JP2007051768A - Fluid-filled engine mount - Google Patents

Fluid-filled engine mount Download PDF

Info

Publication number
JP2007051768A
JP2007051768A JP2006169009A JP2006169009A JP2007051768A JP 2007051768 A JP2007051768 A JP 2007051768A JP 2006169009 A JP2006169009 A JP 2006169009A JP 2006169009 A JP2006169009 A JP 2006169009A JP 2007051768 A JP2007051768 A JP 2007051768A
Authority
JP
Japan
Prior art keywords
fluid
chamber
pressure
vibration
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006169009A
Other languages
Japanese (ja)
Inventor
Akira Katagiri
顕 片桐
Tatsuya Suzuki
達也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2006169009A priority Critical patent/JP2007051768A/en
Publication of JP2007051768A publication Critical patent/JP2007051768A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid-filled engine mount of novel structure capable of advantageously exhibiting a vibration control effect based on the flow action of a filled incompressible fluid and effectively suppressing the occurrence of impulsive noise and vibration. <P>SOLUTION: A movable plate 50 is composed of a plate-like body formed of a rubber elastic body, while a pressure regulating plate 80 composed of a plate-like body formed of a rubber elastic body is disposed at a partition wall part 44 for partitioning an intermediate chamber 58 from a pressure receiving chamber 34, and the spring rigidity of the pressure regulating plate 80 is made larger than that of the movable plate 50. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内部に封入された流体の流動作用に基づいて防振効果を得るようにした流体封入式エンジンマウントに係り、特に、第一のオリフィス通路と該第一のオリフィス通路よりも高周波数域にチューニングされた第二のオリフィス通路を備え、複数の乃至は広い周波数域の振動に対して防振効果を発揮し得る、新規な構造の流体封入式エンジンマウントに関するものである。   The present invention relates to a fluid-filled engine mount that obtains an anti-vibration effect based on the flow action of a fluid sealed inside, and more particularly, a first orifice passage and a higher frequency than the first orifice passage. The present invention relates to a fluid-filled engine mount having a novel structure that has a second orifice passage tuned in the region and can exhibit a vibration-proofing effect against vibrations in a plurality of or a wide frequency range.

従来から、エンジン等の内燃機関を含むパワーユニットとボデーの間に介装されてパワーユニットをボデーに対して防振連結または防振支持せしめるエンジンマウントの一種として、振動入力時に生ぜしめられる流体の共振作用等の流動作用を利用して防振効果を得るようにした流体封入式のエンジンマウントが知られている。かかるマウントは、パワーユニットとボデーの各一方に取り付けられる第一の取付金具と第二の取付金具を本体ゴム弾性体で連結すると共に、壁部の一部が本体ゴム弾性体で構成された受圧室と壁部の一部が可撓性膜で構成された平衡室を形成して、受圧室と平衡室に非圧縮性流体を封入すると共に、両室をオリフィス通路を通じて相互に連通させた構造とされている。   Conventionally, as a type of engine mount that is interposed between a power unit including an internal combustion engine, such as an engine, and the body, and the power unit is connected to the body in an anti-vibration manner or supported in an anti-vibration manner, the resonant action of the fluid generated when vibration is input 2. Description of the Related Art A fluid-filled engine mount that uses a fluid action such as that to obtain an anti-vibration effect is known. Such a mount connects a first mounting bracket and a second mounting bracket that are attached to one of the power unit and the body with a main rubber elastic body, and a pressure receiving chamber in which a part of the wall portion is configured with the main rubber elastic body. And a structure in which an incompressible fluid is sealed in the pressure receiving chamber and the equilibrium chamber, and both chambers communicate with each other through an orifice passage. Has been.

ところで、流体封入式エンジンマウントでは、所定の動作状態や平衡状態を乱す外乱の存在を考慮して、複数の乃至は広い周波数域の振動に対して優れた防振効果が発揮されることが望ましい。特に自動車に採用されるエンジンマウントでは、車両の走行状況等に応じて防振すべき入力振動の周波数が変化するために、複数の乃至は広い周波数域の振動に対して防振性能が有効に機能することが求められ、具体的には、例えば車両走行時に入力される10Hz前後の低周波数域のシェイク振動に加え、停車時に入力される15〜30Hz程度の高周波数域のアイドリング振動に対しても、防振効果が要求されることとなる。   By the way, it is desirable that the fluid-filled engine mount exhibits an excellent anti-vibration effect with respect to vibrations in a plurality of or a wide frequency range in consideration of the presence of a disturbance that disturbs a predetermined operation state or equilibrium state. . Especially for engine mounts used in automobiles, the frequency of the input vibration to be isolated varies depending on the driving conditions of the vehicle, etc., so the vibration isolation performance is effective against vibrations in multiple or wide frequency ranges. Specifically, for example, in addition to shake vibration in a low frequency range of about 10 Hz that is input when the vehicle travels, idling vibration in a high frequency range of about 15 to 30 Hz that is input when the vehicle is stopped. However, an anti-vibration effect is required.

そこで、上述の問題に鑑み、第一のオリフィス通路と該第一のオリフィス通路よりも高周波数域にチューニングされた第二のオリフィス通路を形成した流体封入式エンジンマウントが提案されている。例えば、特許文献1(特開平10−132017号公報)や特許文献2(特開平8−4823号公報)、特許文献3(特公平7−54131号公報)、特許文献4(特開2001−336564号公報)等に示されるものが、それである。   In view of the above problems, a fluid-filled engine mount has been proposed in which a first orifice passage and a second orifice passage tuned in a higher frequency range than the first orifice passage are formed. For example, Patent Document 1 (Japanese Patent Laid-Open No. 10-1332017), Patent Document 2 (Japanese Patent Laid-Open No. 8-4823), Patent Document 3 (Japanese Patent Publication No. 7-54131), Patent Document 4 (Japanese Patent Laid-Open No. 2001-336564). This is what is shown in the Gazette).

かかるエンジンマウントでは、受圧室と平衡室の間に壁部の一部がゴム弾性板で構成された中間室を設けていると共に、受圧室、中間室および平衡室を第一のオリフィス通路や第二のオリフィス通路を通じて相互に連通させている。これにより、第一のオリフィス通路の共振周波数域の振動入力時にゴム弾性板によって第二のオリフィス通路を流動せしめられる流体の流動量を制限することで第一のオリフィス通路の流体流動量を確保したり、第二のオリフィス通路の共振周波数域の振動入力時にゴム弾性板の共振現象を利用して該第二のオリフィス通路の流体流動作用を積極的に生ぜしめたりすること等によって、各オリフィス通路を通じての流体の共振作用等の流動作用に基づく防振効果が有利に発揮される。   In such an engine mount, an intermediate chamber in which a part of the wall portion is formed of a rubber elastic plate is provided between the pressure receiving chamber and the equilibrium chamber, and the pressure receiving chamber, the intermediate chamber, and the equilibrium chamber are connected to the first orifice passage and the second chamber. The two orifice passages communicate with each other. As a result, the fluid flow rate of the first orifice passage is ensured by limiting the flow rate of the fluid that can flow through the second orifice passage by the rubber elastic plate when vibration is input in the resonance frequency range of the first orifice passage. Each of the orifice passages by actively generating a fluid flow action of the second orifice passage by utilizing the resonance phenomenon of the rubber elastic plate at the time of vibration input in the resonance frequency range of the second orifice passage. An anti-vibration effect based on a fluid action such as a resonance action of the fluid through is advantageously exhibited.

ところが、このようなエンジンマウントにあっては、第一の取付金具と第二の取付金具の間に大きな振動が入力されると、マウントから異音や振動が発せられる場合があった。本発明者が検討したところ、上述の如き従来構造の流体封入式エンジンマウントを装着した自動車では、凹凸の大きな波状路等を走行した際に、車室内で乗員が体感できる程の異音や衝撃を発生する場合のあることが確認された。   However, in such an engine mount, when a large vibration is input between the first mounting bracket and the second mounting bracket, abnormal noise or vibration may be emitted from the mount. As a result of investigations by the present inventors, in a vehicle equipped with a fluid-filled engine mount having a conventional structure as described above, abnormal noise and impact that can be felt by the occupant in the passenger compartment when traveling on a wavy road with large irregularities, etc. It has been confirmed that there are cases where

特開平10−132017号公報JP 10-1332017 A 特開平8−4823号公報JP-A-8-4823 特公平7−54131号公報Japanese Patent Publication No. 7-54131 特開2001−336564号公報JP 2001-336564 A

ここにおいて、本発明は上述の如き事情を背景として為されたものであり、その解決課題とするところは、封入された非圧縮性流体の流動作用に基づく防振効果が有利に発揮され得ると共に、衝撃的な異音や振動の発生が効果的に抑えられる、新規な構造の流体封入式エンジンマウントを提供することにある。   Here, the present invention has been made in the background as described above, and the problem to be solved is that the vibration isolation effect based on the flow action of the enclosed incompressible fluid can be advantageously exhibited. An object of the present invention is to provide a fluid-filled engine mount having a novel structure capable of effectively suppressing the occurrence of shocking abnormal noise and vibration.

先ず、前述の如き従来構造の流体封入式エンジンマウントにおいて、異音や振動の発生現象について本発明者が多くの実験を行って検討を加えたところ、例えば自動車が凹凸の大きな波状路上を走行すると、一般的な走行状態下で入力される振動のうちで振幅が大きいシェイク振動よりも、更に大きな加速度で衝撃的な振動荷重が第一の取付部材と第二の取付部材の間に及ぼされることが明らかとなった。また、流体室を可視化した装置モデルを用いて、実車での波状路走行程度の衝撃的な振動荷重が入力された際の流体封入式エンジンマウントにおける作動状態を観察したところ、中間室においてキャビテーションと解せられる気泡の発生が認められた。   First, in the fluid-filled engine mount with the conventional structure as described above, the present inventor has conducted many experiments on the occurrence of abnormal noise and vibration, and for example, when an automobile travels on a wavy road with large irregularities. A shock vibration load is applied between the first mounting member and the second mounting member at a larger acceleration than the shake vibration having a large amplitude among vibrations input under general driving conditions. Became clear. Also, using the device model that visualized the fluid chamber, we observed the operating state of the fluid-filled engine mount when a shocking vibration load about the running of a wavy road in an actual vehicle was input. Generation of bubbles that could be solved was observed.

そして、キャビテーションに関する理論から推考すると、このような衝撃的な振動荷重の入力に際して、中間室で発生、成長、崩壊、消失を繰り返す気泡は、発生から成長に至る過程で略球状の安定を保つが、崩壊に際して変形し、爆発的な微小噴流を形成することとなり、これが水撃圧となって第一の取付部材や第二の取付部材に伝播し、自動車のボデー等に伝達されることによって、前述の如き問題となる異音や振動が生ぜしめられるに至る、というのが従来からこの種の流体封入式エンジンマウントにおいて問題となっている異音や振動の発生メカニズムであろうとの知見を得た。   From the theory of cavitation, when inputting such a shocking vibration load, bubbles that repeatedly generate, grow, collapse, and disappear in the intermediate chamber maintain a substantially spherical stability in the process from generation to growth. , Will be deformed upon collapse, will form an explosive micro jet, which is transmitted to the first mounting member and the second mounting member as a water hammer pressure, and transmitted to the body of the automobile, etc. Acquired knowledge that abnormal noise and vibration, which are the problems described above, will be generated is the mechanism of abnormal noise and vibration that has been a problem in this type of fluid-filled engine mount. It was.

加えて、問題となっている異音や振動の基本原因となるキャビテーション気泡は、第一のオリフィス通路の共振周波数よりも高周波数域において第二のオリフィス通路の共振周波数域の振幅振動となるアイドリング振動よりも大きな振幅振動が入力された際に、中間室に発生するという事実が新たに確認された。   In addition, cavitation bubbles that are the basic cause of abnormal noise and vibration in question are idling that causes amplitude vibration in the resonance frequency range of the second orifice passage at a frequency higher than the resonance frequency of the first orifice passage. It was newly confirmed that the vibration generated in the intermediate chamber when an amplitude vibration larger than the vibration was input.

そこで、本発明者は、上述の如き所定の大きさ乃至は周波数域の振幅振動が入力され、中間室が大きな減圧状態となることに起因してキャビテーション気泡が発生するという推考理論に着目し、この中間室の負圧を抑えることによってキャビテーション気泡が抑えられて、衝撃的な異音や振動を抑えることが出来るであろうという知見を得たのであり、本発明は、かかる知見に基づいて完成されたのである。   Therefore, the present inventor pays attention to the inference theory that cavitation bubbles are generated due to the fact that the amplitude vibration in the predetermined size or frequency range is input as described above and the intermediate chamber is in a large decompression state, By suppressing the negative pressure in this intermediate chamber, we obtained the knowledge that cavitation bubbles would be suppressed and shocking abnormal noise and vibration could be suppressed, and the present invention was completed based on this knowledge. It was done.

以下、前述の課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。また、本発明の態様乃至は技術的特徴は、以下に記載のものに限定されることなく、明細書全体および図面に記載されたもの、或いはそれらの記載から当業者が把握することの出来る発明思想に基づいて認識されるものであることが理解されるべきである。   Hereinafter, the aspect of this invention made in order to solve the above-mentioned subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible. Further, aspects or technical features of the present invention are not limited to those described below, but are described in the entire specification and drawings, or an invention that can be understood by those skilled in the art from those descriptions. It should be understood that it is recognized based on thought.

(本発明の態様1)
本発明の態様1の特徴とするところは、防振連結される一方の部材に取り付けられる第一の取付部材と防振連結される他方の部材に取り付けられる第二の取付部材を互いに離隔配置せしめて本体ゴム弾性体で連結すると共に、壁部の一部が該本体ゴム弾性体で構成された受圧室と壁部の一部が可撓性膜で構成された平衡室と壁部の一部が可動板で構成された中間室をそれぞれ形成して、該可動板を挟んだ両側に該中間室と該平衡室を配し、それら受圧室、平衡室および中間室に非圧縮性流体を封入して、更に該受圧室と該平衡室を相互に連通せしめると共に内部を流動せしめられる流体の共振周波数がエンジンシェイクにチューニングされた第一のオリフィス通路と、該受圧室と該中間室を相互に連通せしめると共に内部を流動せしめられる流体の共振周波数がアイドリング振動にチューニングされた第二のオリフィス通路を形成した流体封入式エンジンマウントにおいて、前記可動板をゴム弾性体からなる板状体で構成する一方、前記受圧室と前記中間室を仕切る隔壁部分にゴム弾性体からなる板状体で構成された圧力調節板を配設すると共に、該圧力調節板のばね剛性を該可動板のばね剛性よりも大きくした流体封入式エンジンマウントにある。
(Aspect 1 of the present invention)
A feature of the first aspect of the present invention is that the first attachment member attached to one member to be vibration-proof connected and the second attachment member attached to the other member to be anti-vibration connected are separated from each other. A pressure-receiving chamber in which a part of the wall is made of the rubber elastic body, a part of the wall made of a flexible film, and a part of the wall. Forms an intermediate chamber composed of movable plates, and arranges the intermediate chamber and the equilibrium chamber on both sides of the movable plate, and encloses the incompressible fluid in the pressure receiving chamber, the equilibrium chamber, and the intermediate chamber. Further, the pressure receiving chamber and the equilibrium chamber are communicated with each other, and the first orifice passage in which the resonance frequency of the fluid that is allowed to flow inside is tuned to the engine shake, the pressure receiving chamber and the intermediate chamber are mutually connected. Lets communicate and flow inside In a fluid-filled engine mount having a second orifice passage whose body resonance frequency is tuned to idling vibration, the movable plate is formed of a plate-like body made of a rubber elastic body, while the pressure receiving chamber and the intermediate chamber A fluid-filled engine mount in which a pressure regulating plate made of a rubber elastic body is disposed in a partition wall partitioning the partition, and the spring stiffness of the pressure regulating plate is larger than the spring stiffness of the movable plate is there.

本態様に従う構造とされた流体封入式エンジンマウントにおいては、第一のオリフィス通路の共振周波数域の振幅振動となるエンジンシェイクの入力時に、受圧室に圧力変動が惹起されて、受圧室と平衡室の相対的な圧力差に基づき、第一のオリフィス通路を通じて流体の共振作用等の流動作用が生ぜしめられる。ところで、受圧室と中間室を仕切る隔壁部分に圧力調節板が配されていることで、圧力調節板が受圧室に直接に面していることから、シェイク入力時に受圧室の圧力変動が圧力調節板によって吸収されるおそれがある。   In the fluid-filled engine mount structured according to this aspect, pressure fluctuation is induced in the pressure receiving chamber at the time of inputting an engine shake that causes amplitude vibration in the resonance frequency range of the first orifice passage, and the pressure receiving chamber and the equilibrium chamber Based on the relative pressure difference, a fluid action such as a resonance action of the fluid is generated through the first orifice passage. By the way, because the pressure adjusting plate is arranged in the partition that separates the pressure receiving chamber and the intermediate chamber, the pressure adjusting plate directly faces the pressure receiving chamber, so that the pressure fluctuation in the pressure receiving chamber is adjusted when the shake is input. May be absorbed by the plate.

そこにおいて、中間室の壁部の一部には可動板が設けられていると共に、圧力調節板のばね剛性が可動板のばね剛性よりも大きくされていることによって、圧力調節板および可動板の各ばね剛性のチューニング設定、延いては受圧室と中間室の両室間での直接的な調圧作用により、シェイク振動の振幅に対する中間室の壁ばね剛性(単位容積だけ変化させるのに必要な圧力変化量に対応する特性値)が十分に大きくされている。これにより、シェイク振動入力時の圧力調節板による液圧吸収作用が抑えられて、第一のオリフィス通路を通じての流体流動量が十分に確保される。その結果、第一のオリフィス通路を通じての流体の流動作用に基づいて、防振効果(振動減衰効果)が有利に発揮され得る。   In this case, a movable plate is provided on a part of the wall portion of the intermediate chamber, and the spring rigidity of the pressure adjustment plate is larger than the spring rigidity of the movable plate. Tuning settings for each spring stiffness, and by direct pressure regulation between the pressure receiving chamber and the intermediate chamber, the wall spring stiffness of the intermediate chamber with respect to the amplitude of the shake vibration (necessary for changing only the unit volume) The characteristic value corresponding to the pressure change amount) is sufficiently large. As a result, the hydraulic pressure absorbing action by the pressure adjusting plate when the shake vibration is input is suppressed, and a sufficient amount of fluid flow through the first orifice passage is ensured. As a result, an anti-vibration effect (vibration damping effect) can be advantageously exhibited based on the fluid flow action through the first orifice passage.

また、第二のオリフィス通路の共振周波数域の振幅振動となるアイドリング振動の入力時には、第一のオリフィス通路の流通抵抗が著しく増大して実質的に閉塞状態となり、受圧室と中間室の相対的な圧力差に基づき、第二のオリフィス通路を通じて流体の共振作用等の流動作用が生ぜしめられる。特に、圧力調節板のばね剛性が可動板のばね剛性よりも大きくされていることによって、アイドリング振動入力時に、圧力調節板が大きく変形することが抑えられて、受圧室の圧力変動が有効に惹起されると共に、中間室の容積変化が可動板の弾性変形に基づき容易に許容される。従って、受圧室と中間室の間に相対的な圧力変動が有効に惹起されて、受圧室と中間室の間で第二のオリフィス通路を通じての流体流動量が十分に確保される。これにより、第二のオリフィス通路を通じての流体の流動作用による防振効果(振動絶縁効果)が有利に発揮され得る。   In addition, when idling vibration, which is amplitude vibration in the resonance frequency range of the second orifice passage, is input, the flow resistance of the first orifice passage is remarkably increased and becomes substantially closed, and the pressure receiving chamber and the intermediate chamber are relatively closed. Based on the pressure difference, a fluid action such as a resonance action of the fluid is generated through the second orifice passage. In particular, since the spring stiffness of the pressure adjusting plate is greater than that of the movable plate, the pressure adjusting plate is prevented from being greatly deformed when idling vibration is input, and the pressure fluctuation in the pressure receiving chamber is effectively caused. In addition, a change in the volume of the intermediate chamber is easily allowed based on the elastic deformation of the movable plate. Therefore, a relative pressure fluctuation is effectively induced between the pressure receiving chamber and the intermediate chamber, and a sufficient amount of fluid flow through the second orifice passage is ensured between the pressure receiving chamber and the intermediate chamber. Thereby, the anti-vibration effect (vibration insulation effect) by the fluid flow action through the second orifice passage can be advantageously exhibited.

ところで、例えば自動車が凹凸の大きな波状路上を走行する状況下等で、アイドリング振動よりも大きな振幅振動が第一のオリフィス通路の共振周波数よりも高周波数域で入力された場合には、受圧室における大きな圧力変動に伴い可動板が積極的に乃至は大きく弾性変形し、該可動板の弾性変形によって中間室に及ぼされる圧力変動等に起因して、中間室に局所的に大きな負圧が生ぜしめられるおそれがある。   By the way, for example, in a situation where an automobile travels on a wavy road with large unevenness, when amplitude vibration larger than idling vibration is input in a frequency range higher than the resonance frequency of the first orifice passage, The movable plate is positively or greatly elastically deformed with a large pressure fluctuation, and a large negative pressure is locally generated in the intermediate chamber due to the pressure fluctuation exerted on the intermediate chamber by the elastic deformation of the movable plate. There is a risk of being.

そこにおいて、中間室と平衡室を仕切る中間室の壁部の一部が可動板を含んで構成されていると共に、受圧室と中間室を仕切る中間室の壁部の別の一部が、圧力調節板を含んで構成されていることにより、可動板の弾性変形によって中間室に及ぼされる圧力変動が、圧力調節板の弾性変形により吸収される。特に、圧力調節板のばね剛性が可動板のばね剛性よりも大きくされていることによって、前述のアイドリング振動よりも大きな振幅振動の入力時に、圧力調節板が可動板よりも大きく弾性変形することが抑えられ、中間室に対して可動板の弾性変形による圧力変動よりも大きな圧力変動が惹起されることが抑えられる。その結果、可動板の弾性変形に起因する中間室の大きな減圧状態が解消されて、キャビテーション気泡の発生が軽減乃至は回避される。   Therefore, a part of the wall portion of the intermediate chamber that partitions the intermediate chamber and the equilibrium chamber is configured to include a movable plate, and another part of the wall portion of the intermediate chamber that partitions the pressure receiving chamber and the intermediate chamber is By including the adjustment plate, the pressure fluctuation exerted on the intermediate chamber by the elastic deformation of the movable plate is absorbed by the elastic deformation of the pressure adjustment plate. In particular, since the spring stiffness of the pressure adjusting plate is larger than the spring stiffness of the movable plate, the pressure adjusting plate may be more elastically deformed than the movable plate when an amplitude vibration larger than the idling vibration described above is input. This suppresses the occurrence of pressure fluctuations greater than the pressure fluctuation caused by the elastic deformation of the movable plate in the intermediate chamber. As a result, the large decompression state of the intermediate chamber due to the elastic deformation of the movable plate is eliminated, and the generation of cavitation bubbles is reduced or avoided.

なお、アイドリング振動よりも大きな振幅振動が第一のオリフィス通路の共振周波数よりも低周波数域で入力された場合には、受圧室に惹起された圧力変動が第一のオリフィス通路を通じて平衡室に逃がされるため、中間室に過大な負圧が発生することが回避される。   When amplitude vibration larger than idling vibration is input in a frequency range lower than the resonance frequency of the first orifice passage, the pressure fluctuation induced in the pressure receiving chamber is released to the equilibrium chamber through the first orifice passage. Therefore, an excessive negative pressure is prevented from being generated in the intermediate chamber.

それ故、本態様に係る流体封入式エンジンマウントでは、中間室の壁部が前述の如き構造とされた圧力調節板と可動板を含んで構成されていることによって、第一及び第二のオリフィス通路を通じての各流体の流動作用に基づく防振効果を充分に保持しつつ、中間室に発生するキャビテーション気泡の発生要因と考えられる中間室の大きな減圧状態が回避されて、問題となっていた衝撃的な異音や振動が効果的に抑えられるのである。   Therefore, in the fluid-filled engine mount according to this aspect, the wall portion of the intermediate chamber includes the pressure adjusting plate and the movable plate having the above-described structure, so that the first and second orifices are formed. Impact that was a problem by avoiding the large decompression state of the intermediate chamber, which is thought to be the cause of cavitation bubbles generated in the intermediate chamber, while maintaining sufficient vibration isolation effect based on the flow action of each fluid through the passage Noise and vibration can be effectively suppressed.

なお、可動板や圧力調節板のばね剛性は、可動板を挟んだ両側に形成された中間室と平衡室の相対的な圧力差や圧力調節板を挟んだ両側に形成された受圧室と中間室の相対的な圧力差に基づく動的な圧力により、可動板や圧力調節板を厚さ方向に変形させるのに必要な変形量に対応するものである。   The spring stiffness of the movable plate and pressure adjusting plate is the same as the relative pressure difference between the intermediate chamber and the equilibrium chamber formed on both sides of the movable plate, and the pressure receiving chamber formed on both sides of the pressure adjusting plate. This corresponds to the amount of deformation necessary to deform the movable plate and the pressure adjusting plate in the thickness direction by dynamic pressure based on the relative pressure difference between the chambers.

(本発明の態様2)
本発明の態様2の特徴とするところは、本発明の態様1に係る流体封入式エンジンマウントにおいて、前記可動板、前記圧力調節板および前記中間室を含んで、該可動板と該圧力調節板の弾性変形に伴って流体流動して圧力伝達する流体流路が構成されており、この流体流路の共振周波数が、前記第二のオリフィス通路の共振周波数よりも高周波数域にチューニングされていることにある。
(Aspect 2 of the present invention)
A feature of aspect 2 of the present invention is that the fluid-filled engine mount according to aspect 1 of the present invention includes the movable plate, the pressure adjustment plate, and the intermediate chamber, and the movable plate and the pressure adjustment plate. A fluid flow path is formed in which the fluid flows and transmits pressure along with the elastic deformation of the fluid, and the resonance frequency of the fluid flow path is tuned to a higher frequency range than the resonance frequency of the second orifice passage. There is.

本態様においては、第二のオリフィス通路の共振周波数よりも高周波数域において小振幅振動が入力された際に、圧力調節板の弾性変形に基づいて中間室に及ぼされる圧力変動が、可動板の弾性変形に基づいて吸収されて、平衡室に逃がされる。即ち、当該高周波振動の入力時に、圧力調節板と可動板の弾性変形に基づいて、受圧室と平衡室の間で実質的に流体流動が許容される。それ故、受圧室の圧力変動の上昇が抑えられて、著しい高動ばね化が回避されることとなり、防振効果の更なる向上が図られ得る。   In this aspect, when a small amplitude vibration is input in a frequency range higher than the resonance frequency of the second orifice passage, the pressure fluctuation exerted on the intermediate chamber based on the elastic deformation of the pressure adjusting plate is It is absorbed on the basis of elastic deformation and escapes to the equilibrium chamber. That is, when the high frequency vibration is input, fluid flow is substantially allowed between the pressure receiving chamber and the equilibrium chamber based on the elastic deformation of the pressure adjusting plate and the movable plate. Therefore, an increase in pressure fluctuation in the pressure receiving chamber is suppressed, and a significant increase in the dynamic spring is avoided, so that the vibration isolation effect can be further improved.

(本発明の態様3)
本発明の態様3の特徴とするところは、本発明の態様1又は2に係る流体封入式エンジンマウントにおいて、前記第二の取付部材によって固定的に支持せしめた硬質の仕切部材を、前記受圧室と前記平衡室の間に配設すると共に、該仕切部材の中央部分において該平衡室の側に向かって開口する凹所を形成して該凹所の開口部を前記可動板で流体密に覆蓋することにより前記中間室を形成して、該凹所の底壁部で前記隔壁部分を構成する一方、該仕切部材の外周部分を利用して前記第一のオリフィス通路および前記第二のオリフィス通路を形成したことにある。
(Aspect 3 of the present invention)
A feature of the third aspect of the present invention is that in the fluid-filled engine mount according to the first or second aspect of the present invention, the hard partition member fixedly supported by the second mounting member is provided in the pressure receiving chamber. And a recess that opens toward the side of the equilibrium chamber in the central portion of the partition member, and the opening of the recess is covered with the movable plate in a fluid-tight manner. Thus, the intermediate chamber is formed, and the partition wall portion is constituted by the bottom wall portion of the recess, while the first orifice passage and the second orifice passage are utilized by utilizing the outer peripheral portion of the partition member. It is in having formed.

本態様においては、中間室や第一及び第二のオリフィス通路、可動板、隔壁部分等が少ない部品点数と優れたスペース効率をもって形成されて、マウントのコンパクト化が有利に図られ得る。   In this aspect, the intermediate chamber, the first and second orifice passages, the movable plate, the partition wall portion, and the like are formed with a small number of parts and excellent space efficiency, so that the mount can be advantageously made compact.

(本発明の態様4)
本発明の態様4の特徴とするところは、本発明の態様3に係る流体封入式エンジンマウントにおいて、前記第二の取付部材を円筒形状として、該第二の取付部材の一方の開口部側に前記第一の取付部材を離隔配置すると共に、該第一の取付部材と該第二の取付部材を前記本体ゴム弾性体で連結することによって該第二の取付部材の一方の開口部を流体密に閉塞する一方、該第二の取付部材の他方の開口部を前記可撓性膜で覆蓋すると共に、該第二の取付部材に前記仕切部材を嵌め込んで該本体ゴム弾性体と該可撓性膜の対向面間に配設したことにある。
(Aspect 4 of the present invention)
A feature of aspect 4 of the present invention is that, in the fluid-filled engine mount according to aspect 3 of the present invention, the second mounting member is formed in a cylindrical shape and is disposed on one opening side of the second mounting member. The first mounting member is spaced apart, and the first mounting member and the second mounting member are connected by the main rubber elastic body so that one opening of the second mounting member is fluid-tight. And the other opening of the second mounting member is covered with the flexible film, and the partition member is fitted into the second mounting member so that the main rubber elastic body and the flexible In that it is disposed between opposing surfaces of the conductive film.

本態様においては、仕切部材の第二の取付部材に対する固定構造が簡略とされると共に、受圧室や平衡室が少ない部品点数と優れたスペース効率をもって形成されて、コンパクト化が一層有利に図られ得る。   In this aspect, the structure for fixing the partition member to the second mounting member is simplified, and the pressure receiving chamber and the equilibrium chamber are formed with a small number of parts and excellent space efficiency, thereby further reducing the size. obtain.

上述の説明からも明らかなように、本発明に従う構造とされた流体封入式エンジンマウントにおいては、第一のオリフィス通路の共振周波数よりも高周波数域でアイドリング振動よりも大きな振幅振動の入力時に、可動板の弾性変形によって中間室に及ぼされる圧力変動が、圧力調節板の弾性変形により吸収される。これにより、可動板の変形に起因する中間室の大きな減圧状態が解消されて、キャビテーション気泡の発生が抑えられる結果、問題となっていた衝撃的な異音や振動が効果的に抑えられるのである。   As is clear from the above description, in the fluid-filled engine mount structured according to the present invention, when an amplitude vibration larger than the idling vibration is input in a frequency range higher than the resonance frequency of the first orifice passage, The pressure fluctuation exerted on the intermediate chamber by the elastic deformation of the movable plate is absorbed by the elastic deformation of the pressure adjusting plate. As a result, the large decompression state of the intermediate chamber due to the deformation of the movable plate is eliminated, and the generation of cavitation bubbles is suppressed. As a result, the shocking abnormal noise and vibration that have been problems can be effectively suppressed. .

以下、本発明を更に具体的に明らかにするために、本発明の実施形態について説明する。先ず、図1には、本発明の一実施形態としての自動車用エンジンマウント10が示されている。このエンジンマウント10は、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14が離隔配置されていると共に、それら第一の取付金具12と第二の取付金具14が本体ゴム弾性体16で相互に弾性的に連結した構造とされている。マウント10は、第一の取付金具12が防振連結される一方の部材としての自動車のパワーユニットに取り付けられると共に、第二の取付金具14が防振連結される他方の取付部材としての車両ボデーに取り付けられることによって自動車に装着されて、パワーユニットを車両ボデーに対して防振支持せしめるようになっている。かかる装着状態下、マウント10にパワーユニットの分担支持荷重が及ぼされて、第一の取付金具12と第二の取付金具14が互いに接近する方向に変位して本体ゴム弾性体16が弾性変形すると共に、防振すべき主たる振動が、マウント軸方向となる図1中の上下方向に入力されるようになっている。なお、以下の説明中、特に断りのない限り、上下方向は、図1中の上下方向をいう。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described. First, FIG. 1 shows an automobile engine mount 10 as an embodiment of the present invention. The engine mount 10 includes a first mounting bracket 12 as a first mounting member and a second mounting bracket 14 as a second mounting member that are spaced apart from each other. Two mounting brackets 14 are elastically connected to each other by a main rubber elastic body 16. The mount 10 is attached to a power unit of an automobile as one member to which the first mounting bracket 12 is vibration-proof connected, and to the vehicle body as the other mounting member to which the second mounting bracket 14 is vibration-proof connected. The power unit is attached to an automobile by being attached, and the power unit is supported in a vibration-proof manner with respect to the vehicle body. Under such a mounted state, a shared support load of the power unit is exerted on the mount 10, and the first mounting bracket 12 and the second mounting bracket 14 are displaced toward each other, and the main rubber elastic body 16 is elastically deformed. The main vibration to be vibration-proofed is input in the vertical direction in FIG. 1 which is the mount axis direction. In the following description, the vertical direction refers to the vertical direction in FIG. 1 unless otherwise specified.

より詳細には、第一の取付金具12は、下方に向かって凸となる略円錐台形状を呈していると共に、その中央部分に螺子穴18が設けられている。第一の取付金具12が、螺子穴18に螺着される固定ボルトを介して図示しないパワーユニット側の取付部材にボルト固定されることにより、パワーユニットに対して固定されるようになっている。   More specifically, the first mounting member 12 has a substantially truncated cone shape that protrudes downward, and is provided with a screw hole 18 at the center thereof. The first mounting member 12 is fixed to the power unit by being bolted to a power unit-side mounting member (not shown) via a fixing bolt screwed into the screw hole 18.

一方、第二の取付金具14は、大径の略円筒形状を有している。第二の取付金具14が車両ボデー側の筒状の取付ブラケット20に圧入されて、該ブラケット20に固設された複数の脚部22が車両ボデー側部材にボルト等で固定されることによって、第二の取付金具14が車両ボデーに対して固定されるようになっている。   On the other hand, the second mounting bracket 14 has a large-diameter, generally cylindrical shape. The second mounting bracket 14 is press-fitted into the cylindrical mounting bracket 20 on the vehicle body side, and the plurality of leg portions 22 fixed to the bracket 20 are fixed to the vehicle body side member with bolts or the like, The second mounting bracket 14 is fixed to the vehicle body.

第一の取付金具12が第二の取付金具14の一方(図1中、上)の開口部側に離隔配置されて、第一の取付金具12と第二の取付金具14の中心軸が略同一線上に位置せしめられている。また、第一の取付金具12と第二の取付金具14の間には、本体ゴム弾性体16が配されている。   The first mounting bracket 12 is spaced from the opening side of one of the second mounting brackets 14 (upper in FIG. 1), and the central axes of the first mounting bracket 12 and the second mounting bracket 14 are substantially the same. It is located on the same line. A main rubber elastic body 16 is disposed between the first mounting bracket 12 and the second mounting bracket 14.

本体ゴム弾性体16は、大径の略裁頭円錐台形状を有している。本体ゴム弾性体16の小径側端面には、第一の取付金具12が軸方向に差し込まれた状態で加硫接着されている。本体ゴム弾性体16の大径側端部外周面には、第二の取付金具14の軸方向上端部分から軸方向中間部分にかけての内周面が重ね合わせられて加硫接着されている。要するに、本体ゴム弾性体16は、第一の取付金具12と第二の取付金具14を備えた一体加硫成形品として形成されており、それによって、第一の取付金具12と第二の取付金具14が本体ゴム弾性体16で互いに弾性連結されていると共に、第二の取付金具14の一方(図1中、上)の開口部が、本体ゴム弾性体16で流体密に覆蓋されている。また、第二の取付金具14の軸方向中間部分から軸方向下端部分にかけての内周面には、本体ゴム弾性体16と一体形成された薄肉のシールゴム層24が被着されている。更に、本体ゴム弾性体16の大径側端面には、略逆すり鉢形状の円形凹所26が形成されていることによって、パワーユニットの分担支持荷重による本体ゴム弾性体16の引張応力が軽減されている。   The main rubber elastic body 16 has a large truncated cone shape. The first mounting bracket 12 is vulcanized and bonded to the end surface on the small diameter side of the main rubber elastic body 16 in a state of being inserted in the axial direction. On the outer peripheral surface of the large-diameter side end portion of the main rubber elastic body 16, the inner peripheral surface from the upper end portion in the axial direction of the second mounting member 14 to the intermediate portion in the axial direction is overlapped and vulcanized and bonded. In short, the main rubber elastic body 16 is formed as an integrally vulcanized molded product including the first mounting bracket 12 and the second mounting bracket 14, thereby the first mounting bracket 12 and the second mounting bracket 14. The metal fittings 14 are elastically connected to each other by the main rubber elastic body 16, and one opening (upper in FIG. 1) of the second mounting metal fitting 14 is covered with the main rubber elastic body 16 in a fluid-tight manner. . A thin seal rubber layer 24 integrally formed with the main rubber elastic body 16 is attached to the inner peripheral surface of the second mounting bracket 14 from the axially intermediate portion to the lower end portion in the axial direction. Furthermore, a substantially inverted mortar-shaped circular recess 26 is formed on the large-diameter side end surface of the main rubber elastic body 16, thereby reducing the tensile stress of the main rubber elastic body 16 due to the shared support load of the power unit. Yes.

また、第二の取付金具14の他方(図1中、下)の開口部には、可撓性膜としてのダイヤフラム28が配設されている。ダイヤフラム28は、弛みを持たせた薄肉のゴム膜からなる円板形状を呈していることで変形容易とされており、外周縁部には大径リング状の固定金具30が加硫接着されている。固定金具30が第二の取付金具14に内挿されて、第二の取付金具14に絞り加工等の縮径加工が施されている。これにより、ダイヤフラム28が第二の取付金具14に固着されていると共に、第二の取付金具14の他方の開口部がダイヤフラム28で流体密に覆蓋されている。   In addition, a diaphragm 28 as a flexible film is disposed in the other opening (lower in FIG. 1) of the second mounting bracket 14. The diaphragm 28 is easily deformed by exhibiting a disk shape made of a thin rubber film with a slack, and a large-diameter ring-shaped fixing bracket 30 is vulcanized and bonded to the outer peripheral edge. Yes. The fixing bracket 30 is inserted into the second mounting bracket 14, and the second mounting bracket 14 is subjected to diameter reduction processing such as drawing. Thus, the diaphragm 28 is fixed to the second mounting bracket 14, and the other opening of the second mounting bracket 14 is covered with the diaphragm 28 in a fluid-tight manner.

さらに、第二の取付金具14の内側における本体ゴム弾性体16とダイヤフラム28の間には、仕切部材32が収容配置されている。仕切部材32は、図2,3にも示されているように、全体として厚肉の略円板形状を有しており、硬質の合成樹脂材や金属材等を用いて形成されている。仕切部材32は、ダイヤフラム28と共に第二の取付金具14の他方(図1中、下)の開口部から内挿されて第二の取付金具14に縮径加工が施されていることにより、第二の取付金具14の軸方向中央部分において軸直角方向に広がった形態で固定されている。   Further, a partition member 32 is accommodated between the main rubber elastic body 16 and the diaphragm 28 inside the second mounting bracket 14. As shown in FIGS. 2 and 3, the partition member 32 has a thick and substantially disk shape as a whole, and is formed using a hard synthetic resin material, a metal material, or the like. The partition member 32 is inserted from the opening of the other (lower in FIG. 1) of the second mounting bracket 14 together with the diaphragm 28, and the second mounting bracket 14 is subjected to diameter reduction processing. The second mounting bracket 14 is fixed in a form extending in a direction perpendicular to the axis at the center portion in the axial direction.

第二の取付金具14の内側の仕切部材32を挟んだ一方(図1中、上)の側には、壁部の一部が本体ゴム弾性体16で構成されて本体ゴム弾性体16の弾性変形に基づいて圧力変動が惹起される、受圧室34が形成されている。また、第二の取付金具14の内側の仕切部材32を挟んだ他方(図1中、下)の側には、壁部の一部がダイヤフラム28で構成されてダイヤフラム28の弾性変形に基づいて容積変化が容易に許容される、平衡室36が形成されている。これら受圧室34や平衡室36には、非圧縮性流体が封入されている。封入流体としては、例えば水やアルキレングリコール、ポリアルキレングリコール、シリコーン油等が採用され、特に流体の共振作用等に基づく防振効果を有効に得るために、0.1Pa・s以下の低粘性流体が好適に採用される。このことからも明らかなように、第二の取付金具14によって固定的に支持された硬質の仕切部材32が、受圧室34と平衡室36の間、換言すると本体ゴム弾性体16とダイヤフラム28の対向面間に配設されている。   On one side (upper side in FIG. 1) sandwiching the partition member 32 inside the second mounting bracket 14, a part of the wall portion is constituted by the main rubber elastic body 16, and the elasticity of the main rubber elastic body 16. A pressure receiving chamber 34 is formed in which pressure fluctuation is caused based on the deformation. Further, on the other side (lower side in FIG. 1) sandwiching the partition member 32 inside the second mounting bracket 14, a part of the wall portion is constituted by the diaphragm 28, and based on the elastic deformation of the diaphragm 28. An equilibrium chamber 36 is formed in which volume changes are easily allowed. The pressure receiving chamber 34 and the equilibrium chamber 36 are filled with an incompressible fluid. As the sealing fluid, for example, water, alkylene glycol, polyalkylene glycol, silicone oil, or the like is employed. In order to effectively obtain a vibration-proofing effect based on the resonance action of the fluid, a low-viscosity fluid of 0.1 Pa · s or less Is preferably employed. As is clear from this, the hard partition member 32 fixedly supported by the second mounting bracket 14 is provided between the pressure receiving chamber 34 and the equilibrium chamber 36, in other words, between the main rubber elastic body 16 and the diaphragm 28. It is arrange | positioned between opposing surfaces.

また、仕切部材32の中央部分には、軸方向一方(図1中、下、即ち平衡室36側)に開口する凹所38が形成されている。凹所38の軸方向中間部分には段差部40が形成されており、この段差部40を挟んで凹所38の開口部42が底壁部44よりも大径とされている。段差部40の外周部分には、環状の嵌着溝46が形成されている。更に、凹所38の開口部42には、かかる開口部42よりも大径とされて、仕切部材32の軸方向一方の端面に開口する嵌着口48が形成されている。   In addition, a recess 38 is formed in the central portion of the partition member 32 so as to open in one axial direction (downward in FIG. A stepped portion 40 is formed at an axially intermediate portion of the recess 38, and the opening 42 of the recess 38 has a larger diameter than the bottom wall portion 44 across the stepped portion 40. An annular fitting groove 46 is formed on the outer peripheral portion of the stepped portion 40. Further, the opening 42 of the recess 38 is formed with a fitting opening 48 having a diameter larger than that of the opening 42 and opening at one end face in the axial direction of the partition member 32.

さらに、仕切部材32には、可動板としてのゴム弾性板50が配設されている。ゴム弾性板50は、薄肉の略円板形状を有しており、ゴム弾性体からなる。ゴム弾性板50のばね剛性は、本体ゴム弾性体16のばね剛性よりも小さくされていると共に、ダイヤフラム28のばね剛性よりも大きくされている。また、ゴム弾性板50の外周縁部には、軸方向両側に突出する環状の弾性突部52,52が一体形成されている。かかるゴム弾性板50が仕切部材32の凹所38の開口部42に嵌め込まれて、ゴム弾性板50の外周縁部が凹所38の開口部42に密着状に重ね合わせられていると共に、ゴム弾性板50の軸方向一方(図1中、上)の弾性突部52が、凹所38の段差部40の嵌着溝46に弾性変形して嵌め込まれている。   Furthermore, the partition member 32 is provided with a rubber elastic plate 50 as a movable plate. The rubber elastic plate 50 has a thin and substantially disk shape and is made of a rubber elastic body. The spring rigidity of the rubber elastic plate 50 is made smaller than that of the main rubber elastic body 16 and larger than that of the diaphragm 28. In addition, annular elastic protrusions 52 and 52 that protrude on both sides in the axial direction are integrally formed on the outer peripheral edge of the rubber elastic plate 50. The rubber elastic plate 50 is fitted into the opening 42 of the recess 38 of the partition member 32, and the outer peripheral edge of the rubber elastic plate 50 is closely adhered to the opening 42 of the recess 38, and the rubber. One elastic projection 52 in the axial direction of the elastic plate 50 (upper in FIG. 1) is fitted into the fitting groove 46 of the stepped portion 40 of the recess 38 by being elastically deformed.

更にまた、仕切部材32の嵌着口48には、リング状の嵌着部材54が嵌着固定されている。嵌着部材54の上端部には、軸直角方向内方に広がる鍔部が一体形成されており、鍔部には軸方向一方(図1中、上)に開口する環状の嵌着溝56が形成されている。嵌着部材54が仕切部材32に固定されると、ゴム弾性板50の軸方向他方(図1中、下)の弾性突部52が、嵌着溝56に弾性変形して嵌め込まれている。   Furthermore, a ring-shaped fitting member 54 is fitted and fixed to the fitting port 48 of the partition member 32. The upper end portion of the fitting member 54 is integrally formed with a flange that extends inward in the direction perpendicular to the axis, and the flange has an annular fitting groove 56 that opens in one axial direction (upward in FIG. 1). Is formed. When the fitting member 54 is fixed to the partition member 32, the elastic protrusion 52 on the other axial direction (lower side in FIG. 1) of the rubber elastic plate 50 is fitted into the fitting groove 56 by being elastically deformed.

これにより、ゴム弾性板50の外周縁部が仕切部材32の凹所38の開口部42に固着されて、ゴム弾性板50の外周縁部を除いた部分が弾性変形可能に仕切部材32に配設されていると共に、ゴム弾性板50が凹所38の開口部42を流体密に覆蓋せしめている。かかるゴム弾性板50で覆蓋された凹所38には、受圧室34や平衡室36と同様に、非圧縮性流体が封入されており、凹所38の底壁部44や周壁部、ゴム弾性板50を含んで壁部が構成された中間室58が形成されている。ゴム弾性板50を挟んだ両側に中間室58と平衡室36が形成されている。   Thereby, the outer peripheral edge of the rubber elastic plate 50 is fixed to the opening 42 of the recess 38 of the partition member 32, and the portion excluding the outer peripheral edge of the rubber elastic plate 50 is arranged on the partition member 32 so as to be elastically deformable. The rubber elastic plate 50 covers the opening 42 of the recess 38 in a fluid-tight manner. An incompressible fluid is sealed in the recess 38 covered with the rubber elastic plate 50 in the same manner as the pressure receiving chamber 34 and the equilibrium chamber 36, and the bottom wall portion 44 and the peripheral wall portion of the recess 38, rubber elasticity An intermediate chamber 58 having a wall portion including the plate 50 is formed. An intermediate chamber 58 and an equilibrium chamber 36 are formed on both sides of the rubber elastic plate 50.

要するに、中間室58を挟んだ一方(図1中、上)の側に受圧室34が形成されていると共に、中間室58を挟んだ他方(図1中、下)の側に平衡室36が形成されている。受圧室34と中間室58を仕切る隔壁部分が、凹所38の底壁部44を含んで構成されている。また、ゴム弾性板50の主たる変位乃至は変形方向が、マウント軸方向となる図1中の上下方向とされている。   In short, the pressure receiving chamber 34 is formed on one side (the upper side in FIG. 1) sandwiching the intermediate chamber 58, and the equilibrium chamber 36 is located on the other side (the lower side in FIG. 1) across the intermediate chamber 58. Is formed. A partition wall partitioning the pressure receiving chamber 34 and the intermediate chamber 58 includes the bottom wall portion 44 of the recess 38. Further, the main displacement or deformation direction of the rubber elastic plate 50 is the vertical direction in FIG. 1 which is the mount axis direction.

また、仕切部材32における軸方向中間部の外周部分と軸方向一方(図1中、下)の外周部分には、それぞれ軸直角方向外方に開口して、例えば周方向に一周弱の長さで延びる周溝が設けられており、それら周溝の各一方の端部を互いに接続することによって、全体として仕切部材32の外周部分を周方向に二周弱の長さで延びる第一の周溝60が形成されている。更に、仕切部材32における軸方向他方(図1中、上)の外周部分には、軸直角方向外方に開口して、例えば周方向に一周弱の長さで延びる第二の周溝62が形成されている。また、第一の周溝60と第二の周溝62は、両溝60,62における各一方の端部が障壁部64を挟んで仕切られていることによって、仕切部材32に対して、それぞれ独立して形成されて、互いに並列的に配設されている。更に、仕切部材32が第二の取付金具14に固定されて仕切部材32の外周面がシールゴム層24を介して第二の取付金具14の内周面に密着状に重ね合わせられていることによって、第一の周溝60と第二の周溝62の軸直角方向外方に開口する各開口部が、第二の取付金具14に流体密に覆蓋されている。   Further, the outer peripheral portion of the intermediate portion in the axial direction of the partition member 32 and the outer peripheral portion of one axial direction (downward in FIG. 1) are respectively opened outward in the direction perpendicular to the axis, and are, for example, slightly shorter in the circumferential direction. The peripheral grooves extending in the circumferential direction are connected to each other by connecting one end of each peripheral groove to each other, so that the outer periphery of the partition member 32 as a whole extends in the circumferential direction with a length of less than two rounds. A groove 60 is formed. Furthermore, a second circumferential groove 62 that opens outward in the direction perpendicular to the axis and extends, for example, with a length of a little less than one round in the circumferential direction, is provided on the outer circumferential portion of the other axial direction (upper in FIG. 1) of the partition member 32. Is formed. In addition, the first circumferential groove 60 and the second circumferential groove 62 are partitioned with respect to the partition member 32 by partitioning one end of each of the grooves 60 and 62 with the barrier portion 64 interposed therebetween. They are formed independently and arranged in parallel with each other. Furthermore, the partition member 32 is fixed to the second mounting bracket 14, and the outer peripheral surface of the partition member 32 is closely adhered to the inner peripheral surface of the second mounting bracket 14 via the seal rubber layer 24. The respective openings that open outward in the direction perpendicular to the axis of the first circumferential groove 60 and the second circumferential groove 62 are covered with the second mounting bracket 14 in a fluid-tight manner.

第二の取付金具14により覆蓋された第一の周溝60によって、第一のオリフィス通路66が構成されている。第一のオリフィス通路66の一方の端部が、仕切部材32の軸方向一方(図1中、上)の端部に形成された切欠状の第一の連通窓68を通じて受圧室34に接続されていると共に、第一のオリフィス通路66の他方の端部が、仕切部材32の軸方向他方(図1中、下)の端部に形成された切欠状の連通口70を通じて平衡室36に接続されている。これにより、受圧室34と平衡室36が、第一のオリフィス通路66を通じて相互に連通されている。また、第二の取付金具14により覆蓋された第二の周溝62によって、第二のオリフィス通路72が構成されている。第二のオリフィス通路72の一方の端部が、仕切部材32の軸方向一方の端部において第一の連通窓68と異なる部位に形成された、切欠状の第二の連通窓74を通じて受圧室34に接続されていると共に、第二のオリフィス通路72の他方の端部が、仕切部材32の凹所38の周壁部を貫通した連通孔76を通じて中間室58に接続されている。これにより、受圧室34と中間室58が、第二のオリフィス通路72を通じて相互に連通されている。要するに、本実施形態では、第一のオリフィス通路66と第二のオリフィス通路72は、仕切部材32の外周部分を利用して形成されている。   A first orifice passage 66 is constituted by the first circumferential groove 60 covered with the second mounting bracket 14. One end of the first orifice passage 66 is connected to the pressure receiving chamber 34 through a notch-shaped first communication window 68 formed at one end (upper in FIG. 1) in the axial direction of the partition member 32. In addition, the other end of the first orifice passage 66 is connected to the equilibrium chamber 36 through a notch-like communication port 70 formed at the other end (downward in FIG. 1) of the partition member 32 in the axial direction. Has been. Thereby, the pressure receiving chamber 34 and the equilibrium chamber 36 are communicated with each other through the first orifice passage 66. The second orifice passage 72 is constituted by the second circumferential groove 62 covered with the second mounting bracket 14. One end portion of the second orifice passage 72 is formed in a portion different from the first communication window 68 at one end portion in the axial direction of the partition member 32 through a notch-shaped second communication window 74. 34, and the other end of the second orifice passage 72 is connected to the intermediate chamber 58 through a communication hole 76 penetrating the peripheral wall of the recess 38 of the partition member 32. Thereby, the pressure receiving chamber 34 and the intermediate chamber 58 are communicated with each other through the second orifice passage 72. In short, in the present embodiment, the first orifice passage 66 and the second orifice passage 72 are formed using the outer peripheral portion of the partition member 32.

本実施形態では、振動入力時に受圧室34と平衡室36の間に生ぜしめられる相対的な圧力変動に基づいて、第一のオリフィス通路66を通じて流動せしめられる流体の共振周波数が、例えば10Hz程度の低周波大振幅のエンジンシェイクに対して流体の共振作用等に基づく防振効果(高減衰特性)が有利に発揮されるようにチューニングされている。また、振動入力時に受圧室34と中間室58の間に生ぜしめられる相対的な圧力変動に基づいて、第二のオリフィス通路72を通じて流動せしめられる流体の共振周波数が、例えば15〜30Hz程度の高周波小振幅のアイドリング振動に対して流体の共振作用等に基づく防振効果(低動ばね特性)が有利に発揮されるようにチューニングされている。なお、第一のオリフィス通路66や第二のオリフィス通路72のチューニングは、例えば、受圧室34や平衡室36、中間室58の各壁ばね剛性(単位容積だけ変化させるのに必要な圧力変化量に対応する特性値)等を考慮しつつ、各オリフィス通路66,72における通路長さと通路断面積を調節することによって行うことが可能であり、一般に、オリフィス通路66,72を通じて伝達される圧力変動の位相が変化して略共振状態となる周波数を、当該オリフィス通路66,72のチューニング周波数として把握することが出来る。   In the present embodiment, the resonance frequency of the fluid that flows through the first orifice passage 66 based on the relative pressure fluctuation generated between the pressure receiving chamber 34 and the equilibrium chamber 36 at the time of vibration input is, for example, about 10 Hz. The engine shake is tuned so as to advantageously exhibit an anti-vibration effect (high damping characteristic) based on a resonance action of a fluid with respect to an engine shake having a low frequency and a large amplitude. Further, the resonance frequency of the fluid that flows through the second orifice passage 72 based on the relative pressure fluctuation generated between the pressure receiving chamber 34 and the intermediate chamber 58 at the time of vibration input is, for example, a high frequency of about 15 to 30 Hz. It is tuned so as to advantageously exhibit an anti-vibration effect (low dynamic spring characteristic) based on the resonance action of the fluid with respect to small amplitude idling vibration. Note that the tuning of the first orifice passage 66 and the second orifice passage 72 is performed by, for example, the rigidity of the wall springs of the pressure receiving chamber 34, the equilibrium chamber 36, and the intermediate chamber 58 (the amount of pressure change necessary for changing the unit volume). The pressure fluctuation transmitted through the orifice passages 66 and 72 is generally adjusted by adjusting the passage length and the passage sectional area of each orifice passage 66 and 72 in consideration of the characteristic value corresponding to Can be grasped as the tuning frequency of the orifice passages 66 and 72.

そこにおいて、中間室58の壁部の一部を構成する凹所38の底壁部44の中央部分には、略円形状の嵌着孔78が板厚方向(図1中、上下)に貫設されている。この嵌着孔78に対して圧力調節板としてのゴム調圧板80が配設されている。   Therefore, a substantially circular fitting hole 78 penetrates in the thickness direction (up and down in FIG. 1) in the central portion of the bottom wall portion 44 of the recess 38 constituting a part of the wall portion of the intermediate chamber 58. It is installed. A rubber pressure adjusting plate 80 as a pressure adjusting plate is disposed in the fitting hole 78.

ゴム調圧板80は、小径の略円板形状を有しており、ゴム弾性体を用いて形成されている。ゴム調圧板80のばね剛性が、本体ゴム弾性体16のばね剛性よりも小さくされていると共に、ゴム弾性板50のばね剛性よりも大きくされている。ゴム調圧板80の外径寸法が、嵌着孔78の径寸法よりも大きくされている。また、ゴム調圧板80の外周面の軸方向中間部分には、径方向外方(図1中、左右)に開口する略一定の凹状断面をもって周方向に連続して延びる、嵌着溝82が形成されている。   The rubber pressure adjusting plate 80 has a substantially circular shape with a small diameter, and is formed using a rubber elastic body. The spring stiffness of the rubber pressure plate 80 is made smaller than that of the main rubber elastic body 16 and larger than that of the rubber elastic plate 50. The outer diameter of the rubber pressure adjusting plate 80 is larger than the diameter of the fitting hole 78. In addition, a fitting groove 82 that extends continuously in the circumferential direction with a substantially constant concave cross section that opens radially outward (left and right in FIG. 1) is provided in the axially intermediate portion of the outer peripheral surface of the rubber pressure adjusting plate 80. Is formed.

かかるゴム調圧板80が、仕切部材32の嵌着孔78周りの底壁部44に重ね合わせられて、嵌着孔78内に向かって押し込まれることにより、ゴム調圧板80の外周部分が弾性変形して、嵌着孔78の縁部が嵌着溝82に嵌め込まれる。これにより、ゴム調圧板80が、仕切部材32の底壁部44に配設されて、嵌着孔78を流体密に覆蓋し、ゴム調圧板80の一方(図1中、上)の面が、受圧室34に接していると共に、ゴム調圧板80の他方(図1中、下)の面が、中間室58に接している。即ち、受圧室34と中間室58を仕切る仕切部材32の底壁部44にゴム調圧板80が配設されていて、ゴム調圧板80が受圧室34と中間室58の相対的な圧力差に基づいて弾性変形するようになっている。   The rubber pressure adjusting plate 80 is overlapped with the bottom wall portion 44 around the fitting hole 78 of the partition member 32 and pushed into the fitting hole 78, whereby the outer peripheral portion of the rubber pressure adjusting plate 80 is elastically deformed. Then, the edge of the fitting hole 78 is fitted into the fitting groove 82. Thereby, the rubber pressure adjusting plate 80 is disposed on the bottom wall portion 44 of the partition member 32, covers the fitting hole 78 in a fluid-tight manner, and one surface (upper in FIG. 1) of the rubber pressure adjusting plate 80 is In addition to being in contact with the pressure receiving chamber 34, the other surface (lower in FIG. 1) of the rubber pressure adjusting plate 80 is in contact with the intermediate chamber 58. In other words, the rubber pressure adjusting plate 80 is disposed on the bottom wall portion 44 of the partition member 32 that partitions the pressure receiving chamber 34 and the intermediate chamber 58, and the rubber pressure adjusting plate 80 is set to a relative pressure difference between the pressure receiving chamber 34 and the intermediate chamber 58. Based on this, it is elastically deformed.

このような構造とされた自動車用エンジンマウント10においては、第一の取付金具12と第二の取付金具14の間に低周波大振幅のシェイク振動が入力された際に、受圧室34に惹起される圧力変動に基づき、受圧室34と平衡室36の間で第一のオリフィス通路66を通じて流動せしめられる流体の共振作用等の流動作用が生ぜしめられる。   In the automobile engine mount 10 having such a structure, when a low-frequency large-amplitude shake vibration is input between the first mounting bracket 12 and the second mounting bracket 14, it is caused in the pressure receiving chamber 34. Based on the pressure fluctuation, a fluid action such as a resonance action of the fluid caused to flow between the pressure receiving chamber 34 and the equilibrium chamber 36 through the first orifice passage 66 is generated.

特に本実施形態では、受圧室34に面するゴム調圧板80のばね剛性が、ゴム弾性板50のばね剛性よりも大きくされて、受圧室34および中間室58間での直接的な調圧作用により、シェイク振動の振幅に対する中間室58の壁ばね剛性が十分に大きくされている。これにより、シェイク振動入力時に、受圧室34の圧力変動がゴム調圧板80によって吸収されることが抑えられて、第一のオリフィス通路66を通じての流体流動量が十分に確保される。その結果、第一のオリフィス通路66を通じての流体の共振作用等の流動作用に基づいて、振動減衰効果が有利に発揮され得る。   In particular, in the present embodiment, the spring stiffness of the rubber pressure plate 80 facing the pressure receiving chamber 34 is made larger than the spring stiffness of the rubber elastic plate 50, and a direct pressure regulating action between the pressure receiving chamber 34 and the intermediate chamber 58 is achieved. Thus, the wall spring rigidity of the intermediate chamber 58 with respect to the amplitude of the shake vibration is sufficiently increased. Thus, the pressure fluctuation in the pressure receiving chamber 34 is suppressed from being absorbed by the rubber pressure adjusting plate 80 when the shake vibration is input, and a sufficient fluid flow amount through the first orifice passage 66 is ensured. As a result, the vibration damping effect can be advantageously exhibited based on the flow action such as the resonance action of the fluid through the first orifice passage 66.

また、第一の取付金具12と第二の取付金具14の間に高周波小振幅のアイドリング振動の入力された際には、第一のオリフィス通路66の流通抵抗が著しく増大して実質的に閉塞状態となり、受圧室34と中間室58の相対的な圧力差に基づき、第二のオリフィス通路72を通じて流体の共振作用等の流動作用が生ぜしめられる。特に、ゴム調圧板80のばね剛性がゴム弾性板50のばね剛性よりも大きくされていることによって、アイドリング振動入力時に、ゴム調圧板80が大きく変形することが抑えられて、受圧室34の圧力変動が有効に惹起されると共に、ゴム弾性板50の液圧吸収作用によって、中間室58の容積変化が容易に許容される。従って、受圧室34と中間室58の間に相対的な圧力変動が有効に惹起されて、両室34,58間で第二のオリフィス通路72を通じての流体流動量が十分に確保される。これにより、第二のオリフィス通路72を通じての流体の流動作用による振動絶縁効果が有利に発揮され得る。   Further, when high-frequency and small-amplitude idling vibration is input between the first mounting bracket 12 and the second mounting bracket 14, the flow resistance of the first orifice passage 66 is remarkably increased and substantially blocked. Based on the relative pressure difference between the pressure receiving chamber 34 and the intermediate chamber 58, a fluid action such as a resonance action of the fluid is caused through the second orifice passage 72. In particular, since the spring stiffness of the rubber pressure plate 80 is greater than the spring stiffness of the rubber elastic plate 50, the rubber pressure plate 80 is prevented from being greatly deformed when idling vibration is input, and the pressure in the pressure receiving chamber 34 is reduced. The fluctuation is effectively induced, and the volume change of the intermediate chamber 58 is easily allowed by the hydraulic pressure absorbing action of the rubber elastic plate 50. Accordingly, a relative pressure fluctuation is effectively induced between the pressure receiving chamber 34 and the intermediate chamber 58, and a sufficient fluid flow amount through the second orifice passage 72 is ensured between the chambers 34 and 58. Thereby, the vibration insulation effect by the fluid flow action through the second orifice passage 72 can be advantageously exhibited.

ところで、例えば自動車が凹凸の大きな波状路上を走行する状況下等で、アイドリング振動よりも大きな振幅変動が第一のオリフィス通路66の共振周波数よりも高周波数域で入力された場合には、ゴム弾性板50が積極的に乃至は大きく弾性変形し、ゴム弾性板50の弾性変形によって中間室58に及ぼされる圧力変動等に起因して、中間室58に局所的に大きな負圧が生ぜしめられるおそれがある。   By the way, for example, when an automobile travels on a wavy road with large irregularities, when an amplitude fluctuation larger than idling vibration is input in a higher frequency range than the resonance frequency of the first orifice passage 66, rubber elasticity The plate 50 is positively or greatly elastically deformed, and a large negative pressure may be locally generated in the intermediate chamber 58 due to a pressure fluctuation exerted on the intermediate chamber 58 by the elastic deformation of the rubber elastic plate 50. There is.

そこにおいて、中間室58の壁部の一部を構成するゴム弾性板50と異なる別の一部がゴム調圧板80で構成されていることにより、ゴム弾性板50の弾性変形によって中間室58に及ぼされる圧力変動が、ゴム調圧板80の弾性変形により吸収される。特に、ゴム調圧板80のばね剛性がゴム弾性板50のばね剛性よりも大きくされていることによって、前述のアイドリング振動よりも大きな振幅振動の入力時に、ゴム調圧板80がゴム弾性板50よりも大きく弾性変形することが抑えられ、ゴム調圧板80の大きな変形に起因して中間室58に過大な負圧を発生することが抑えられる。その結果、ゴム弾性板50の弾性変形に起因する中間室58の大きな減圧状態が解消されて、キャビテーション気泡の発生が軽減乃至は回避される。   In this case, another portion different from the rubber elastic plate 50 that constitutes a part of the wall portion of the intermediate chamber 58 is formed of the rubber pressure adjusting plate 80, so that the elastic deformation of the rubber elastic plate 50 causes the intermediate chamber 58 to move into the intermediate chamber 58. The applied pressure fluctuation is absorbed by the elastic deformation of the rubber pressure adjusting plate 80. In particular, since the spring stiffness of the rubber pressure plate 80 is greater than that of the rubber elastic plate 50, the rubber pressure plate 80 is more than the rubber elastic plate 50 when an amplitude vibration larger than the idling vibration is input. Large elastic deformation is suppressed, and generation of an excessive negative pressure in the intermediate chamber 58 due to large deformation of the rubber pressure adjusting plate 80 is suppressed. As a result, the large decompression state of the intermediate chamber 58 due to the elastic deformation of the rubber elastic plate 50 is eliminated, and the generation of cavitation bubbles is reduced or avoided.

なお、アイドリング振動よりも大きな振幅振動が第一のオリフィス通路66の共振周波数よりも低周波数域で入力された場合には、受圧室34に惹起された圧力変動が第一のオリフィス通路66を通じて平衡室36に逃がされるため、中間室58に過大な負圧が発生することが回避される。   When an amplitude vibration larger than the idling vibration is input in a frequency range lower than the resonance frequency of the first orifice passage 66, the pressure fluctuation induced in the pressure receiving chamber 34 is balanced through the first orifice passage 66. Since the air is released into the chamber 36, it is possible to avoid an excessive negative pressure from being generated in the intermediate chamber 58.

それ故、本実施形態に係る自動車用エンジンマウント10では、中間室58の壁部の一部が例示の如き構造とされたゴム弾性板50とゴム調圧板80を含んで構成されていることによって、第一及び第二のオリフィス通路66,72を通じての各流体の流動作用に基づく防振効果を充分に保持しつつ、中間室58に発生するキャビテーション気泡の発生要因と考えられる中間室58の大きな減圧状態が回避されて、問題となっていた衝撃的な異音や振動が効果的に抑えられるのである。   Therefore, in the automobile engine mount 10 according to the present embodiment, a part of the wall portion of the intermediate chamber 58 includes the rubber elastic plate 50 and the rubber pressure adjusting plate 80 having the structure as illustrated. The intermediate chamber 58 is considered to be a cause of the generation of cavitation bubbles generated in the intermediate chamber 58 while sufficiently maintaining the vibration-proofing effect based on the fluid action of each fluid through the first and second orifice passages 66 and 72. The depressurized state is avoided, and the shocking noise and vibration that have been a problem can be effectively suppressed.

因みに、本実施形態に係るエンジンマウント10に関して、問題となる衝撃的な異音や振動の低減効果を確認するために、防振特性を測定した。即ち、パワーユニットの分担支持荷重に相当する初期荷重をマウント10に及ぼした状態で、第一のオリフィス通路66の共振周波数よりも高周波数域でアイドリング振動よりも大きな振幅振動をマウント10の荷重入力方向となる軸方向(図1中、上下)に入力して第一の取付金具12を加振変位せしめた際に、第二の取付金具14に伝達する荷重を、該第二の取付金具14に取り付けた加速度センサにより測定した。   By the way, with respect to the engine mount 10 according to the present embodiment, the vibration isolation characteristics were measured in order to confirm the effect of reducing shocking abnormal noise and vibration. That is, in the state where an initial load corresponding to the shared support load of the power unit is applied to the mount 10, an amplitude vibration larger than the idling vibration in a frequency region higher than the resonance frequency of the first orifice passage 66 is applied to the load input direction of the mount 10. The load transmitted to the second mounting bracket 14 is applied to the second mounting bracket 14 when the first mounting bracket 12 is oscillated and displaced in the axial direction (up and down in FIG. 1). Measured with an attached acceleration sensor.

その結果、本実施形態に従う構造とされたエンジンマウント10にあっては、特性比較のために準備した、ゴム調圧板を採用しないで仕切部材の底壁部を剛性壁とした比較構造のエンジンマウントに比して、高周波成分の伝達力が抑えられることを確認した。そして、このことからも、受圧室34と中間室58を仕切る隔壁部分にゴム調圧板80を配設した本発明に従う構造により、従来構造の防振装置における衝撃的な荷重入力に際しての防振特性上の課題が有効に解決され得るという、本発明の技術的効果が理解されるところである。   As a result, in the engine mount 10 having the structure according to the present embodiment, an engine mount having a comparative structure prepared for characteristic comparison, in which the bottom wall portion of the partition member is a rigid wall without using a rubber pressure adjusting plate. Compared to the above, it was confirmed that the transmission power of high-frequency components can be suppressed. Also from this fact, the structure according to the present invention in which the rubber pressure adjusting plate 80 is disposed in the partition wall partitioning the pressure receiving chamber 34 and the intermediate chamber 58, the vibration isolating characteristic at the time of shock load input in the conventional vibration isolator. The technical effect of the present invention that the above problem can be effectively solved will be understood.

以上、本発明の一実施形態について詳述してきたが、これはあくまでも例示であり、かかる実施形態における具体的な記載によって、本発明は、何等限定されるものでなく、当業者の知識に基づいて種々なる変更、修正、改良等を加えた態様で実施可能である。また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。   As mentioned above, although one embodiment of the present invention has been described in detail, this is merely an example, and the present invention is not limited to any specific description by this embodiment, and is based on the knowledge of those skilled in the art. The present invention can be implemented in a mode with various changes, corrections, improvements, and the like. Further, it goes without saying that such embodiments are all included in the scope of the present invention without departing from the gist of the present invention.

例えば、ゴム弾性板50やゴム調圧板80における形状や大きさ、構造、数、配置等の形態は、例示の如きものに限定されない。   For example, the shape, size, structure, number, arrangement, and the like of the rubber elastic plate 50 and the rubber pressure adjusting plate 80 are not limited to those illustrated.

前記実施形態では、ゴム弾性板50とゴム調圧板80が、マウント10の略中心軸上において、それぞれ一つ配設されていたが、例えば、マウント10中心軸から外れた位置において、それぞれ一又は二以上設けられるようにしても良い。   In the above-described embodiment, the rubber elastic plate 50 and the rubber pressure adjusting plate 80 are each disposed on the substantially central axis of the mount 10. Two or more may be provided.

また、前記実施形態では、ゴム調圧板80の嵌着溝82に嵌着孔78の縁部が嵌め込まれることによって、ゴム調圧板80が受圧室34と中間室58を仕切る仕切部材32の底壁部44に配設されていたが、例えば、ゴム調圧板の外周縁部にリング状の嵌着部材を固着して、該嵌着部材を嵌着孔の縁部に固着したり、或いは例示のようなゴム弾性板50が仕切部材32に固定される構造と同様に、仕切部材32に設けた段差部と嵌着部材の間にゴム調圧板の外周縁部を挟圧保持させたりすることで、ゴム調圧板を底壁部に配設することも可能である。   Further, in the above-described embodiment, the edge of the fitting hole 78 is fitted into the fitting groove 82 of the rubber pressure adjusting plate 80, whereby the rubber pressure adjusting plate 80 separates the pressure receiving chamber 34 and the intermediate chamber 58 from the bottom wall of the partition member 32. For example, a ring-shaped fitting member is fixed to the outer peripheral edge portion of the rubber pressure adjusting plate, and the fitting member is fixed to the edge of the fitting hole. Similar to the structure in which the rubber elastic plate 50 is fixed to the partition member 32, the outer peripheral edge portion of the rubber pressure adjusting plate is sandwiched and held between the stepped portion provided on the partition member 32 and the fitting member. It is also possible to dispose a rubber pressure adjusting plate on the bottom wall portion.

さらに、仕切部材32や第一および第二のオリフィス通路66,72等における形状や大きさ、構造、数、配置等の形態は例示の如きものに限定されない。例えば、前記実施形態では、第一のオリフィス通路66と第二のオリフィス通路72が、仕切部材32に対してそれぞれ独立形成された第一の周溝60と第二の周溝62で構成されていることによって、互いに並列的に設けられていたが、これら第一の周溝と第二の周溝の各一方の端部を互いに接続して、第一のオリフィス通路を第一及び第二の周溝を含んで構成すると共に、第二のオリフィス通路を第二の周溝を含んで構成することによって、第一のオリフィス通路と第二のオリフィス通路を互いに直列的に設けることも可能である。   Further, the shapes of the partition member 32, the first and second orifice passages 66, 72, and the like such as shape, size, structure, number, and arrangement are not limited to those illustrated. For example, in the above-described embodiment, the first orifice passage 66 and the second orifice passage 72 are configured by the first circumferential groove 60 and the second circumferential groove 62 that are independently formed with respect to the partition member 32. Are provided in parallel with each other, but one end of each of the first circumferential groove and the second circumferential groove is connected to each other, and the first orifice passage is connected to the first and second orifices. It is also possible to provide the first orifice passage and the second orifice passage in series with each other by including the circumferential groove and configuring the second orifice passage including the second circumferential groove. .

また、前記実施形態に係るエンジンマウント10において、ゴム調圧板80や中間室58、ゴム弾性板50を含んで、ゴム調圧板80とゴム弾性板50の弾性変形に伴い流体流動して圧力伝達する流体流路を構成し、この流体流路の共振周波数を、第二のオリフィス通路72の共振周波数よりも高周波数域にチューニングすることによって、該高周波数域の振動に対応した防振効果を得ることも可能である。   Further, in the engine mount 10 according to the embodiment, the rubber pressure adjusting plate 80, the intermediate chamber 58, and the rubber elastic plate 50 are included, and fluid flows and transmits pressure along with the elastic deformation of the rubber pressure adjusting plate 80 and the rubber elastic plate 50. By configuring the fluid flow path and tuning the resonance frequency of the fluid flow path to a higher frequency range than the resonance frequency of the second orifice passage 72, a vibration isolation effect corresponding to the vibration in the high frequency range is obtained. It is also possible.

また、本発明は、例えば特開平2−240430号公報等に記載されているように、FF型自動車用のエンジンマウントやサスペンションブッシュ等として採用されているような、第一の取付部材としての軸部材の軸直角方向外方に第二の取付部材としての大径筒状の外筒部材を離隔配置して、それら軸部材と外筒部材の軸直角方向対向面間に本体ゴム弾性体を介装して、軸部材と外筒部材を本体ゴム弾性体で連結した筒型の防振装置にも、適用可能である。   Further, the present invention provides a shaft as a first mounting member that is employed as an engine mount, a suspension bush or the like for an FF type automobile as described in, for example, Japanese Patent Laid-Open No. 2-243030. A large-diameter cylindrical outer cylinder member as a second mounting member is spaced apart outwardly in the direction perpendicular to the axis of the member, and the main rubber elastic body is interposed between the axially perpendicular surfaces of the shaft member and the outer cylinder member. It is also applicable to a cylindrical vibration isolator in which a shaft member and an outer cylinder member are connected by a main rubber elastic body.

本発明の一実施形態としての自動車用エンジンマウントを示す縦断面説明図であって、図2のI−I断面に相当する図である。FIG. 3 is a longitudinal cross-sectional explanatory view showing an automobile engine mount as one embodiment of the present invention, corresponding to the II cross section of FIG. 2. 図1における自動車用エンジンマウントの一部を構成する仕切部材を示す平面説明図である。It is a plane explanatory view showing a partition member which constitutes a part of the engine mount for automobiles in FIG. 図2における仕切部材を示す一側面説明図である。It is one side explanatory drawing which shows the partition member in FIG.

符号の説明Explanation of symbols

10…自動車用エンジンマウント、12…第一の取付金具、14…第二の取付金具、16…本体ゴム弾性体、34…受圧室、36…平衡室、44…底壁部、50…ゴム弾性板、58…中間室、66…第一のオリフィス通路、72…第二のオリフィス通路、80…ゴム調圧板
DESCRIPTION OF SYMBOLS 10 ... Engine mount for motor vehicles, 12 ... 1st mounting bracket, 14 ... 2nd mounting bracket, 16 ... Main body rubber elastic body, 34 ... Pressure-receiving chamber, 36 ... Equilibrium chamber, 44 ... Bottom wall part, 50 ... Rubber elasticity Plate 58, intermediate chamber 66, first orifice passage 72, second orifice passage 80, rubber pressure plate

Claims (4)

防振連結される一方の部材に取り付けられる第一の取付部材と防振連結される他方の部材に取り付けられる第二の取付部材を互いに離隔配置せしめて本体ゴム弾性体で連結すると共に、壁部の一部が該本体ゴム弾性体で構成された受圧室と壁部の一部が可撓性膜で構成された平衡室と壁部の一部が可動板で構成された中間室をそれぞれ形成して、該可動板を挟んだ両側に該中間室と該平衡室を配し、それら受圧室、平衡室および中間室に非圧縮性流体を封入して、更に該受圧室と該平衡室を相互に連通せしめると共に内部を流動せしめられる流体の共振周波数がエンジンシェイクにチューニングされた第一のオリフィス通路と、該受圧室と該中間室を相互に連通せしめると共に内部を流動せしめられる流体の共振周波数がアイドリング振動にチューニングされた第二のオリフィス通路を形成した流体封入式エンジンマウントにおいて、
前記可動板をゴム弾性体からなる板状体で構成する一方、前記受圧室と前記中間室を仕切る隔壁部分にゴム弾性体からなる板状体で構成された圧力調節板を配設すると共に、該圧力調節板のばね剛性を該可動板のばね剛性よりも大きくしたことを特徴とする流体封入式エンジンマウント。
The first attachment member attached to one member to be vibration-proof connected and the second attachment member attached to the other member to be vibration-proof connected are separated from each other and connected by the main rubber elastic body, and the wall portion Forming a pressure receiving chamber, part of which is made of the main rubber elastic body, an equilibrium chamber, part of which is made of a flexible film, and an intermediate chamber, part of which is made of a movable plate. Then, the intermediate chamber and the equilibrium chamber are arranged on both sides of the movable plate, an incompressible fluid is sealed in the pressure receiving chamber, the equilibrium chamber, and the intermediate chamber, and the pressure receiving chamber and the equilibrium chamber are further connected. The resonance frequency of the fluid that allows the fluid to be communicated with each other and the fluid that is allowed to flow inside is tuned to the engine shake, and the fluid pressure that allows the pressure receiving chamber and the intermediate chamber to communicate with each other and fluid is allowed to flow inside Has idling vibration In-tuning are fluid-filled engine mount forming a second orifice passages,
While the movable plate is constituted by a plate-like body made of a rubber elastic body, a pressure adjusting plate made of a plate-like body made of a rubber elastic body is disposed on a partition wall partitioning the pressure receiving chamber and the intermediate chamber, and A fluid-filled engine mount, wherein the spring stiffness of the pressure adjusting plate is larger than the spring stiffness of the movable plate.
前記可動板、前記圧力調節板および前記中間室を含んで、該可動板と該圧力調節板の弾性変形に伴って流体流動して圧力伝達する流体流路が構成されており、この流体流路の共振周波数が、前記第二のオリフィス通路の共振周波数よりも高周波数域にチューニングされている請求項1に記載の流体封入式エンジンマウント。   A fluid flow path that includes the movable plate, the pressure adjustment plate, and the intermediate chamber and that is configured to fluidly flow and transmit pressure along with the elastic deformation of the movable plate and the pressure adjustment plate is configured. 2. The fluid-filled engine mount according to claim 1, wherein the resonance frequency is tuned to a higher frequency range than the resonance frequency of the second orifice passage. 前記第二の取付部材によって固定的に支持せしめた硬質の仕切部材を、前記受圧室と前記平衡室の間に配設すると共に、該仕切部材の中央部分において該平衡室の側に向かって開口する凹所を形成して該凹所の開口部を前記可動板で流体密に覆蓋することにより前記中間室を形成して、該凹所の底壁部で前記隔壁部分を構成する一方、該仕切部材の外周部分を利用して前記第一のオリフィス通路および前記第二のオリフィス通路を形成した請求項1又は2に記載の流体封入式エンジンマウント。   A hard partition member fixedly supported by the second mounting member is disposed between the pressure receiving chamber and the equilibrium chamber, and opens toward the equilibrium chamber at a central portion of the partition member. The intermediate chamber is formed by fluidly covering the opening of the recess with the movable plate, and the partition wall portion is configured by the bottom wall portion of the recess, The fluid-filled engine mount according to claim 1 or 2, wherein the first orifice passage and the second orifice passage are formed by using an outer peripheral portion of a partition member. 前記第二の取付部材を円筒形状として、該第二の取付部材の一方の開口部側に前記第一の取付部材を離隔配置すると共に、該第一の取付部材と該第二の取付部材を前記本体ゴム弾性体で連結することによって該第二の取付部材の一方の開口部を流体密に閉塞する一方、該第二の取付部材の他方の開口部を前記可撓性膜で覆蓋すると共に、該第二の取付部材に前記仕切部材を嵌め込んで該本体ゴム弾性体と該可撓性膜の対向面間に配設した請求項3に記載の流体封入式エンジンマウント。   The second mounting member is formed in a cylindrical shape, the first mounting member is spaced from one opening side of the second mounting member, and the first mounting member and the second mounting member are arranged By connecting with the main rubber elastic body, one opening of the second mounting member is fluid-tightly closed, while the other opening of the second mounting member is covered with the flexible film. The fluid-filled engine mount according to claim 3, wherein the partition member is fitted into the second mounting member and disposed between the opposing surfaces of the main rubber elastic body and the flexible membrane.
JP2006169009A 2005-07-21 2006-06-19 Fluid-filled engine mount Withdrawn JP2007051768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006169009A JP2007051768A (en) 2005-07-21 2006-06-19 Fluid-filled engine mount

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005210990 2005-07-21
JP2006169009A JP2007051768A (en) 2005-07-21 2006-06-19 Fluid-filled engine mount

Publications (1)

Publication Number Publication Date
JP2007051768A true JP2007051768A (en) 2007-03-01

Family

ID=37916344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006169009A Withdrawn JP2007051768A (en) 2005-07-21 2006-06-19 Fluid-filled engine mount

Country Status (1)

Country Link
JP (1) JP2007051768A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213529A (en) * 2012-03-31 2013-10-17 Yamashita Rubber Co Ltd Liquid-sealed vibration-proofing device
JP2022070013A (en) * 2020-10-26 2022-05-12 山下ゴム株式会社 Liquid sealed damper for opening and closing body
JP2022070014A (en) * 2020-10-26 2022-05-12 山下ゴム株式会社 Liquid sealed damper for opening and closing body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213529A (en) * 2012-03-31 2013-10-17 Yamashita Rubber Co Ltd Liquid-sealed vibration-proofing device
JP2022070013A (en) * 2020-10-26 2022-05-12 山下ゴム株式会社 Liquid sealed damper for opening and closing body
JP2022070014A (en) * 2020-10-26 2022-05-12 山下ゴム株式会社 Liquid sealed damper for opening and closing body
JP7348433B2 (en) 2020-10-26 2023-09-21 山下ゴム株式会社 Liquid seal damper for opening/closing bodies
JP7348434B2 (en) 2020-10-26 2023-09-21 山下ゴム株式会社 Liquid seal damper for opening/closing bodies

Similar Documents

Publication Publication Date Title
JP4688067B2 (en) Fluid filled engine mount
JP4330437B2 (en) Fluid filled vibration isolator
JP4671176B2 (en) Fluid filled vibration isolator
JP5535958B2 (en) Liquid-filled vibration isolator
JP5865780B2 (en) Vibration isolator
JP2010031989A (en) Fluid-sealed vibration control device
JP6431795B2 (en) Fluid filled vibration isolator
JP2008002618A (en) Fluid filled vibration isolating device
JP2007100875A (en) Fluid filled vibration absorbing device
JP5916550B2 (en) Fluid filled vibration isolator
JP2007085523A (en) Fluid-enclosed type vibration isolator
JP2009243510A (en) Fluid-filled type engine mount for automobile
JP2008190602A (en) Fluid-sealed vibration isolating device
JP5060846B2 (en) Fluid filled vibration isolator
JP4174827B2 (en) Series type engine mount and manufacturing method of series type engine mount
JP2007139024A (en) Fluid-sealed vibration control device
JP2007270866A (en) Fluid sealed vibration control device
JP2007271004A (en) Fluid-sealed vibration isolating device
JP2007051768A (en) Fluid-filled engine mount
JP2008185152A (en) Fluid filled vibration absorbing device and engine mount using the same
JP2013160265A (en) Fluid-sealed vibration-damping device
JP2008163970A (en) Fluid-sealed vibration control device
JP4871902B2 (en) Fluid filled vibration isolator
JP4075066B2 (en) Fluid filled engine mount
JP5243863B2 (en) Fluid filled vibration isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080820

A761 Written withdrawal of application

Effective date: 20090428

Free format text: JAPANESE INTERMEDIATE CODE: A761