JP4819839B2 - 位置決め装置の製造方法 - Google Patents

位置決め装置の製造方法 Download PDF

Info

Publication number
JP4819839B2
JP4819839B2 JP2008110730A JP2008110730A JP4819839B2 JP 4819839 B2 JP4819839 B2 JP 4819839B2 JP 2008110730 A JP2008110730 A JP 2008110730A JP 2008110730 A JP2008110730 A JP 2008110730A JP 4819839 B2 JP4819839 B2 JP 4819839B2
Authority
JP
Japan
Prior art keywords
top plate
stage
hollow
rib
linear motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008110730A
Other languages
English (en)
Other versions
JP2008182282A (ja
Inventor
博義 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008110730A priority Critical patent/JP4819839B2/ja
Publication of JP2008182282A publication Critical patent/JP2008182282A/ja
Application granted granted Critical
Publication of JP4819839B2 publication Critical patent/JP4819839B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、半導体素子や液晶表示素子等の製造方法及び素子等の製造装置に使用される、例えば、投影露光装置や各種精密加工装置または各種精密測定装置において、半導体ウエハやマスクやレチクル等の基板を、高精度で高速移動させ、位置決めを可能ならしめるためのステージなどの位置決め装置に関する。また、このような位置決め装置を用いた露光装置を使って半導体デバイスなどを製造する方法にも適する。
図12は従来の位置決め装置であるところのXYステージを示す構成斜視図であって、これは、例えば特開平8−229759号公報に示されている。
図中において、42はステージ装置を支持する基準面43を有する定盤、38は定盤42に固定された固定Yガイドであり、側面を基準面としている。37は移動体としてのYステージであり、その両側に固定子39と可動子40を有するYリニアモータ41によって、固定Yガイド38に案内されてY方向に移動する。32はXステージであり、不図示のXリニアモータ可動子を備え、Yステージ37に設けられたXガイド33によってX方向に案内され、同じくYステージ37に設けられたXリニアモータ固定子34によってX方向に推力が与えられる。
Xステージ32を構成する天板31は、図12に示すように、平板形状になっている。天板31には、X方向及びY方向の位置計測のためX方向ミラー45及びY方向ミラー46が設けられ、それぞれのミラーにレーザビームが照射され、反射光からX方向及びY方向の位置が計測される。
また、このステージに図16に示すθZT駆動機構を搭載することで、露光光軸と平行な方向であるZ方向及びX,Y,Z軸回りの方向(θx、θy、θz)にも移動が可能となる。
図12におけるXステージ32の上部が、図16における台盤151に相当する。この台盤151は、円筒状の固定部材202を有し、固定部材202に保持された多孔質パッド207は、図示しないウエハ及びウエハチャックを保持する天板31に相当する天板204と一体である案内部材203,203aの内周面を非接触で支持する。台盤151は、θリニアモータ216によってその中心軸のまわりに回転可能であり、また、周方向に等間隔で配設されたZリニアモータ215によって図示上下方向に往復移動可能である。
図13は従来の位置決め装置の各自由度における制御ブロック図である。57は位置決め装置の機械特性Goであり、力fを入力すると変位xを生じる。また58は制御コントローラ特性Gcであり、一般的なコントローラPID特性、アンプ特性及び各安定化フィルタを含み、目標位置xrから変位xを引いた値が入力されると所定の力fを発生する。例えば、X,Y方向の位置決め制御時の変位xはレーザ干渉計の出力値となる。それぞれの自由度の目標位置に対し、高速、高精度に追従することが、位置決め装置の性能の良否を決定する。
図14は従来の位置決め装置の制御系ゲイン位相特性を表わす図である。図14の表すこの特性は、図13の機械特性Go及び制御コントローラ特性Gcを合成したものであり、一巡伝達特性と言われる。前述した高速、高精度な追従性を得るには、位置決め装置のゲイン特性は高い(ハイゲイン化)ほど望ましい。しかし、機械特性Goは様々な固有振動数を有し、しかも従来のような板形状のステージ構造部材31においてはピークの高い(減衰の悪い)固有振動数が周波数の低い帯域(300Hz〜)に生じてしまうことがある。
ステージ構造部材の振動は、ステージに搭載された位置計測ミラーの振動につながり、位置決め精度の悪化を招く。
また、高すぎるゲインは固有振動数において発振を引き起こすため、そのままでは制御系のゲイン特性(図14においては、ハイゲインの尺度になるゼロクロス周波数は40Hz程度)は限定されてしまう。
そのため、従来では、ローパスフィルタやノッチフィルタといった安定化フィルタを多用し、高いピークを緩和するような補償をせざるをえなかった。あるいは固有振動数をより周波数の高い領域までもっていくような機構設計をせざるをえなかった。
そこで、例えば、特開平11−142555号公報に示されるように、ステージ構造部材を中空構造にしているが、図15に示すように、41はXステージを構成する天板である。天板41はセラミックで成形され、図のように中空構造の成形体となっているが、この中空構造42は、二体ないしそれ以上に分割したセラミック製の要素から形成され、下部に注入口43を有している。このように、一度、二体ないしそれ以上を焼成した後、各要素は再焼結によって接合されるとされ、再焼結で接合するための中間材質は、熱膨張係数の近いアルミナ系の硝子接合などが一般的であるが、天板41の熱変形を抑えるために、熱膨張係数小さい材料を使った場合に熱膨張率差による接合面の接合強度に不安があった。さらに、他の各要素の接合方法として接着剤を用いても、接着強度と接着信頼性に不安があった。
前述の従来例では、ウエハ等の基板を搭載した天板をX、Y方向の所定の位置に移動するため、レーザ干渉計で天板のXY方向の位置を管理しながら、XYステージにより台盤がXY方向に移動する。そして天板は、台盤からラジアル空気軸受の空気膜を介して駆動力を受け、所定の位置に移動する。このとき、天板と台盤は一体的に移動することが望ましい。しかし、実際には、台盤の移動に対して保持盤が受ける駆動力は、静圧軸受の空気膜の圧縮性により位相遅れが生じるという問題があった。
そこで、ラジアル空気軸受をなくし、θZT駆動機構に用いているローレンツ力アクチュエータ(リニアモータ)を微動XYに利用したとしても、天板31やその上に搭載されるウエハとウエハチャックの重さと加速度に耐え得る力をローレンツ力アクチュエータ(リニアモータ)に持たせることは、モータの大きさやモータからの発熱面から非常に困難であった。
さらに、特開平8−229759号公報に示されるような従来の位置決め装置であるところのXYステージの天板204は、一枚板で構成されて、板の固有振動数が上がらないという問題があった。これを、特開平11−142555号公報に示すように、中空構造42にしても、接合部材のセラミック材と中空構造体の材質の熱膨張差があると製作できない問題があるために、熱膨張係数小さい材料に適用できない問題があった。そのために、接着剤を用いると接着のバラツキによって、同一形状であっても部品によって差があったり、計算で求められる一体部品の固有振動数まで上がらないという問題があった。
また、従来方法では、熱膨張係数の小さい材料の時には 一枚板であったために、必要な剛性を得るために、板厚が厚くなり、剛性向上以上に天板を重くしていた。これによって、前述の加速用のリニアモータへの負荷が増大する。同時に、この加速に耐える力を出すために必要な電流は増え、リニアモータからの発熱は、電流の二乗で増加してしまう。最後に、これが、ウエハ空間の環境を乱す原因となり、半導体素子の微細加工を高速で処理することが要求されている現状において、アライメント精度やステージ精度に悪影響を及ぼし、生産性を落とすという問題があった。
本発明の目的は、半導体製造装置等の位置決め装置において、制御特性に優れ、高速・高精度な位置決めが実現できる移動体を提供することである。
上記目的を達成するために、基板または原版を保持するためのチャックと、該チャックを保持するリブ構造の天板とを有し、 雰囲気、He雰囲気、真空雰囲気のいずれかの環境で前記基板を移動させるための位置決め装置の製造方法において、熱膨張率が1.0e−6(1/)以下の低熱膨張材、無機質繊維複合材、SiC、SiCとSiから形成されるSiCのコンポジット材のいずれかの材質からなるリブ構造の天板であって、該リブ構造の中空内部と外部とを連通する導通穴を有する天板を形成する工程と、該導通穴を介して前記中空内部に粉体を充填する工程と、該粉体が充填された状態で前記天板の表面をラップ加工する工程と、を備えることを特徴とする。
本発明では、ステージの構造部材おいて、最も精度に影響を及ぼす天板を前記熱膨張率が1.0e−6(1/℃)以下の低熱膨張材または無機質繊維複合材またはSiCまたはSiCとSiから形成されるSiCのコンポジット材からなる一体中空構造で、そのリブ構造が、天板の側板と側板が接する隅部から離れた側板の腹部から始まり図形対象位置関係をもつ別の側板の腹部につながるようにしたことによって、天板は、軽量、高強度、及び高剛性を実現することができた。また、電磁継ぎ手やローレンツ力アクチュエータによって、制御特性に優れた位置決め装置を実現できる。
さらに、中空天板の上下移動できるストロークを持ったローレンツ力アクチュエータのストローク位置により推力定数の配分を最適化することによって、温度環境への影響を最小限にしたウエハ等の基板交換と露光時フォーカス制御を実現した。
中空構造体の内部に粉体を入れて、ラップ加工することにより、ラップ面の面圧が均一になり高い面精度を実現することができた。
これらによって、高速で、高精度に位置決めする位置決め装置を提供することができ、露光装置において、高い生産性とアライメント精度を実現できる。
本発明の実施形態に係る位置決め装置について、被移動物が感光基板としてのウエハである場合を例として、図面を参照しながら詳細に説明する。本発明は被移動物が感光パターンを有する原版の場合にも適用可能である。
図1は本発明の第一の実施形態に係る位置決め装置を構成する天板及びその周辺を示す概略上面図、図2はそのa−a断面図、図3はb−b断面図である。この位置決め装置は、第一の板としてのチャック1とこのチャック1を保持する第二の板としての中空天板2、ミラー3、電磁継ぎ手4、自重補償機構6、及び受け渡し支持棒8を有し、中空天板2等の位置を微調整するためのX方向微動リニアモータLMX、Y方向微動リニアモータLMY及びZ方向微動リニアモータLMZ等を備え、これらをXステージ上板51a上に配設して構成されている。
図において、中空天板2は、焼結前に一体中空構造としたものを焼結して形成したものである。この中空天板2は、無機質繊維複合材やSiCとSiから形成されるSiCのコンポジット材からなり、その全体が同一種材質で焼結して形成されている。2体以上の部品を接着剤や再焼結によるガラス接合のような異種材を用いずに、焼結させるために、従来のような接合部での剛性劣化がない。
また、熱膨張率が1.0e−6(1/℃)以下の低熱膨張材やSiCからなる場合では、中空構造にするために同時に一体焼結できず、2体以上の部品になる。このような場合であっても、熱膨張係数が合わない接着剤やガラス接合のようなものではなく、熱膨張率差を吸収するようにメタル接合を用いることによって従来のような接合部での剛性劣化がない。これによって、同一種材質で一体中空構造にすることができる。
また、この中空天板2は、剛性を確保するために、図5や図6に示すようなリブ構造になっており、リブ構造で構成された中空内部H2を外気と導通させるための導通穴H2aを具備している。外気とは、例えば、大気だけでなく、N2 雰囲気やHe雰囲気や真空である。中空構造の製造時は不活性ガス雰囲気中で行われるが、これと、ステージ搭載時や保管時の環境と異なる。導通穴H2aは、この中空天板2内に残留したガスが前記雰囲気に漏れ出し、その漏れ出したガスによってステージ環境を汚し、真空度が上がらないということが発生しないようにするために、設けられている。
中空天板2の上面には、感光基板であるウエハWを搭載するためにウエハチャック1があり、このチャック1は、図示されないバキュームエアや機械的クランプによって、天板2に固定されている。ウエハWも、図示されないバキュームエアや静電気力によってチャック1にクランプされている。
さらに、ウエハWの相対位置を計測するために、ミラー3を持つ。このミラー3は、図2では、一つしか示されていないが、6自由度を計測できるように、複数存在する。図1では、ミラー3の上面図が本来見えるはずであるが、省略している。ミラー3と中空天板2の固定方法は、例えば、特開平5−19157号公報に示されている方法による。
チャック1やミラー3も、中空天板2と同じ材料で構成されており、熱膨張率及び熱伝導率が等しい。これにより、露光熱やアクチュエータの熱により、天板2の温度が変化しても、中空天板2とミラー3間や中空天板2とチャック1間で、熱膨張率差による変形が生じない。さらに、チャック1やミラー3も中空構造をしていて中空内部H1,H3があるため、軽量・高剛性を実現することが可能となった。チャック1やミラー3が軽量化することは、中空天板2を含めた可動体全体の固有振動数を向上させる効果がある。
中空天板2は、下面に、6自由度にウエハWを所定の位置に移動するために電磁力を使ったアクチュエータと、天板2の重力方向を支持する機構とを具備している。電磁力を使ったアクチュエータには、二つのタイプがある。一つはXY方向の加速力を受け持つ電磁継ぎ手4であり、他の一つは6自由度を制御するためのローレンツ力アクチュエータとしての微動リニアモータLMである。前記アクチュエータは、短ストロークであり、図17に示すような長ストローク移動できるXステージ51の上板51aの上に載っている。
ここで、この長ストロークステージ部分として、Yステージ54及びXステージ51について説明する。Yステージ54は、Yステージガイド54aの下面側にある図示しない静圧空気軸受けに給気することにより定盤55から浮上され、その両側に配置された二つの駆動アクチュエータ54cにより、定盤55の片側に設けられている固定ガイド52と一方のYステージガイド54aの側面に図示しない静圧空気軸受けに給気することにより固定ガイド52に沿って水平方向に案内されY方向に移動可能である。また、Xステージ51は、Xステージベース51cの下面側にある図示しない静圧空気軸受けに給気することにより、Yステージ54と同様に定盤55から浮上され、Yステージ54の側面54bとXステージガイド51bに図示しない静圧空気軸受けに給気することにより側面54bに沿って水平方向に案内され、駆動アクチュエータ51dによりX方向に移動可能である。このとき、Xステージ51及びYステージ54は、複数の与圧用磁石ユニットによって、常に一定の姿勢となるように調整されている。この長ストローク部分のステージには、不図示のレーザ干渉計が具備されている。この干渉計に対応するミラーは、従来の天板に配置したような光学ミラーをXステージ51の上面に設けても良いし、Y方向はYステージの部分54d上に各々1個配置し、Xステージ51の位置は、Yステージ54からXステージ51上の光学ミラーの位置を計測する形で検出しても良い。この長ストロークの部分において、長ストローク部分の制御のためにレーザ干渉計システムを付加する以外は、特開平8−229759号公報に開示のステージと共通であっても良い。
従来は、XY方向の最終位置決め制御も、ラジアル空気軸受けを介して、この長ストロークである駆動アクチュエータ54cや駆動アクチュエータ51dでウエハWの位置をコントロールしていた。本実施形態では、XY方向の最終位置決め制御は、先に説明した中空天板2の下面のローレンツ力アクチュエータである微動リニアモータLMX,LMYによって行われる。そのため、この長ストロークの制御性能を下げることが可能であり、部品コストや調整コストも下げることが可能となった。さらに、従来は制御特性を重視するために、長ストロークアクチュエータもローレンツ力アクチュエータである必要はなく、発熱や推力を重視した他のリニアモータのタイプであっても良い。
ここで、長ストロークアクチュエータが発生した加速力を、中空天板2を含む微動可動部に伝達するのが電磁継ぎ手4である。電磁継ぎ手4は1ユニットでは、吸引力方向の力しか発生しないので、図2に示すように、X方向に二つ対向して配置される。図示されていないが、紙面の上下方向にY方向用に二つ対向して配置される。電磁継ぎ手4は、Xステージ上板51a上の中央部に固定側4bが配置され、中空天板2側に可動側4aが配置される。発熱や実装の面から、電磁継ぎ手4のコイルは、固定側(不図示)にある。可動側4aも固定側4bも電磁鋼板によって構成されている。固定側4bの積層鋼板は、コイルを入れることができるように、E型やU型の形状をしている。電磁継ぎ手4の可動側4aと固定側4bには、適当なギャップが存在する。このギャップ量は、対向する電磁継ぎ手4の面の加工・組立精度と制御やウエハアライメントのために6自由度移動するのに必要なストロークと加速時に長ストロークアクチュエータによって制御されるXステージ51と微動可動部の位置との差分(長ストローク側の制御残差)によって決定される。また、微動可動部がウエハWを回転方向に位置決めする時に、電磁継ぎ手4の部分も、Z軸周りに干渉しないように、対向する面は、円筒状になっている。
上記の4つの電磁継ぎ手4で構成されたユニットの対向する面の円弧の中心は、すべて同一である。加工精度の面から同一半径であることが望ましい。円弧のXY平面内の中心は、中空天板2を含む微動可動部の重心Gとできるだけ等しいことが望ましい。
中空天板2の下面には、前述したように、もう一つのアクチュエータとして6自由度に制御させるためにローレンツ力アクチュエータである微動リニアモータLMを配置している。XY方向に微動させるための微動リニアモータLMX,LMYは、電磁継ぎ手4の外側に配置し、X軸上に二つのY方向の微動リニアモータLMYと、Y軸上に二つのX方向の微動リニアモータLMXがある。ヨーイング方向の制御は、Y方向微動リニアモータLMYかX方向微動リニアモータLMXのどちらかのリニアモータによって行われる。その他の配置として、XY方向の微動リニアモータLMX,LMYのどちらかのリニアモータを1個として、微動可動部の重心に配置することも可能である。XY方向微動リニアモータLMX,LMYは、いずれも発熱・実装の面から、可動側LMX1,LMY1に磁石とヨークとを配置し、発熱するコイルを固定側LMX2,LMY2にしている。
Z方向とピッチング・ローリング方向を制御するために、図1に示すように3つのZ方向微動リニアモータLMZを天板2の下面の周辺に配置している。図3は図1のb−b矢視から見た側面図である。XY方向微動リニアモータLMX、LMYと同様に、Z方向微動リニアモータLMZも、発熱・実装の面から、可動側LMZ1に磁石とヨークとを配置し、発熱するコイルを固定側LMZ2にしている。
さらに、中空天板2の下面には、自重補償機構6が装備されている。この自重補償機構6は、その発生する力が図3に示すように微動可動部の重量とほぼ等しくなるようになっている。その力残差は、中空天板2の上下位置により自重補償機構6より発生する力が変化することによる。この力残差は、Z方向の微動リニアモータLMZによって、完全に取り除かれる。この力残差によって、定常的に大きな推力をZ方向の微動リニアモータLMZが発生する必要があり、自重補償機構6が発生する力は、微動リニアモータLMの発熱によって、中空天板2の周りの環境が悪化することのないように調整されている。発生する力変動を少なくするために、自重補償機構6としては、吸引磁石6aと圧縮バネ6bを併用することにより実現している。これ以外にも、同様の効果を発揮するベロフラムや磁石反発であっても良い。
この自重補償機構6は、Z方向微動リニアモータLMZと同軸にすると、自重補償機構6で取りきれない力残差を中空天板2に与えないので、同軸上にある方が望ましい。
電磁継ぎ手4の固定側から、ウエハWの交換時に、一時的にウエハWを保持するための受け渡し支持棒8は、3本具備している。ウエハWがチャック1に保持されているような露光等の時は、受け渡し支持棒8の上面よりも、ウエハWの下面やチャック1の上面が上方にある状態になっている。受け渡し支持棒8自身には上下する機能はなく、中空天板2全体が、Z方向の微動リニアモータLMZによって下方に動くことによって、図4に示すように、チャック1の上面より飛び出す。結果として、支持棒8は、ウエハWの裏面で、ウエハWを保持できる。ウエハWを搬送するために搬送ハンド9が出入できる隙間まで、中空天板2全体を下げることによって、ウエハWの裏面とチャック1の上面の間隔を作る。これによって、搬送ハンド9により、ウエハWの交換も可能である。
さらに、ミラー3は、露光位置からウエハ受け渡し等で、下方に中空天板2が下がった場合であっても、レーザ干渉計で計測できるような高さになっている。
XY方向微動リニアモータLMX,LMYとZ方向微動リニアモータLMZは、図4に示すように、チャック1のクリーニングで、露光位置よりアップした場合や、ウエハWの交換によってダウンした場合でも、推力が発生するような磁石とコイル配置になっている。この時、ウエハWの交換の時間が短く、発熱量として小さいので、露光位置にいる時と同じ推力を出す必要はなく、推力定数を露光位置の時に比べて、10%程度小さくすることによって、微動リニアモータLMはコンパクトにする方が良い。どの位置でもむやみに同じ推力を維持しようと大きい微動リニアモータLMにすると、磁石も大きくなり微動可動部が重くなり、電磁継ぎ手4が加速時に受け持つ負荷が増え、電磁継ぎ手4が発熱し、その発熱で、環境に影響を与える。この発熱で天板2の温度が上昇し、ウエハWとミラー3間の距離が変化してしまうという問題を起こす。また、粗動リニアモータの負荷も増える。さらに、比較的大きい微動リニアモータLMによって、Z方向にも大きくなると、微動可動部重心Gが粗動リニアモータの駆動点(力点)よりも離れてしまう。これによるモーメントを受ける図17のXステージ51の下面は静圧空気軸受けの負荷が増える。単位面積当たりの静圧空気軸受けの負荷が決まっているので、Xステージ51の下面を大きくすることになる。これは、Xステージ51を大きくすることになり、Xステージ51を搬送するXリニアモータやこれをさらに搬送するYステージ54のリニアモータに負荷をかけることになる。このように、負荷を下流に向けて増大させる傾向にあり、本実施形態の構成の場合、微動リニアモータLMをコンパクトすることは重要である。図2に示すように、微動リニアモータLMは、露光位置におけるコイルと磁石の関係が非対称位置(センタが一致している)にあり、露光位置にいる時に最大推力定数の数%以内にあるようにコイルと磁石を配置することを特徴としている。
露光時に最大推力定数でなく、最大推力定数の数%以内に設定するのは、ウエハ交換によってダウンした時の推力定数の低下が20%を超えると、短時間であっても、熱の影響を無視できないためである。
本実施形態に係る中空天板2は、図2に示すように、微動可動部と電磁継ぎ手4の力点を合わせるために、その中心部に掘り込みを持つことを特徴としている。例えば、距離αが10mmあって、天板2の重さが10kg、Z方向微動リニアモータLMZの支持スパンが100mmであり、1Gの加速度にてウエハWを動かそうとすると、距離αに基づくモーメントによって、Z方向微動リニアモータLMZで1kgfの力を受け持つ必要がある。Z方向微動リニアモータLMZからの発熱を小さくするためにも、微動可動部の重心Gと電磁継ぎ手4の力点との距離αはゼロが望ましい。逆に、電磁継ぎ手4は、中空天板2に、XYZ方向の微動リニアモータLMX,LMY,LMZが取付けられる面と同じ面に取付けると、距離αの増加に比例して、Z方向微動リニアモータLMZが受け持つ力は増え、大きなサイズの微動リニアモータLMZが必要になる。これによって、移動荷重も増え、ステージとしての成立が極めて困難になる。図2に示す図形は、説明のために意識的に大きな差分を設けて表してある。
次に、中空天板2の構造について説明する。中空天板2は、内部のリブによって、所定の強度や剛性の補強の機能が与えられる。また、中空天板2は、リブによって隔壁された部屋を外部の環境と等しくするために、図2に示すような導通穴H2aを有する。
さて、本実施形態に係る位置決め装置の制御系において、高速で、高精度な追従性を得るためには、位置決め装置のゲイン特性は高い(ハイゲイン化)ほど望ましい。そのため、従来においてゲイン特性に限界を与えていたステージの特性に代表される機械特性の固有振動数の値を上げることが必要であり、本実施形態に係る中空天板2は、中空内部とリブ構造によって、従来よりも固有振動数が大幅に向上し、制御系のゲイン特性が改善された。例えば、スキャン型の露光装置において、ウエハWとレチクルの同期精度を数nmレベルにするためには、ステージ単体におけるゼロクロス周波数も年々高い値を必要とされてきている。これを達成させるために必要とされる中空天板2のそれも比例して、従来の数倍の値が必要となっている。本発明を適用することによって高い固有振動数を有する天板2が可能となった。
具体的なリブの構成を説明する。図5は中空天板2のリブ構造を示す断面図である。中空天板2は、中心部に掘り込みがない場合、そのリブの構成は、図5に示すようになっている。
図18に示すように、リブ構造は、5つのパターン(リブなし・ひし形リブ・十字リブ・丸型リブ・X型リブ)について固有値解析し、評価してみると、1次モードがねじれモードであり、このねじれモードに対して強い順に固有振動数が高くなる。この中の順位は、リブなし・十字リブ・丸型リブ・X型リブ・ひし形リブの順に固有振動数が高くなる。定盤等でリブを入れる時に一般的に行われるX型リブよりもひし形リブの方が、本発明で示すリブ構造が優れていることが分かる。
すなわち、リブ構造は、中空天板2の上下の板に一体になっている。そして、中空天板の上下の板を囲むような外周の側板があって、このリブは側板と側板が接する隅部から離れた側板の腹部から始まり図形対象位置関係をもつ別の側板の腹部につながるように配置されればよい。
これを、具体的に形状に示したのが図5である。図5(a)に示すように、リブ構造は、前記ひし形を繰り返し、あたかも断面がXY微動方向に沿った四辺からなる四角形□のリブR1と、これに対し断面がそれぞれ45度の傾斜角度をなす四辺からなるひし形◇のリブR2とを交互に、リブR1a内にリブR2a、その内側にリブR1b、さらにその内側へリブR2bを、それぞれ入れる構造にすることによって、非常に高い固有振動数を実現することができた。
本実施形態では、中央部に電磁継ぎ手4を配置することを特徴としている。これを適用したリブ構造を図6に示す。このリブ構造は、電磁継ぎ手4の可動部4aの取り付け穴H2cをなす内接円の大きさが電磁継ぎ手4の固定部の外径より干渉しない程度にやや大きく、断面内周が円形の円リブの外接部が、ひし形◇の言わば円形とひし形との組み合わせリブR3を有する構造になっている。その外側は、図5と同じパターンである断面が四角形□のリブと断面の各辺が45度の角度をなすひし形◇のリブとが交互に繰り返されて、四角形□のリブR1a内にひし形◇のリブR2aがあり、その内側に四角形□のリブR1bがある。
さらに、図5(a)の発展系として、図5(b)を示す。外側の四隅の三角部分を軽くすることによって図5(a)は固有振動数を向上させている。しかし、実際の構成では、ミラー3等の質量が乗る。このような場合には図5(b)のように側板と側板が接する接点からリブを出すように対角線にリブを入れるのではなく、ねじりに弱いところである腹Rwからリブを出すことが固有振動数向上に有効である。
ここで、リブの厚みであるが、本実施形態では、計算上は5mm程度が最適である。10mmに増やしても、固有振動数は、わずかな向上にしかならない。材質をSiCとSiから形成されるSiCのコンポジット材する場合では、中空構造にするために単品で事前に焼結しないので、接合する面を確保するためや、単品の焼結時における強度維持のために、リブ厚を厚く取ることが不要である。本実施形態に係る中空天板2は、最終の焼結をする前の段階で、リブ構造にしており、焼結前の強度も中空構造にすることで確保できるという利点がある。従来のように固有振動数の向上に寄与しないにもかかわらず、接合面となる中空リブの厚みを取る必要がないため、中空天板2は、必要以上に重くすることがない。これによって、中空天板2は軽量化することができ、前述の加速用のリニアモータへの負荷は低減し、この加速に耐える力を出すために必要な電流は同時に下がり、リニアモータからの発熱は大幅に改善され、環境に及ぼす影響が減り、位置決め精度が向上する。
また、無機質繊維複合材を用いた場合は、比剛性が高いので、より軽量でかつ高剛性を実現できる。
熱膨張率が1.0e−6(1/℃)以下の低熱膨張材を用いる場合、低熱膨張材の材質がコージライト系である場合、ヤング率が低く、天板として適用することができなかったが、本発明のリブ構造の中空天板にすることによって、低熱膨張材でも実現することが可能となった。
また、SiCのコンポジット材よりも高剛性を求めるためにヤング率が高い材質であるSiCを用いた場合であっても、同様の効果が得られることは言うまでもない。
図7に示す第二の実施形態として、中空天板2の側面に光学ミラーを接着固定又はメカニカル固定されたミラー一体型中空天板2について説明する。
この光学ミラー3の材質も、熱膨張率差による中空天板2の変形を避けるために、中空天板2と同じ材質である。同じ材質で一体構造になっているので、ミラー3がステージの移動時の加速で動くという問題は発生しない。また、剛性の高い中空天板2に保持されているために、ミラー3が変形する心配もないという利点がある。
Xステージ51の上板51aから中空天板2上に搭載されるチャック1や不図示のセンサ等に必要とされる電気・気体・液体を通すための配管等及び実装配線は、中空天板2の中央部又は最外周部にあって、配線・配管による振動伝達率が、小さくできることを特徴とする。小さい振動伝達率にするために、エア等の内圧が掛かる比較的硬い配管は、図7に示すように、電磁継ぎ手4の固定側の中央部の導入管11を通って、上下をつなぐ接続チューブ13を経由し、電磁継ぎ手4の可動側の中央部の導入管15を経由し、さらに、天板2の中央部を経由して、チャック1のウエハ吸着用真空溝18に供給される。この時、振動伝達率を決める要素は、接続チューブ13である。この実施形態は、チューブ13を中央部に配置することで、該チューブ13による非対称な干渉成分が発生しにくく、制御性が良いという特徴をもつ。中央部が有利であるが、チューブ13による影響を小さくするために、この接続チューブ13は細く、長さは長く、螺旋状にするのが望ましい。比較的軟らかい電気ケーブル等の実装ケーブル類17は、振動に対する影響が小さいので、天板2の外周側が望ましい。特に、信号ケーブルは、断線等の交換を容易するためにも、エア配管チューブのように内部に配置するよりも、外周に配置する方が望ましい。
次に、中空天板2を加工する方法を説明する。光学ミラー面を仕上げるために、まず、先に述べたように、中空天板2にミラー3の部材を固定し、図9に示すように、中空天板2の外気との導通穴H2aを通して、中空構造体の中空内部H2に粉体(球体・円筒)20を入れる。この粉体20を入れることで、この粉体20によって充填された中空内部H2の重量が、該中空内部を中空構造体の素材で充填した重量と等しくなるようにする。粉体20は円筒状をして、整列するように並べる場合、SiCのコンポジット材の比重が3.0である時、粉体20の比重は、3.8となる。その材料としてアルミナセラミクスを用いれば良い。
このように粉体20を充填することによって、研削やラップやポリシュする時に、部材の面圧は、中実天板と同じになる。特に、ラップ盤22のような高精度な平面を出す時、面圧の差で加工量が異なってしまうが、粉体20を充填することで解決される。図10は、ミラー3の面をラップ加工している図である。図11は、チャック1が取付けられる中空天板2の面2aを仕上げている図である。このような手法は、中空天板2のミラー3の面の加工をする場合だけに限定されるものではなく、1μm以下の平面度を必要とする中空ガイド等のその他の中空部材を仕上げる時にも適用されるものである。
図8は本発明の第三の実施形態に係る位置決め装置を示す図である。図2では、電磁継ぎ手4の可動部4aが中空天板2に取付けられる部分において、中空天板2側は、1枚板になっていたが、電磁継ぎ手4が受ける加速力が大きいと、中空天板2を変形させてしまう。この変形によって、ウエハチャック1も変形してしまう。これによって、ウエハWも変形し、アライメントエラーの原因となる。そこで、第三の実施形態では、中空天板2の強度を上げるために、電磁継ぎ手4の可動部4aが取付けられる中空天板2の部分2bにおいても、単純に板の厚さを厚くするのではなく、中空構造にして、軽量高剛性を実現している。
本発明の第一の実施形態に係る位置決め装置の平面図である。 図1におけるa−a断面図である。 図1におけるb−b断面図である。 本発明の第一の実施形態に係る位置決め装置の動作説明用図であって、中心位置における断面図である。 (a)は本発明の実施形態に係る位置決め装置の中空天板のリブ構造の例を示す断面図であり、(b)は本発明の実施形態に係る位置決め装置の中空天板のリブ構造として(a)の発展系の例を示す断面図である。 本発明の実施形態に係る位置決め装置の中空天板のリブ構造の他の例を示す断面図である。 本発明の第二の実施形態に係る位置決め装置の中心位置における断面図である。 本発明の第三の実施形態に係る位置決め装置の中心位置における断面図である。 本発明の実施形態に係る中空天板を加工する方法を説明するための図である。 本発明の実施形態に係る中空天板におけるミラー面をラップ加工している状態を示す図である。 本発明の実施形態に係る中空天板のチャックが取付けられる面を仕上げている状態を示す図である。 従来の位置決め装置の斜視図である。 従来の位置決め装置の各自由度における制御ブロック図である。 従来の位置決め装置の制御系ゲイン位相特性を表わす図である。 従来のステージ構造部材の中空構造を示す斜視図である。 従来のステージに搭載したθZT駆動機構の断面図である。 長ストローク移動できるXステージの斜視図である。 中空天板のリブ構造の5つのパターン(リブなし・ひし形リブ・十字リブ・丸型リブ・X型リブ)を示す図である。
符号の説明
1:チャック(第一の板)、2:中空天板(第二の板)、3:ミラー(第三の板を含む)、4:電磁継ぎ手、4a:可動側、4b:固定側、6:自重補償機構、6a:吸引磁石、6b:圧縮バネ、8:受け渡し支持棒、9:搬送ハンド、10:干渉ビーム、11:導入管、13:接続チューブ、15:導入管、17:実装ケーブル類、18:ウエハ吸着用真空溝、20:粉体、22:ラップ盤、51:Xステージ、51a:Xステージ上板(第四の板)、51b:Xステージガイド、51c:Xステージベース、51d:X駆動アクチュエータ、52:固定ガイド、54:Yステージ、54a:Yステージガイド、54b:Yステージの側面、54c:Y駆動アクチュエータ、54d:Yステージの部分、55:定盤、
H1:中空内部、H2:中空内部、H2a:導通穴、H2c:取り付け穴、H3:中空内部、LMX:X方向微動リニアモータ、LMX1:可動側、LMX2:固定側、LMY:Y方向微動リニアモータ、LMY1:可動側、LMY2:固定側、LMZ:Z方向微動リニアモータ、LMZ1:可動側、LMZ2:固定側、W:ウエハ。

Claims (2)

  1. 基板または原版を保持するためのチャックと、該チャックを保持するリブ構造の天板とを有し、 雰囲気、He雰囲気、真空雰囲気のいずれかの環境で前記基板を移動させるための位置決め装置の製造方法において、
    熱膨張率が1.0e−6(1/)以下の低熱膨張材、無機質繊維複合材、SiC、SiCとSiから形成されるSiCのコンポジット材のいずれかの材質からなるリブ構造の天板であって、該リブ構造の中空内部と外部とを連通する導通穴を有する天板を形成する工程と、
    該導通穴を介して前記中空内部に粉体を充填する工程と、
    該粉体が充填された状態で前記天板の表面をラップ加工する工程と、
    を備えることを特徴とする製造方法。
  2. 前記充填工程において、前記天板の中空内部に前記天板の材質を充填した場合の重量と等しくなるように前記中空内部に前記粉体を充填することを特徴とする請求項1に記載の製造方法。
JP2008110730A 2008-04-21 2008-04-21 位置決め装置の製造方法 Expired - Fee Related JP4819839B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008110730A JP4819839B2 (ja) 2008-04-21 2008-04-21 位置決め装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008110730A JP4819839B2 (ja) 2008-04-21 2008-04-21 位置決め装置の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001364509A Division JP4136363B2 (ja) 2001-11-29 2001-11-29 位置決め装置及びそれを用いた露光装置

Publications (2)

Publication Number Publication Date
JP2008182282A JP2008182282A (ja) 2008-08-07
JP4819839B2 true JP4819839B2 (ja) 2011-11-24

Family

ID=39725876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008110730A Expired - Fee Related JP4819839B2 (ja) 2008-04-21 2008-04-21 位置決め装置の製造方法

Country Status (1)

Country Link
JP (1) JP4819839B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910992B2 (ja) * 2012-04-04 2016-04-27 株式会社ニコン 移動体装置、露光装置、フラットパネルディスプレイの製造方法、及びデバイス製造方法
JP6197909B2 (ja) * 2016-04-06 2017-09-20 株式会社ニコン 移動体装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209034A (ja) * 1997-01-23 1998-08-07 Canon Inc ステージ装置および露光装置
JPH11194206A (ja) * 1997-10-28 1999-07-21 Kyocera Corp ミラー
JPH11142555A (ja) * 1997-11-11 1999-05-28 Canon Inc 位置決め装置、露光装置およびデバイス製造方法
US6188150B1 (en) * 1999-06-16 2001-02-13 Euv, Llc Light weight high-stiffness stage platen
JP2001148336A (ja) * 1999-11-18 2001-05-29 Canon Inc テーブル駆動装置、露光装置およびデバイス製造方法
JP2001203140A (ja) * 2000-01-20 2001-07-27 Nikon Corp ステージ装置、露光装置及びデバイス製造方法

Also Published As

Publication number Publication date
JP2008182282A (ja) 2008-08-07

Similar Documents

Publication Publication Date Title
JP4136363B2 (ja) 位置決め装置及びそれを用いた露光装置
TWI778973B (zh) 用於對準基板之方法及裝置
JP3640971B2 (ja) 重心移動を補償するフォースアクチュエータ装置を有する位置決め装置
KR100396860B1 (ko) 제진장치및노광장치
JP4209121B2 (ja) デュアル分離されたシステムを有するリソグラフィーツールおよびそれを構成する方法
JP3919560B2 (ja) 振動制御装置及び振動制御方法及び露光装置及びデバイスの製造方法
JP2008519456A (ja) 精密ステージのz支持装置
JP6718154B2 (ja) 移動体装置及び露光装置、並びにデバイス製造方法
TW201415171A (zh) 具有多個計量支撐單元的光學成像配置
JP2014055853A (ja) 形状測定装置
KR101788898B1 (ko) 위치 계측 장치 및 패턴 형성 장치
US20070030462A1 (en) Low spring constant, pneumatic suspension with vacuum chamber, air bearing, active force compensation, and sectioned vacuum chambers
JP4819839B2 (ja) 位置決め装置の製造方法
JP4386241B2 (ja) 鉄心、鉄心の製造方法、位置決め装置および露光装置
JP2004165416A (ja) 露光装置及び建屋
JPH11150062A (ja) 除振装置及び露光装置並びに除振台の除振方法
JP4449299B2 (ja) 基板ホルダ、基板トレイ、ステージ装置、露光装置
JP7189847B2 (ja) 磁気浮上ステージ装置、および、それを用いた荷電粒子線装置または真空装置
JP2005297109A (ja) 微動ステージ
US20080100930A1 (en) Optical measuring system, and a projection objective
JP2005243809A (ja) 露光装置、および該露光装置に好適に用いられる駆動手段
JP5505584B2 (ja) 露光装置
JP2015081993A (ja) ステージ装置、露光装置、およびデバイス製造方法
JP4287781B2 (ja) 測定システム用基準フレームを有する位置決め装置
JP2005150616A (ja) 微動ステージ

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090406

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees