JP2773796B2 - Anti-vibration support device - Google Patents

Anti-vibration support device

Info

Publication number
JP2773796B2
JP2773796B2 JP61049596A JP4959686A JP2773796B2 JP 2773796 B2 JP2773796 B2 JP 2773796B2 JP 61049596 A JP61049596 A JP 61049596A JP 4959686 A JP4959686 A JP 4959686A JP 2773796 B2 JP2773796 B2 JP 2773796B2
Authority
JP
Japan
Prior art keywords
vibration
fluid
support device
mounting member
mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61049596A
Other languages
Japanese (ja)
Other versions
JPS62209242A (en
Inventor
康生 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP61049596A priority Critical patent/JP2773796B2/en
Publication of JPS62209242A publication Critical patent/JPS62209242A/en
Application granted granted Critical
Publication of JP2773796B2 publication Critical patent/JP2773796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は自動車のエンジンの支持に適した防振支持
装置に係り、詳しくは、振動体と支持体との間に流体が
封入されている流体室を拡縮可能に介装した流体封入式
の防振装置に関する。 (従来の技術) 自動車のエンジンの支持に使用される防振支持装置
は、大振幅かつ低周波数域の振動に対しては大きな減衰
効果を発揮することを要求され、また、小振幅かつ高周
波数域の振動に対しては伝達率を小さくすることが望ま
れる。従来、このような要望に応えるものとして、例え
ば特開昭60−26828号公報に記載されたような防振支持
装置が知られている。 この防振支持装置は、エンジンに連結される取付部材
と、エンジンをマウントするベース部材とを振動の伝達
により弾性変形可能なる弾性部材で結合して内部に室を
形成し、該室内に流体を封入して成る流体入りエンジン
マウントにおいて、上記弾性部材を上下2段の弾性部材
で構成し、該上下の弾性部材間に仕切板を介装維持して
流体室を上下に画成し、該仕切板にオリフィスを形成し
て上下の流体室を連通せしめるとともに、上記ペース部
材に上方へ膨出して下部流体室内に臨むダイヤフラムを
付設したものである。 この防振支持装置は、大きな支持剛性を得ることがで
き、また、動倍率を低くすることができるという利点を
有し、車体側へ伝わるエンジン振動を有効に低減する。 (この発明が解決しようとする問題点) しかしながら、上述のような防振支持装置にあって
は、振動周波数に対する損失ばね定数(荷重のたわみと
90゜位相の異なった成分の振幅をたわみ振幅で除した
商)および絶対ばね定数の特性が第15図および第16図に
示すような特性となり、振動周波数が10[Hz]前後と30
0[Hz]前後とで共振を生じ、特に300[Hz]前後の中高
周波数域での共振によって損失ばね定数が負方向に極大
値をとり、これに原因して絶対ばね定数も増大する(第
16図中斜線を付して表す)という問題点があった、この
結果、この300[Hz]前後の周波数域の振動の車体への
伝達を有効に低減することができず、自動車の静粛性が
損なわれることがあった。 この発明は、上述した問題点を鑑みてなされたもの
で、絶対ばね定数を中高周波数域において小さな値に維
持できる防振支持装置を提供し、中高周波数域の振動の
伝達の低減を図ることを目的としている。 (問題点を解決するための手段) この発明は、振動体に取り付けられた振動体側の取付
部材と支持体に取り付けられた支持体側の取付部材との
間に、これら振動体側の取付部材と支持体側の取付部材
とにそれぞれ支持弾性体を介して画成部材を変位可能に
支持し、該画成部材と前記各取付部材との間にそれぞれ
流体が充満されて前記支持弾性体の変形で拡縮する流体
室を画成するとともに、これら流体室間を連通する主絞
り通路を前記画成部材に形成した防振支持装置におい
て、 前記振動体側または支持体側の少なくとも一方の取付
部材に設けられて該取付部材側の流体室の一部を画成す
るダイヤフラムと、絞り通路を有して前記ダイヤフラム
と前記画成部材との間で前記一方の取付部材に設けら
れ、前記流体室を前記絞り通路によって連通した2つの
副室に隔成する隔別部材と、を備え、この隔別部材の絞
り通路内の流体の共振周波数を、隔別部材の存在してい
ない状態での防振支持装置の中高周波域での共振周波数
に一致させることを要旨とする。 (作用) この発明にかかる防振支持装置によれば、隔別部材の
絞り通路の寸法等により決定される振動周波数で絞り通
路を流動する流体が共振し、この流体の共振により損失
ばね定数に正方向の成分が生じる。したがって、絞り通
路の寸法等を調整して流体の共振の振動周波数を前述の
中高周波数域の共振周波数と略一致させれば、これら正
負の損失ばね定数を相殺させて絶対ばね定数を低くする
ことができ、中高周波数域の振動の伝達を低減できる。 (実施例) 以下、この発明の実施例を図面に基づいて説明する。 第1図および第9図から第14図は、この発明を自動車
のエンジンの支持に適用した第1の実施例にかかる防振
支持装置を表し、第1図が断面図、第9図がモデル図、
第10図、第11図および第12図(a),(b),(c)が
動倍率の特性図、第13図が損失ばね定数の特性図、第14
図が絶対ばね定数の特性図である。 第1図において、(11)は振動体であるエンジンに取
り付けられる取付部材、(12)は支持体である車体に取
り付けられる取付部材である。エンジン側の取付部材
(11)は、皿状部材(11a)の開口端と筒状部材(11b)
の図中上端とをかしめ結合して成り、皿状部材(11a)
を貫通するボルト(11c)によってエンジンに取り付け
られ、同様に、車体側の取付部材(12)は、一端にフラ
ンジ部(12a)を有する筒状部材(12b)の他端開口をか
しめ結合された円板(12c)で液密的に閉止して成り、
フランジ部(12a)に形成された孔(12d)を貫通するボ
ルト(図示せず)によって車体に取り付けられている。 車体側の取付部材(12)とエンジン側の取付部材(1
1)との間には、主絞り通路(13a)を形成された画成部
材(13)が車体側の取付部材(12)に第1支持弾性体
(14)を介し、またエンジン側の取付部材(11)に第1
支持弾性体(14)と一体に成形された第2支持弾性体
(15)を介し図中上下方向の変位可能に支持されてい
る。第1支持弾性体(14)は、車体側が拡開する略円筒
形状を有して車体側の取付部材(12)および画成部材
(13)とともに油等の非圧縮性流体(以下、流体)が充
満された第1流体室(16)を拡縮可能に画成し、また同
様に、第2支持弾性体(15)は、エンジン側が拡開する
略円筒形状を有して後述するダイヤフラムおよび画成部
材(13)とともに流体が充満された第2流体室(17)を
拡縮可能に画成している。これら第1流体室(16)およ
び第2流体室(17)は、画成部材(13)の主絞り通路
(13a)を介して流体の流動可能に連通している。 エンジン側の取付部材(11)には、さらに、厚肉部
(18a)と該厚肉部2(18a)の周囲の変形容易な薄肉部
(18b)とが一体に成形されたゴム様弾性材料から成る
ダイヤフラム(18)が設けられ、またさらに、ダイヤフ
ラム(18)の車体側に複数の絞り通路(19a)を形成さ
れた隔別部材(19)が設けられている。ダイヤフラム
(18)は、薄肉部(18b)の周縁が取付部材(11)の部
材(11a),(11b)間に液密的に挟着され、厚肉部(18
a)が取付部材(11)に薄肉部(18b)により上下方向の
変位可能に支持されている。このダイヤフラム(18)は
前述の第2支持弾性体(15)および画成部材(13)とと
もに第2流体室(17)を画成している。隔別部材(19)
は、周縁が取付部材(11)の部材(11a),(11b)間に
挟着され、第2流体室(17)を絞り通路(19a)によっ
て連通した上下の2つの副室(20a),(20b)に隔別し
ている。上述したダイヤフラム(18)のばね定数、隔別
部材(19)の絞り通路(19a)の個数および寸法は、絞
り通路(19a)を通過する流体による損失ばね定数が300
[Hz]前後の振動周波数で正方向に極大値をとるように
設定される。 次に、この第1の実施例の作用を説明する。この防振
支持装置は、第9図に示すようにモデル化される。 ただし、上記第9図において、 k11,C11;第1図中K部についての流体が封入されない場
合の弾性係数、減衰係数(以下、静ばね成分と記す) k12,C12;第1図中K部についての流体を封入するいこと
による弾性係数、減衰係数の変化分(以下、ふくらみ方
向の成分と記す) k2,C2;第1図中L部についての弾性係数、減衰係数の静
ばね成分 k3,C3;第1図中L部についての弾性係数、減衰係数のふ
くらみ方向の成分 m1;画成部材(13)の質量 SE;第1図中L部の有効ピスト面積(容積変化量を単
位変位量で除したパラメータ) Sw;隔別部材(19)の絞り通路(19a)の総面積 m4;隔別部材(19)の絞り通路(19a)内流体質量 である。 ここで、 B=k2/k11 A1=k12/k11 A2=k3/k2 と表し、さらに、簡略化のため、 C11=C12=C2=C=0 と仮定して、数値解析を行うと、第10図から第12図に示
すような結果が得られる。すなわち、面積(Sw)が面積
(SE)より大きい場合には第10図のような動倍率に2
つの極大値が現われ、また同様に、面積(Sw)と面積
(SE)とが等しい場合には第11図のように2つの極大
値が現われ、質量(m4)を増大すると極大値の現われる
周波数が低周波数側へ変化する。しかしながら、第12図
(a),(b),(c)に示すように、面積(Sw)が面
積(SE)より小さい場合、質量(m4)を適当な値に設
定することで極大値が1つとなり共振を抑制できる(第
12図(b))。 上述の数値解析から明らかなように、隔別部材(19)
の絞り通路(19a)の寸法等を適当な値に定めること
で、その損失ばね定数および絶対ばね定数を第13図およ
び第14図に示すような特性に設定することも可能とな
り、車体へ伝達される振動、特に中高周波数域振動の伝
達を低減することができる。 なお、上記第10図から第12図に付記した具体的数値は
解析のための一例であり、他の値を任意に設定できるこ
とは言うまでも無い。 第2図から第8図には、この発明の第2から第8実施
例を示す。なお、前述した第1実施例にかかる防振支持
装置と同一の部分については、同一の番号を付して以下
の説明を省略する。 まず、第2図より第2実施例を説明する。 この第2実施例にかかる防振支持装置は、隔別部材
(19)に複数の透孔(21)を介し各副室(20a),(20
b)に連通した収納室(22)が形成されている。収納室
(22)には、透孔(21)を閉止可能な仕切板(23)が浮
動可能に収納されている。なお、(24)は副室(20
a),(20b)間を連通する連通孔である。これら透孔
(21)および連通孔(24)が絞り連通(19a)に相当す
る。 この防振支持装置にあっては、大振幅振動(通常、低
周波数振動)が生じて副室(20a),(20b)間の流体圧
力差が増大すると、仕切板(23)が収納室(22)の上下
の画壁に密着して透孔(21)を閉止する。このため、流
体は連通孔(24)のみを介し、副室(20a),(20b)間
を流動して大きな減衰力を発生し、シェイク通の共振の
発生を防止する。 一方、小振幅振動(通常、中高周波数域振動)の発生
時にあっては、仕切板(23)は収納室(22)内で浮動し
て該収納室(22)に透孔(21)が開口し、これら透孔
(21)および収納室(22)を経て副室(20a),(20b)
間が連通する。したがって流体の流動抵抗も減少し、振
動伝達率を低塩させて車体へ伝達される微少振動の低減
が図れる。 次に、第3図により第3実施例を説明する。この第3
実施例にかかる防振支持装置は、隔別部材(19)のダイ
ヤフラム(18)側の副室(20a)内に絞り穴(25a)を形
成された浮動板(25)が浮動するように支持されてい
る。この浮動板(25)は、取付部材(11)内に嵌着され
た2つのホルダ(26a),(26b)によって形成された環
状溝(26c)内に周縁が遊嵌され、副室(20a)をさらに
絞り穴(25a)を介し連通した上下の2つの小室(27
a),(27b)に隔成している。 この防振支持装置は、小振幅振動の発生時にあっては
絞り通路(19a)を経た流体の流動すなわち小室(27b)
内流体の流出入を浮動板(25)が浮動することで許容す
るが、大振幅振動の発生時にあっては、浮動板(25)は
環状溝(26c)の上下端面に圧接するため流体から絞り
穴(25a)を経て流動する。この結果、前述の第2実施
例と同様に、この防振支持装置にあっても、小振幅振動
に対する振動伝達率の低減とともに大振幅振動の効果的
な減衰が可能となる。 また、第4図に基づいて第4実施例を説明する。 この第4実施例にかかる防振支持装置は、前述の第3
実施例における浮動板(25)の周縁部の上下端をゴム様
弾性材料から成る環状のバンド(28)で被覆したもので
ある。 この防振支持装置にあっては、浮動板(25)が各ホル
ダ(26a),(26b)の環状溝(26c)の端面に当接する
際の衝突音を低減することができる。その他は前述した
第3実施例と同様である。なお、バンド(28)はホルダ
(26a),(26b)の環状溝(26c)の上下両端面に貼付
しても同等の効果を発揮する。 さらに、第5図に基づいて第5実施例を説明する。 この第5実施例にかかる防振支持装置は、隔別部材
(19)がゴム様弾性剤応から成るシート(29)(可撓性
部材)を挟着した2つの部材(30a),(30b)から構成
されている。隔別部材(19)は各部材(30a),(30b)
にシート(29)によって遮絶される複数の穴(31a),
(31b)がそれぞれ形成され、また、その中央に各部材
(30a),(30b)を貫通して副室(20a),(20b)間を
連通する通孔(32)が形成されている。 この防振支持装置は、小振幅振動による流体の脈動を
穴(31a),(31b)間のシート(29)の非線形な弾性変
形で吸収するが、大振幅振動の発生時には流体を通孔
(32)を介して流動させて大きな減衰力を得る。すなわ
ち、ゴム様弾性材料から成るシート(29)は、微少振幅
振動発生時にはせん断によって容易に小変形を生じる
が、大振幅振動発生時には変形が大きくなって変形しに
くくなる。したがって、小振幅振動に対する振動の伝達
率と低減とともに大振幅振動の効果的な減衰が可能とな
る。なお、上述した通孔(32)および穴(31a),(31
b)の寸法したシート(29)のばね定数等は、前述した
第1実施例と同様にして決定される。 またさらに、第6図に基づいて第6実施例を説明す
る。 この第6実施例にかかる防振支持装置は、上記第5実
施例における隔別部材(19)の穴(31a),(31b)間の
シート(29)にあらかじめたるみ(32)をもたせたもの
である。 この防振支持装置によれば、シート(29)の変形の非
線特性がより強調され、小振動振幅による流体の脈動を
より効果的に吸収することができるようになる。その他
については、第5実施例と同じである。 また次に、第7図に基づいて第7実施例を説明する。 この第7実施例にかかる防振支持装置は、隔別部材
(19)のダイヤフラム(18)側に仕切部材(34)が設け
られ、この仕切部材(34)によって副室(20a)が2つ
の小室(27a),(27b)に隔別されている。仕切部材
(34)は、前述の第5実施例にいおける隔別部材と同様
に2つの部材(30a),(30b)から構成され、小室(27
a),(27b)間を連通する減衰用の通孔(32)とシート
(29)によって遮絶された複数の穴(31a),(31b)と
が形成されている。 この防振支持装置によっても、大振幅振動に対して大
きな減衰力を発揮することができ、また、小振幅振動に
対する振動伝達率を低減させることができる。 さらに次には、第8図に基づいて第8実施例を説明す
る。 この第8実施例にかかる防振支持装置は、隔別部材
(19)のダイヤフラム(18)側にホルダ(26)が配設さ
れ、このホルダ(26)に前述した第4実施例と同様の浮
動板(25)が浮動可能に支持されて副室(20a)を上下
に2つの小室(27a),(27b)に隔成してい。また、ホ
ルダ(26)には、小室(27a),(27b)間を連通する2
つの孔(35a),(35b)が並列に形成され、これら孔
(35a),(35b)にそれぞれリードバルブ(36a),(3
6b)が設けられている。これらリードバルブ(36a),
(36b)は、孔(35a),(35b)をそれぞれ異なる小室
(27a),(27b)側から閉止し、小室(27a),(27b)
間の流体圧力差が所定値を超える時に孔(35a),(35
b)を開いて小室(27a),(27b)間を連通する。この
リードバルブ(36a),(36b)はリリーフバルブ機構
(37)を構成する。 この防振支持装置にあっても、小振幅振動による流体
の脈動は浮動板(25)の浮動で吸収されるが、大振幅振
動発生時には、リードバルブ(36a),(36b)が開いて
小室(27a),(27b)間の流体流動を許容し、流体が孔
(35a),(35b)を通過する際の抵抗で大振幅振動を減
衰する。 なお、上述した各実施例では、自動車のエンジンの支
持に適用したものを示すが、他の振動体の支持にも適用
できることは言うまでもない。 (発明の効果) 以上に述べた通り本発明は、振動体側または支持体側
の少なくとも一方の取付部材に設けられて取付部材側の
流体室の一部を画成するダイヤフラムと、絞り通路を有
してダイヤフラムと画成部材との間で一方の取付部材に
設けられ、流体室を絞り通路によって連通した2つの副
室に隔成する隔別部材と、を備え、この隔別部材の絞り
通路内の流体の共振周波数を、隔別部材の存在していな
い状態での防振支持装置の中高周波域での共振周波数に
一致させたので、これら正負の損失ばね定数を相殺させ
て絶対ばね定数を低くすることができ、中高周波数域に
おける振動の伝達を低減することができるという格別の
効果を発揮する。 さらに、第2実施例から第8実施例における防振支持
装置にあっては、上記効果に加えて、大振幅振動に対し
て大きな減衰力を発揮できるという効果が得られる。
Description: BACKGROUND OF THE INVENTION (Industrial Application Field) The present invention relates to an anti-vibration support device suitable for supporting an engine of an automobile, and more specifically, a fluid is sealed between a vibrator and a support. The present invention relates to a fluid filled type vibration damping device in which a fluid chamber is provided so as to be expandable and contractible. (Prior Art) An anti-vibration support device used for supporting an engine of an automobile is required to exhibit a large damping effect with respect to a vibration having a large amplitude and a low frequency range. It is desired to reduce the transmissibility for the vibration in the region. Conventionally, as a device that meets such a demand, there is known an anti-vibration support device as described in, for example, JP-A-60-26828. In this vibration isolation support device, a mounting member connected to the engine and a base member for mounting the engine are connected by an elastic member capable of being elastically deformed by transmission of vibration to form a chamber therein, and a fluid is supplied into the chamber. In the enclosed fluid-filled engine mount, the above-mentioned elastic member is composed of upper and lower elastic members, and a partition plate is interposed between the upper and lower elastic members to define a fluid chamber vertically. An orifice is formed in the plate to allow the upper and lower fluid chambers to communicate with each other, and the above-mentioned pace member is provided with a diaphragm that expands upward and faces the lower fluid chamber. This anti-vibration support device has the advantages of obtaining high support rigidity and lowering the dynamic magnification, and effectively reduces engine vibration transmitted to the vehicle body. (Problems to be Solved by the Invention) However, in the above-described anti-vibration support device, the loss spring constant (the deflection of load and
The quotient obtained by dividing the amplitude of the component having a phase difference of 90 ° by the deflection amplitude) and the characteristic of the absolute spring constant are as shown in FIG. 15 and FIG.
Resonance occurs around 0 [Hz]. In particular, due to resonance in the middle and high frequency range around 300 [Hz], the loss spring constant takes a local maximum value in the negative direction, and as a result, the absolute spring constant also increases.
As a result, the transmission of vibration in the frequency range around 300 [Hz] to the vehicle body could not be effectively reduced, resulting in a quiet vehicle. Was sometimes impaired. The present invention has been made in view of the above-described problems, and provides a vibration isolation support device that can maintain an absolute spring constant at a small value in a middle to high frequency range, and aims to reduce transmission of vibration in a middle to high frequency range. The purpose is. (Means for Solving the Problems) According to the present invention, between the mounting member on the vibrating body side attached to the vibrating body and the mounting member on the supporting body side mounted on the supporting body, the mounting member on the vibrating body side and the supporting member are supported. The defining member is displaceably supported by the mounting member on the body side via the supporting elastic body, and the space between the defining member and each of the mounting members is filled with a fluid, and is expanded and contracted by the deformation of the supporting elastic body. And a main throttle passage communicating between the fluid chambers is formed in the defining member. The vibration isolating support device is provided on at least one of the mounting members on the vibrator side or the support side. A diaphragm that defines a part of the fluid chamber on the mounting member side, and a throttle passage is provided in the one mounting member between the diaphragm and the defining member, and the fluid chamber is defined by the throttle passage. Communicating A separating member that separates the two sub-chambers from each other, and adjusts the resonance frequency of the fluid in the throttle passage of the separating member so that the resonance frequency of the vibration isolating support device in the absence of the separating member The point is to match the resonance frequency in the range. (Function) According to the vibration isolating support device of the present invention, the fluid flowing through the throttle passage resonates at a vibration frequency determined by the size of the throttle passage of the separation member, and the resonance of the fluid causes the loss spring constant to be reduced. A positive component occurs. Therefore, if the vibration frequency of the resonance of the fluid is made to substantially match the resonance frequency in the above-mentioned middle and high frequency range by adjusting the dimensions and the like of the throttle passage, the positive and negative loss spring constants can be offset to lower the absolute spring constant. And transmission of vibration in the middle and high frequency range can be reduced. Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIGS. 1 and 9 to 14 show an anti-vibration support device according to a first embodiment in which the present invention is applied to the support of an automobile engine. FIG. 1 is a sectional view, and FIG. Figure,
10, 11, and 12 (a), (b) and (c) are characteristic diagrams of dynamic magnification, FIG. 13 is a characteristic diagram of loss spring constant, and FIG.
The figure is a characteristic diagram of the absolute spring constant. In FIG. 1, (11) is a mounting member which is mounted on an engine which is a vibrating body, and (12) is a mounting member which is mounted on a vehicle body which is a support. The mounting member (11) on the engine side includes the open end of the dish-shaped member (11a) and the cylindrical member (11b).
The upper end in the figure is swaged and connected to form a dish-shaped member (11a).
Attached to the engine by bolts (11c) penetrating through, similarly, the attachment member (12) on the vehicle body side is caulked to the other end opening of the cylindrical member (12b) having the flange portion (12a) at one end. Closed liquid-tight with a disk (12c)
It is attached to the vehicle body by a bolt (not shown) penetrating a hole (12d) formed in the flange portion (12a). The body-side mounting member (12) and the engine-side mounting member (1
1), a defining member (13) having a main throttle passage (13a) is formed on a mounting member (12) on the vehicle body side via a first elastic support (14), and is mounted on the engine side. First member (11)
It is supported so as to be vertically displaceable in the figure via a second support elastic body (15) formed integrally with the support elastic body (14). The first support elastic body (14) has a substantially cylindrical shape that expands on the vehicle body side, and together with the vehicle body-side mounting member (12) and the defining member (13), an incompressible fluid such as oil (hereinafter, fluid). A first fluid chamber (16) filled with a fluid is defined so as to be expandable and contractable. Similarly, the second support elastic body (15) has a substantially cylindrical shape in which the engine side expands and has a diaphragm and a diaphragm described later. A second fluid chamber (17) filled with fluid is defined so as to be able to expand and contract together with the component (13). The first fluid chamber (16) and the second fluid chamber (17) are in fluid communication with each other via the main throttle passage (13a) of the defining member (13). The mounting member (11) on the engine side further includes a rubber-like elastic material integrally formed with a thick part (18a) and a thin part (18b) around the thick part 2 (18a) that is easily deformed. And a separating member (19) having a plurality of throttle passages (19a) formed on the vehicle body side of the diaphragm (18). The diaphragm (18) has the periphery of the thin portion (18b) liquid-tightly sandwiched between the members (11a) and (11b) of the mounting member (11), and the thick portion (18).
a) is supported on the mounting member (11) by a thin portion (18b) so as to be vertically displaceable. The diaphragm (18) defines a second fluid chamber (17) together with the second support elastic body (15) and the defining member (13). Separation member (19)
The upper and lower two sub-chambers (20a), whose peripheral edge is sandwiched between the members (11a) and (11b) of the mounting member (11) and which communicates the second fluid chamber (17) by the throttle passage (19a), (20b). The spring constant of the diaphragm (18) and the number and size of the throttle passages (19a) of the separation member (19) are set such that the loss spring constant due to the fluid passing through the throttle passage (19a) is 300.
It is set so that the vibration frequency around [Hz] takes a local maximum value in the positive direction. Next, the operation of the first embodiment will be described. This anti-vibration support device is modeled as shown in FIG. However, in FIG. 9, k 11 , C 11 ; elastic coefficient and damping coefficient (hereinafter, referred to as static spring component) when the fluid in the portion K in FIG. 1 is not sealed k 12 , C 12 ; Changes in the elastic coefficient and damping coefficient of the part K in the figure due to the sealing of the fluid (hereinafter referred to as the bulge direction component) k 2 , C 2 ; elastic coefficient and damping coefficient of the part L in FIG. The static spring components k 3 , C 3 ; the elasticity coefficient and damping coefficient component m 1 of the L portion in FIG. 1 in the bulging direction; the mass SE of the defining member (13); the effective piston in the L portion in FIG. Area (parameter of volume change divided by unit displacement) Sw; Total area m 4 of throttle passage (19a) of separation member (19); Mass of fluid in throttle passage (19a) of separation member (19) is there. Here, B = k 2 / k 11 A 1 = k 12 / k 11 A 2 = k 3 / k 2 and, for simplicity, assume that C 11 = C 12 = C 2 = C = 0 Then, when a numerical analysis is performed, results as shown in FIGS. 10 to 12 are obtained. That is, when the area (Sw) is larger than the area (SE), the dynamic magnification as shown in FIG.
Two maxima appear, and similarly, when the area (Sw) and the area (SE) are equal, two maxima appear as shown in FIG. 11, and when the mass (m 4 ) increases, the maxima appear. The frequency changes to the lower frequency side. However, when the area (Sw) is smaller than the area (SE), as shown in FIGS. 12 (a), (b) and (c), the maximum value can be obtained by setting the mass (m 4 ) to an appropriate value. Becomes one and the resonance can be suppressed.
FIG. 12 (b). As is clear from the above numerical analysis, the separating member (19)
By setting the dimensions and the like of the throttle passage (19a) to appropriate values, the loss spring constant and the absolute spring constant can be set to the characteristics shown in FIG. 13 and FIG. The transmission of the vibration to be performed, in particular, the vibration in the middle and high frequency range can be reduced. Note that the specific numerical values shown in FIGS. 10 to 12 are examples for analysis, and it goes without saying that other values can be arbitrarily set. FIGS. 2 to 8 show second to eighth embodiments of the present invention. Note that the same parts as those of the anti-vibration support device according to the above-described first embodiment are denoted by the same reference numerals, and the following description is omitted. First, a second embodiment will be described with reference to FIG. The anti-vibration support device according to the second embodiment includes a sub-chamber (20a), (20) through a plurality of through holes (21) in a separating member (19).
A storage chamber (22) communicating with b) is formed. In the storage room (22), a partition plate (23) capable of closing the through hole (21) is stored in a floating manner. (24) is the sub-room (20
This is a communication hole that communicates between a) and (20b). The through hole (21) and the communication hole (24) correspond to the throttle communication (19a). In this anti-vibration support device, when a large-amplitude vibration (usually low-frequency vibration) occurs and the fluid pressure difference between the sub-chambers (20a) and (20b) increases, the partition plate (23) is moved to the storage chamber ( Close the through hole (21) in close contact with the upper and lower picture walls of (22). For this reason, the fluid flows between the sub-chambers (20a) and (20b) only through the communication hole (24) to generate a large damping force, thereby preventing the occurrence of the resonance of the shake. On the other hand, when small-amplitude vibrations (usually vibrations in the middle and high frequency ranges) occur, the partition plate (23) floats in the storage room (22) and a through-hole (21) opens in the storage room (22). Then, through these through holes (21) and storage room (22), sub-chambers (20a), (20b)
Communication between them. Therefore, the flow resistance of the fluid is also reduced, and the vibration transmission rate is reduced, so that the minute vibration transmitted to the vehicle body can be reduced. Next, a third embodiment will be described with reference to FIG. This third
The anti-vibration support device according to the embodiment supports the floating plate (25) having the throttle hole (25a) formed in the sub-chamber (20a) on the diaphragm (18) side of the separation member (19) so as to float. Have been. The periphery of the floating plate (25) is loosely fitted in an annular groove (26c) formed by two holders (26a) and (26b) fitted in the mounting member (11), and the auxiliary chamber (20a ) And two upper and lower chambers (27) communicating with each other through a throttle hole (25a).
a) and (27b). This vibration isolator supports the flow of the fluid through the throttle passage (19a), ie, the small chamber (27b) when small amplitude vibration occurs.
The floating plate (25) allows the inflow and outflow of the internal fluid by floating. However, when large amplitude vibration occurs, the floating plate (25) comes into pressure contact with the upper and lower end surfaces of the annular groove (26c), so that the fluid is removed from the fluid. It flows through the throttle hole (25a). As a result, similarly to the above-described second embodiment, even with this vibration isolating support device, it is possible to reduce the vibration transmissibility for small amplitude vibrations and effectively attenuate large amplitude vibrations. A fourth embodiment will be described with reference to FIG. The anti-vibration support device according to the fourth embodiment is similar to the third embodiment.
The floating plate (25) in the embodiment is formed by covering the upper and lower ends of the peripheral portion with an annular band (28) made of a rubber-like elastic material. In this vibration isolating support device, it is possible to reduce the collision sound when the floating plate (25) comes into contact with the end face of the annular groove (26c) of each of the holders (26a) and (26b). Others are the same as the third embodiment described above. It should be noted that the band (28) exerts the same effect when attached to both upper and lower end surfaces of the annular groove (26c) of the holders (26a) and (26b). Further, a fifth embodiment will be described with reference to FIG. In the vibration-damping support device according to the fifth embodiment, the separating member (19) has two members (30a) and (30b) sandwiching a sheet (29) (flexible member) made of a rubber-like elastic agent. ). Separating member (19) is each member (30a), (30b)
Multiple holes (31a) intercepted by the sheet (29),
(31b) is formed, and a through hole (32) is formed in the center of the member (30a) and (30b) to communicate between the sub-chambers (20a) and (20b). This vibration isolation support device absorbs the pulsation of the fluid due to the small amplitude vibration by the non-linear elastic deformation of the sheet (29) between the holes (31a) and (31b). 32) to get a great damping force by flowing through. That is, the sheet (29) made of a rubber-like elastic material easily undergoes small deformation due to shearing when small-amplitude vibration occurs, but becomes large and hardly deformed when large-amplitude vibration occurs. Therefore, it is possible to effectively attenuate the large-amplitude vibration as well as to reduce the transmission rate of the small-amplitude vibration. The above-mentioned through hole (32) and holes (31a), (31
The spring constant and the like of the sheet (29) having the dimensions b) are determined in the same manner as in the first embodiment. Further, a sixth embodiment will be described with reference to FIG. The anti-vibration support device according to the sixth embodiment is such that the sheet (29) between the holes (31a) and (31b) of the separating member (19) in the fifth embodiment has a slack (32) in advance. It is. According to the anti-vibration support device, the non-linear characteristic of the deformation of the sheet (29) is further emphasized, and the pulsation of the fluid due to the small vibration amplitude can be more effectively absorbed. Others are the same as the fifth embodiment. Next, a seventh embodiment will be described with reference to FIG. In the vibration isolation support device according to the seventh embodiment, a partition member (34) is provided on the diaphragm (18) side of the separation member (19), and the partition member (34) allows two sub chambers (20a) to be formed. It is divided into small chambers (27a) and (27b). The partition member (34) is composed of two members (30a) and (30b) in the same manner as the separating member in the above-described fifth embodiment.
There are formed a damping hole (32) communicating between a) and (27b) and a plurality of holes (31a) and (31b) blocked by a sheet (29). According to this vibration isolating support device, a large damping force can be exerted against large-amplitude vibration, and a vibration transmissibility for small-amplitude vibration can be reduced. Next, an eighth embodiment will be described with reference to FIG. In the anti-vibration support device according to the eighth embodiment, a holder (26) is disposed on the diaphragm (18) side of the separating member (19), and the holder (26) is similar to the above-described fourth embodiment. The floating plate (25) is supported so as to be floatable, and divides the sub-chamber (20a) into two small chambers (27a) and (27b). The holder (26) is connected to the small chambers (27a) and (27b).
Holes (35a) and (35b) are formed in parallel, and these holes (35a) and (35b) are connected to reed valves (36a) and (3
6b) is provided. These reed valves (36a),
(36b) closes the holes (35a) and (35b) from different chambers (27a) and (27b), respectively, and the chambers (27a) and (27b)
When the fluid pressure difference between the holes (35a) and (35
Open b) to communicate between small chambers (27a) and (27b). The reed valves (36a) and (36b) constitute a relief valve mechanism (37). Even in this vibration isolating support device, the pulsation of the fluid due to the small amplitude vibration is absorbed by the floating of the floating plate (25), but when the large amplitude vibration occurs, the reed valves (36a) and (36b) are opened and the small chamber is opened. The fluid flow between (27a) and (27b) is allowed, and the large-amplitude vibration is attenuated by the resistance when the fluid passes through the holes (35a) and (35b). In each of the embodiments described above, the present invention is applied to the support of an automobile engine, but it goes without saying that the present invention can be applied to the support of other vibrators. (Effect of the Invention) As described above, the present invention has a diaphragm provided on at least one of the mounting members on the vibrating body side or the supporting body side and defining a part of the fluid chamber on the mounting member side, and a throttle passage. A separating member provided between the diaphragm and the defining member on one of the mounting members and separating the fluid chamber into two sub-chambers communicating with each other through the throttle passage. The resonance frequency of the fluid was matched with the resonance frequency in the mid-high frequency range of the vibration isolating support device in the absence of the separating member. Therefore, the transmission of vibration in the middle and high frequency ranges can be reduced, which is a special effect. Further, in the anti-vibration support devices according to the second to eighth embodiments, in addition to the above effects, an effect that a large damping force can be exerted against a large amplitude vibration can be obtained.

【図面の簡単な説明】 第1図から第8図はこの発明の実施例にかかる防振支持
装置の断面図であり、、第1図が第1実施例を、第2図
が第2実施例を、第3図が第3実施例を、第4図が第4
実施例を、第5図が第5実施例を、第6図が第6実施例
を、第7図が第7実施例を、また第8図が第8実施例を
示す。第9図はこの発明の第1実施例にかかる防振支持
装置のモデル図である。第10図から第14図はこの発明の
第1実施例にかかる防振支持装置の特性図であり、第10
図、第11図および第12図(a),(b),(c)が数値
解析にかかる動倍率特性を表し、第13図が損失ばね定数
特性を表し、第14図が絶対ばね定数特性を表す。第15図
および第16図は従来の防振支持装置の特性図であり、第
15図が損失ばね定数特性、第16図が絶対ばね定数特性を
表す。 図中(11),(12)は取付部材、(13)は画成部材、
(13a)は主絞り部材、(14),(15)は支持弾性体、
(16),(17)は流体室、(18)はダイヤフラム、(1
9)は隔別部材、(19a)は絞り通路、(20a),(20b)
は副室、(22)は収納室、(23)は仕切板、(25)は浮
動板、(27a),(27b)は小室、(34)は仕切部材、
(37)はリリーフバルブ機構である。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 8 are cross-sectional views of an anti-vibration support device according to an embodiment of the present invention. FIG. 1 shows the first embodiment, and FIG. 2 shows the second embodiment. FIG. 3 shows the third embodiment, and FIG.
FIG. 5 shows the fifth embodiment, FIG. 6 shows the sixth embodiment, FIG. 7 shows the seventh embodiment, and FIG. 8 shows the eighth embodiment. FIG. 9 is a model diagram of an anti-vibration support device according to the first embodiment of the present invention. FIG. 10 to FIG. 14 are characteristic diagrams of the anti-vibration support device according to the first embodiment of the present invention.
Figures 11 and 12 (a), (b) and (c) show dynamic magnification characteristics according to numerical analysis, FIG. 13 shows loss spring constant characteristics, and FIG. 14 shows absolute spring constant characteristics. Represents FIG. 15 and FIG. 16 are characteristic diagrams of a conventional anti-vibration support device, and FIG.
FIG. 15 shows the loss spring constant characteristic, and FIG. 16 shows the absolute spring constant characteristic. In the figure, (11) and (12) are mounting members, (13) is a defining member,
(13a) is a main throttle member, (14) and (15) are support elastic members,
(16), (17) are fluid chambers, (18) are diaphragms, (1
9) is a separating member, (19a) is a throttle passage, (20a) and (20b)
Is a sub-chamber, (22) is a storage room, (23) is a partition plate, (25) is a floating plate, (27a) and (27b) are small rooms, (34) is a partition member,
(37) is a relief valve mechanism.

Claims (1)

(57)【特許請求の範囲】 1.振動体に取り付けられた振動体側の取付部材と支持
体に取り付けられた支持体側の取付部材との間に、これ
ら振動体側の取付部材と支持体側の取付部材とにそれぞ
れ支持弾性体を介して画成部材を変位可能に支持し、該
画成部材と前記各取付部材との間にそれぞれ流体が充満
されて前記支持弾性体の変形で拡縮する流体室を画成す
るとともに、これら流体室間を連通する主絞り通路を前
記画成部材に形成した防振支持装置において、 前記振動体側または支持体側の少なくとも一方の取付部
材に設けられて該取付部材側の流体室の一部を画成する
ダイヤフラムと、絞り通路を有して前記ダイヤフラムと
前記画成部材との間で前記一方の取付部材に設けられ、
前記流体室を前記絞り通路によって連通した2つの副室
に隔成する隔別部材と、を備え、この隔別部材の絞り通
路内の流体の共振周波数を、隔別部材の存在していない
状態での防振支持装置の中高周波域での共振周波数に一
致させたことを特徴とする防振支持装置。
(57) [Claims] Between the mounting member on the vibrating body side attached to the vibrating body and the mounting member on the supporting body side mounted on the supporting body, the mounting member on the vibrating body side and the mounting member on the supporting body side are each separated via a supporting elastic body. The forming member is displaceably supported, and between the defining member and each of the mounting members, a fluid chamber filled with fluid is formed to expand and contract by the deformation of the supporting elastic body. A vibration isolating support device in which a communicating main throttle passage is formed in the defining member, wherein the diaphragm is provided on at least one of the mounting members on the vibrator side or the support side and defines a part of a fluid chamber on the mounting member side. And a throttle path is provided on the one mounting member between the diaphragm and the defining member,
A separating member that divides the fluid chamber into two sub-chambers that communicate with each other through the throttle passage, wherein the resonance frequency of the fluid in the throttle passage of the separating member is reduced in a state where the separating member does not exist. The vibration isolating support device according to claim 1, wherein the resonance frequency is matched with a resonance frequency in a mid-high frequency range.
JP61049596A 1986-03-07 1986-03-07 Anti-vibration support device Expired - Lifetime JP2773796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61049596A JP2773796B2 (en) 1986-03-07 1986-03-07 Anti-vibration support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61049596A JP2773796B2 (en) 1986-03-07 1986-03-07 Anti-vibration support device

Publications (2)

Publication Number Publication Date
JPS62209242A JPS62209242A (en) 1987-09-14
JP2773796B2 true JP2773796B2 (en) 1998-07-09

Family

ID=12835610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61049596A Expired - Lifetime JP2773796B2 (en) 1986-03-07 1986-03-07 Anti-vibration support device

Country Status (1)

Country Link
JP (1) JP2773796B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479442A (en) * 1987-09-21 1989-03-24 Tokai Rubber Ind Ltd Fluid-sealed type mounting device
US4880215A (en) * 1988-08-05 1989-11-14 Tokai Rubber Industries, Ltd. Fluid-filled elastic mounting structure
ES2050876T3 (en) * 1989-11-09 1994-06-01 Freudenberg Carl Fa RUBBER BEARING WITH HYDRAULIC CUSHIONING.
FR2868821B1 (en) * 2004-04-08 2008-02-15 Hutchinson Sa ANTI-VIBRATION DEVICE
JP4266981B2 (en) * 2004-09-02 2009-05-27 東洋ゴム工業株式会社 Liquid-filled vibration isolator
JP4820792B2 (en) * 2007-09-28 2011-11-24 東海ゴム工業株式会社 Fluid filled vibration isolator
KR101305717B1 (en) * 2007-11-30 2013-09-09 현대자동차주식회사 Air damping mount having multiple damping structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132144A (en) * 1983-12-19 1985-07-15 Bridgestone Corp Vibration isolator

Also Published As

Publication number Publication date
JPS62209242A (en) 1987-09-14

Similar Documents

Publication Publication Date Title
JP2924317B2 (en) Fluid-filled mounting device
JP2843088B2 (en) Fluid-filled mounting device
JP2884799B2 (en) Fluid-filled mounting device
JPH04262138A (en) Fluid sealing type mount device
JP2005172172A (en) Fluid filled vibration control device
JPH0689803B2 (en) Fluid-filled mounting device
JP3849534B2 (en) Fluid filled vibration isolator
JP5977141B2 (en) Fluid filled vibration isolator
JPH0369013B2 (en)
JP2773796B2 (en) Anti-vibration support device
JP2011256930A (en) Fluid-sealed anti-vibration device
JP4158110B2 (en) Pneumatic switching type fluid-filled engine mount
JP3198603B2 (en) Fluid-filled mounting device
JP4075066B2 (en) Fluid filled engine mount
JP3728984B2 (en) Fluid filled vibration isolator
JPS63266242A (en) Fluid-sealed type mount device
JP4158111B2 (en) Pneumatic switching type fluid-filled engine mount
JP3721913B2 (en) Fluid filled vibration isolator
JPH0389043A (en) Fluid-filled vibration isolating mount
JPH0788871B2 (en) Fluid-filled cylinder mount device
JPH0389044A (en) Fluid-filled vibration isolating mount
JPH04272532A (en) Liquid-sealed vibrationproof device
JPH0349315Y2 (en)
JPS63203940A (en) Fluid-filled type mount device
JPH0349317Y2 (en)