以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.
先ず、図1には、本発明に係る流体封入式防振装置の第一の実施形態として、自動車用エンジンマウント10が示されている。このエンジンマウント10は、第一の取付部材としての第一の取付金具12と第二の取付部材としての第二の取付金具14を本体ゴム弾性体16で相互に連結した構造を有している。そして、第一の取付金具12が振動伝達系を構成する一方の部材である図示しないパワーユニットに取り付けられると共に、第二の取付金具14が振動伝達系を構成する他方の部材である図示しない車両ボデーに取り付けられることにより、パワーユニットがボデーに対して防振支持されるようになっている。
First, FIG. 1 shows an automotive engine mount 10 as a first embodiment of a fluid filled type vibration damping device according to the present invention. The engine mount 10 has a structure in which a first mounting bracket 12 as a first mounting member and a second mounting bracket 14 as a second mounting member are connected to each other by a main rubber elastic body 16. . The first mounting bracket 12 is attached to a power unit (not shown) that is one member constituting the vibration transmission system, and the second mounting bracket 14 is a vehicle body (not shown) that is the other member constituting the vibration transmission system. By attaching the power unit to the body, the power unit is supported in a vibration-proof manner with respect to the body.
なお、図1では、自動車に装着する前のエンジンマウント10の単体での状態が示されているが、本実施形態では、装着状態において、パワーユニットの分担支持荷重がマウント軸方向(図1中、上下)に入力される。従って、マウント装着状態下では、本体ゴム弾性体16の弾性変形に基づき第一の取付金具12と第二の取付金具14が軸方向で互いに接近する方向に変位する。また、かかる装着状態下、防振すべき主たる振動は、略マウント軸方向に入力されることとなる。以下の説明中、特に断りのない限り、上下方向は、マウント軸方向となる図1中の上下方向をいう。
1 shows the state of the engine mount 10 as a single unit before being mounted on the automobile, but in the present embodiment, in the mounted state, the shared support load of the power unit is in the mount axis direction (in FIG. 1, (Up and down). Therefore, in the mounted state, the first mounting member 12 and the second mounting member 14 are displaced in the axial direction toward each other based on the elastic deformation of the main rubber elastic body 16. In addition, under such a mounted state, main vibrations to be vibrated are input substantially in the mount axis direction. In the following description, unless otherwise specified, the vertical direction refers to the vertical direction in FIG.
より詳細には、第一の取付金具12が、小径の略円柱形状乃至は円錐台形状を呈していると共に、その中央部分には上端面に開口する螺子穴18が設けられている。第一の取付金具12は、螺子穴18を介して図示しないパワーユニット側の取付部材に螺着固定されるようになっている。
More specifically, the first mounting member 12 has a small-diameter substantially cylindrical shape or a truncated cone shape, and a screw hole 18 that opens to the upper end surface is provided at the center portion thereof. The first mounting bracket 12 is screwed and fixed to a power unit side mounting member (not shown) through a screw hole 18.
一方、第二の取付金具14が、大径の略円筒形状を有しており、その軸方向中間部分において軸直角方向内方に略円環板形状に広がる段差部20が形成されていると共に、段差部20の内周縁部から上方に向かう部位には、上方から下方に向かって径寸法が次第に小さくなるテーパ状部22が形成されている。第二の取付金具14は、図示しないブラケットを介して車両ボデー側の取付部材に固定されるようになっている。
On the other hand, the second mounting bracket 14 has a large-diameter, generally cylindrical shape, and a stepped portion 20 that extends in a substantially annular plate shape is formed inward in the direction perpendicular to the axis at an axially intermediate portion thereof. In addition, a tapered portion 22 whose diameter dimension gradually decreases from the upper side to the lower side is formed at a portion from the inner peripheral edge of the stepped portion 20 to the upper side. The second mounting bracket 14 is fixed to a mounting member on the vehicle body side via a bracket (not shown).
このような第二の取付金具14のテーパ状部22を備えた開口部側に第一の取付金具12が離隔配置されて、両金具12,14の中心軸が略同一線上に位置せしめられている。第一の取付金具12と第二の取付金具14の間には、本体ゴム弾性体16が配されている。
The first mounting bracket 12 is spaced apart from the opening of the second mounting bracket 14 having the tapered portion 22 so that the central axes of both the brackets 12 and 14 are positioned substantially on the same line. Yes. A main rubber elastic body 16 is disposed between the first mounting bracket 12 and the second mounting bracket 14.
本体ゴム弾性体16は、略円錐台形状を有しており、その大径側端面には、下方に開口するすり鉢形状乃至は半球形状の大径凹所24が設けられている。本体ゴム弾性体16の小径側端面には、第一の取付金具12の軸方向中間部分から下端部にかけての略全体が埋設された状態で加硫接着されている。本体ゴム弾性体16の大径側端部外周面には、第二の取付金具14のテーパ状部22の内周面が略全体に亘って加硫接着されている。また、本体ゴム弾性体16と一体形成された薄肉のシールゴム層26が、第二の取付金具14の段差部20から下端部にかけての内周面の略全体に亘って被着形成されている。即ち、本体ゴム弾性体16は、第一の取付金具12と第二の取付金具14を備えた一体加硫成形品として形成されており、それによって、第一の取付金具12と第二の取付金具14が、本体ゴム弾性体16で相互に弾性的に連結されていると共に、第二の取付金具14の軸方向一方(図1中、上)の開口部が本体ゴム弾性体16によって流体密に閉塞されている。
The main rubber elastic body 16 has a substantially frustoconical shape, and a mortar-shaped or hemispherical large-diameter recess 24 that opens downward is provided on the large-diameter side end face. The small-diameter side end face of the main rubber elastic body 16 is vulcanized and bonded in a state where substantially the entire portion from the axially intermediate portion to the lower end portion of the first mounting member 12 is embedded. The inner peripheral surface of the tapered portion 22 of the second mounting bracket 14 is vulcanized and bonded to the outer peripheral surface of the large-diameter side end portion of the main rubber elastic body 16 over substantially the entire surface. Further, a thin seal rubber layer 26 integrally formed with the main rubber elastic body 16 is formed on the entire inner peripheral surface from the stepped portion 20 to the lower end portion of the second mounting bracket 14. In other words, the main rubber elastic body 16 is formed as an integrally vulcanized molded product including the first mounting bracket 12 and the second mounting bracket 14, whereby the first mounting bracket 12 and the second mounting bracket 12 are attached. The metal fittings 14 are elastically connected to each other by the main rubber elastic body 16, and the opening on one axial direction (the upper side in FIG. 1) of the second mounting metal fitting 14 is fluid-tight by the main rubber elastic body 16. Is blocked.
第二の取付金具14の軸方向他方(図1中、下)の開口部には、可撓性膜としてのダイヤフラム28が設けられている。ダイヤフラム28は、変形容易な薄肉のゴム膜からなり、軸方向に弛んだ略円板形状を有している。ダイヤフラム28の外周縁部には、大径の円筒形状の固定リング30が加硫接着されており、固定リング30が第二の取付金具14の下方の開口部に嵌め込まれて、第二の取付金具14に八方絞り等の縮径加工が施されていることにより、固定リング30が、径方向に圧縮変形されたシールゴム層26を介して第二の取付金具14に密着状に嵌着固定されている。
A diaphragm 28 as a flexible film is provided in the opening of the second mounting member 14 in the other axial direction (the lower side in FIG. 1). The diaphragm 28 is made of a thin rubber film that can be easily deformed, and has a substantially disk shape that is slackened in the axial direction. A large-diameter cylindrical fixing ring 30 is vulcanized and bonded to the outer peripheral edge of the diaphragm 28, and the fixing ring 30 is fitted into the opening below the second mounting bracket 14, so that the second mounting Since the metal fitting 14 is subjected to diameter reduction processing such as an eight-way drawing, the fixing ring 30 is fitted and fixed in close contact with the second mounting metal fitting 14 via the seal rubber layer 26 compressed and deformed in the radial direction. ing.
これにより、ダイヤフラム28が第二の取付金具14に固定されて、第二の取付金具14の軸方向他方(図1中、下)の開口部がダイヤフラム28で流体密に覆蓋されていると共に、第二の取付金具14の内側における本体ゴム弾性体16とダイヤフラム28の軸方向対向面間には、外部空間に対して密閉された流体封入領域32が形成されている。
As a result, the diaphragm 28 is fixed to the second mounting bracket 14, and the opening in the other axial direction (the lower side in FIG. 1) of the second mounting bracket 14 is fluid-tightly covered with the diaphragm 28. Between the axially opposing surfaces of the main rubber elastic body 16 and the diaphragm 28 inside the second mounting bracket 14, a fluid sealing region 32 that is sealed with respect to the external space is formed.
また、流体封入領域32には、仕切部材34が第二の取付金具14に支持されて配設されている。仕切部材34は、図2〜4にも示されているように、全体として円形ブロック形状を有しており、仕切部材本体36や蓋板金具38および弁板金具40を含んで構成されている。
A partition member 34 is supported by the second mounting member 14 in the fluid sealing region 32. 2 to 4, the partition member 34 has a circular block shape as a whole, and includes a partition member main body 36, a lid plate metal member 38, and a valve plate member 40. .
仕切部材本体36は、円形ブロック形状を有していると共に、金属材や合成樹脂材等の硬質材を用いて形成されている。仕切部材本体36の中央部分には、仕切部材本体36の軸方向中間部分から上方に開口する収容凹所42と下方に開口する下側凹所44が、それぞれ形成されている。これらの凹所42,44は、何れも円形凹状を有していると共に、下側凹所44の径寸法が収容凹所42の径寸法に比して大きくされている。また、仕切部材本体36の軸方向中間部分において、両凹所42,44の底壁部を構成する薄肉の円板形状の底部46の中央周りには、複数の小孔からなる透孔48が貫設されている。更に、仕切部材本体36の外周部分には、周方向に螺旋状に延びる周溝50が形成されており、周溝50の両端部が、仕切部材本体36の上端部に形成された切欠き状の連通窓52と、下端部に形成された切欠き状の図示しない連通窓に接続されている。また、仕切部材本体36の収容凹所42の周りの上端部分には、周方向に離隔して複数(本実施形態では3つ)の突部56が突設されている。
The partition member main body 36 has a circular block shape and is formed using a hard material such as a metal material or a synthetic resin material. In the central portion of the partition member main body 36, an accommodation recess 42 that opens upward from an axial middle portion of the partition member main body 36 and a lower recess 44 that opens downward are formed. Each of these recesses 42 and 44 has a circular recess shape, and the diameter dimension of the lower recess 44 is made larger than the diameter dimension of the housing recess 42. In addition, a through hole 48 made up of a plurality of small holes is formed around the center of the thin disk-shaped bottom 46 constituting the bottom wall of the two recesses 42 and 44 in the axially intermediate portion of the partition member main body 36. It is penetrating. Furthermore, a circumferential groove 50 extending in a spiral shape in the circumferential direction is formed in the outer peripheral portion of the partition member main body 36, and both end portions of the circumferential groove 50 are notched in the upper end portion of the partition member main body 36. The communication window 52 is connected to a notch-shaped communication window (not shown) formed at the lower end. A plurality of (three in the present embodiment) protrusions 56 project from the upper end portion of the partition member main body 36 around the accommodation recess 42 in the circumferential direction.
ここで、仕切部材本体36の収容凹所42の底部46の中心軸上には、軸方向に略一定の円形断面で延びる第一の接続孔58が形成されており、該第一の接続孔58の周りに前述の透孔48が形成されている。
Here, on the central axis of the bottom 46 of the housing recess 42 of the partition member main body 36, a first connection hole 58 extending in a substantially constant circular cross section in the axial direction is formed, and the first connection hole The aforementioned through-hole 48 is formed around 58.
一方、蓋板金具38は、図2,3にも示されているように、薄肉の円板形状を有しており、硬質の金属材を用いて形成されている。また、蓋板金具38の中心軸上には、略一定の円形断面で中央部分を貫通する第二の接続孔60が形成されている。更に、第二の接続孔60の周囲には、複数の小孔からなる透孔62が貫通形成されている。また、蓋板金具38の外周縁部には、切欠き状の連通窓64が形成されている。更に、蓋板金具38の外周部分には、周方向に離隔して複数(本実施形態では3つ)の挿通孔66が貫設されている。このような蓋板金具38は、例えば、鉄やアルミニウム合金等で形成された金属板にプレス加工を施すことにより有利に実現される。
On the other hand, as shown in FIGS. 2 and 3, the lid plate fitting 38 has a thin disk shape and is formed using a hard metal material. A second connection hole 60 is formed on the central axis of the lid plate metal 38 so as to penetrate the central portion with a substantially constant circular cross section. Further, a through hole 62 made up of a plurality of small holes is formed around the second connection hole 60. Further, a cutout communication window 64 is formed on the outer peripheral edge of the lid plate metal 38. Further, a plurality of (three in this embodiment) insertion holes 66 are provided in the outer peripheral portion of the lid plate metal 38 so as to be spaced apart in the circumferential direction. Such a lid plate fitting 38 is advantageously realized by, for example, pressing a metal plate formed of iron, aluminum alloy, or the like.
また、弁板金具40は、図2,3にも示されているように、薄肉の円環板形状を有する保持板部68を備えている。この保持板部68は、蓋板金具38と略同じ外径を有しており、特に、ばね鋼等の比較的にばね定数が高くて、且つ硬質の金属材を用いて形成されている。また、保持板部68の外周縁部には、切欠き状の連通窓70が形成されている。更に、保持板部68には、周上の複数箇所(本実施形態では3箇所)において小径の円形孔である挿通孔72が貫通形成されている。
In addition, the valve plate fitting 40 includes a holding plate portion 68 having a thin annular plate shape as shown in FIGS. The holding plate portion 68 has substantially the same outer diameter as the cover plate fitting 38, and is formed by using a hard metal material having a relatively high spring constant such as spring steel. Further, a cutout communication window 70 is formed on the outer peripheral edge of the holding plate 68. Further, the holding plate portion 68 is formed with through holes 72 that are circular holes having small diameters at a plurality of locations on the circumference (three locations in the present embodiment).
また、保持板部68の周上の一部には、径方向内側に向かって延びる弁部材としての板ばね弁74が一体形成されている。この板ばね弁74は、図2にも示されているように、径方向内側に向かって径方向で直線的に延びており、弁板金具40の中央まで至る長さで形成されている。また、板ばね弁74の先端部分には、厚さ方向で貫通する連結孔76が形成されている。なお、本実施形態において、板ばね弁74は、延出方向(弁板金具40の径方向)の中間部分が僅かに折り曲げられており、かかる折り曲げ部分よりも先端側が、突出先端側である径方向中央側に向かって下傾せしめられている。
In addition, a leaf spring valve 74 as a valve member extending inward in the radial direction is integrally formed on a part of the circumference of the holding plate portion 68. As shown in FIG. 2, the leaf spring valve 74 extends linearly in the radial direction toward the inside in the radial direction, and is formed with a length that reaches the center of the valve plate fitting 40. Further, a connecting hole 76 penetrating in the thickness direction is formed at the tip of the leaf spring valve 74. In the present embodiment, the leaf spring valve 74 is slightly bent at the intermediate portion in the extending direction (the radial direction of the valve plate fitting 40), and the front end side of the bent portion is the protruding front end side. It is tilted downward toward the center of the direction.
さらに、板ばね弁74の先端部分における一方の面(図3における上面)には、係合ゴム78が形成されると共に、他方の面(図3における下面)には、当接ゴム80が形成されている。係合ゴム78は、略円錐台形状を有しており、大径側端部の外径が連結孔76よりも大きくなっている。一方、当接ゴム80は、連結孔76よりも大径とされた薄肉の略円板形状を有しており、連結孔76を通じて係合ゴム78と一体形成されている。なお、本実施形態では、当接ゴム80が係合ゴム78の大径側端部よりも充分に大径とされている。
Further, an engagement rubber 78 is formed on one surface (upper surface in FIG. 3) of the tip portion of the leaf spring valve 74, and a contact rubber 80 is formed on the other surface (lower surface in FIG. 3). Has been. The engagement rubber 78 has a substantially truncated cone shape, and the outer diameter of the end portion on the large diameter side is larger than that of the connection hole 76. On the other hand, the contact rubber 80 has a thin and substantially disk shape having a larger diameter than the connection hole 76, and is integrally formed with the engagement rubber 78 through the connection hole 76. In the present embodiment, the contact rubber 80 has a sufficiently larger diameter than the end portion on the large diameter side of the engagement rubber 78.
また、仕切部材本体36の収容凹所42には、可動ゴム膜としての弾性ゴム膜82が収容されている。弾性ゴム膜82は、図4にも示されているように、ゴム弾性材からなり、全体として略円板形状を有している。
An elastic rubber film 82 as a movable rubber film is accommodated in the accommodation recess 42 of the partition member main body 36. As shown in FIG. 4, the elastic rubber film 82 is made of a rubber elastic material and has a substantially disk shape as a whole.
また、弾性ゴム膜82の径方向中央部分には、厚さ方向両側に向かって突出する弾性突出部としての中央突部84が形成されている。中央突部84は、略円筒形状を有して軸方向両側に突出しており、弾性ゴム膜82に一体形成されている。更に、本実施形態において、筒状とされた中央突部84の中央孔を利用して、軸方向に延びるリリーフ用孔としての貫通孔86が形成されている。この貫通孔86は、略一定の円形断面をもって中央突部84の径方向中央部を直線的に延びており、中央突部84の上端面と下端面にそれぞれ開口するように軸方向で貫通して形成されている。
Further, a central protrusion 84 is formed at the central portion in the radial direction of the elastic rubber film 82 as an elastic protrusion that protrudes toward both sides in the thickness direction. The central protrusion 84 has a substantially cylindrical shape and protrudes on both sides in the axial direction, and is integrally formed with the elastic rubber film 82. Further, in the present embodiment, a through hole 86 as a relief hole extending in the axial direction is formed using the central hole of the cylindrical central protrusion 84. The through hole 86 has a substantially constant circular cross section and linearly extends in the central portion in the radial direction of the central protrusion 84, and penetrates in the axial direction so as to open at the upper end surface and the lower end surface of the central protrusion 84. Is formed.
また、弾性ゴム膜82の外周縁部には、厚肉挟持部としての環状突部88が一体形成されている。環状突部88は、円環形状を有しており、弾性ゴム膜82の外周縁部において全周に亘って厚さ方向両側に突出せしめられている。なお、環状突部88は、中央突部84の外周側を取り囲むように形成されており、本実施形態では、中央突部84と環状突部88が軸方向視で同心状に設けられている。
Further, an annular protrusion 88 as a thick sandwiching portion is integrally formed on the outer peripheral edge of the elastic rubber film 82. The annular protrusion 88 has an annular shape, and protrudes to both sides in the thickness direction over the entire circumference at the outer peripheral edge of the elastic rubber film 82. The annular protrusion 88 is formed so as to surround the outer peripheral side of the central protrusion 84. In the present embodiment, the central protrusion 84 and the annular protrusion 88 are provided concentrically as viewed in the axial direction. .
また、弾性ゴム膜82において、中央突部84と環状突部88の径方向間に位置する部分が、それら中央突部84および環状突部88の形成部分よりも薄肉の膜状とされた薄肉部90となっている。薄肉部90は、略一定の厚さで形成された略円環板形状を有しており、内周縁部に中央突部84が一体形成されていると共に、外周縁部に環状突部88が一体形成されている。
Further, in the elastic rubber film 82, a portion located between the central protrusion 84 and the annular protrusion 88 in the radial direction has a thin film shape that is thinner than a portion where the central protrusion 84 and the annular protrusion 88 are formed. Part 90. The thin-walled portion 90 has a substantially annular plate shape formed with a substantially constant thickness, and a central protrusion 84 is integrally formed at the inner peripheral edge, and an annular protrusion 88 is formed at the outer peripheral edge. It is integrally formed.
このような弾性ゴム膜82が仕切部材本体36の収容凹所42に嵌め込まれている。本実施形態では、弾性ゴム膜82が仕切部材本体36と略同心状に位置決め配置されるようにして収容凹所42に収容配置されている。それによって、仕切部材本体36の第一の接続孔58と弾性ゴム膜82の貫通孔86が略同一中心軸上に位置せしめられている。
Such an elastic rubber film 82 is fitted into the housing recess 42 of the partition member main body 36. In the present embodiment, the elastic rubber film 82 is accommodated and disposed in the accommodating recess 42 so as to be positioned and disposed substantially concentrically with the partition member main body 36. Accordingly, the first connection hole 58 of the partition member main body 36 and the through hole 86 of the elastic rubber film 82 are positioned on substantially the same central axis.
また、弾性ゴム膜82を収容配置した仕切部材本体36の上端面に蓋板金具38の外周部分が重ね合わせられると共に、蓋板金具38の上端面に弁板金具40が重ね合わせられることによって、仕切部材34が構成されている。かかる組付け下、仕切部材本体36の複数の突部56が蓋板金具38および弁板金具40に設けられた複数の挿通孔66,72に挿通されていることで、仕切部材本体36と蓋板金具38と弁板金具40の周方向の位置決めが確定して、仕切部材本体36の連通窓52に蓋板金具38の連通窓64と弁板金具40の連通窓70が重ね合わせられている。
In addition, the outer peripheral portion of the cover plate fitting 38 is overlaid on the upper end surface of the partition member main body 36 in which the elastic rubber film 82 is accommodated, and the valve plate fitting 40 is overlaid on the upper end surface of the cover plate fitting 38. A partition member 34 is configured. Under such assembly, the plurality of protrusions 56 of the partition member main body 36 are inserted into the plurality of insertion holes 66 and 72 provided in the lid plate metal member 38 and the valve plate metal member 40, so that the partition member main body 36 and the lid The circumferential positioning of the plate fitting 38 and the valve plate fitting 40 is determined, and the communication window 64 of the lid plate fitting 38 and the communication window 70 of the valve plate fitting 40 are superimposed on the communication window 52 of the partition member main body 36. .
また、仕切部材本体36に対する蓋板金具38と弁板金具40の組付け下において、仕切部材本体36と蓋板金具38が軸直角方向で位置決めされており、仕切部材本体36の収容凹所42に収容配置された弾性ゴム膜82と蓋板金具38が軸直角方向で位置決めされていると共に、弾性ゴム膜82の貫通孔86と蓋板金具38の第二の接続孔60が略同一中心軸上に位置せしめられている。
In addition, the partition member main body 36 and the cover plate metal fitting 38 are positioned in the direction perpendicular to the axis under the assembly of the cover plate metal fitting 38 and the valve plate metal fitting 40 with respect to the partition member main body 36. The elastic rubber film 82 and the lid plate metal 38 accommodated in the inner wall are positioned in the direction perpendicular to the axis, and the through hole 86 of the elastic rubber film 82 and the second connection hole 60 of the lid plate metal 38 are substantially the same central axis. It is located on the top.
このような構造とされた仕切部材34は、前述のダイヤフラム28の第二の取付金具14への組付けに先立って、第二の取付金具14の下方の開口部から軸方向に嵌め込まれて、仕切部材34の蓋板金具38の外周部分が第二の取付金具14の段差部20にシールゴム層26を介して重ね合わせられている。また、仕切部材34の仕切部材本体36の下端部分には、第二の取付金具14に嵌め込まれたダイヤフラム28の固定リング30が重ね合わせられている。そして、第二の取付金具14に八方絞り等の縮径加工が施されることによって、第二の取付金具14の縮径変形に基づき、仕切部材本体36の外周面や蓋板金具38の外周面が軸直角方向に圧縮変形したシールゴム層26を介して第二の取付金具14の内周面に重ね合わせられていると共に、該シールゴム層26の軸直角方向の圧縮変形に伴う軸方向の引張変形によって、仕切部材34の外周部分が第二の取付金具14の段差部20とダイヤフラム28の固定リング30の間に挟圧固定されている。また、段差部20に被着されたシールゴム層26が軸方向に圧縮変形しつつ、蓋板金具38の外周部分と段差部20の重ね合わせ面間に介装されていることによって、それらが流体密に重ね合わせられている。
Prior to the assembly of the diaphragm 28 to the second mounting bracket 14, the partition member 34 having such a structure is fitted in the axial direction from the opening below the second mounting bracket 14. The outer peripheral portion of the lid plate metal member 38 of the partition member 34 is overlapped with the stepped portion 20 of the second attachment metal member 14 via the seal rubber layer 26. A fixing ring 30 of a diaphragm 28 fitted in the second mounting bracket 14 is overlaid on the lower end portion of the partition member main body 36 of the partition member 34. Then, the outer diameter of the partition member main body 36 and the outer circumference of the cover plate metal 38 are obtained by reducing the diameter of the second mounting bracket 14 by reducing the diameter of the second mounting bracket 14 such as an eight-way drawing. The surface is superposed on the inner peripheral surface of the second mounting member 14 via a seal rubber layer 26 that is compressed and deformed in the direction perpendicular to the axis, and the tensile force in the axial direction accompanying the compression deformation in the direction perpendicular to the axis of the seal rubber layer 26 is superimposed. Due to the deformation, the outer peripheral portion of the partition member 34 is clamped and fixed between the stepped portion 20 of the second mounting bracket 14 and the fixing ring 30 of the diaphragm 28. Further, the seal rubber layer 26 attached to the step portion 20 is compressed and deformed in the axial direction, and is interposed between the outer peripheral portion of the cover plate metal 38 and the overlapping surface of the step portion 20, so that they are fluidized. It is closely stacked.
これにより、仕切部材本体36や蓋板金具38や弁板金具40からなる仕切部材34に弾性ゴム膜82が組み付けられたものが、第二の取付金具14に固定的に支持されて、第二の取付金具14の内側の流体封入領域32を流体密に二分している。そして、流体封入領域32の仕切部材34を挟んだ一方の側には、壁部の一部が本体ゴム弾性体16で構成されて、本体ゴム弾性体16の弾性変形に基づき圧力変動が生ぜしめられる受圧室92が形成されていると共に、他方の側には、壁部の一部がダイヤフラム28で構成された平衡室94が形成されている。
As a result, a member in which the elastic rubber film 82 is assembled to the partition member 34 including the partition member main body 36, the cover plate metal member 38, and the valve plate member 40 is fixedly supported by the second mounting member 14, and The fluid sealing region 32 inside the mounting bracket 14 is divided into two fluid-tight. A part of the wall portion is formed of the main rubber elastic body 16 on one side of the fluid sealing region 32 with the partition member 34 interposed therebetween, and pressure fluctuation occurs due to elastic deformation of the main rubber elastic body 16. A pressure receiving chamber 92 is formed, and on the other side, an equilibration chamber 94 in which a part of the wall portion is formed of the diaphragm 28 is formed.
これら受圧室92や平衡室94には、非圧縮性流体が封入されている。封入流体としては、例えば水やアルキレングリコール, ポリアルキレングリコール, シリコーン油等が採用されるが、特に流体の共振作用等の流動作用に基づく防振効果を有効に得るためには、0.1Pa・s以下の低粘性流体を採用することが望ましい。受圧室92や平衡室94への非圧縮性流体の封入は、例えば、第一及び第二の取付金具12,14を備えた本体ゴム弾性体16の一体加硫成形品に対する仕切部材34やダイヤフラム28の組付けを非圧縮性流体中で行うことによって、好適に実現される。
The pressure receiving chamber 92 and the equilibrium chamber 94 are filled with an incompressible fluid. As the sealing fluid, for example, water, alkylene glycol, polyalkylene glycol, silicone oil or the like is adopted, and in order to effectively obtain a vibration isolation effect based on a fluid action such as a resonance action of the fluid, 0.1 Pa · It is desirable to employ a low-viscosity fluid of s or less. For example, the incompressible fluid is sealed in the pressure receiving chamber 92 or the equilibrium chamber 94, for example, a partition member 34 or a diaphragm for the integrally vulcanized molded product of the main rubber elastic body 16 including the first and second mounting brackets 12 and 14. This is preferably achieved by performing the 28 assembly in an incompressible fluid.
また、仕切部材本体36の周溝50が第二の取付金具14で流体密に覆蓋されて、周溝50の周方向一方の端部が、周方向で位置合わせされた仕切部材本体36の連通窓52および蓋板金具38の連通窓64を通じて受圧室92に接続されていると共に、周溝50の周方向他方の端部が、仕切部材本体36の図示しない連通窓を通じて平衡室94に接続されている。これにより、仕切部材本体36の外周側を周方向に所定の長さで螺旋状に延びるオリフィス通路96が形成されており、かかるオリフィス通路96を通じて受圧室92と平衡室94が相互に連通せしめられて、それら両室92,94間で、オリフィス通路96を通じての流体流動が許容されるようになっている。
Further, the circumferential groove 50 of the partition member main body 36 is fluid-tightly covered with the second mounting member 14, and one end portion in the circumferential direction of the circumferential groove 50 is communicated with the partition member main body 36 in the circumferential direction. The other end in the circumferential direction of the circumferential groove 50 is connected to the equilibrium chamber 94 through a communication window (not shown) of the partition member body 36 while being connected to the pressure receiving chamber 92 through the window 52 and the communication window 64 of the lid plate metal 38. ing. As a result, an orifice passage 96 is formed on the outer peripheral side of the partition member main body 36 in a spiral shape with a predetermined length in the circumferential direction, and the pressure receiving chamber 92 and the equilibrium chamber 94 are communicated with each other through the orifice passage 96. Thus, fluid flow through the orifice passage 96 is allowed between the chambers 92 and 94.
本実施形態では、オリフィス通路96を通じて流動せしめられる流体の共振周波数が、該流体の共振作用に基づいてエンジンシェイク等に相当する10Hz前後の低周波数域の振動に対して有効な防振効果(高減衰効果)が発揮されるようにチューニングされている。オリフィス通路96のチューニングは、例えば、受圧室92や平衡室94の各壁ばね剛性、即ちそれら各室92,94を単位容積だけ変化させるのに必要な圧力変化量に対応する本体ゴム弾性体16やダイヤフラム28等の各弾性変形量に基づく特性値を考慮しつつ、オリフィス通路96の通路長さと通路断面積を調節することによって行うことが可能であり、一般に、オリフィス通路96を通じて伝達される圧力変動の位相が変化して略共振状態となる周波数を、当該オリフィス通路96のチューニング周波数として把握することが出来る。
In the present embodiment, the resonance frequency of the fluid flowing through the orifice passage 96 is effective against vibrations in a low frequency region around 10 Hz corresponding to an engine shake based on the resonance action of the fluid. It is tuned so that the damping effect is demonstrated. Tuning of the orifice passage 96 is performed by, for example, the rigidity of the wall springs of the pressure receiving chamber 92 and the equilibrium chamber 94, that is, the main rubber elastic body 16 corresponding to the amount of pressure change required to change the chambers 92 and 94 by a unit volume. It is possible to adjust the passage length and passage cross-sectional area of the orifice passage 96 while taking into account the characteristic values based on the respective elastic deformation amounts such as the diaphragm 28 and the diaphragm 28. In general, the pressure transmitted through the orifice passage 96 The frequency at which the phase of the fluctuation changes to bring about the resonance state can be grasped as the tuning frequency of the orifice passage 96.
また、蓋板金具38が仕切部材本体36の上端部に密着状に重ね合わせられて、仕切部材本体36の収容凹所42が蓋板金具38で覆蓋されることによって、仕切部材34の中央部分において蓋板金具38や仕切部材本体36の収容凹所42で画設された空間には、収容領域98が形成されている。なお、収容領域98の形成は、仕切部材34が第二の取付金具14に固定される前に、蓋板金具38が仕切部材本体36の上端部に密着状に重ね合わせられて固定されることによって形成されても良く、或いは仕切部材34が第二の取付金具14に取り付けられる際に、第二の取付金具14の段差部20とダイヤフラム28の固定リング30の軸方向間に及ぼされる挟圧作用を利用して、蓋板金具38が仕切部材本体36の上端部に密着状に重ね合わせられることで形成されても良い。
Further, the lid plate metal 38 is overlapped in close contact with the upper end of the partition member main body 36, and the housing recess 42 of the partition member main body 36 is covered with the lid plate metal 38, whereby the central portion of the partition member 34 is formed. In the space defined by the housing recess 42 of the lid plate metal 38 and the partition member main body 36, a housing area 98 is formed. In addition, the storage area 98 is formed by the cover plate metal fitting 38 being closely attached to the upper end portion of the partition member main body 36 and fixed before the partition member 34 is fixed to the second mounting metal fitting 14. Or the clamping force exerted between the stepped portion 20 of the second mounting bracket 14 and the axial direction of the fixing ring 30 of the diaphragm 28 when the partition member 34 is mounted on the second mounting bracket 14. The lid plate metal member 38 may be formed by closely overlapping the upper end portion of the partition member main body 36 using the action.
この収容領域98には、弾性ゴム膜82が収容配置されている。弾性ゴム膜82は、収容領域98において軸直角方向に広がっており、仕切部材本体36に対して略同心状に配設されている。
An elastic rubber film 82 is accommodated in the accommodation area 98. The elastic rubber film 82 extends in the direction perpendicular to the axis in the accommodation region 98 and is disposed substantially concentrically with respect to the partition member main body 36.
また、弾性ゴム膜82における中央突部84の軸方向寸法:Tが、収容凹所42の底部46とそれに対向する蓋板金具38との対向面間距離、換言すれば収容領域98の軸方向での内法寸法:tよりも大きくなっている。これにより、弾性ゴム膜82の収容領域98に対する組付け状態下では、中央突部84が、底部46と蓋板金具38に対してそれぞれ押圧当接せしめられており、それら底部46と蓋板金具38の軸方向対向面間で軸方向に圧縮変形せしめられている。このように、中央突部84の軸方向両端面が仕切部材34を構成する仕切部材本体36の底部46と蓋板金具38に当接せしめられていることにより、弾性ゴム膜82の軸方向での弾性変形量が制限されており、本実施形態における当接部材が仕切部材34によって構成されている。
Further, the axial dimension T of the central protrusion 84 in the elastic rubber film 82 is the distance between the opposed surfaces of the bottom 46 of the accommodation recess 42 and the lid plate metal 38 facing it, in other words, the axial direction of the accommodation region 98. Internal dimension at: greater than t. As a result, under the assembled state of the elastic rubber film 82 with respect to the accommodation region 98, the central protrusion 84 is pressed against and abutted against the bottom 46 and the lid plate metal 38, respectively. It is compressed and deformed in the axial direction between 38 axially opposed surfaces. As described above, both end surfaces in the axial direction of the central protrusion 84 are brought into contact with the bottom 46 of the partition member main body 36 and the cover plate metal member 38 constituting the partition member 34, so that the elastic rubber film 82 is axially aligned. The amount of elastic deformation is limited, and the contact member in the present embodiment is constituted by the partition member 34.
さらに、弾性ゴム膜82における環状突部88の軸方向寸法が中央突部84の軸方向寸法と略同じであるTとされており、収容凹所42の底部46とそれに対向する蓋板金具38との対向面間距離:tよりも大きくなっている。これにより、弾性ゴム膜82の収容領域98に対する組付け状態下では、環状突部88が、底部46と蓋板金具38に対してそれぞれ押圧当接せしめられており、それら底部46と蓋板金具38の軸方向対向面間で軸方向に圧縮変形せしめられて挟持されている。換言すれば、環状突部88の軸方向両端面が仕切部材34を構成する仕切部材本体36の底部46と蓋板金具38に当接せしめられている。
Furthermore, the axial dimension of the annular protrusion 88 in the elastic rubber film 82 is T, which is substantially the same as the axial dimension of the central protrusion 84, and the bottom 46 of the housing recess 42 and the lid plate fitting 38 facing it. The distance between the opposed surfaces is larger than t. Thus, under the assembled state of the elastic rubber film 82 with respect to the housing region 98, the annular protrusions 88 are pressed and brought into contact with the bottom 46 and the lid plate metal 38, respectively. Between 38 axially opposed surfaces, it is compressed and deformed in the axial direction and is sandwiched. In other words, both end surfaces in the axial direction of the annular protrusion 88 are brought into contact with the bottom 46 of the partition member main body 36 constituting the partition member 34 and the lid plate metal 38.
なお、中央突部84と環状突部88の軸方向寸法は、必ずしも同じではなくても良く、例えば環状突部88を中央突部84よりも軸方向外側まで突出せしめて圧縮量を大きく得ることにより、環状突部88の固定的な保持をより効果的に実現することも出来る。
The axial dimensions of the central protrusion 84 and the annular protrusion 88 are not necessarily the same. For example, the annular protrusion 88 is protruded axially outward from the central protrusion 84 to obtain a large amount of compression. Thus, the fixed holding of the annular protrusion 88 can be realized more effectively.
このように、中央突部84と環状突部88の軸方向両端面が仕切部材本体36の底部46と蓋板金具38に対して軸方向で押圧当接せしめられることにより、弾性ゴム膜82の径方向中央部分と外周縁部が、仕切部材本体36と蓋板金具38によって支持されている。
In this way, the axially opposite end faces of the central protrusion 84 and the annular protrusion 88 are pressed against each other in the axial direction against the bottom 46 of the partition member main body 36 and the lid plate metal 38, so that the elastic rubber film 82 The central portion in the radial direction and the outer peripheral edge are supported by the partition member main body 36 and the lid plate metal 38.
また、本実施形態では、仕切部材34における収容領域98の受圧室92側の壁部が、蓋板金具38を含んで構成されており、蓋板金具38の透孔62を通じて弾性ゴム膜82の径方向中間部分の一方(図1中、上)の面に受圧室92の圧力が及ぼされるようになっていると共に、仕切部材34の収容領域98の平衡室94側の壁部が、仕切部材本体36の底部46を含んで構成されており、該底部46の透孔48を通じて弾性ゴム膜82の径方向中間部分の他方(図1中、下)の面に平衡室94の圧力が及ぼされるようになっている。
Further, in the present embodiment, the wall portion on the pressure receiving chamber 92 side of the accommodating region 98 in the partition member 34 is configured to include the cover plate fitting 38, and the elastic rubber film 82 is formed through the through hole 62 of the cover plate fitting 38. The pressure of the pressure receiving chamber 92 is applied to one surface (upper in FIG. 1) of the radial intermediate portion, and the wall portion of the accommodation region 98 of the partition member 34 on the side of the equilibrium chamber 94 is a partition member. The bottom portion 46 of the main body 36 is included, and the pressure of the equilibrium chamber 94 is exerted on the other surface (lower side in FIG. 1) of the radial intermediate portion of the elastic rubber film 82 through the through hole 48 of the bottom portion 46. It is like that.
これにより、弾性ゴム膜82の中央部分と外周部分が拘束された状態下、受圧室92と平衡室94の相対的な圧力差が弾性ゴム膜82に及ぼされて、弾性ゴム膜82の径方向中間部分が弾性変形すると、受圧室92の圧力変動が吸収されるようになっている。即ち、本実施形態に係る液圧吸収機構が、弾性ゴム膜82や仕切部材本体36の透孔48、蓋板金具38の透孔62を含んで構成されている。特に本実施形態では、アイドリング振動や低速こもり音等に相当する20〜40Hz程度の中周波数域の振動入力に際して、弾性ゴム膜82の弾性変形による受圧室92の圧力変動吸収効果に基づく防振効果(低動ばね特性に基づく振動絶縁効果)が有効に発揮されるように、弾性ゴム膜82の固有振動数がチューニングされている。
Thus, the relative pressure difference between the pressure receiving chamber 92 and the equilibrium chamber 94 is exerted on the elastic rubber film 82 in a state where the central portion and the outer peripheral portion of the elastic rubber film 82 are constrained, and the radial direction of the elastic rubber film 82 When the intermediate portion is elastically deformed, the pressure fluctuation in the pressure receiving chamber 92 is absorbed. That is, the hydraulic pressure absorbing mechanism according to the present embodiment includes the elastic rubber film 82, the through hole 48 of the partition member main body 36, and the through hole 62 of the lid plate metal 38. In particular, in the present embodiment, a vibration isolation effect based on the pressure fluctuation absorption effect of the pressure receiving chamber 92 due to elastic deformation of the elastic rubber film 82 at the time of vibration input in the middle frequency range of about 20 to 40 Hz corresponding to idling vibration, low-speed booming sound, and the like. The natural frequency of the elastic rubber film 82 is tuned so that the (vibration insulation effect based on the low dynamic spring characteristic) is effectively exhibited.
ここにおいて、弾性ゴム膜82の外径寸法:Lは、仕切部材本体36に形成された収容凹所42の径寸法:lに比して大きくなっている。これにより、弾性ゴム膜82が収容凹所42に嵌め込まれると、弾性ゴム膜82の外周面、換言すれば環状突部88の外周面が収容凹所42の内周面に対して押圧当接されて、径方向での圧縮力が弾性ゴム膜82に対して予め作用せしめられる。そして、弾性ゴム膜82の収容領域98への配設下において、弾性ゴム膜82の環状突部88が所定量(径方向でL−lに相当する量)だけ縮径せしめられていると共に、薄肉部90に対して縮径方向の予圧縮力が及ぼされている。以上より明らかなように、本実施形態における支持部材が仕切部材34によって構成されている。
Here, the outer diameter dimension L of the elastic rubber film 82 is larger than the diameter dimension l of the accommodation recess 42 formed in the partition member main body 36. Thus, when the elastic rubber film 82 is fitted into the housing recess 42, the outer peripheral surface of the elastic rubber film 82, in other words, the outer peripheral surface of the annular protrusion 88 is pressed against the inner peripheral surface of the housing recess 42. Thus, a compressive force in the radial direction is applied to the elastic rubber film 82 in advance. Under the arrangement of the elastic rubber film 82 in the accommodation region 98, the annular protrusion 88 of the elastic rubber film 82 is reduced in diameter by a predetermined amount (an amount corresponding to L-1 in the radial direction). A precompression force in the direction of diameter reduction is exerted on the thin portion 90. As is clear from the above, the support member in the present embodiment is configured by the partition member 34.
なお、本実施形態では、弾性ゴム膜82に作用せしめられた予圧縮力によって、薄肉部90には図示されない程度の微小な弾性変形が生ぜしめられており、薄肉部90に作用する引張応力が緩和されていると共に、軸方向で僅かに弛められている。これにより、薄肉部90は、軸方向での弾性変形を比較的容易に許容し得るようになっている。弾性ゴム膜82が径方向で予圧縮されることによって、薄肉部90が弛みを生じることなく径方向で圧縮されていても良い。
In the present embodiment, the pre-compression force applied to the elastic rubber film 82 causes minute elastic deformation (not shown) to occur in the thin-walled portion 90, and the tensile stress acting on the thin-walled portion 90 is reduced. It is relaxed and slightly relaxed in the axial direction. Thereby, the thin part 90 can accept | permit the elastic deformation in an axial direction comparatively easily. By thinly compressing the elastic rubber film 82 in the radial direction, the thin portion 90 may be compressed in the radial direction without causing slack.
特に本実施形態では、予圧縮後における弾性ゴム膜82の外径:lが、予圧縮前における弾性ゴム膜82の外径:Lの95%よりも大きく、且つ99%よりも小さくなっている。これにより、後述するスティックスリップを防いで異音の解消を効果的に図ることが出来ると共に、過大な圧縮変形による歪で弾性ゴム膜82、特に環状突部88に亀裂が生じるのを防いで耐久性を充分に確保することが出来る。
In particular, in the present embodiment, the outer diameter l of the elastic rubber film 82 after pre-compression is larger than 95% and smaller than 99% of the outer diameter L of the elastic rubber film 82 before pre-compression. . As a result, the stick-slip described later can be prevented and noise can be effectively eliminated, and the elastic rubber film 82, in particular, the annular protrusion 88 can be prevented from cracking due to distortion caused by excessive compression deformation. It is possible to sufficiently secure the property.
また、マウント中心軸上に位置合わせされた弾性ゴム膜82の貫通孔86と仕切部材本体36および蓋板金具38の接続孔58,60が協働して、受圧室92と平衡室94を相互に連通せしめる短絡流路100が形成されており、前述の如き弁板金具40の仕切部材本体36への組付けにより、板ばね弁74の弾性変形に基づく下方に向かう弾性力が蓋板金具38に及ぼされて、板ばね弁74の先端部分が当接ゴム80を介して蓋板金具38に重ね合わせられた状態下では、短絡流路100の受圧室92側への開口である接続孔60が当接ゴム80を介して板ばね弁74の先端部分で流体密に覆蓋されて、短絡流路100が閉塞状態とされている。
Further, the through-hole 86 of the elastic rubber film 82 aligned with the mount center axis and the connection holes 58 and 60 of the partition member main body 36 and the lid plate metal 38 cooperate to make the pressure receiving chamber 92 and the equilibrium chamber 94 mutually. A short-circuit channel 100 that communicates with the plate member 38 is formed. As a result of the assembly of the valve plate fitting 40 to the partition member body 36 as described above, the downward elastic force based on the elastic deformation of the leaf spring valve 74 causes a lid plate fitting 38. In the state where the front end portion of the leaf spring valve 74 is overlapped with the lid plate metal member 38 via the contact rubber 80, the connection hole 60 which is an opening to the pressure receiving chamber 92 side of the short-circuit channel 100 is applied. Is covered fluid tightly at the tip of the leaf spring valve 74 via the contact rubber 80, and the short-circuit channel 100 is closed.
一方、受圧室92にキャビテーション気泡が生ぜしめられる程に過大な負圧が発生する状態では、板ばね弁74に負圧作用が及ぼされて、板ばね弁74が、蓋板金具38を押さえつけていた自身の弾性力に抗して、蓋板金具38に当接していた状態から離隔する方向(即ち、図1では上方)に弾性変形するように、板ばね弁74の弾性力が設定されている。かかる弾性力のチューニングは、例えば、板ばね弁74の形状や大きさ、材料、蓋板金具38に対する傾斜角度等を設定変更することにより実現される。
On the other hand, in a state where an excessive negative pressure is generated so that cavitation bubbles are generated in the pressure receiving chamber 92, a negative pressure action is exerted on the leaf spring valve 74, and the leaf spring valve 74 presses the lid plate metal 38. The elastic force of the leaf spring valve 74 is set so as to be elastically deformed in a direction away from the state of being in contact with the lid plate metal member 38 (ie, upward in FIG. 1) against its own elastic force. Yes. Such tuning of the elastic force is realized, for example, by setting and changing the shape and size of the leaf spring valve 74, the material, the inclination angle with respect to the lid plate fitting 38, and the like.
また、本実施形態において、短絡流路100の平衡室94側の開口部である接続孔58は開口状態に保たれており、短絡流路100が平衡室94に対して常時連通せしめられている。
Further, in the present embodiment, the connection hole 58 that is an opening on the side of the equilibrium chamber 94 of the short-circuit channel 100 is kept open, and the short-circuit channel 100 is always in communication with the equilibrium chamber 94. .
上述の如き構造とされた自動車用エンジンマウント10が自動車に装着されて、走行時に問題となるエンジンシェイク等の低周波数域の振動が入力されると、受圧室92に比較的に大きな圧力変動が生ぜしめられる。この圧力は大きいため、微振幅にチューニングされた弾性ゴム膜82では、受圧室92の圧力を実質的に吸収し得ない。しかも、板ばね弁74で短絡流路100の開口部分が閉塞された状態が保持されている。従って、受圧室92と平衡室94の間に生ぜしめられる相対的な圧力変動の差によりオリフィス通路96を通じての流体の流動量が効果的に確保されて、該流体の共振作用等の流動作用に基づいて、エンジンシェイク等の低周波数域の振動に対して有効な防振効果(高減衰効果)が発揮されるのである。
When the automobile engine mount 10 having the above-described structure is mounted on the automobile and vibrations in a low frequency range such as an engine shake which is a problem during driving are input, a relatively large pressure fluctuation occurs in the pressure receiving chamber 92. Be born. Since this pressure is large, the elastic rubber film 82 tuned to a small amplitude cannot substantially absorb the pressure in the pressure receiving chamber 92. Moreover, the state in which the opening portion of the short-circuit channel 100 is closed by the leaf spring valve 74 is maintained. Therefore, the flow amount of the fluid through the orifice passage 96 is effectively ensured by the difference in the relative pressure fluctuation generated between the pressure receiving chamber 92 and the equilibrium chamber 94, and the fluid action such as the resonance action of the fluid is achieved. Based on this, an anti-vibration effect (high damping effect) effective against low-frequency vibrations such as engine shake is exhibited.
また、停車時に問題となるアイドリング振動や走行時に問題となる低速こもり音等の中周波数域の振動の入力では、受圧室92に対して小さな振幅の圧力変動が惹起されることとなる。その際、当該振動の周波数域がオリフィス通路96のチューニング周波数よりも高いことから、オリフィス通路96が反共振的な作用によって流体流通抵抗が著しく大きくなって、実質的に閉塞状態となる。そこで、当該中周波数域にチューニングされた弾性ゴム膜82の弾性変形に基づいて、受圧室92の圧力変動が吸収されることにより、オリフィス通路96の実質的な閉塞化に起因する著しい高動ばね化が回避されることとなる。それ故、中周波数域の振動に対する良好な防振効果(低動ばね特性に基づく振動絶縁効果)が発揮されるのである。
In addition, when an idling vibration which is a problem when the vehicle is stopped or a vibration in a medium frequency range such as a low-speed booming sound which is a problem when driving is performed, a pressure fluctuation with a small amplitude is caused in the pressure receiving chamber 92. At that time, since the frequency range of the vibration is higher than the tuning frequency of the orifice passage 96, the fluid passage resistance of the orifice passage 96 is remarkably increased due to the antiresonant action, and is substantially closed. In view of this, the pressure fluctuation of the pressure receiving chamber 92 is absorbed on the basis of the elastic deformation of the elastic rubber film 82 tuned to the middle frequency range, so that a significantly high dynamic spring resulting from the substantial blockage of the orifice passage 96. Will be avoided. Therefore, a good anti-vibration effect (vibration insulation effect based on the low dynamic spring characteristics) against vibration in the middle frequency range is exhibited.
特に本実施形態では、弾性ゴム膜82が径方向で圧縮されて収容領域98に収容配置されており、弾性ゴム膜82が軸方向で弛みを有している。これにより、弾性ゴム膜82の薄肉部90が必要以上に拘束されることなく弾性変形を許容されており、中周波数域の振動入力時に液圧吸収作用を効果的に得ることが出来る。
In particular, in the present embodiment, the elastic rubber film 82 is compressed in the radial direction and accommodated in the accommodating region 98, and the elastic rubber film 82 has a slack in the axial direction. Thereby, the thin deformation portion 90 of the elastic rubber film 82 is allowed to be elastically deformed without being restrained more than necessary, and a hydraulic pressure absorbing action can be effectively obtained at the time of vibration input in the middle frequency range.
さらに、自動車が段差乗り越えや凹凸の大きな路面等を走行して、第一の取付金具12と第二の取付金具14の間に衝撃的な荷重が入力されて、本体ゴム弾性体16が急激に乃至は過大に弾性変形すると、受圧室92に過大な負圧が惹起される。この負圧が板ばね弁74に及ぼされた際に、蓋板金具38の仕切部材本体36への組み付け下、板ばね弁74の上方に向かう弾性変形により下方の蓋板金具38を押さえつける弾性力に抗して、板ばね弁74が押さえつけを解除して蓋板金具38から離れるように弾性変形する程度に弾性力が設定されているため、当該衝撃荷重の入力時には、板ばね弁74および当接ゴム80が蓋板金具38における第一の接続孔58の開口周縁部から離れて開作動することにより、短絡流路100の閉塞状態が解除されて、受圧室92と平衡室94が短絡流路100を通じて相互に連通せしめられることとなる。その結果、受圧室92の過負圧状態が解消されて、問題となる異音の発生要因のキャビテーション気泡が有利に抑えられるのである。
Further, the automobile travels over a step, runs on a road surface with large irregularities, etc., and an impact load is input between the first mounting bracket 12 and the second mounting bracket 14, and the main rubber elastic body 16 suddenly moves. If excessively elastically deformed, an excessive negative pressure is induced in the pressure receiving chamber 92. When this negative pressure is exerted on the leaf spring valve 74, the elastic force that presses the lower lid plate metal 38 by elastic deformation toward the upper side of the leaf spring valve 74 when the lid plate metal 38 is assembled to the partition member main body 36. The elastic force is set to such an extent that the leaf spring valve 74 is released from being pressed and elastically deformed away from the lid plate metal 38, and therefore, when the impact load is input, the leaf spring valve 74 and When the contact rubber 80 is opened away from the opening peripheral edge of the first connection hole 58 in the lid plate fitting 38, the closed state of the short-circuit channel 100 is released, and the pressure receiving chamber 92 and the equilibrium chamber 94 are short-circuited. Communication with each other through the road 100 will be made. As a result, the over-negative pressure state of the pressure receiving chamber 92 is eliminated, and cavitation bubbles that are a cause of abnormal noise that is a problem are advantageously suppressed.
ここにおいて、エンジンマウント10では、弾性ゴム膜82が径方向で予圧縮されて収容領域98に配設されており、弾性ゴム膜82の径方向中間部分を構成する薄肉部90が軸方向に僅かな弛みをもっている。これにより、キャビテーション気泡が発生する程度の大きな負圧が受圧室92に及ぼされて、弾性ゴム膜82がかかる負圧の作用によって受圧室92側に引き込まれて大きく弾性変形せしめられた場合にも、薄肉部90に発生する応力の幾らかが初期圧縮で相殺される。その結果、薄肉部90に発生する引張応力が低減されて、薄肉部90から環状突部88に対して伝達される傾動力を抑えることが出来る。
Here, in the engine mount 10, the elastic rubber film 82 is pre-compressed in the radial direction and disposed in the accommodation region 98, and the thin portion 90 constituting the radial intermediate portion of the elastic rubber film 82 is slightly in the axial direction. Have a slack. As a result, even when a negative pressure large enough to generate cavitation bubbles is exerted on the pressure receiving chamber 92 and the elastic rubber film 82 is drawn into the pressure receiving chamber 92 side by the action of the negative pressure and is greatly elastically deformed. Some of the stress generated in the thin portion 90 is offset by the initial compression. As a result, the tensile stress generated in the thin portion 90 is reduced, and the tilting power transmitted from the thin portion 90 to the annular protrusion 88 can be suppressed.
しかも、環状突部88自体の剛性が弾性ゴム膜82に及ぼされる径方向の予圧縮によって向上されていると共に、環状突部88が径方向で予圧縮されることによって生じる反力(弾性力)が、収容凹所42の周壁部に対する当接力として作用せしめられることから、環状突部88の仕切部材34に対する固定力(径方向での位置決め力)が増大されている。
In addition, the rigidity of the annular protrusion 88 itself is improved by the radial pre-compression exerted on the elastic rubber film 82, and the reaction force (elastic force) generated by the annular protrusion 88 being pre-compressed in the radial direction. However, since it acts as a contact force with respect to the peripheral wall portion of the housing recess 42, the fixing force (positioning force in the radial direction) of the annular protrusion 88 with respect to the partition member 34 is increased.
これらの結果として、弾性ゴム膜82の環状突部88が、仕切部材34に対して初期の取付位置で固定的に支持されるのであって、環状突部88の仕切部材34に対する傾動に起因すると考えられるスティックスリップ等の異音の発生が防止される。
As a result, the annular protrusion 88 of the elastic rubber film 82 is fixedly supported at the initial mounting position with respect to the partition member 34, and is caused by the tilt of the annular protrusion 88 with respect to the partition member 34. Occurrence of unusual noise such as stick-slip is prevented.
しかも、弾性ゴム膜82の環状突部88に及ぼされた縮径方向の予圧縮が、弾性ゴム膜82の薄肉部90にも縮径方向の圧縮力として作用せしめられていることから、薄肉部90が弾性変形せしめられて環状突部88と薄肉部90の境界部分に引張応力が及ぼされた場合にも、かかる引張力が予圧縮力によって相殺されて軽減される。このように、環状突部88と薄肉部90の境界部分に発生する応力が軽減されることから、上述の如く環状突部88の実質的な支持強度乃至は剛性が向上された場合にも、該境界部分における亀裂の発生が抑えられて、弾性ゴム膜82の耐久性の向上が図られ得る。
In addition, since the pre-compression in the reduced diameter direction exerted on the annular protrusion 88 of the elastic rubber film 82 is also applied to the thin wall portion 90 of the elastic rubber film 82 as a compressive force in the reduced diameter direction, the thin wall portion Even when 90 is elastically deformed and a tensile stress is applied to the boundary portion between the annular protrusion 88 and the thin-walled portion 90, the tensile force is offset by the precompression force and reduced. Thus, since the stress generated at the boundary portion between the annular protrusion 88 and the thin portion 90 is reduced, even when the substantial support strength or rigidity of the annular protrusion 88 is improved as described above, Generation of cracks at the boundary portion is suppressed, and durability of the elastic rubber film 82 can be improved.
さらに、環状突部88は、例えば環状の嵌着金具等を加硫接着する必要がなく、弾性ゴム膜82がゴム単体構造とされることから、製造や組付けを容易に実現することが出来る。
Further, the annular protrusion 88 does not need to vulcanize and bond, for example, an annular fitting, and since the elastic rubber film 82 has a single rubber structure, it can be easily manufactured and assembled. .
また、本実施形態に係る自動車用エンジンマウント10では、板ばね弁74が、仕切部材本体36の収容領域98を構成する蓋板金具38を利用して形成されていることから、板ばね弁74をそれら仕切部材本体36や蓋板金具38と別途形成することに伴う部品点数の増加が抑えられて、製造効率の向上や低コスト化が有利に図られ得る。
Further, in the automobile engine mount 10 according to the present embodiment, the leaf spring valve 74 is formed by using the lid plate metal member 38 that constitutes the accommodating region 98 of the partition member main body 36, and thus the leaf spring valve 74. Thus, an increase in the number of parts associated with the separate formation of the partition member main body 36 and the lid plate metal 38 can be suppressed, and an improvement in manufacturing efficiency and cost reduction can be advantageously achieved.
また、短絡流路100を連通と遮断で切り換える弾性弁体が、ゴム弾性体に比して硬質の板ばね弁74で形成されていることにより、弾性弁体の耐久性が向上されて、弁体の開閉作動が安定する。
In addition, since the elastic valve element that switches the short-circuit channel 100 between communication and interruption is formed by a hard leaf spring valve 74 that is harder than the rubber elastic element, the durability of the elastic valve element is improved. The opening and closing action of the body is stabilized.
さらに、弾性ゴム膜82の中央部分に形成された中央突部84が蓋板金具38と仕切部材本体36の底部46の軸方向間で圧縮変形されると共に、弾性ゴム膜82の外周部分に形成された環状突部88が蓋板金具38と仕切部材本体36の底部46の軸方向間で圧縮変形されていることによって、中央部分および外周部分の変形が拘束されている。これにより、弾性ゴム膜82を収容領域98内に安定して収容せしめつつ、有効面積の大きな径方向中間部分の弾性変形によって受圧室92の圧力変動が効率的に吸収されるようになっていることから、前述の問題となるアイドリング振動や低速こもり音等の中周波数域の振動に対する防振効果が安定して得られるのである。
Further, the central protrusion 84 formed in the central portion of the elastic rubber film 82 is compressed and deformed between the cover plate metal 38 and the bottom 46 of the partition member main body 36 in the axial direction, and is formed in the outer peripheral portion of the elastic rubber film 82. The deformed annular protrusion 88 is compressed and deformed between the lid plate metal 38 and the axial direction of the bottom 46 of the partition member main body 36, so that deformation of the central portion and the outer peripheral portion is constrained. As a result, the elastic rubber film 82 is stably accommodated in the accommodating region 98, and the pressure fluctuation in the pressure receiving chamber 92 is efficiently absorbed by the elastic deformation of the radial intermediate portion having a large effective area. For this reason, it is possible to stably obtain an anti-vibration effect with respect to vibrations in the middle frequency range such as idling vibration and low-speed booming noise, which are the problems described above.
また、本構造では、弾性ゴム膜82の環状突部88が仕切部材本体36の収容凹所42の底部46と蓋板金具38の間に圧縮変形されていることで、弾性ゴム膜82の外周縁部がそれらの間に挟圧保持されて、仕切部材本体36の周壁部に流体密に重ね合わせられていることにより、弾性ゴム膜82が可動膜構造を呈している。その結果、弾性ゴム膜82の外周縁部と仕切部材本体36の周壁部の間の隙間を通じての圧力漏れが一層有利に抑えられて、オリフィス通路96を通じての流体流動量が十分に確保されることにより、該流体の共振作用等の流動作用に基づく防振効果の更なる向上が図られ得る。
Further, in this structure, the annular protrusion 88 of the elastic rubber film 82 is compressed and deformed between the bottom 46 of the housing recess 42 of the partition member body 36 and the lid plate metal 38, so that the outer side of the elastic rubber film 82 is removed. The elastic rubber film 82 has a movable film structure because the peripheral edge portion is held between them and fluidly overlapped with the peripheral wall portion of the partition member main body 36. As a result, pressure leakage through the gap between the outer peripheral edge portion of the elastic rubber film 82 and the peripheral wall portion of the partition member main body 36 is further advantageously suppressed, and a sufficient amount of fluid flow through the orifice passage 96 is ensured. As a result, it is possible to further improve the vibration isolation effect based on the fluid action such as the resonance action of the fluid.
特に本構造では、短絡流路100が弾性ゴム膜82の貫通孔86を利用して形成されていることから、短絡流路100の形成が容易になると共に、短絡流路100の仕切部材本体36における配設スペースが有利に確保され得る。しかも、短絡流路100を開閉する弾性弁体が蓋板金具38の板ばね弁74で構成されていることによって、仕切部材本体36の弾性弁体の配設スペースが省略される。これにより、仕切部材本体36におけるオリフィス通路96や短絡流路100の各設計自由度が大きくされる。
In particular, in this structure, since the short-circuit channel 100 is formed using the through-hole 86 of the elastic rubber film 82, the short-circuit channel 100 can be easily formed and the partition member main body 36 of the short-circuit channel 100. The arrangement space in can be advantageously ensured. In addition, since the elastic valve body that opens and closes the short-circuit channel 100 is configured by the leaf spring valve 74 of the lid plate metal member 38, the space for disposing the elastic valve body of the partition member main body 36 is omitted. Thereby, each design freedom degree of the orifice channel | path 96 and the short circuit channel 100 in the partition member main body 36 is enlarged.
それ故、本構造に係る自動車用エンジンマウント10においては、製造工程の短縮化や低コスト化、コンパクト化が有利に図られつつ、オリフィス通路96や短絡流路100等のチューニング自由度が向上されて、目的の防振効果が安定して得られるのである。
Therefore, in the automobile engine mount 10 according to the present structure, the degree of freedom in tuning the orifice passage 96, the short-circuit passage 100, etc. is improved while advantageously reducing the manufacturing process, reducing the cost, and reducing the size. Thus, the desired vibration isolation effect can be obtained stably.
また、本実施形態では、弾性ゴム膜82が円板形状とされていると共に、その中心軸上に貫通孔86が設けられていることから、弾性ゴム膜82における貫通孔86の周方向の位置決めが不要となり、仕切部材本体36への組み付けが容易になる。
In the present embodiment, the elastic rubber film 82 has a disc shape, and the through hole 86 is provided on the central axis of the elastic rubber film 82, so that the positioning of the through hole 86 in the circumferential direction in the elastic rubber film 82 is performed. Becomes unnecessary, and the assembly to the partition member main body 36 becomes easy.
次に、図5には、本発明に係る流体封入式防振装置の第二の実施形態として、自動車用エンジンマウント102が示されている。なお、以下の説明において、前記実施形態と実質的に同一の部材乃至部位については、図中に同一の符号を付すことにより、説明を省略する。
Next, FIG. 5 shows an automobile engine mount 102 as a second embodiment of the fluid filled type vibration damping device according to the present invention. In the following description, members and parts that are substantially the same as those of the above-described embodiment are denoted by the same reference numerals in the drawings, and description thereof is omitted.
すなわち、図5に示されたエンジンマウント102は、仕切部材103を備えている。仕切部材103は、仕切部材本体104と蓋板金具105を更に有している。なお、本実施形態に係る仕切部材103は、前記第一の実施形態に示された仕切部材34が備えている弁板金具40を有していない構造となっている。
That is, the engine mount 102 shown in FIG. 5 includes a partition member 103. The partition member 103 further includes a partition member main body 104 and a lid plate metal fitting 105. Note that the partition member 103 according to the present embodiment has a structure that does not include the valve plate fitting 40 provided in the partition member 34 shown in the first embodiment.
仕切部材本体104は、前記第一の実施形態において説明された収容凹所42と下側凹所44を備えている。また、それら凹所42,44の底壁部を構成する底部46には、複数の透孔48が貫通形成されている。また、仕切部材本体104は、外周縁部にオリフィス通路96を構成する周溝50を有しており、周溝50の一方の端部に連通窓52が形成されていると共に、他方の端部に図示しない連通窓が形成されている。更に、仕切部材本体104の上端面には周上の複数箇所に突部56が設けられている。
The partition member main body 104 includes the accommodation recess 42 and the lower recess 44 described in the first embodiment. A plurality of through holes 48 are formed through the bottom 46 constituting the bottom walls of the recesses 42 and 44. Further, the partition member main body 104 has a circumferential groove 50 constituting an orifice passage 96 at the outer peripheral edge portion, and a communication window 52 is formed at one end portion of the circumferential groove 50 and the other end portion. A communication window (not shown) is formed. Further, the upper end surface of the partition member main body 104 is provided with protrusions 56 at a plurality of locations on the circumference.
蓋板金具105には、前記第一の実施形態において説明された複数の透孔62が貫通形成されていると共に、外周縁部には切欠き状の連通窓64が形成されている。更に、周上の複数箇所において小径の円形孔である挿通孔66が形成されている。なお、上述の説明からも明らかなように、本実施形態に係る仕切部材本体104においては、前記第一の実施形態に示された仕切部材本体36が有する第一の接続孔58が形成されていないと共に、本実施形態に係る蓋板金具105においては、前記第一の実施形態に示された蓋板金具38が有する第二の接続孔60が形成されていない。
A plurality of through holes 62 described in the first embodiment are formed through the cover plate metal fitting 105, and a notch-shaped communication window 64 is formed at the outer peripheral edge. Furthermore, insertion holes 66 that are small-diameter circular holes are formed at a plurality of locations on the circumference. As is clear from the above description, the partition member body 104 according to the present embodiment is formed with the first connection holes 58 included in the partition member body 36 shown in the first embodiment. In addition, in the cover plate fitting 105 according to the present embodiment, the second connection hole 60 included in the cover plate fitting 38 shown in the first embodiment is not formed.
また、仕切部材本体104の収容凹所42を利用して形成された収容領域98には、弾性ゴム膜106が収容配置されている。弾性ゴム膜106は、略円板形状を呈しており、中央部分には僅かに厚肉とされた厚肉部108が一体形成されていると共に、厚肉部108の中央部分には軸方向両側に突出する中央突部110が一体形成されている。中央突部110は、略半球形状を有しており、軸方向両側に向かって次第に先細となっている。なお、本実施形態における弾性突出部が厚肉部108と中央突部110の協働により形成されている。更に、弾性ゴム膜106の外周縁部には、環状突部88が一体形成されている。
Further, the elastic rubber film 106 is accommodated in the accommodation region 98 formed by using the accommodation recess 42 of the partition member main body 104. The elastic rubber film 106 has a substantially disc shape, and a thick portion 108 that is slightly thick is integrally formed in the central portion, and both sides in the axial direction are formed in the central portion of the thick portion 108. A central protrusion 110 that protrudes from the center is integrally formed. The central protrusion 110 has a substantially hemispherical shape and gradually tapers toward both sides in the axial direction. In addition, the elastic protrusion part in this embodiment is formed by cooperation of the thick part 108 and the center protrusion 110. FIG. Further, an annular protrusion 88 is integrally formed on the outer peripheral edge of the elastic rubber film 106.
このような構造とされた弾性ゴム膜106は、縮径方向で圧縮変形されると共に、中央突部110と環状突部88が仕切部材本体104の底部46と蓋板金具105の径方向中央部分の対向面間で軸方向に圧縮されて、収容領域98内に配設されている。なお、弾性ゴム膜106の径方向での予圧縮量は、前記第一の実施形態と同様に、予圧縮前における弾性ゴム膜106の外径寸法である環状突部88の外径寸法に対して1%乃至5%とされている。
The elastic rubber film 106 having such a structure is compressed and deformed in the diameter reducing direction, and the central protrusion 110 and the annular protrusion 88 are formed in the radial direction central portion of the bottom 46 of the partition member main body 104 and the cover plate metal 105. Are compressed in the axial direction between the opposing surfaces of each other and disposed in the accommodating region 98. The amount of pre-compression in the radial direction of the elastic rubber film 106 is the same as that of the first embodiment with respect to the outer diameter of the annular protrusion 88 that is the outer diameter of the elastic rubber film 106 before pre-compression. 1% to 5%.
このような本実施形態に従う構造とされたエンジンマウント102においても、前記第一の実施形態と同様に、弾性ゴム膜106の変形に伴って生じるスティックスリップ等の異音を効果的に低減することが出来ると共に、弾性ゴム膜106の耐久性向上を実現し得る。また、ゴム弾性体による単体構造の弾性ゴム膜106によって目的とする耐久性や固定力を実現することが出来る。
Also in the engine mount 102 having the structure according to this embodiment, noises such as stick-slip caused by the deformation of the elastic rubber film 106 can be effectively reduced as in the first embodiment. In addition, the durability of the elastic rubber film 106 can be improved. Further, the intended durability and fixing force can be realized by the elastic rubber film 106 having a single structure made of a rubber elastic body.
また、中央突部110が突出先端側に行くに従って次第に小径となる略半球形状を有していることから、弾性ゴム膜106の変形によって中央突部110が仕切部材103に対して離隔状態から打ち当てられた場合にも、中央突部110の仕切部材103に対する当接が緩衝的に実現されて、打音の発生を抑えることが出来る。
Further, since the central protrusion 110 has a substantially hemispherical shape that gradually decreases in diameter toward the protruding tip side, the central protrusion 110 strikes the partition member 103 from a separated state by deformation of the elastic rubber film 106. Even when the contact is made, the contact of the central protrusion 110 with the partition member 103 is buffered, and the occurrence of a hitting sound can be suppressed.
次に、図6には、本発明に係る流体封入式防振装置の第三の実施形態として、自動車用エンジンマウント112が示されている。このエンジンマウント112は、仕切部材114を有している。
Next, FIG. 6 shows an automobile engine mount 112 as a third embodiment of the fluid filled type vibration damping device according to the present invention. The engine mount 112 has a partition member 114.
仕切部材114は、仕切部材本体104と蓋板金具38を含んで構成されている。なお、本実施形態に係る仕切部材114は、前記第一の実施形態に示された仕切部材34が有する弁板金具40を備えていない構造となっている。また、本実施形態において仕切部材本体104と蓋板金具38が採用されていることからも明らかなように、仕切部材本体104の底部46には、前記第一の実施形態において示された第一の接続孔58が形成されていないと共に、蓋板金具38の中央部分には、蓋板金具38を厚さ方向で貫通する円形の接続孔60が形成されている。
The partition member 114 includes the partition member main body 104 and the lid plate metal 38. In addition, the partition member 114 according to the present embodiment has a structure that does not include the valve plate fitting 40 included in the partition member 34 shown in the first embodiment. Further, as apparent from the fact that the partition member main body 104 and the cover plate metal fitting 38 are employed in the present embodiment, the bottom portion 46 of the partition member main body 104 has the first portion shown in the first embodiment. The connection hole 58 is not formed, and a circular connection hole 60 penetrating the cover plate fitting 38 in the thickness direction is formed in the center portion of the cover plate fitting 38.
また、仕切部材本体104の収容凹所42を利用して形成された収容領域98には、弾性ゴム膜118が収容配置されている。弾性ゴム膜118は、略円板形状を呈しており、中央部分には軸方向両側に向かって突出する筒状の中央突部120が一体形成されている。また、中央突部120の中央孔によって本実施形態におけるリリーフ用孔としての貫通孔122が形成されている。この貫通孔122は、略一定の円形断面で軸方向に延びており、弾性ゴム膜118の径方向中央部分において中央突部120の軸方向両端面に開口するように貫通形成されている。
In addition, an elastic rubber film 118 is accommodated in the accommodation region 98 formed by using the accommodation recess 42 of the partition member main body 104. The elastic rubber film 118 has a substantially disc shape, and a cylindrical central protrusion 120 that protrudes toward both sides in the axial direction is integrally formed at the central portion. A through hole 122 as a relief hole in the present embodiment is formed by the central hole of the central protrusion 120. The through-hole 122 extends in the axial direction with a substantially constant circular cross section, and is formed so as to open to both axial end surfaces of the central protrusion 120 at the radial center portion of the elastic rubber film 118.
このような構造とされた弾性ゴム膜118は、縮径方向で圧縮変形されると共に、中央突部120と環状突部88が仕切部材本体104の底部46と蓋板金具38の対向面間で軸方向に圧縮されて、収容領域98内に配設されている。なお、弾性ゴム膜118の径方向での予圧縮量は、前記第一の実施形態と同様に、初期状態(仕切部材114への組付け前の状態)における弾性ゴム膜118の外径寸法である環状突部88の外径寸法の1%乃至5%とされている。
The elastic rubber film 118 having such a structure is compressed and deformed in the diameter reducing direction, and the central protrusion 120 and the annular protrusion 88 are disposed between the bottom 46 of the partition member main body 104 and the facing surface of the lid plate metal 38. It is compressed in the axial direction and disposed in the receiving area 98. Note that the pre-compression amount in the radial direction of the elastic rubber film 118 is the outer diameter of the elastic rubber film 118 in the initial state (the state before assembly to the partition member 114), as in the first embodiment. It is 1% to 5% of the outer diameter of a certain annular protrusion 88.
また、弾性ゴム膜118の収容領域98への組付け下において、蓋板金具38の中央部に形成された接続孔60が弾性ゴム膜118の中央突部120に貫通形成された貫通孔122に対して軸直角方向で位置合わせされており、それら接続孔60と貫通孔122が軸方向に延びる同一直線上に位置せしめられて直列状に接続されている。これにより、貫通孔122の内部が接続孔60を通じて受圧室92に連通されている。なお、本実施形態では、弾性ゴム膜118における中央突部120の上端面が、蓋板金具38に対して予め当接せしめられているが、例えば中央突部120と蓋板金具38の間に隙間が設けられていても良い。
Further, under the assembly of the elastic rubber film 118 to the accommodation region 98, the connection hole 60 formed in the central portion of the lid plate metal 38 is formed in the through hole 122 formed through the central protrusion 120 of the elastic rubber film 118. The connecting hole 60 and the through hole 122 are positioned on the same straight line extending in the axial direction and connected in series. Thereby, the inside of the through hole 122 is communicated with the pressure receiving chamber 92 through the connection hole 60. In the present embodiment, the upper end surface of the central protrusion 120 in the elastic rubber film 118 is brought into contact with the lid plate metal 38 in advance, but for example, between the central projection 120 and the lid plate metal 38. A gap may be provided.
さらに、弾性ゴム膜118の収容領域98への組付け下において、弾性ゴム膜118における中央突部120の下端面が仕切部材本体104の底部46に圧接せしめられており、中央突部120を貫通する貫通孔122の平衡室94側開口部が底部46で覆われて閉塞せしめられている。なお、本実施形態では、中央突部120の軸方向両端面が仕切部材114に当接せしめられており、弾性ゴム膜118の収容領域98への配設下において中央突部120が軸方向に圧縮されている。
Further, the lower end surface of the central protrusion 120 of the elastic rubber film 118 is brought into pressure contact with the bottom 46 of the partition member main body 104 under the assembly of the elastic rubber film 118 to the accommodation region 98, and penetrates the central protrusion 120. The opening of the through-hole 122 on the equilibrium chamber 94 side is covered and closed by the bottom 46. In the present embodiment, both end surfaces in the axial direction of the central protrusion 120 are brought into contact with the partition member 114, and the central protrusion 120 is axially disposed under the arrangement of the elastic rubber film 118 in the accommodation region 98. It is compressed.
換言すれば、貫通孔122の受圧室92側の開口部が接続孔60を通じて常時受圧室92に連通されている一方、貫通孔122の平衡室94側の開口部は、中央突部120の下端面が底部46に当接せしめられた状態(初期状態を含む)において底部46で覆われて覆蓋されていると共に、弾性ゴム膜118の弾性変形による中央突部120の底部46からの離隔変位によって、透孔48を通じて平衡室94に連通されるようになっている。
In other words, the opening on the pressure receiving chamber 92 side of the through hole 122 is always in communication with the pressure receiving chamber 92 through the connection hole 60, while the opening on the equilibrium chamber 94 side of the through hole 122 is below the center protrusion 120. When the end surface is in contact with the bottom 46 (including the initial state), the end 46 is covered and covered with the bottom 46, and the center protrusion 120 is displaced from the bottom 46 by elastic deformation of the elastic rubber film 118. , And communicated with the equilibrium chamber 94 through the through hole 48.
ここにおいて、衝撃的な振動荷重の入力により、本体ゴム弾性体16が大きく弾性変形して、受圧室92内にキャビテーション気泡が発生する程の負圧が及ぼされると、弾性ゴム膜118は、その薄肉部90が受圧室92の負圧の作用によって弾性変形せしめられる。
Here, when the main rubber elastic body 16 is greatly elastically deformed by the input of shocking vibration load and a negative pressure is generated so that cavitation bubbles are generated in the pressure receiving chamber 92, the elastic rubber film 118 is The thin portion 90 is elastically deformed by the negative pressure of the pressure receiving chamber 92.
ここで、本実施形態では、初期状態において貫通孔122の軸方向下側の開口部が閉塞せしめられているが、弾性ゴム膜118が充分に大きな力で受圧室92側に引っ張られると、薄肉部90が弾性変形せしめられると共に、中央突部120が軸方向で圧縮変形せしめられるようになっている。これにより、中央突部120の平衡室94側の端面が仕切部材本体104の底部46から軸方向上方に離隔変位せしめられて、貫通孔122の下側開口部が収容領域98内に連通せしめられる。そして、底部46に形成された透孔48と、弾性ゴム膜118に形成された貫通孔122と、蓋板金具38に形成された接続孔60を通じて、受圧室92と平衡室94が相互に連通されるようになっている。
Here, in the present embodiment, the opening on the lower side in the axial direction of the through hole 122 is closed in the initial state, but if the elastic rubber film 118 is pulled toward the pressure receiving chamber 92 with a sufficiently large force, the thin wall The portion 90 is elastically deformed, and the central protrusion 120 is compressively deformed in the axial direction. As a result, the end surface of the central protrusion 120 on the equilibrium chamber 94 side is displaced away from the bottom 46 of the partition member main body 104 in the axial direction, and the lower opening of the through hole 122 is communicated with the accommodation region 98. . The pressure receiving chamber 92 and the equilibrium chamber 94 communicate with each other through the through hole 48 formed in the bottom 46, the through hole 122 formed in the elastic rubber film 118, and the connection hole 60 formed in the lid plate metal 38. It has come to be.
以上の説明からも明らかなように、透孔48と貫通孔122と接続孔60の協働によって、受圧室92内に過大な負圧が発生した場合に受圧室92と平衡室94を相互に連通せしめる短絡流路124が構成されるようになっている。また、本実施形態においては、中央突部120の平衡室94側端面が、弾性ゴム膜118の弾性変形によって、仕切部材本体104の底部46に対して当接状態と離隔状態に切り換えられることを利用して、短絡流路124を連通状態と遮断状態に切り換える弁機構が構成されている。
As is clear from the above description, when an excessive negative pressure is generated in the pressure receiving chamber 92 by the cooperation of the through hole 48, the through hole 122, and the connection hole 60, the pressure receiving chamber 92 and the equilibrium chamber 94 are mutually connected. A short-circuit channel 124 that allows communication is formed. Further, in the present embodiment, the end surface on the equilibrium chamber 94 side of the central protrusion 120 is switched between the contact state and the separation state with respect to the bottom 46 of the partition member main body 104 by the elastic deformation of the elastic rubber film 118. Utilizing this, a valve mechanism for switching the short-circuit channel 124 between the communication state and the cutoff state is configured.
なお、中央突部120における受圧室92側に突出する部分の形状や大きさを変更することにより、受圧室92での負圧発生時における中央突部120の受圧室92側に突出する部分の弾性変形特性を調節しても良い。
It should be noted that by changing the shape and size of the portion of the central protrusion 120 that protrudes toward the pressure receiving chamber 92, the portion of the central protrusion 120 that protrudes toward the pressure receiving chamber 92 when negative pressure is generated in the pressure receiving chamber 92. The elastic deformation characteristics may be adjusted.
また、中央突部120の受圧室92側に突出する部分において、先端部分に切欠きを設けることにより、該受圧室92側に突出する部分のばね特性を調節することも出来る。かくの如き切欠きを設けた場合には、この切欠きを通じて貫通孔122が収容領域98に常時連通される。従って、貫通孔122が、切欠きと収容領域98を通じて透孔62から受圧室92へ常時連通されることとなる。それ故、蓋板金具38に形成された第二の接続孔60は設けられていなくても良い。
Further, by providing a notch at the tip of the central protrusion 120 that protrudes toward the pressure receiving chamber 92, the spring characteristics of the portion protruding toward the pressure receiving chamber 92 can be adjusted. When such a notch is provided, the through-hole 122 is always communicated with the accommodation region 98 through the notch. Therefore, the through hole 122 is always communicated from the through hole 62 to the pressure receiving chamber 92 through the notch and the accommodation region 98. Therefore, the second connection hole 60 formed in the lid plate fitting 38 may not be provided.
このような本実施形態に従う構造とされたエンジンマウント112においても、前記第一,第二の実施形態と同様に、スティックスリップ等の異音を低減すると共に、弾性ゴム膜118の耐久性を向上することが出来得る。また、嵌着金具等を設けていないゴム単体構造の弾性ゴム膜118を利用して目的とする耐久性や固定力を実現することが出来得る。
Also in the engine mount 112 having the structure according to the present embodiment, noise such as stick-slip is reduced and the durability of the elastic rubber film 118 is improved as in the first and second embodiments. It can be done. Moreover, the intended durability and fixing force can be realized by using the elastic rubber film 118 having a single rubber structure without a fitting fitting or the like.
また、本実施形態に係るエンジンマウント112においては、キャビテーションが問題となる程度の衝撃的な振動荷重が入力されて、受圧室92内に過大な負圧が発生した場合には、短絡流路124を通じて両室92,94間で流体が流動せしめられて、受圧室92内の負圧が速やかに低減乃至は解消されるようになっている。従って、かかる負圧に起因する異音や振動の発生が抑えられる。
Further, in the engine mount 112 according to the present embodiment, when a shocking vibration load that causes cavitation becomes a problem and an excessive negative pressure is generated in the pressure receiving chamber 92, the short-circuit channel 124. The fluid is caused to flow between the two chambers 92 and 94, and the negative pressure in the pressure receiving chamber 92 is quickly reduced or eliminated. Therefore, the generation of abnormal noise and vibration due to such negative pressure can be suppressed.
しかも、本実施形態では、短絡流路124を連通状態と遮断状態で切り換える弁機構が、受圧室92と平衡室94の相対的な圧力差に基づく弾性ゴム膜118の弾性変形を利用して構成されている。これにより、本実施形態におけるエンジンマウント112は、弁機構を構成するための特別な部材や構造を設ける必要がなく、部品点数の少ない簡単な構造によって少ない工程数で実現され得る。
In addition, in this embodiment, the valve mechanism that switches the short-circuit channel 124 between the communication state and the cutoff state is configured by using elastic deformation of the elastic rubber film 118 based on the relative pressure difference between the pressure receiving chamber 92 and the equilibrium chamber 94. Has been. Thereby, the engine mount 112 in this embodiment does not need to be provided with a special member or structure for constituting the valve mechanism, and can be realized with a small number of steps by a simple structure with a small number of parts.
以上、本発明の幾つかの実施形態について説明してきたが、これらはあくまでも例示であって、本発明は、かかる実施形態における具体的な記載によって、何等、限定的に解釈されるものではない。
Although several embodiments of the present invention have been described above, these are merely examples, and the present invention is not construed as being limited to specific descriptions in such embodiments.
例えば、前記第一乃至第三の実施形態においては、当接部材と支持部材が仕切部材によって構成されているが、当接部材等は、仕切部材とは別体として設けられていても良い。具体的には、例えば、仕切部材の上方に離隔して第二の取付金具14で支持される当接部材を設けて、該当接部材に対して弾性突出部が当接せしめられることにより、可動ゴム膜の変形が制限されるようになっていても良い。
For example, in the first to third embodiments, the contact member and the support member are configured by a partition member, but the contact member and the like may be provided separately from the partition member. Specifically, for example, a contact member that is spaced above the partition member and supported by the second mounting bracket 14 is provided, and the elastic protrusion is brought into contact with the corresponding contact member, thereby moving the contact member. The deformation of the rubber film may be limited.
また、前記第一乃至第三の実施形態では、可動ゴム膜の薄肉部が略一定の厚さ寸法を有しているが、例えば、外周側である厚肉挟持部側、或いは中央側である弾性突出部側に行くに従って次第に厚肉となっていたり、中央側である弾性突出部側と外周側である厚肉挟持部側の両側に行くに従って次第に厚肉となっていたりしても良い。
In the first to third embodiments, the thin part of the movable rubber film has a substantially constant thickness dimension. For example, the thin part of the movable rubber film is on the thick sandwiching part side that is the outer peripheral side or on the central side. It may be gradually thicker as it goes to the elastic protrusion, or it may be gradually thicker as it goes to both sides of the elastic protrusion side, which is the center side, and the thick clamping part side, which is the outer peripheral side.
また、前記第一乃至第三の実施形態においては、当接部材と支持部材が何れも仕切部材によって構成されているが、当接部材と支持部材は、必ずしも同じ部材で構成されていなくても良く、別部材とされていても良い。なお、別部材とされている場合にも、それら当接部材と支持部材は、何れも第二の取付部材に対して固定的に設けられる。
In the first to third embodiments, the contact member and the support member are both configured by the partition member. However, the contact member and the support member may not be configured by the same member. It may be a separate member. In addition, also when it is set as a separate member, both these contact members and a support member are fixedly provided with respect to a 2nd attachment member.
また、前記第一乃至第三の実施形態には、エンジンシェイク等に相当する周波数域にチューニングされたオリフィス通路を有するシングルオリフィス構造の流体封入式防振装置が示されているが、本発明は、例えば、エンジンシェイク等に相当する低周波数域にチューニングされた第一のオリフィス通路と、アイドリング振動等に相当する中周波数域にチューニングされた第二のオリフィス通路を有するダブルオリフィス構造の流体封入式防振装置に対しても適用可能である。なお、本発明が3本以上のオリフィス通路を有する構造の流体封入式防振装置に対しても適用可能であることは、言うまでもない。
In the first to third embodiments, a fluid-filled vibration isolator having a single orifice structure having an orifice passage tuned in a frequency range corresponding to an engine shake or the like is shown. For example, a fluid-filling type of a double orifice structure having a first orifice passage tuned to a low frequency range corresponding to an engine shake and the like, and a second orifice passage tuned to a medium frequency range corresponding to idling vibration or the like The present invention can also be applied to a vibration isolator. Needless to say, the present invention is also applicable to a fluid-filled vibration isolator having a structure having three or more orifice passages.
さらに、本発明は、例えば、空気圧や電磁力によって防振特性を切り換えることが出来る切換え型の流体封入式防振装置や、平衡室に対して能動的な加振力を作用せしめることにより防振性能を発揮する能動型の流体封入式防振装置等にも適用可能である。
Furthermore, the present invention provides, for example, a switching type fluid-filled vibration isolator capable of switching the vibration isolating characteristics by air pressure or electromagnetic force, or an anti-vibration effect by applying an active exciting force to the equilibrium chamber. The present invention is also applicable to an active fluid-filled vibration isolator that exhibits performance.
また、前記第一乃至第三の実施形態では、本発明に係る流体封入式防振装置の実施例として、自動車用のエンジンマウントが示されているが、本発明は、サブフレームマウントやボデーマウント等、エンジンマウント以外の流体封入式防振装置に対しても適用可能である。また、本発明に係る流体封入式防振装置は、必ずしも自動車用に限定されるものではなく、列車用等その他の車両用や車両以外の振動体に用いられる流体封入式防振装置としても好適に採用され得る。
In the first to third embodiments, an automobile engine mount is shown as an example of the fluid-filled vibration isolator according to the present invention. However, the present invention includes a subframe mount and a body mount. The present invention can also be applied to a fluid-filled vibration isolator other than the engine mount. In addition, the fluid-filled vibration isolator according to the present invention is not necessarily limited to automobiles, and is also suitable as a fluid-filled vibration isolator used for other vehicles such as trains and vibrating bodies other than vehicles. Can be adopted.
その他、一々列挙はしないが、本発明は、当業者の知識に基づいて種々なる変更,修正,改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。
In addition, although not enumerated one by one, the present invention can be carried out in a mode to which various changes, modifications, improvements and the like are added based on the knowledge of those skilled in the art. It goes without saying that all are included in the scope of the present invention without departing from the spirit of the present invention.