioning means for positioning the buffer with respect to the partition member are configured.

第5の態様によれば、緩衝体が位置決め手段によって収容空所内で位置決めされることから、緩衝体の位置ずれによって、当接打音やキャビテーション異音の低減効果に悪影響が及ぼされるのを防ぐことができる。更に、係止突起が収容空所の平衡室側の壁部から受圧室側に向かって突出していると共に、係止孔が緩衝体の平衡室側の壁部に形成されており、係止突起が係止孔に挿通されるように緩衝体を収容空所に挿入することで、緩衝体が正しい向きで配設されるようになっている。   According to the fifth aspect, since the shock absorber is positioned within the accommodation space by the positioning means, it is possible to prevent the displacement effect of the shock absorber from adversely affecting the abutting sound and the reduction effect of cavitation noise. be able to. Furthermore, the locking projection protrudes from the wall portion on the equilibrium chamber side of the housing space toward the pressure receiving chamber side, and the locking hole is formed on the wall portion on the equilibrium chamber side of the buffer body. By inserting the buffer body into the accommodation space so that the buffer body is inserted through the locking hole, the buffer body is arranged in the correct orientation.

加えて、それら位置決め手段および規定手段は、仕切部材に設けられた係止突起が緩衝体に設けられた係止孔に挿通された簡単な構造で実現されており、構造の複雑化や部品点数の増加が防止される。   In addition, the positioning means and the defining means are realized with a simple structure in which the locking projections provided on the partition member are inserted into the locking holes provided on the buffer body, and the structure is complicated and the number of parts is reduced. Is prevented from increasing.

本発明によれば、収容空所に中空形状の緩衝体が収容配置されて、その内部空所に可動部材が配設されていることから、可動部材が収容空所の壁内面に当接する際に、緩衝体の内部摩擦等に基づいたエネルギー減衰作用によって当接打音が低減される。また、緩衝体に設けられた連通路を含んで短絡通路が形成されており、受圧室の内圧が大幅に低下した場合に、この短絡通路を通じて受圧室と平衡室が連通されることで、受圧室の圧力低下が速やかに緩和されるようになっていることから、キャビテーションに起因する異音の発生が防止される。しかも、短絡通路が第1の連通孔を利用して形成されることから、仕切部材には特別な孔を形成する等の加工が不要とされて、短絡通路を備えた流体封入式防振装置を容易に製造することができる。   According to the present invention, since the hollow buffer is accommodated in the accommodation space and the movable member is disposed in the internal space, the movable member comes into contact with the inner surface of the wall of the accommodation space. In addition, the contact sound is reduced by the energy damping action based on the internal friction of the buffer body. In addition, a short circuit passage is formed including a communication path provided in the shock absorber, and when the internal pressure of the pressure receiving chamber is greatly reduced, the pressure receiving chamber and the equilibrium chamber are communicated with each other through the short circuit passage. Since the pressure drop in the chamber is quickly relieved, the generation of abnormal noise due to cavitation is prevented. In addition, since the short-circuit passage is formed using the first communication hole, it is not necessary to form a special hole in the partition member, and the fluid-filled vibration isolator having the short-circuit passage is provided. Can be easily manufactured.

本発明の第1の実施形態としてのエンジンマウントを示す縦断面図であって、図3のI−I断面に相当する図。It is a longitudinal cross-sectional view which shows the engine mount as the 1st Embodiment of this invention, Comprising: The figure corresponded in the II cross section of FIG. 図1に示されたエンジンマウントの別の縦断面図であって、図3のII−II断面に相当する図。It is another longitudinal cross-sectional view of the engine mount shown by FIG. 1, Comprising: The figure corresponded in the II-II cross section of FIG. 図1のIII−III断面図。III-III sectional drawing of FIG. 図1に示されたエンジンマウントを構成する緩衝ゴムの斜視図。The perspective view of the shock absorbing rubber which comprises the engine mount shown by FIG. 図4に示された緩衝ゴムの平面図。The top view of the shock absorbing rubber shown by FIG. 図4に示された緩衝ゴムの正面図。The front view of the shock absorbing rubber shown by FIG. 図4に示された緩衝ゴムの底面図。The bottom view of the shock absorbing rubber shown by FIG. 図1に示されたエンジンマウントの要部を拡大して示す縦断面図であって、受圧室に過大な負圧が及ぼされた状態を示す図。FIG. 2 is a longitudinal sectional view showing an enlarged main part of the engine mount shown in FIG. 1 and showing a state where an excessive negative pressure is applied to a pressure receiving chamber. 第2の取付部材に及ぼされた伝達荷重の測定結果を示すグラフ。The graph which shows the measurement result of the transmission load exerted on the 2nd attachment member. 本発明の第2の実施形態としてのエンジンマウントの要部を拡大して示す縦断面図。The longitudinal cross-sectional view which expands and shows the principal part of the engine mount as the 2nd Embodiment of this invention. 本発明の第3の実施形態としてのエンジンマウントの要部を拡大して示す縦断面図。The longitudinal cross-sectional view which expands and shows the principal part of the engine mount as the 3rd Embodiment of this invention. 図11に示されたエンジンマウントを構成する緩衝ゴムの斜視図。The perspective view of the shock absorbing rubber which comprises the engine mount shown by FIG.

以下、本発明の実施形態について、図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜図3には、本発明に従う構造とされた流体封入式防振装置の第1の実施形態として、自動車用のエンジンマウント10が示されている。エンジンマウント10は、第1の取付部材12と第2の取付部材14が本体ゴム弾性体16によって弾性連結された構造を有しており、第1の取付部材12が図示しないパワーユニットに取り付けられると共に、第2の取付部材14が図示しない車両ボデーに取り付けられるようになっている。なお、以下の説明において、上下方向とは、原則として、図1中の上下方向を言う。   1 to 3 show an engine mount 10 for an automobile as a first embodiment of a fluid-filled vibration isolator constructed according to the present invention. The engine mount 10 has a structure in which a first attachment member 12 and a second attachment member 14 are elastically connected by a main rubber elastic body 16, and the first attachment member 12 is attached to a power unit (not shown). The second attachment member 14 is attached to a vehicle body (not shown). In the following description, the vertical direction means the vertical direction in FIG. 1 in principle.

より詳細には、第1の取付部材12は、鉄やアルミニウム合金等で形成された高剛性の部材であって、全体として小径の略円形ブロック形状を有しており、上部が略円柱形状を有していると共に、下部が下方に向かって次第に縮径する逆向きの略円錐台形状とされている。また、第1の取付部材12には、中心軸上を上下に延びて上面に開口するボルト穴18が形成されており、内周面にねじ山が形成されている。   More specifically, the first mounting member 12 is a high-rigidity member formed of iron, aluminum alloy or the like, and has a generally circular block shape with a small diameter as a whole, and the upper portion has a substantially cylindrical shape. And has a substantially truncated cone shape in the opposite direction in which the lower portion gradually decreases in diameter toward the lower side. Further, the first mounting member 12 is formed with a bolt hole 18 extending vertically on the central axis and opening on the upper surface, and a thread is formed on the inner peripheral surface.

第2の取付部材14は、第1の取付部材12と同様の材料で形成された高剛性の部材であって、薄肉大径の略円筒形状を有している。また、第2の取付部材14の上端部分には、外周側に開口する溝状を呈する括れ部20が設けられていると共に、括れ部20の上端から外周側に向かってフランジ部22が突出している。   The second mounting member 14 is a highly rigid member formed of the same material as the first mounting member 12 and has a thin cylindrical shape with a large diameter. In addition, a constricted portion 20 having a groove shape that opens to the outer peripheral side is provided at the upper end portion of the second mounting member 14, and the flange portion 22 protrudes from the upper end of the constricted portion 20 toward the outer peripheral side. Yes.

そして、第1の取付部材12と第2の取付部材14は、同一中心軸上で第1の取付部材12が第2の取付部材14よりも上方に離隔配置されて、それら第1の取付部材12と第2の取付部材14が本体ゴム弾性体16によって弾性連結されている。本体ゴム弾性体16は、厚肉大径の略円錐台形状を有しており、小径側の端部に第1の取付部材12が加硫接着されていると共に、大径側の端部の外周面に第2の取付部材14の括れ部20が重ね合わされて加硫接着されている。なお、本実施形態では、本体ゴム弾性体16が第1の取付部材12および第2の取付部材14を備えた一体加硫成形品として形成されている。   Then, the first mounting member 12 and the second mounting member 14 are arranged such that the first mounting member 12 is spaced above the second mounting member 14 on the same central axis, and the first mounting member 12 12 and the second mounting member 14 are elastically connected by a main rubber elastic body 16. The main rubber elastic body 16 has a thick, large-diameter, generally frustoconical shape. The first attachment member 12 is vulcanized and bonded to the end portion on the small diameter side, and the end portion on the large diameter side. The constricted portion 20 of the second attachment member 14 is overlapped and vulcanized and bonded to the outer peripheral surface. In the present embodiment, the main rubber elastic body 16 is formed as an integrally vulcanized molded product including the first mounting member 12 and the second mounting member 14.

さらに、本体ゴム弾性体16には、大径凹所24が形成されている。大径凹所24は、本体ゴム弾性体16の大径側端面に開口する逆向きの略すり鉢形状を呈する凹所であって、本体ゴム弾性体16の径方向中央部分に形成されている。   Furthermore, a large-diameter recess 24 is formed in the main rubber elastic body 16. The large-diameter recess 24 is a recess having a substantially mortar shape in the opposite direction that opens to the large-diameter side end face of the main rubber elastic body 16, and is formed in the central portion in the radial direction of the main rubber elastic body 16.

更にまた、本体ゴム弾性体16における大径凹所24よりも外周側からは、シールゴム層26が延び出している。シールゴム層26は、薄肉大径の略円筒形状を有するゴム弾性体であって、本体ゴム弾性体16と一体形成されて、第2の取付部材14の内周面に固着されている。   Furthermore, a seal rubber layer 26 extends from the outer peripheral side of the large-diameter recess 24 in the main rubber elastic body 16. The seal rubber layer 26 is a rubber elastic body having a thin-walled and large-diameter substantially cylindrical shape, and is integrally formed with the main rubber elastic body 16 and fixed to the inner peripheral surface of the second mounting member 14.

また、本体ゴム弾性体16の一体加硫成形品には、可撓性膜28が取り付けられている。可撓性膜28は、薄肉の円板状乃至は円形ドーム状を呈するゴム膜であって、軸方向に充分な弛みを備えている。更に、可撓性膜28の外周端部には環状の固着部30が一体形成されており、この固着部30の外周面が環状の固定部材32の内周面に加硫接着されている。   A flexible film 28 is attached to the integrally vulcanized molded product of the main rubber elastic body 16. The flexible film 28 is a rubber film having a thin disk shape or a circular dome shape, and has sufficient slackness in the axial direction. Further, an annular fixing portion 30 is integrally formed at the outer peripheral end portion of the flexible film 28, and the outer peripheral surface of the fixing portion 30 is vulcanized and bonded to the inner peripheral surface of the annular fixing member 32.

そして、固定部材32が第2の取付部材14の下側開口部に挿入されて、第2の取付部材14に八方絞り等の縮径加工が施されることにより、固定部材32が第2の取付部材14に嵌着されて、可撓性膜28が第2の取付部材14の下側開口部を閉鎖するように配設される。なお、第2の取付部材14と固定部材32の間には、シールゴム層26が介在しており、第2の取付部材14と固定部材32が流体密に固定されている。   Then, the fixing member 32 is inserted into the lower opening of the second mounting member 14, and the second mounting member 14 is subjected to diameter reduction processing such as an eight-way drawing, whereby the fixing member 32 is Fit on the mounting member 14, the flexible membrane 28 is disposed to close the lower opening of the second mounting member 14. A seal rubber layer 26 is interposed between the second mounting member 14 and the fixing member 32, and the second mounting member 14 and the fixing member 32 are fixed in a fluid tight manner.

このように本体ゴム弾性体16の一体加硫成形品に可撓性膜28が取り付けられることで、本体ゴム弾性体16と可撓性膜28の軸方向対向面間には、外部空間に対して密閉されて非圧縮性流体を封入された流体室34が形成されている。なお、流体室34に封入される非圧縮性流体は、特に限定されるものではないが、例えば、水やアルキレングリコール、ポリアルキレングリコール、シリコーン油、或いはそれらの混合液等が採用され得る。また、後述する流体の流動作用に基づいた防振効果を効率的に得るためには、0.1Pa・s以下の低粘性流体を採用することが望ましい。   By attaching the flexible membrane 28 to the integrally vulcanized molded product of the main rubber elastic body 16 in this way, the space between the axially opposed surfaces of the main rubber elastic body 16 and the flexible membrane 28 is limited to the external space. Thus, a fluid chamber 34 is formed which is sealed and sealed with an incompressible fluid. The incompressible fluid sealed in the fluid chamber 34 is not particularly limited, and for example, water, alkylene glycol, polyalkylene glycol, silicone oil, or a mixture thereof can be used. Further, in order to efficiently obtain a vibration isolation effect based on the fluid flow action described later, it is desirable to employ a low viscosity fluid of 0.1 Pa · s or less.

また、流体室34には、仕切部材36が収容配置されている。仕切部材36は、全体として厚肉の略円板形状を呈しており、上仕切部材38と下仕切部材40とを含んで構成されている。   A partition member 36 is accommodated in the fluid chamber 34. The partition member 36 has a thick, substantially disk shape as a whole, and includes an upper partition member 38 and a lower partition member 40.

上仕切部材38は、略円板形状を呈しており、径方向中央部分には上方に開口する中央凹所42が形成されて、後述する受圧室66の容積が効率的に確保されるようになっている。更に、中央凹所42の底壁の中央部分には、上下に貫通する第1の連通孔44が形成されている。この第1の連通孔44は軸方向視で略長方形とされており、一対の第1の連通孔44,44が短辺方向で所定の距離を隔てて設けられている。なお、中央凹所42の底壁部の外周部分には、周上で等間隔に複数の上部嵌着孔46が貫通形成されている。   The upper partition member 38 has a substantially disk shape, and a central recess 42 that opens upward is formed in the central portion in the radial direction so that the volume of the pressure receiving chamber 66 described later can be efficiently secured. It has become. Further, a first communication hole 44 penetrating vertically is formed in the central portion of the bottom wall of the central recess 42. The first communication hole 44 has a substantially rectangular shape when viewed in the axial direction, and a pair of first communication holes 44 and 44 are provided at a predetermined distance in the short side direction. A plurality of upper fitting holes 46 are formed through the outer peripheral portion of the bottom wall portion of the central recess 42 at equal intervals on the periphery.

さらに、上仕切部材38の外周端部には、外周面に開口しながら周方向に所定の長さで延びる上部溝48が形成されており、上部溝48の一方の端部が径方向内側に延び出して中央凹所42に連通されていると共に、他方の端部が下面に開口している。   Further, an upper groove 48 is formed at the outer peripheral end portion of the upper partition member 38 while opening to the outer peripheral surface and extending in a circumferential direction with a predetermined length, and one end portion of the upper groove 48 is radially inward. It extends and communicates with the central recess 42, and the other end opens to the lower surface.

下仕切部材40は、中央部分が厚肉の略円板形状を呈していると共に、その外周側には下端から薄肉のフランジ状部分50が突出している。このフランジ状部分50は、周方向で一周に満たない所定長さで延びており、周方向一方の端部が周方向外側に向かって次第に厚肉となる傾斜部とされていると共に、他方の端部が軸方向下方に開口している。更に、フランジ状部分50の周方向両端部間には、中央部分と略同じ軸方向厚さの隔壁部が設けられている。なお、厚肉とされた中央部分には、周上で等間隔に複数の下部嵌着穴(図示せず)が形成されている。   The lower partition member 40 has a substantially disk shape with a thick central portion, and a thin flange-like portion 50 projects from the lower end on the outer peripheral side thereof. The flange-shaped portion 50 extends with a predetermined length less than one circumference in the circumferential direction, and one end in the circumferential direction is an inclined portion that gradually becomes thicker toward the outer side in the circumferential direction, and the other The end portion opens downward in the axial direction. Furthermore, between the both ends of the flange-shaped part 50 in the circumferential direction, partition walls having substantially the same axial thickness as the central part are provided. In addition, a plurality of lower fitting holes (not shown) are formed at equal intervals on the circumference in the thick central portion.

また、下仕切部材40の径方向中央部分には、上方に開口する収容凹所56が形成されている。この収容凹所56は、軸方向視で略長方形を呈しており、その底壁の長辺方向一方側からは上方に向かって係止突起としての挿通ピン58が突出している。挿通ピン58は、小径の略円柱形状を有しており、本実施形態では、突出先端部分の角部が面取りされることで、突出先端部が先端側に向かって縮径するテーパ形状とされている。   In addition, an accommodation recess 56 that opens upward is formed in the radial center portion of the lower partition member 40. The housing recess 56 has a substantially rectangular shape when viewed in the axial direction, and an insertion pin 58 as a locking projection protrudes upward from one side of the bottom wall in the long side direction. The insertion pin 58 has a substantially cylindrical shape with a small diameter, and in the present embodiment, the corner of the protruding tip portion is chamfered so that the protruding tip portion is reduced in diameter toward the tip side. ing.

さらに、収容凹所56の底壁部には、一対の第2の連通孔60,60が貫通形成されている。第2の連通孔60は、第1の連通孔44と略同じ長方形断面で上下に延びており、第1の連通孔44と同様に、短辺方向で所定距離を隔てて一対が設けられている。なお、第2の連通孔60は、その長辺方向が収容凹所56の短辺方向と略一致するように設けられており、後述する上下仕切部材38,40の組み合わせ状態において、第1の連通孔44の長辺方向と第2の連通孔60の長辺方向が略一致している。   Further, a pair of second communication holes 60, 60 are formed through the bottom wall portion of the housing recess 56. The second communication hole 60 has a substantially same rectangular cross section as that of the first communication hole 44 and extends up and down. Like the first communication hole 44, a pair is provided at a predetermined distance in the short side direction. Yes. The second communication hole 60 is provided such that the long side direction thereof substantially coincides with the short side direction of the housing recess 56. In the combined state of the upper and lower partition members 38 and 40, which will be described later, The long side direction of the communication hole 44 and the long side direction of the second communication hole 60 substantially coincide.

そして、上仕切部材38と下仕切部材40は、上下に重ね合わされており、相互に位置決めされた上部嵌着孔46と下部嵌着穴に対して、ピンが圧入されたり、ねじが螺着される等して、相互に固定されている。また、上仕切部材38の上部溝48の下側壁部が下仕切部材40のフランジ状部分50に対して上方に離隔して対向配置されることにより、外周側に開口して周方向に延びる凹溝が形成されており、その凹溝と上部溝48が周方向端部で相互に連通されることによって、周方向に2周弱の長さで螺旋状に延びる周溝62が形成されている。更に、下仕切部材40の収容凹所56の開口部が上仕切部材38で覆蓋されることによって、上下の仕切部材38,40の間には収容空所64が形成されている。なお、収容空所64の上壁部に第1の連通孔44が貫通形成されていると共に、収容空所64の下壁部に第2の連通孔60が貫通形成されている。   The upper partition member 38 and the lower partition member 40 are stacked one above the other, and a pin is press-fitted or a screw is screwed into the upper fitting hole 46 and the lower fitting hole that are positioned relative to each other. For example, they are fixed to each other. In addition, the lower side wall portion of the upper groove 48 of the upper partition member 38 is disposed to face the flange-like portion 50 of the lower partition member 40 so as to be spaced apart upward, thereby opening to the outer peripheral side and extending in the circumferential direction. A groove is formed, and the concave groove and the upper groove 48 are communicated with each other at the end in the circumferential direction, so that a circumferential groove 62 extending in a spiral shape with a length of less than two laps in the circumferential direction is formed. . Further, the opening of the housing recess 56 of the lower partition member 40 is covered with the upper partition member 38, so that a housing space 64 is formed between the upper and lower partition members 38, 40. The first communication hole 44 is formed through the upper wall portion of the accommodation space 64, and the second communication hole 60 is formed through the lower wall portion of the accommodation space 64.

かくの如き構造とされた仕切部材36は、流体室34に収容配置されて、軸直角方向に広がっており、外周端部を第2の取付部材14によって支持されている。これにより、流体室34が仕切部材36を挟んで上下に二分されており、仕切部材36を挟んだ上方には、壁部の一部が本体ゴム弾性体16で構成されて、振動入力時に内圧変動が惹起される受圧室66が形成されている。一方、仕切部材36を挟んだ下方には、壁部の一部が可撓性膜28で構成されて、可撓性膜28の変形によって容積変化が容易に許容される平衡室68が形成されている。それら受圧室66および平衡室68には、上述の非圧縮性流体が封入されている。   The partition member 36 having such a structure is accommodated in the fluid chamber 34 and extends in the direction perpendicular to the axis, and the outer peripheral end is supported by the second mounting member 14. As a result, the fluid chamber 34 is divided into two parts up and down across the partition member 36. Above the partition member 36, a part of the wall portion is constituted by the main rubber elastic body 16, and the internal pressure is applied when vibration is input. A pressure receiving chamber 66 is formed in which fluctuations are induced. On the other hand, below the partition member 36, a part of the wall portion is formed of the flexible film 28, and an equilibrium chamber 68 is formed in which volume change is easily allowed by deformation of the flexible film 28. ing. The pressure receiving chamber 66 and the equilibrium chamber 68 are filled with the above-described incompressible fluid.

また、仕切部材36の外周面が第2の取付部材14に対してシールゴム層26を介して重ね合わされることにより、周溝62の外周開口部が第2の取付部材14によって流体密に覆蓋されて、周方向に延びるトンネル状の流路が形成されている。このトンネル状流路の周方向一方の端部が受圧室66に連通されると共に、周方向他方の端部が平衡室68に連通されることにより、受圧室66と平衡室68を相互に連通するオリフィス通路70が、周溝62を利用して形成されている。なお、オリフィス通路70は、受圧室66および平衡室68の壁ばね剛性を考慮しながら、通路断面積(A)と通路長(L)の比(A/L)を調節することにより、エンジンシェイクに相当する10Hz程度の低周波数にチューニングされている。   Further, the outer peripheral surface of the partition member 36 is overlapped with the second mounting member 14 via the seal rubber layer 26, so that the outer peripheral opening of the peripheral groove 62 is covered with the second mounting member 14 in a fluid-tight manner. Thus, a tunnel-like flow path extending in the circumferential direction is formed. One end in the circumferential direction of the tunnel-shaped flow path communicates with the pressure receiving chamber 66, and the other end in the circumferential direction communicates with the equilibrium chamber 68, whereby the pressure receiving chamber 66 and the equilibrium chamber 68 communicate with each other. An orifice passage 70 is formed using the circumferential groove 62. In addition, the orifice passage 70 adjusts the ratio (A / L) of the passage cross-sectional area (A) and the passage length (L) while taking into account the wall spring rigidity of the pressure receiving chamber 66 and the equilibrium chamber 68. Is tuned to a low frequency of about 10 Hz.

また、収容空所64には、緩衝体としての緩衝ゴム72が収容配置されている。緩衝ゴム72は、図4〜図7に示されているように、ゴム弾性体で形成された中空構造体であって、本実施形態では、軸方向視で略長方形を呈していると共に、短辺方向(図5中、上下方向)に貫通する内部空所74を備えた略帯形筒状体とされている。   Further, a buffer rubber 72 as a buffer body is accommodated in the accommodation space 64. As shown in FIGS. 4 to 7, the buffer rubber 72 is a hollow structure formed of a rubber elastic body. In the present embodiment, the buffer rubber 72 has a substantially rectangular shape when viewed in the axial direction, and is short. It is set as the substantially strip | belt-shaped cylindrical body provided with the internal space 74 penetrated in a side direction (up-down direction in FIG. 5).

より具体的には、緩衝ゴム72は、一対の対向板部76a,76bと、それら一対の対向板部76a,76bを相互に接続する一対の側板部78a,78bとを、一体で備えることで、略帯形筒状体をなしている。   More specifically, the shock absorbing rubber 72 includes a pair of opposing plate portions 76a and 76b and a pair of side plate portions 78a and 78b that connect the pair of opposing plate portions 76a and 76b together. It has a substantially band-shaped cylindrical body.

一対の対向板部76a,76bは、軸方向視で互いに対応する略長方形を呈する板状体であって、上下方向で相互に所定距離を隔てて対向配置されている。また、対向板部76aに一対の第1の窓部80,80が形成されていると共に、対向板部76bに一対の第2の窓部82,82が形成されている。それら第1の窓部80と第2の窓部82は、相互に略同一の長方形断面を有する貫通孔であって、それぞれ短辺方向で所定距離を隔てて隣り合う一対が形成されている。なお、第1の窓部80の長辺方向が対向板部76aの短辺方向となっていると共に、第2の窓部82の長辺方向が対向板部76bの短辺方向となっている。   The pair of opposing plate portions 76a and 76b are plate-like bodies that have substantially rectangular shapes that correspond to each other when viewed in the axial direction, and are arranged to face each other with a predetermined distance therebetween in the vertical direction. In addition, a pair of first window portions 80, 80 are formed in the opposing plate portion 76a, and a pair of second window portions 82, 82 are formed in the opposing plate portion 76b. The first window portion 80 and the second window portion 82 are through-holes having substantially the same rectangular cross section, and a pair is formed adjacent to each other with a predetermined distance in the short side direction. The long side direction of the first window portion 80 is the short side direction of the counter plate portion 76a, and the long side direction of the second window portion 82 is the short side direction of the counter plate portion 76b. .

さらに、対向板部76bにおける一対の第2の窓部82,82の短辺方向外側には、係止孔としての挿通孔84が形成されている。挿通孔84は、挿通ピン58に略対応する小径の円形断面で上下に貫通する孔であって、緩衝ゴム72の対向板部76bに対して1つの挿通孔84が挿通ピン58と対応する位置に形成されている。   Further, an insertion hole 84 as a locking hole is formed on the outer side in the short side direction of the pair of second window portions 82 and 82 in the opposing plate portion 76b. The insertion hole 84 is a hole penetrating vertically with a small-diameter circular cross section substantially corresponding to the insertion pin 58, and one insertion hole 84 corresponds to the insertion pin 58 with respect to the opposing plate portion 76 b of the buffer rubber 72. Is formed.

また、一対の対向板部76a,76bの長辺方向の両端部には、一対の側板部78a,78bが一体形成されており、一対の対向板部76a,76bが一対の側板部78a,78bによって相互に接続されている。そして、一対の対向板部76a,76bが一対の側板部78a,78bで相互に接続されることにより、帯形筒状の緩衝ゴム72が形成されていると共に、一対の対向板部76a,76bおよび一対の側板部78a,78bで囲まれた内部空所74が形成されている。   In addition, a pair of side plate portions 78a and 78b are integrally formed at both ends in the long side direction of the pair of opposing plate portions 76a and 76b, and the pair of opposing plate portions 76a and 76b are a pair of side plate portions 78a and 78b. Are connected to each other. The pair of opposing plate portions 76a and 76b are connected to each other by the pair of side plate portions 78a and 78b, thereby forming a band-shaped cylindrical buffer rubber 72 and a pair of opposing plate portions 76a and 76b. An internal space 74 surrounded by a pair of side plate portions 78a and 78b is formed.

かくの如き構造とされた緩衝ゴム72は、下仕切部材40の収容凹所56に非接着で挿入されている。そして、下仕切部材40に上仕切部材38が重ね合わされて固定されることにより、緩衝ゴム72が収容空所64に収容配置されている。収容空所64に配設された緩衝ゴム72は、対向板部76aが収容空所64の上壁内面に非接着で当接して重ね合わされており、収容空所64の上壁内面が対向板部76aで覆われていると共に、対向板部76bが収容空所64の上壁内面に非接着で当接して重ね合わされており、収容空所64の下壁内面が対向板部76bで覆われている。   The shock absorbing rubber 72 having such a structure is inserted into the receiving recess 56 of the lower partition member 40 without being bonded. The buffer rubber 72 is accommodated in the accommodating space 64 by the upper partition member 38 being superimposed and fixed on the lower partition member 40. The cushioning rubber 72 disposed in the accommodation space 64 is overlapped with the opposing plate portion 76a in contact with the inner surface of the upper wall of the accommodation space 64 in a non-adhesive manner, and the inner surface of the upper wall of the accommodation space 64 is opposed to the opposing plate. In addition to being covered with the portion 76a, the opposing plate portion 76b is superimposed on the inner surface of the upper wall of the accommodation space 64 in a non-adhesive manner, and the inner surface of the lower wall of the accommodation space 64 is covered with the opposing plate portion 76b. ing.

また、緩衝ゴム72は、収容空所64の周壁内面に対して所定の距離を隔てて配設されており、緩衝ゴム72と収容空所64の周壁内面との間には全周に亘って連続する隙間86が形成されている。   The buffer rubber 72 is disposed at a predetermined distance from the inner surface of the peripheral wall of the housing space 64, and extends between the buffer rubber 72 and the inner surface of the peripheral wall of the housing space 64 over the entire circumference. A continuous gap 86 is formed.

また、緩衝ゴム72の収容凹所56への挿入時に、下仕切部材40に一体形成された挿通ピン58が緩衝ゴム72の挿通孔84に挿入されることにより、挿通ピン58が緩衝ゴム72の対向板部76bを上下に貫通するように挿通されている。これにより、挿通ピン58の外周面と挿通孔84の内周面との当接係止によって、緩衝ゴム72を収容空所64内で仕切部材36に対して位置決めする、位置決め手段が構成されている。更に、対向板部76bの長手方向一方の側だけに挿通孔84が形成されていることから、挿通ピン58を挿通孔84に挿通することで、緩衝ゴム72が収容凹所56内で所定の向きに配設されるようになっており、もって、本実施形態における規定手段が構成されている。なお、挿通ピン58の突出先端の角部が面取りされていることによって、挿通ピン58が挿通孔84に容易に挿入されるようになっている。   Further, when the buffer rubber 72 is inserted into the housing recess 56, the insertion pin 58 formed integrally with the lower partition member 40 is inserted into the insertion hole 84 of the buffer rubber 72, so that the insertion pin 58 is inserted into the buffer rubber 72. The counter plate 76b is inserted so as to penetrate vertically. As a result, a positioning means for positioning the buffer rubber 72 with respect to the partition member 36 in the accommodation space 64 by abutment locking between the outer peripheral surface of the insertion pin 58 and the inner peripheral surface of the insertion hole 84 is configured. Yes. Furthermore, since the insertion hole 84 is formed only on one side in the longitudinal direction of the opposing plate portion 76b, the buffer rubber 72 is inserted into the accommodation recess 56 in a predetermined manner by inserting the insertion pin 58 into the insertion hole 84. It is arranged in the direction, and thus the defining means in this embodiment is configured. Note that the insertion pin 58 is easily inserted into the insertion hole 84 by chamfering the corner of the protruding tip of the insertion pin 58.

また、緩衝ゴム72の第1の窓部80が上仕切部材38の第1の連通孔44に対して位置決めされて相互に連通されていると共に、緩衝ゴム72の第2の窓部82が下仕切部材40の第2の連通孔60に対して位置決めされて相互に連通されている。これにより、受圧室66と平衡室68を相互に連通する流体流路90が、第1,第2の連通孔44,60と、第1,第2の窓部80,82と、収容空所64と、内部空所74とを含んで構成されている。   In addition, the first window portion 80 of the buffer rubber 72 is positioned with respect to the first communication hole 44 of the upper partition member 38 and communicated with each other, and the second window portion 82 of the buffer rubber 72 is positioned below. They are positioned with respect to the second communication hole 60 of the partition member 40 and communicate with each other. As a result, the fluid flow path 90 that allows the pressure receiving chamber 66 and the equilibrium chamber 68 to communicate with each other includes the first and second communication holes 44 and 60, the first and second window portions 80 and 82, and the accommodation space. 64 and an internal space 74.

この流体流路90上には、可動部材としての可動板92が配設されている。可動板92は、ゴム弾性体や合成樹脂、金属等で形成された矩形板状の部材であって、緩衝ゴム72とは別体で形成されており、緩衝ゴム72の内部空所74内に収容配置されることで、収容空所64内に配設されている。また、可動板92は、図3に破線で示されているように、対向板部76a,76bの長辺方向および短辺方向において、第1の窓部80,80および第2の窓部82,82の外端よりも外側まで延び出している。更に、可動板92は、対向板部76a,76bの短辺方向において、それら対向板部76a,76bの短辺の長さと同じか、それよりも小さい寸法で形成されており、可動板92と収容空所64の周壁内面との間に隙間94が形成されている。   A movable plate 92 as a movable member is disposed on the fluid flow path 90. The movable plate 92 is a rectangular plate-shaped member formed of a rubber elastic body, synthetic resin, metal, or the like, and is formed separately from the buffer rubber 72. By being accommodated and disposed, it is disposed in the accommodation space 64. Further, as shown by the broken lines in FIG. 3, the movable plate 92 includes the first window portions 80 and 80 and the second window portion 82 in the long side direction and the short side direction of the opposing plate portions 76a and 76b. , 82 extends outside the outer ends. Further, the movable plate 92 is formed in the short side direction of the opposing plate portions 76a and 76b with the same or smaller dimension as the length of the short sides of the opposing plate portions 76a and 76b. A gap 94 is formed between the inner surface of the housing space 64 and the inner peripheral wall.

そして、可動板92は、緩衝ゴム72の内部空所74に収容されることで、略軸直角方向に広がっている。なお、可動板92は、内部空所74内で面方向(厚さ方向と直交する方向)に変位しても、その外周端が第1の窓部80,80および第2の窓部82,82よりも外側に位置した状態で保持される大きさで形成されており、それら第1の窓部80,80および第2の窓部82,82の全体が軸方向の投影において可動板92と重なり合っている。   The movable plate 92 is accommodated in the internal space 74 of the buffer rubber 72 so as to expand in a direction substantially perpendicular to the axis. Even if the movable plate 92 is displaced in the plane direction (direction perpendicular to the thickness direction) in the internal space 74, the outer peripheral ends thereof are the first window portions 80, 80 and the second window portions 82, The first window portions 80 and 80 and the second window portions 82 and 82 are formed in a size that can be held in a state of being located outside of the movable plate 92 in the axial projection. They are overlapping.

また、可動板92は、軸方向に延びる流体流路90に対して略直交して広がるように配設されており、可動板92の上面には第1の連通孔44および第1の窓部80を通じて受圧室66の液圧が及ぼされていると共に、可動板92の下面には第2の連通孔60および第2の窓部82を通じて平衡室68の液圧が及ぼされている。これにより、可動板92は、受圧室66と平衡室68の相対的な圧力変動に基づいて、内部空所74内で上下に変位するようになっている。   In addition, the movable plate 92 is disposed so as to spread substantially perpendicular to the fluid flow path 90 extending in the axial direction, and the first communication hole 44 and the first window portion are formed on the upper surface of the movable plate 92. The pressure of the pressure receiving chamber 66 is applied through 80, and the pressure of the equilibrium chamber 68 is applied to the lower surface of the movable plate 92 through the second communication hole 60 and the second window portion 82. Thereby, the movable plate 92 is displaced up and down in the internal space 74 based on the relative pressure fluctuation between the pressure receiving chamber 66 and the equilibrium chamber 68.

そして、アイドリング振動に相当する中周波小振幅振動の入力時には、可動板92が内部空所74内で上下に微小変位することで、受圧室66と平衡室68の間で液圧を伝達するようになっている。一方、エンジンシェイクに相当する低周波大振幅振動の入力時には、可動板92が第1の窓部80と第2の窓部82の何れかを塞ぐことで流体流路90を遮断することで、流体流路90を通じた液圧の伝達が防止されるようになっている。要するに、本実施形態では、中周波小振幅振動の入力時に受圧室66の液圧を平衡室68に伝達する液圧伝達機構が、可動板92を含んで構成されている。なお、本実施形態において、流体流路90のチューニング周波数は、アイドリング振動に相当する中周波数域に設定されているが、走行こもり音等に相当する高周波数域に設定することも可能である。   When medium frequency small amplitude vibration corresponding to idling vibration is input, the movable plate 92 is slightly displaced vertically within the internal space 74 so that the hydraulic pressure is transmitted between the pressure receiving chamber 66 and the equilibrium chamber 68. It has become. On the other hand, when the low frequency large amplitude vibration corresponding to the engine shake is input, the movable plate 92 blocks either the first window portion 80 or the second window portion 82 to block the fluid flow path 90. Transmission of hydraulic pressure through the fluid flow path 90 is prevented. In short, in the present embodiment, the hydraulic pressure transmission mechanism that transmits the hydraulic pressure of the pressure receiving chamber 66 to the equilibrium chamber 68 when the medium frequency small amplitude vibration is input includes the movable plate 92. In the present embodiment, the tuning frequency of the fluid flow path 90 is set to a medium frequency range corresponding to idling vibration, but can also be set to a high frequency range corresponding to traveling noise and the like.

そこにおいて、本実施形態のエンジンマウント10では、緩衝ゴム72に連通路96が形成されている。連通路96は、図4,図5に示されているように、緩衝ゴム72の対向板部76aに形成されており、第1の窓部80の開口縁部から対向板部76aの短辺方向(軸方向および一対の側板部78a,78bの対向方向に対して略直交する方向)に延びて第1の窓部80の枠を部分的に切断する切欠き状とされている。なお、上記の説明からも明らかであるが、連通路96は、一方の端部が第1の窓部80に連通されていると共に、他方の端部が対向板部76aの短辺方向一方の端面に開口している。   Therefore, in the engine mount 10 of the present embodiment, a communication path 96 is formed in the buffer rubber 72. As shown in FIGS. 4 and 5, the communication path 96 is formed in the opposing plate portion 76 a of the buffer rubber 72, and the short side of the opposing plate portion 76 a from the opening edge of the first window portion 80. It extends in a direction (a direction that is substantially orthogonal to the axial direction and the opposing direction of the pair of side plate portions 78a and 78b) and has a notch shape that partially cuts the frame of the first window portion 80. As is apparent from the above description, one end of the communication path 96 is communicated with the first window 80, and the other end is one of the short side directions of the opposing plate 76a. Open to the end face.

このような連通路96を備えた緩衝ゴム72は、図1,図2に示されているように、対向板部76aが収容空所64の受圧室66側の壁内面に重ね合わされた状態で配設されている。そして、緩衝ゴム72の収容空所64への配設状態において、図2に示されているように、連通路96は、一方の端部が第1の窓部80を介して或いは直接的に第1の連通孔44に連通されていると共に、他方の端部が収容空所64(隙間86)に連通されている。これにより、受圧室66と収容空所64を相互に連通する短絡通路98が、連通路96と、第1の窓部80と、第1の連通孔44とを、含んで形成されている。なお、前述の規定手段によって緩衝ゴム72が収容空所64に所定の向きで配設されることから、連通路96が受圧室66側に位置するようにされている。   As shown in FIGS. 1 and 2, the buffer rubber 72 provided with such a communication path 96 is in a state where the opposing plate portion 76 a is superimposed on the wall inner surface of the housing space 64 on the pressure receiving chamber 66 side. It is arranged. In the state where the buffer rubber 72 is disposed in the accommodation space 64, as shown in FIG. 2, one end of the communication path 96 is directly or directly via the first window 80. While communicating with the first communication hole 44, the other end communicates with the accommodation space 64 (gap 86). As a result, a short-circuit passage 98 that allows the pressure receiving chamber 66 and the accommodation space 64 to communicate with each other is formed including the communication passage 96, the first window 80, and the first communication hole 44. Since the cushioning rubber 72 is disposed in the accommodation space 64 in a predetermined direction by the above-described defining means, the communication path 96 is positioned on the pressure receiving chamber 66 side.

この短絡通路98は、受圧室66と収容空所64を常時連通状態に保持している。即ち、図8に示されているように、可動板92が内部空所74内で上端に位置して対向板部76aに当接した状態においても、可動板92と収容空所64の周壁内面との隙間94によって短絡通路98が連通状態に保持されるようになっている。また、可動板92が対向板部76bから離隔することで第2の窓部82が開放されて、第2の窓部82および第2の連通孔60を通じて収容空所64が平衡室68に連通される。これにより、受圧室66の液圧が平衡室68の液圧に対して相対的に低下して可動板92が対向板部76bから離隔することで、受圧室66と平衡室68が短絡通路98を利用して相互に連通されるようになっている。   The short-circuit passage 98 always keeps the pressure receiving chamber 66 and the accommodation space 64 in communication. That is, as shown in FIG. 8, even when the movable plate 92 is positioned at the upper end in the internal space 74 and is in contact with the opposing plate portion 76a, the inner surfaces of the peripheral walls of the movable plate 92 and the accommodation space 64 are used. The short-circuit path 98 is held in a communicating state by the gap 94. Further, the second plate 82 is opened by separating the movable plate 92 from the counter plate 76 b, and the accommodation space 64 communicates with the equilibrium chamber 68 through the second window 82 and the second communication hole 60. Is done. As a result, the hydraulic pressure in the pressure receiving chamber 66 decreases relative to the hydraulic pressure in the equilibrium chamber 68 and the movable plate 92 is separated from the opposing plate portion 76b, whereby the pressure receiving chamber 66 and the equilibrium chamber 68 are short-circuited path 98. To communicate with each other.

このような構造とされたエンジンマウント10は、第1の取付部材12が図示しないパワーユニットに取り付けられると共に、第2の取付部材14が図示しない車両ボデーに取り付けられることによって、車両に装着されて、パワーユニットと車両ボデーを相互に防振連結するようになっている。   The engine mount 10 having such a structure is attached to the vehicle by attaching the first attachment member 12 to a power unit (not shown) and attaching the second attachment member 14 to a vehicle body (not shown). The power unit and the vehicle body are connected to each other in a vibration-proof manner.

かかる車両装着状態において、アイドリング振動周波数相当の中周波小振幅振動が入力されると、オリフィス通路70は、チューニング周波数よりも高周波数の振動入力により反共振を生じて実質的に遮断される。一方、受圧室66と平衡室68の相対的な圧力変動に基づいて、可動板92が内部空所74内で一対の対向板部76a,76bに当接することなく上下に微小変位する。これにより、流体流路90が連通状態に保持されて、受圧室66の液圧が流体流路90を通じて平衡室68に伝達されることから、平衡室68の容積変化による液圧吸収作用が発揮されて、目的とする防振効果(振動絶縁効果)を得ることができる。なお、上記の説明からも明らかなように、流路上に可動板92を配された流体流路90によって、本実施形態の液圧伝達機構が構成されている。   When medium frequency small amplitude vibration corresponding to idling vibration frequency is input in such a vehicle mounted state, the orifice passage 70 is anti-resonant due to vibration input having a frequency higher than the tuning frequency and is substantially cut off. On the other hand, based on the relative pressure fluctuation between the pressure receiving chamber 66 and the equilibrium chamber 68, the movable plate 92 is slightly displaced up and down in the internal space 74 without contacting the pair of opposing plate portions 76a and 76b. As a result, the fluid flow path 90 is maintained in a communicating state, and the hydraulic pressure in the pressure receiving chamber 66 is transmitted to the equilibrium chamber 68 through the fluid flow path 90, so that the hydraulic pressure absorbing action due to the volume change of the equilibrium chamber 68 is exhibited. As a result, the intended vibration isolation effect (vibration insulation effect) can be obtained. As is clear from the above description, the fluid pressure transmission mechanism of the present embodiment is configured by the fluid channel 90 in which the movable plate 92 is disposed on the channel.

また、エンジンシェイクに相当する10Hz程度の低周波大振幅振動が入力されると、受圧室66と平衡室68の相対的な圧力変動に基づいて、オリフィス通路70を通じた流体流動が惹起される。これにより、流体の共振作用等の流動作用に基づいて目的とする防振効果(高減衰効果)が発揮される。   Further, when a low-frequency large-amplitude vibration of about 10 Hz corresponding to the engine shake is input, fluid flow through the orifice passage 70 is caused based on relative pressure fluctuation between the pressure receiving chamber 66 and the equilibrium chamber 68. As a result, the intended vibration isolation effect (high attenuation effect) is exhibited based on the fluid action such as the resonance action of the fluid.

なお、低周波大振幅振動の入力時には、可動板92の上下方向での変位量が大きくなることから、可動板92が一対の対向板部76a,76bに押し当てられて実質的に拘束される。これにより、第1,第2の窓部80,82の何れかが可動板92で閉塞されて流体流路90が遮断されることから、受圧室66の液圧が流体流路90を通じて平衡室68側に伝達されるのが防止される。それ故、受圧室66の内圧変動が効率的に惹起されて、オリフィス通路70を通じて流動する流体量を多く確保することができることから、流体の流動作用に基づいた防振効果が有効に発揮される。要するに、本実施形態の液圧伝達機構では、可動板92によって流体流路90の連通と遮断が切り替えられることにより、受圧室66と平衡室68との間での液圧伝達機構による液圧伝達の有無が切り替えられるようになっている。また、本実施形態では、可動板92の外周側に挿通ピン58が設けられていることから、挿通ピン58によって可動板92の軸直角方向への変位量が制限されて、比較的に小型の可動板92によって第1,第2の窓部80,82を確実に遮断することができる。   Note that when the low-frequency large-amplitude vibration is input, the amount of displacement of the movable plate 92 in the vertical direction increases, so that the movable plate 92 is pressed against the pair of opposed plate portions 76a and 76b and substantially restrained. . As a result, one of the first and second window portions 80 and 82 is closed by the movable plate 92 and the fluid flow path 90 is shut off, so that the hydraulic pressure in the pressure receiving chamber 66 passes through the fluid flow path 90 to the equilibrium chamber. Transmission to the 68 side is prevented. Therefore, fluctuations in the internal pressure of the pressure receiving chamber 66 are efficiently induced, and a large amount of fluid flowing through the orifice passage 70 can be secured, so that the vibration isolation effect based on the fluid flow action is effectively exhibited. . In short, in the hydraulic pressure transmission mechanism according to the present embodiment, the fluid plate 90 is switched between communication and blocking by the movable plate 92, so that the hydraulic pressure transmission by the hydraulic pressure transmission mechanism between the pressure receiving chamber 66 and the equilibrium chamber 68 is performed. The presence or absence of can be switched. Further, in this embodiment, since the insertion pin 58 is provided on the outer peripheral side of the movable plate 92, the displacement amount of the movable plate 92 in the direction perpendicular to the axis is limited by the insertion pin 58, so that the relatively small size is achieved. The movable plate 92 can reliably block the first and second window portions 80 and 82.

そこにおいて、可動板92が収容空所64の上下壁内面に当接する際に生じる衝撃力が、緩衝ゴム72によって吸収されるようになっている。即ち、可動板92が収容空所64の上壁内面に対して対向板部76aを介して当接すると、対向板部76aに入力された当接時の衝撃エネルギーが、一対の側板部78a,78bを通じて対向板部76bに伝達される。その際に、入力された衝撃エネルギーによって一対の側板部78a,78bと対向板部76bが微小変形を生じることから、対向板部76bと一対の側板部78a,78bの内部摩擦等に基づいて衝撃エネルギーが熱エネルギーに変換される。これにより、緩衝ゴム72を通じて仕切部材36に伝達される衝撃エネルギーが低減されて、この衝撃エネルギーに起因して発生する打音を低減乃至は回避することができる。なお、可動板92が対向板部76bを介して収容空所64の下壁内面に当接する場合には、対向板部76bに入力される衝撃エネルギーが一対の側板部78a,78bを介して対向板部76aに伝達されることで、同様のエネルギー減衰作用が発揮されて、打音の発生が防止される。   Here, the impact force generated when the movable plate 92 contacts the inner surfaces of the upper and lower walls of the accommodation space 64 is absorbed by the buffer rubber 72. That is, when the movable plate 92 comes into contact with the upper wall inner surface of the accommodation space 64 via the opposing plate portion 76a, the impact energy at the time of contact input to the opposing plate portion 76a is converted into a pair of side plate portions 78a, It is transmitted to the opposing plate part 76b through 78b. At that time, since the pair of side plate portions 78a and 78b and the counter plate portion 76b are slightly deformed by the input impact energy, the impact is based on the internal friction between the counter plate portion 76b and the pair of side plate portions 78a and 78b. Energy is converted into thermal energy. Thereby, the impact energy transmitted to the partition member 36 through the buffer rubber 72 is reduced, and the hitting sound caused by the impact energy can be reduced or avoided. When the movable plate 92 abuts against the inner surface of the lower wall of the accommodation space 64 via the counter plate portion 76b, the impact energy input to the counter plate portion 76b is opposed to the pair of side plate portions 78a and 78b. By being transmitted to the plate portion 76a, the same energy attenuating action is exhibited, and the occurrence of a hitting sound is prevented.

さらに、一対の側板部78a,78bが収容空所64の周壁内面から離隔していることによって、一対の側板部78a,78bの微小変形も有効に生ぜしめられて、一対の対向板部76a,76b間での衝撃エネルギーの効率的な伝達が実現されると共に、一対の側板部78a,78bにおけるエネルギー減衰作用も効果的に発揮される。しかも、本実施形態では、挿通ピン58が挿通孔84に挿通されることによって、緩衝ゴム72が収容空所64内で位置決めされており、一対の側板部78a,78bと収容空所64の周壁内面との間の隙間が保持されることから、上記の如き効果を安定して得ることができる。   Further, since the pair of side plate portions 78a and 78b are separated from the inner surface of the peripheral wall of the housing space 64, minute deformation of the pair of side plate portions 78a and 78b is also effectively generated, and the pair of opposed plate portions 76a and 76a, Efficient transmission of impact energy between 76b is realized, and the energy attenuating action in the pair of side plate portions 78a and 78b is also effectively exhibited. In addition, in the present embodiment, the insertion rubber pin 72 is inserted into the insertion hole 84 so that the buffer rubber 72 is positioned in the accommodation space 64, and the pair of side plate portions 78 a and 78 b and the peripheral wall of the accommodation space 64. Since the gap between the inner surface and the inner surface is maintained, the above effects can be stably obtained.

一方、自動車が段差を乗り越える等して、第1の取付部材12と第2の取付部材14の間に衝撃的な大荷重が入力されて、受圧室66の液圧が大幅に低下すると、図8に示されているように、可動板92が内部空所74内で上端に変位して対向板部76aに当接することで、第1の窓部80が可動板92によって遮断される。そこにおいて、緩衝ゴム72に連通路96が設けられており、その連通路96が収容空所64と第1の窓部80および第1の連通孔44を連通することで、収容空所64が受圧室66に対して短絡通路98を通じて連通されている。   On the other hand, if a shocking large load is input between the first mounting member 12 and the second mounting member 14 due to the automobile overcoming the step, the hydraulic pressure in the pressure receiving chamber 66 is significantly reduced. As shown in FIG. 8, the movable plate 92 is displaced to the upper end in the internal space 74 and comes into contact with the opposing plate portion 76 a, so that the first window portion 80 is blocked by the movable plate 92. In this case, a communication passage 96 is provided in the buffer rubber 72, and the communication passage 96 communicates with the accommodation space 64, the first window 80, and the first communication hole 44, so that the accommodation space 64 is formed. The pressure receiving chamber 66 communicates with the pressure receiving chamber 66 through a short-circuit passage 98.

さらに、可動板92が上端に位置して対向板部76bから離隔していることによって、第2の窓部82および第2の連通孔60を通じて平衡室68が収容空所64に連通されている。これにより、受圧室66と平衡室68が短絡通路98を通じて相互に連通されて、図8中に矢印で示されているように、平衡室68から受圧室66に向かって流体が流動する。その結果、受圧室66の圧力低下が可及的速やかに低減乃至は解消されて、キャビテーションに起因する異音の発生が防止される。   Further, since the movable plate 92 is located at the upper end and is separated from the counter plate portion 76 b, the equilibrium chamber 68 is communicated with the accommodation space 64 through the second window portion 82 and the second communication hole 60. . As a result, the pressure receiving chamber 66 and the equilibrium chamber 68 communicate with each other through the short-circuit passage 98, and the fluid flows from the equilibrium chamber 68 toward the pressure receiving chamber 66 as indicated by arrows in FIG. As a result, the pressure drop in the pressure receiving chamber 66 is reduced or eliminated as quickly as possible, and abnormal noise due to cavitation is prevented.

しかも、本実施形態のエンジンマウント10では、仕切部材36の第1の連通孔44を利用して短絡通路98が形成されることで、受圧室66と平衡室68が連通されている。それ故、仕切部材36に受圧室66と平衡室68を短絡させるための孔を特別に形成する必要がなく、短絡機構を備えたエンジンマウント10を容易に形成することができる。   Moreover, in the engine mount 10 of the present embodiment, the pressure receiving chamber 66 and the equilibrium chamber 68 are in communication with each other by forming the short-circuit passage 98 using the first communication hole 44 of the partition member 36. Therefore, it is not necessary to specially form a hole for short-circuiting the pressure receiving chamber 66 and the equilibrium chamber 68 in the partition member 36, and the engine mount 10 including the short-circuit mechanism can be easily formed.

また、受圧室66の圧力が低下した場合には、受圧室66と平衡室68が短絡通路98および第2の窓部82を通じて短絡されると共に、受圧室66の圧力が上昇した場合には、可動板92が第2の窓部82を遮断することから、受圧室66と平衡室68の短絡が防止される。それ故、キャビテーションが問題とならない受圧室66への正圧作用時には、受圧室66の内圧変動が有効に惹起されて、オリフィス通路70を通じた流体流動に基づく防振効果を効率的に得ることができる。   Further, when the pressure in the pressure receiving chamber 66 decreases, the pressure receiving chamber 66 and the equilibrium chamber 68 are short-circuited through the short-circuit passage 98 and the second window 82, and when the pressure in the pressure receiving chamber 66 increases, Since the movable plate 92 blocks the second window portion 82, a short circuit between the pressure receiving chamber 66 and the equilibrium chamber 68 is prevented. Therefore, when a positive pressure is applied to the pressure receiving chamber 66 where cavitation is not a problem, the internal pressure fluctuation of the pressure receiving chamber 66 is effectively induced, and a vibration isolation effect based on the fluid flow through the orifice passage 70 can be efficiently obtained. it can.

また、緩衝ゴム72と収容空所64の周壁内面との間に隙間86が設けられており、連通路96の端部が隙間86に連通されている。これにより、可動板92が短辺方向で連通路96の形成側(図8中、左側)にずれて隙間94がなくなった場合にも、連通路96が隙間86によって内部空所74に連通される。それ故、短絡通路98が可動板92の位置に関わらず連通状態に保持されて、目的とするキャビテーション異音の低減効果を安定して得ることができる。   Further, a gap 86 is provided between the buffer rubber 72 and the inner surface of the peripheral wall of the accommodation space 64, and the end of the communication path 96 is communicated with the gap 86. Accordingly, even when the movable plate 92 is displaced in the short side direction toward the communication path 96 forming side (left side in FIG. 8) and the gap 94 is eliminated, the communication path 96 is communicated with the internal space 74 by the gap 86. The Therefore, the short-circuit passage 98 is maintained in a communication state regardless of the position of the movable plate 92, and the intended effect of reducing the abnormal cavitation noise can be stably obtained.

さらに、緩衝ゴム72が短辺方向に開口する帯形筒状体とされていると共に、連通路96が対向板部76aの短辺方向の端面に開口している。これにより、連通路96が内部空所74に対して短い距離で連通されて、流体の流動がスムーズに生ぜしめられる。それ故、受圧室66の負圧がより速やかに低減乃至は解消されて、目的とする異音の低減作用が効果的に発揮される。   Furthermore, the shock absorbing rubber 72 is a strip-shaped cylindrical body that opens in the short side direction, and the communication path 96 opens in the end surface in the short side direction of the counter plate portion 76a. Thereby, the communication path 96 is communicated with the internal space 74 at a short distance, and the fluid flow is smoothly generated. Therefore, the negative pressure in the pressure receiving chamber 66 is reduced or eliminated more quickly, and the target noise reduction effect is effectively exhibited.

また、緩衝ゴム72の対向板部76bにのみ挿通孔84が形成されていることによって、収容空所64の底壁から突出する挿通ピン58を挿通孔84に挿通することで、緩衝ゴム72の収容空所64内での向きが特定されて、連通路96が受圧室66側に位置決めされるようになっている。これにより、緩衝ゴム72を収容凹所56に嵌め込む際に、緩衝ゴム72が誤った向きで配設されるのを防止する規定手段が構成されて、緩衝ゴム72を目的とする態様で容易に配設することができる。しかも、本実施形態では、緩衝ゴム72を収容空所64内で位置決めする位置決め手段を構成するための挿通ピン58および挿通孔84を利用して、上記の如き規定手段が構成されていることから、簡単な構造によって規定手段を設けることができる。   Further, since the insertion hole 84 is formed only in the opposing plate portion 76 b of the buffer rubber 72, the insertion pin 58 protruding from the bottom wall of the accommodation space 64 is inserted into the insertion hole 84, so that the buffer rubber 72 The direction in the accommodation space 64 is specified, and the communication path 96 is positioned on the pressure receiving chamber 66 side. Thereby, when the buffer rubber 72 is fitted into the receiving recess 56, a defining means for preventing the buffer rubber 72 from being disposed in the wrong direction is configured, and the buffer rubber 72 can be easily used in an intended mode. Can be arranged. Moreover, in the present embodiment, the defining means as described above is configured by using the insertion pin 58 and the insertion hole 84 for constituting the positioning means for positioning the buffer rubber 72 in the accommodation space 64. The defining means can be provided by a simple structure.

ところで、本実施形態に係るエンジンマウント10(実施例)において、連通路96を備えていないエンジンマウント(比較例)に比して、第2の取付部材14に伝達される伝達荷重が低減されることは、図9に示された測定結果のグラフからも明らかである。なお、図9において、実施例の測定結果が実線で示されていると共に、比較例の測定結果が破線で示されている。更に、図9では、本体入力変位(第1の取付部材12と第2の取付部材14の相対的な接近変位量)が一点鎖線で示されている。また、比較例のエンジンマウントは、実施例のエンジンマウント10に対して、緩衝ゴム72に連通路96が形成されていない以外は同一の構造とされている。   By the way, in the engine mount 10 (example) according to the present embodiment, the transmission load transmitted to the second mounting member 14 is reduced as compared with an engine mount (comparative example) that does not include the communication path 96. This is also apparent from the measurement result graph shown in FIG. In FIG. 9, the measurement result of the example is indicated by a solid line, and the measurement result of the comparative example is indicated by a broken line. Furthermore, in FIG. 9, the main body input displacement (the relative approach displacement amount of the first mounting member 12 and the second mounting member 14) is indicated by a one-dot chain line. Further, the engine mount of the comparative example has the same structure as the engine mount 10 of the embodiment except that the communication path 96 is not formed in the buffer rubber 72.

図9によれば、比較例では、第1の取付部材12と第2の取付部材14が離隔方向で相対的に大きく変位して、受圧室66の内圧が大幅に低下した際に、第2の取付部材14に大きな荷重が伝達されている。それに対して、実施例では、第1の取付部材12と第2の取付部材14が大きく接近変位しても、第2の取付部材14への伝達荷重が小さく抑えられている。この第2の取付部材14への伝達荷重は、キャビテーション気泡の消失時に発せられる衝撃波に起因するものであって、測定結果によれば、実施例では、比較例に比して、キャビテーション異音が低減されている。   According to FIG. 9, in the comparative example, when the first attachment member 12 and the second attachment member 14 are relatively greatly displaced in the separation direction, the internal pressure of the pressure receiving chamber 66 is significantly reduced. A large load is transmitted to the mounting member 14. On the other hand, in the embodiment, even if the first attachment member 12 and the second attachment member 14 are largely displaced, the transmission load to the second attachment member 14 is kept small. The transmission load to the second mounting member 14 is caused by a shock wave generated when the cavitation bubble disappears. According to the measurement result, the cavitation noise is higher in the example than in the comparative example. Has been reduced.

図10には、本発明に係る流体封入式防振装置の第2の実施形態としてのエンジンマウントが、要部を拡大された縦断面図で示されている。なお、以下の説明において、第1の実施形態と実質的に同一の部材および部位については、図中に同一の符号を付すことで説明を省略する。   FIG. 10 shows an engine mount as a second embodiment of the fluid filled type vibration damping device according to the present invention in an enlarged vertical sectional view of a main part. In the following description, members and portions that are substantially the same as those in the first embodiment are denoted by the same reference numerals in the drawings, and the description thereof is omitted.

すなわち、本実施形態のエンジンマウントでは、仕切部材36の収容空所64に対して、緩衝体としての緩衝ゴム100が配設されている。緩衝ゴム100は、第1の実施形態の緩衝ゴム72と略同一の形状を有していると共に、短辺方向において緩衝ゴム72よりも大きくされている。これにより、緩衝ゴム100は、短辺方向において収容空所64の周壁内面に対して当接しており、本実施形態では、第1の実施形態において緩衝ゴム72と収容空所64の周壁内面との間に形成されていた隙間86は設けられていない。   That is, in the engine mount of the present embodiment, the shock absorbing rubber 100 as a shock absorber is disposed in the housing space 64 of the partition member 36. The buffer rubber 100 has substantially the same shape as the buffer rubber 72 of the first embodiment, and is larger than the buffer rubber 72 in the short side direction. Thereby, the buffer rubber 100 is in contact with the inner surface of the peripheral wall of the housing space 64 in the short side direction, and in this embodiment, the buffer rubber 72 and the inner surface of the peripheral wall of the housing space 64 in the first embodiment. The gap 86 formed between the two is not provided.

一方、可動板92は、第1の実施形態と略同一の形状および大きさで形成されており、短辺方向において緩衝ゴム100よりも小さくされている。これにより、可動板92の外周面と収容空所64の周壁内面との間には、隙間94が形成されている。   On the other hand, the movable plate 92 is formed in substantially the same shape and size as in the first embodiment, and is smaller than the buffer rubber 100 in the short side direction. Thereby, a gap 94 is formed between the outer peripheral surface of the movable plate 92 and the inner surface of the peripheral wall of the accommodation space 64.

このような本実施形態のエンジンマウントにおいても、連通路96と第1の窓部80および第1の連通孔44とを利用して短絡通路98が形成されており、短絡通路98が隙間94によって収容空所64(内部空所74)に連通されている。そして、受圧室66の液圧が大幅に低下して、可動板92が対向板部76bに当接した状態では、受圧室66と平衡室68が短絡通路98によって相互に連通されることから、受圧室66の負圧が速やかに解消されて、キャビテーションに起因する異音の発生が防止される。このように、本発明において、緩衝体と収容空所の周壁内面との間に隙間が形成されていることは必須ではなく、緩衝体が収容空所の周壁内面に当接して配設されていても良い。   Also in the engine mount of this embodiment, the short-circuit path 98 is formed using the communication path 96, the first window portion 80, and the first communication hole 44, and the short-circuit path 98 is formed by the gap 94. It communicates with the accommodation space 64 (internal space 74). In the state where the hydraulic pressure in the pressure receiving chamber 66 is significantly reduced and the movable plate 92 is in contact with the opposing plate portion 76b, the pressure receiving chamber 66 and the equilibrium chamber 68 are communicated with each other by the short-circuit passage 98. The negative pressure in the pressure receiving chamber 66 is quickly eliminated, and the generation of abnormal noise due to cavitation is prevented. Thus, in the present invention, it is not essential that a gap is formed between the buffer body and the inner surface of the peripheral wall of the housing space, and the buffer body is disposed in contact with the inner surface of the peripheral wall of the housing space. May be.

図11には、本発明に係る流体封入式防振装置の第3の実施形態としてのエンジンマウントが、要部を拡大された縦断面図で示されている。このエンジンマウントでは、仕切部材36の収容空所64に緩衝体としての緩衝ゴム110が収容配置されている。   In FIG. 11, an engine mount as a third embodiment of the fluid filled type vibration damping device according to the present invention is shown in an enlarged longitudinal sectional view of a main part. In this engine mount, a shock absorbing rubber 110 as a shock absorber is accommodated in the accommodating space 64 of the partition member 36.

緩衝ゴム110は、図12に示されているように、第1の実施形態の緩衝ゴム72と略同一の形状を有する一対の対向板部76a,76bと一対の側板部78a,78bとを備えており、対向板部76aに一対の第1の窓部80,80が形成されていると共に、対向板部76bに一対の第2の窓部82,82が形成されている。   As shown in FIG. 12, the buffer rubber 110 includes a pair of opposing plate portions 76a and 76b and a pair of side plate portions 78a and 78b having substantially the same shape as the buffer rubber 72 of the first embodiment. In addition, a pair of first window portions 80, 80 are formed in the opposing plate portion 76a, and a pair of second window portions 82, 82 are formed in the opposing plate portion 76b.

また、緩衝ゴム110には、連通路112が形成されている。この連通路112は、対向板部76aにおける第1の窓部80の枠部分に形成されており、対向板部76aの上面に開口して短辺方向に延びる凹溝状とされて、一方の端部が第1の窓部80に連通されていると共に、他方の端部が対向板部76aの外周面に開口している。   A communication path 112 is formed in the buffer rubber 110. The communication path 112 is formed in the frame portion of the first window portion 80 in the opposing plate portion 76a, and is formed in a concave groove shape that opens in the upper surface of the opposing plate portion 76a and extends in the short side direction. The end portion communicates with the first window portion 80, and the other end portion opens on the outer peripheral surface of the opposing plate portion 76a.

そして、緩衝ゴム110は、収容空所64への配設されており、対向板部76aが収容空所64の受圧室66側の壁内面に非接着で当接していると共に、対向板部76bが収容空所64の平衡室68の壁内面に非接着で当接している。また、連通路112は、上側開口部の一部が上仕切部材38によって覆蓋されてトンネル状とされていると共に、第1の窓部80と隙間86とを常時連通している。   The buffer rubber 110 is disposed in the accommodation space 64, and the opposing plate portion 76 a abuts against the inner wall surface of the accommodation space 64 on the pressure receiving chamber 66 side without adhesion, and the opposing plate portion 76 b. Is in contact with the inner surface of the balance chamber 68 of the accommodation space 64 in a non-adhesive manner. In addition, the communication path 112 is partly covered with the upper partition member 38 to form a tunnel shape, and the first window 80 and the gap 86 are always in communication.

これにより、衝撃的な大荷重の入力によって受圧室66の液圧が大幅に低下して、可動板92が受圧室66側に変位して、第1の窓部80が可動板92で遮断されると共に、第2の窓部82が連通状態に開放されると、受圧室66と平衡室68が連通路112を含んだ短絡通路114を通じて相互に連通される。その結果、受圧室66の圧力低下が緩和されて、キャビテーションに起因する異音の発生が防止される。   As a result, the hydraulic pressure in the pressure receiving chamber 66 is greatly reduced by the input of a shocking large load, the movable plate 92 is displaced toward the pressure receiving chamber 66, and the first window 80 is blocked by the movable plate 92. At the same time, when the second window 82 is opened to the communication state, the pressure receiving chamber 66 and the equilibrium chamber 68 are communicated with each other through the short-circuit passage 114 including the communication passage 112. As a result, the pressure drop in the pressure receiving chamber 66 is mitigated, and abnormal noise due to cavitation is prevented.

このように、緩衝体に形成される連通路は、必ずしも第1, 第2の実施形態に示されているような第1の窓部80の枠部分を切断する切欠き状の連通路96に限定されず、本実施形態に示されているような溝状の連通路112も採用され得る。なお、溝状の連通路を採用する場合には、対向板部76aの上面に開口して設けられて、隙間86および隙間94を通じて内部空所74に連通されていても良いし、対向板部76aの下面に開口して設けられて、隙間86を通じて内部空所74に連通されていても良い。   As described above, the communication passage formed in the buffer body is not necessarily a communication passage 96 having a notch shape that cuts the frame portion of the first window 80 as shown in the first and second embodiments. Without being limited thereto, a groove-like communication path 112 as shown in the present embodiment can also be adopted. In the case of adopting a groove-shaped communication path, the groove may be provided on the upper surface of the opposing plate portion 76a so as to communicate with the internal space 74 through the gap 86 and the gap 94. An opening may be provided in the lower surface of 76 a and communicated with the internal space 74 through the gap 86.

以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、前記実施形態では、1つの連通路だけが形成されているが、連通路は複数が形成されていても良い。   As mentioned above, although embodiment of this invention was explained in full detail, this invention is not limited by the specific description. For example, in the above embodiment, only one communication path is formed, but a plurality of communication paths may be formed.

また、可動部材は、前記実施形態に示されているような収容空所64の平面形状に略対応する形状の可動板92に限定されず、例えば、可動板92の外周面に開口して厚さ方向に延びる凹溝を形成することで、短絡通路98による受圧室66と収容空所64とを安定して連通状態に保持することもできる。   Further, the movable member is not limited to the movable plate 92 having a shape substantially corresponding to the planar shape of the accommodation space 64 as shown in the above-described embodiment. For example, the movable member is opened to the outer peripheral surface of the movable plate 92 and is thick. By forming the concave groove extending in the vertical direction, the pressure receiving chamber 66 and the accommodation space 64 by the short-circuit passage 98 can be stably held in communication.

また、前記実施形態では、仕切部材36に形成された第1, 第2の連通孔44,60と、緩衝ゴム72に形成された第1, 第2の窓部80,82とが、何れも一対ずつ設けられていたが、それら第1, 第2の連通孔44,60および第1, 第2の窓部80,82の数は特に限定されるものではない。   In the embodiment, the first and second communication holes 44 and 60 formed in the partition member 36 and the first and second window portions 80 and 82 formed in the buffer rubber 72 are both provided. Although the pair is provided one by one, the numbers of the first and second communication holes 44 and 60 and the first and second window portions 80 and 82 are not particularly limited.

また、前記実施形態では、緩衝体として、帯形筒状体の緩衝ゴム72が例示されているが、緩衝体は、中空形状であれば良く、例えば、前記緩衝ゴム72において一方の開口部が閉塞されたような袋状等であっても良い。   Moreover, in the said embodiment, although the band-shaped cylindrical buffer rubber 72 is illustrated as a buffer body, the buffer body should just be a hollow shape, for example, one opening part in the said buffer rubber 72 is. It may be in the form of a closed bag.

また、可動部材は、仕切部材36や緩衝ゴム72に対して独立した可動板92に限定されず、例えば、緩衝ゴム72と一体形成されて側板部78aから内部空所74に突出する可動膜や、緩衝ゴム72の開口部から短辺方向の両側に突出して仕切部材36によって両端部を支持された可動膜等も、可動部材として採用され得る。   Further, the movable member is not limited to the movable plate 92 independent of the partition member 36 and the buffer rubber 72. For example, the movable member is integrally formed with the buffer rubber 72 and protrudes from the side plate portion 78a to the internal space 74. A movable film or the like that protrudes from the opening of the buffer rubber 72 to both sides in the short side direction and is supported at both ends by the partition member 36 can also be adopted as the movable member.

また、規定手段としては、前記実施形態で例示されている挿通ピン58と挿通孔84を用いた構造の他にも、緩衝ゴム72の収容凹所56への組み込みに際して緩衝ゴム72の上下方向を規定する各種構造が採用され得る。例えば、緩衝ゴム72において、側板部78a,78bの少なくとも対向方向外側の面が平衡室68側に向かって次第に相互に接近する傾斜形状としたり、側板部78a,78bの高さ方向中間部分に段差を設けたりすることで、対向板部76aの長辺方向での長さ寸法を、対向板部76bの長辺方向での長さ寸法よりも大きくする。それに合わせて、収容凹所56の長辺方向両側の周壁部も、側板部78a,78bの外側の傾斜面や段差に対応する傾斜面や段付面とすることで、対向板部76aと対向板部76bとのサイズ差によって、緩衝ゴム72を上下逆向きに収容凹所56に嵌め込むことを防止して、連通路96が受圧室66側に位置するように緩衝ゴム72の向きを決める規定手段が構成され得る。   Further, as the defining means, in addition to the structure using the insertion pin 58 and the insertion hole 84 exemplified in the above embodiment, the vertical direction of the buffer rubber 72 can be changed when the buffer rubber 72 is assembled into the receiving recess 56. Various defined structures may be employed. For example, in the buffer rubber 72, at least the surfaces of the side plate portions 78a and 78b on the outer side in the opposite direction are inclined so as to gradually approach each other toward the balance chamber 68, or a step is formed in the intermediate portion in the height direction of the side plate portions 78a and 78b. Is provided so that the length dimension of the opposing plate portion 76a in the long side direction is larger than the length dimension of the opposing plate portion 76b in the long side direction. Correspondingly, the peripheral wall portions on both sides in the long side direction of the accommodating recess 56 are also inclined surfaces or stepped surfaces corresponding to the inclined surfaces or steps on the outer side of the side plate portions 78a and 78b, thereby facing the counter plate portion 76a. Due to the size difference from the plate portion 76b, the cushioning rubber 72 is prevented from being fitted in the receiving recess 56 in the upside down direction, and the orientation of the cushioning rubber 72 is determined so that the communication path 96 is positioned on the pressure receiving chamber 66 side. A defining means may be configured.

また、対向板部76a,76bに対して、対向方向外側に突出する突起部を形成して、この突起部において対向板部76a,76bが部分的に収容空所64の壁内面に当接するようにしても良い。これによれば、可動板92の当接時に、対向板部76a,76bの弾性変形がより生じ易くなって、当接打音の低減効果を有利に得ることができる。   In addition, a protruding portion that protrudes outward in the opposing direction is formed with respect to the opposing plate portions 76a and 76b, and the opposing plate portions 76a and 76b partially abut against the inner wall surface of the housing space 64 at the protruding portion. Anyway. According to this, at the time of contact of the movable plate 92, the opposing plate portions 76a and 76b are more likely to be elastically deformed, and the effect of reducing the contact sound can be advantageously obtained.

さらに、対向板部76a,76bに対して対向方向内側に突出する内方突部を形成することで、可動板92の対向板部76a,76bに対する初期の当接面積を小さくして、当接打音の低減を図ることもできる。   Furthermore, by forming inward protrusions that protrude inward in the opposing direction with respect to the opposing plate portions 76a and 76b, the initial contact area of the movable plate 92 with respect to the opposing plate portions 76a and 76b can be reduced and contact can be made. It is also possible to reduce the hitting sound.

本発明は、エンジンマウントにのみ適用されるものではなく、ボデーマウントやメンバマウント等を含んだ各種の流体封入式防振装置に対して好適に適用され得る。また、本発明の適用範囲は、自動車用の流体封入式防振装置に限定されず、例えば自動二輪車や鉄道用車両、産業用車両等、自動車以外に用いられる流体封入式防振装置にも適用され得る。   The present invention is not only applied to the engine mount, but can be suitably applied to various fluid-filled vibration isolator devices including a body mount and a member mount. Further, the scope of application of the present invention is not limited to a fluid-filled vibration isolator for automobiles, and is also applicable to a fluid-filled vibration isolator used for other than automobiles, such as motorcycles, railway vehicles, and industrial vehicles. Can be done.

10:エンジンマウント(流体封入式防振装置)、12:第1の取付部材、14:第2の取付部材、16:本体ゴム弾性体、28:可撓性膜、36:仕切部材、44:第1の連通孔、58:挿通ピン(係止突起)、60:第2の連通孔、64:収容空所、66:受圧室、68:平衡室、70:オリフィス通路、72,100,110:緩衝ゴム(緩衝体)、74:内部空所、76:対向板部、78:側板部、80:第1の窓部、82:第2の窓部、84:係止孔、86:隙間、92:可動板(可動部材)、96,112:連通路、98,114:短絡通路 10: engine mount (fluid-filled vibration isolator), 12: first mounting member, 14: second mounting member, 16: main rubber elastic body, 28: flexible membrane, 36: partition member, 44: First communication hole 58: Insertion pin (locking projection) 60: Second communication hole 64: Storage space 66: Pressure receiving chamber 68: Equilibrium chamber 70: Orifice passage 72, 100, 110 : Buffer rubber (buffer body), 74: internal space, 76: counter plate portion, 78: side plate portion, 80: first window portion, 82: second window portion, 84: locking hole, 86: gap , 92: movable plate (movable member), 96, 112: communication path, 98, 114: short circuit path

Claims (5)

第1の取付部材と第2の取付部材が本体ゴム弾性体によって弾性連結されていると共に、該第2の取付部材によって支持された仕切部材を挟んで壁部の一部が該本体ゴム弾性体で構成された受圧室と壁部の一部が可撓性膜で構成された平衡室とが形成されて、それら受圧室と平衡室に非圧縮性流体が封入されていると共に、それら受圧室と平衡室を相互に連通するオリフィス通路が形成されており、更に該仕切部材の内部には収容空所が形成されて、該収容空所に可動部材が収容配置されていると共に、該収容空所の壁部に形成された第1の連通孔と第2の連通孔を通じて該可動部材の両面に該受圧室の液圧と該平衡室の液圧の各一方が及ぼされている流体封入式防振装置において、
前記収容空所には内部空所を備えた中空形状の緩衝体が収容配置されて、該緩衝体が該収容空所の前記受圧室側の壁内面と前記平衡室側の壁内面とに当接されていると共に、該緩衝体の該内部空所には前記可動部材が収容されており、該緩衝体に形成された第1の窓部が該収容空所の前記第1の連通孔に連通されることで該可動部材の一方の面に該受圧室の液圧が及ぼされていると共に、該緩衝体に形成された第2の窓部が該収容空所の前記第2の連通孔に連通されることで該可動部材の他方の面に該平衡室の液圧が及ぼされている一方、
該緩衝体における該受圧室側の壁部には該第1の連通孔に連通される連通路が形成されており、該第1の連通孔と該連通路とを含んで該受圧室と該収容空所を常時連通する短絡通路が形成されていることを特徴とする流体封入式防振装置。
The first mounting member and the second mounting member are elastically connected by the main rubber elastic body, and a part of the wall portion sandwiches the partition member supported by the second mounting member. The pressure receiving chambers and the equilibrium chambers in which a part of the wall portion is made of a flexible membrane are formed, and the pressure receiving chambers and the equilibrium chambers are filled with incompressible fluid, and these pressure receiving chambers And an equilibrium passage are formed in the partition member, and an accommodation space is formed in the partition member, and a movable member is accommodated in the accommodation space. A fluid-filled type in which one of the hydraulic pressure of the pressure receiving chamber and the hydraulic pressure of the equilibrium chamber is exerted on both surfaces of the movable member through a first communication hole and a second communication hole formed in the wall portion In the vibration isolator,
A hollow buffer body having an internal space is accommodated and disposed in the housing space, and the buffer body contacts the inner wall surface on the pressure receiving chamber side and the inner wall surface on the equilibrium chamber side of the housing space. The movable member is accommodated in the internal space of the buffer body, and a first window formed in the buffer body is in the first communication hole of the storage space. The fluid pressure of the pressure receiving chamber is exerted on one surface of the movable member by the communication, and the second window formed in the buffer body is the second communication hole of the housing space. While the fluid pressure of the equilibrium chamber is exerted on the other surface of the movable member by communicating with
A communication passage that communicates with the first communication hole is formed in a wall portion of the shock absorber on the pressure receiving chamber side, and includes the first communication hole and the communication passage. A fluid-filled type vibration damping device, wherein a short-circuit passage that always communicates with the accommodation space is formed.
前記緩衝体が、前記収容空所の前記受圧室側の壁内面と前記平衡室側の壁内面との各一方に当接して配置される一対の対向板部と、それら一対の対向板部を接続する一対の側板部とを有する一体的な帯形筒状体とされており、該受圧室側の該対向板部に形成された前記連通路が、該一対の側板部の対向方向と直交する方向に延びて前記第1の窓部を介して前記第1の連通孔に連通されている請求項1に記載の流体封入式防振装置。   A pair of opposing plate portions disposed so as to abut each of the pressure receiving chamber side wall inner surface and the equilibrium chamber side wall inner surface of the accommodating space; and the pair of opposing plate portions. An integral strip-shaped cylindrical body having a pair of side plate portions to be connected, and the communication passage formed in the opposing plate portion on the pressure receiving chamber side is orthogonal to the opposing direction of the pair of side plate portions. The fluid filled type vibration damping device according to claim 1, wherein the fluid filled type vibration damping device extends in a direction to be communicated with the first communication hole via the first window portion. 前記緩衝体が前記収容空所の周壁内面に対して離隔して配置されて隙間が形成されていると共に、前記連通路が該隙間に連通されている請求項1又は2に記載の流体封入式防振装置。   3. The fluid-filled type according to claim 1, wherein the buffer body is spaced from the inner surface of the peripheral wall of the housing space to form a gap, and the communication path communicates with the gap. Anti-vibration device. 前記緩衝体に形成された前記連通路が前記受圧室側に位置するように該緩衝体の前記収容空所内での向きを規定する規定手段が設けられている請求項1〜3の何れか1項に記載の流体封入式防振装置。   The regulation means which prescribes | regulates the direction in the said accommodation space of this buffer is provided so that the said communicating path formed in the said buffer may be located in the said pressure receiving chamber side. The fluid-filled vibration isolator according to the item. 前記仕切部材には前記収容空所内に前記平衡室側の壁部から前記受圧室側に向かって突出する係止突起が設けられていると共に、前記緩衝体の該平衡室側の壁部には係止孔が形成されており、該係止突起が該係止孔に挿入されることで前記規定手段と該緩衝体を該仕切部材に対して位置決めする位置決め手段とが構成されている請求項4に記載の流体封入式防振装置。   The partition member is provided with a locking projection that protrudes from the wall portion on the equilibrium chamber side toward the pressure receiving chamber side in the accommodation space, and on the wall portion on the equilibrium chamber side of the buffer body. A locking hole is formed, and the defining means and a positioning means for positioning the buffer relative to the partition member are configured by inserting the locking protrusion into the locking hole. 4. The fluid-filled vibration isolator according to 4.
JP2012010957A 2011-12-27 2012-01-23 Fluid filled vibration isolator Active JP5829135B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012010957A JP5829135B2 (en) 2012-01-23 2012-01-23 Fluid filled vibration isolator
PCT/JP2012/004723 WO2013099051A1 (en) 2011-12-27 2012-07-24 Fluid-filled vibration isolation device
CN201280049802.0A CN103890443B (en) 2011-12-27 2012-07-24 fluid-sealed vibration-damping device
US14/142,516 US9970506B2 (en) 2011-12-27 2013-12-27 Fluid-filled vibration damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012010957A JP5829135B2 (en) 2012-01-23 2012-01-23 Fluid filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2013148192A true JP2013148192A (en) 2013-08-01
JP5829135B2 JP5829135B2 (en) 2015-12-09

Family

ID=49045874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012010957A Active JP5829135B2 (en) 2011-12-27 2012-01-23 Fluid filled vibration isolator

Country Status (1)

Country Link
JP (1) JP5829135B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055339A (en) * 2013-09-13 2015-03-23 住友理工株式会社 Fluid sealed type vibration control device
DE112016002788B4 (en) 2015-09-29 2019-03-07 Sumitomo Riko Company Limited Vibration damping device and manufacturing method thereof
JP2019132320A (en) * 2018-01-30 2019-08-08 株式会社Subaru Liquid sealing mount device
JP2020133743A (en) * 2019-02-19 2020-08-31 Toyo Tire株式会社 Liquid-filled vibration control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224142U (en) * 1988-08-03 1990-02-16
JP2003184939A (en) * 2001-10-29 2003-07-03 Hutchinson Sa Hydraulic vibration-damping support including clip-on decoupling flap
JP2007271001A (en) * 2006-03-31 2007-10-18 Tokai Rubber Ind Ltd Fluid-sealed vibration isolating device
WO2008069131A1 (en) * 2006-12-05 2008-06-12 Honda Motor Co., Ltd. Liquid-sealed antivibration device
JP2008291969A (en) * 2007-05-28 2008-12-04 Kurashiki Kako Co Ltd Liquid sealed vibration isolating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224142U (en) * 1988-08-03 1990-02-16
JP2003184939A (en) * 2001-10-29 2003-07-03 Hutchinson Sa Hydraulic vibration-damping support including clip-on decoupling flap
JP2007271001A (en) * 2006-03-31 2007-10-18 Tokai Rubber Ind Ltd Fluid-sealed vibration isolating device
WO2008069131A1 (en) * 2006-12-05 2008-06-12 Honda Motor Co., Ltd. Liquid-sealed antivibration device
JP2008291969A (en) * 2007-05-28 2008-12-04 Kurashiki Kako Co Ltd Liquid sealed vibration isolating device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055339A (en) * 2013-09-13 2015-03-23 住友理工株式会社 Fluid sealed type vibration control device
DE112016002788B4 (en) 2015-09-29 2019-03-07 Sumitomo Riko Company Limited Vibration damping device and manufacturing method thereof
JP2019132320A (en) * 2018-01-30 2019-08-08 株式会社Subaru Liquid sealing mount device
JP7005365B2 (en) 2018-01-30 2022-01-21 株式会社Subaru Liquid encapsulation mount device
JP2020133743A (en) * 2019-02-19 2020-08-31 Toyo Tire株式会社 Liquid-filled vibration control device
JP7233242B2 (en) 2019-02-19 2023-03-06 Toyo Tire株式会社 Liquid-filled anti-vibration device

Also Published As

Publication number Publication date
JP5829135B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP4228219B2 (en) Fluid filled vibration isolator
JP5846939B2 (en) Fluid filled vibration isolator
JP4820792B2 (en) Fluid filled vibration isolator
JP4120510B2 (en) Fluid filled vibration isolator
JP2008002618A (en) Fluid filled vibration isolating device
JP2007100875A (en) Fluid filled vibration absorbing device
JP5926141B2 (en) Fluid filled vibration isolator
JP5829135B2 (en) Fluid filled vibration isolator
JP5926149B2 (en) Fluid filled vibration isolator
WO2013187008A1 (en) Sealed fluid-type vibration reduction device
JP5907782B2 (en) Fluid filled vibration isolator
JP2013160265A (en) Fluid-sealed vibration-damping device
JP2007271004A (en) Fluid-sealed vibration isolating device
JP5820772B2 (en) Fluid filled vibration isolator
JP6710123B2 (en) Fluid filled type vibration damping device
JP5049918B2 (en) Fluid filled vibration isolator
JP4871902B2 (en) Fluid filled vibration isolator
JP4075066B2 (en) Fluid filled engine mount
WO2013099051A1 (en) Fluid-filled vibration isolation device
JP5847029B2 (en) Fluid filled vibration isolator
JP2009168188A (en) Fluid-sealing type isolating device
JP6134208B2 (en) Fluid filled vibration isolator
JP2013133849A (en) Fluid sealed type vibration-proof device
JP5899060B2 (en) Fluid filled vibration isolator
JP5899039B2 (en) Fluid filled vibration isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151021

R150 Certificate of patent or registration of utility model

Ref document number: 5829135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150