JP4808411B2 - Magnetic field detection circuit - Google Patents

Magnetic field detection circuit Download PDF

Info

Publication number
JP4808411B2
JP4808411B2 JP2005019657A JP2005019657A JP4808411B2 JP 4808411 B2 JP4808411 B2 JP 4808411B2 JP 2005019657 A JP2005019657 A JP 2005019657A JP 2005019657 A JP2005019657 A JP 2005019657A JP 4808411 B2 JP4808411 B2 JP 4808411B2
Authority
JP
Japan
Prior art keywords
magnetic field
effect element
impedance effect
magneto
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005019657A
Other languages
Japanese (ja)
Other versions
JP2006208147A (en
Inventor
一実 豊田
Original Assignee
双日マシナリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 双日マシナリー株式会社 filed Critical 双日マシナリー株式会社
Priority to JP2005019657A priority Critical patent/JP4808411B2/en
Publication of JP2006208147A publication Critical patent/JP2006208147A/en
Application granted granted Critical
Publication of JP4808411B2 publication Critical patent/JP4808411B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は磁気インピ−ダンス効果素子を用いた磁界検出回路に関するものである。   The present invention relates to a magnetic field detection circuit using a magnetic impedance effect element.

アモルファス合金ワイヤとして、自発磁化の方向がワイヤ周方向に対し互いに逆方向の磁区が交互に磁壁で隔てられた構成の外殻部を有する、零磁歪乃至は負磁歪のアモルファス合金ワイヤが開発されている。
かかる零磁歪乃至は負磁歪のアモルファス磁性ワイヤに高周波電流したときに発生するワイヤ両端間出力電圧中のインダクタンス電圧分は、ワイヤの横断面内に生じる円周方向磁束によって上記の円周方向に易磁化性の外殻部が円周方向に磁化されることに起因して発生する。従って、周方向透磁率μθは同外殻部の円周方向の磁化に依存する。
而るに、この通電中のアモルファスワイヤに外部磁界を作用させると、上記通電による円周方向磁束と外部磁束との合成により、上記円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずれ、それだけ円周方向への磁化が生じ難くなり、上記周方向透磁率μθが変化し、上記インダクタンス電圧分が変動することになる。
而して、この変動現象が磁気インダクタンス効果と称され、この効果を奏するアモルファスワイヤ等が磁気インダクタンス効果素子と称されている。
As an amorphous alloy wire, an amorphous alloy wire having zero magnetostriction or negative magnetostriction has been developed, which has an outer shell portion in which magnetic domains whose spontaneous magnetization directions are opposite to each other in the circumferential direction of the wire are separated by a domain wall. Yes.
The inductance voltage component in the output voltage between both ends of the wire generated when a high frequency current is applied to the zero magnetostrictive or negative magnetostrictive amorphous magnetic wire is easily increased in the circumferential direction by the circumferential magnetic flux generated in the cross section of the wire. It occurs due to the magnetized outer shell being magnetized in the circumferential direction. Accordingly, the circumferential magnetic permeability μθ depends on the circumferential magnetization of the outer shell.
Therefore, when an external magnetic field is applied to the energized amorphous wire, the magnetic flux acting on the outer shell portion having the easily magnetizable property in the circumferential direction is obtained by synthesizing the circumferential magnetic flux and the external magnetic flux by the energization. Is deviated from the circumferential direction and magnetization in the circumferential direction is less likely to occur, the circumferential permeability μθ is changed, and the inductance voltage is changed.
Thus, this fluctuation phenomenon is called a magnetic inductance effect, and an amorphous wire or the like that exhibits this effect is called a magnetic inductance effect element.

更に、上記通電電流の周波数がMHzオ−ダになると、高周波表皮効果が大きく現れ、表皮深さδ=(2ρ/wμθ)1/2(μθは前記した通り、円周方向透磁率、ρは電気抵抗率、wは角周波数をそれぞれ示す)がμθにより変化し、このμθが前記した通り、外部磁界によって変化するので、ワイヤ両端間出力電圧中の抵抗電圧分も外部磁界で変動するようになる。
而して、この変動現象が磁気インピーダンス効果と称され、この効果を奏するアモルファスワイヤ等が磁気インピーダンス効果素子と称されている。
Further, when the frequency of the energization current is in the order of MHz, a high-frequency skin effect appears greatly, and the skin depth δ = (2ρ / wμθ) 1/2 (μθ is the circumferential permeability, as described above, and ρ is (The electrical resistivity, w indicates the angular frequency, respectively) varies with μθ, and this μθ varies with the external magnetic field as described above, so that the resistance voltage component in the output voltage across the wire also varies with the external magnetic field. Become.
Thus, this fluctuation phenomenon is called a magnetoimpedance effect, and an amorphous wire or the like that exhibits this effect is called a magnetoimpedance effect element.

そこで、この磁気インピーダンス効果素子を利用した外部磁界検出法(例えば、特許文献1参照)及び磁気インダクタンス効果を使用した外部磁界検出方法(例えば、特許文献2参照)が提案されている。   Therefore, an external magnetic field detection method using the magneto-impedance effect element (see, for example, Patent Document 1) and an external magnetic field detection method using the magnetic inductance effect (see, for example, Patent Document 2) have been proposed.

上記において、外部磁界の正負により上記磁界の周方向ずれφにも正負が生じるが、周方向の磁界の減少倍率cos(±φ)は変わらず、従ってμθの減少度は外部磁界の方向の正負によっては変化されない。従って、外部磁界−出力特性は磁界をx軸に、出力をy軸にとると、y軸に対してほぼ左右対称となる。また、非線形になることも知られている。   In the above, the positive and negative of the external magnetic field causes the circumferential shift φ of the magnetic field to be positive or negative, but the reduction factor cos (± φ) of the circumferential magnetic field does not change. Does not change. Accordingly, the external magnetic field-output characteristics are almost symmetrical with respect to the y axis when the magnetic field is on the x axis and the output is on the y axis. It is also known to be non-linear.

この磁気インピーダンス効果素子を使用した磁界検出回路は、基本的には、図4−1に示すように(1)磁気インピーダンス効果素子1’に高周波励磁電流を加えるための高周波電源2’と、(2)磁気インピーダンス効果素子1’と、(3)磁気インピーダンス効果素子1’に加わる外部磁界で前記高周波励磁電流(搬送波)を変調させた変調波を復調する検波回路3’と、(4)復調波を増幅する増幅器4’と、(5)出力表示部8’等から構成されている。
図4−2の(イ)は磁気イスピーダンス効果素子1’に加えられる被検出磁界Hexを、(ロ)は磁気イスピーダンス効果素子1’に流される高周波励磁電流波(搬送波)Icを、(ハ)は磁気イスピーダンス効果素子出力としての変調波を、(ニ)は変調波の包絡線波形を、(ホ)は復調波をそれぞれ示している。図4−2の(ホ)は増幅器の出力Vを示し、その波高値を増幅器の電源電圧+Vcc、−Vccに対し、+Vcc〜0、−Vcc〜0の納めるように調整してある。
As shown in FIG. 4A, the magnetic field detection circuit using this magneto-impedance effect element basically includes (1) a high-frequency power source 2 ′ for applying a high-frequency excitation current to the magneto-impedance effect element 1 ′, 2) a magneto-impedance effect element 1 ′, (3) a detection circuit 3 ′ that demodulates a modulated wave obtained by modulating the high-frequency excitation current (carrier wave) with an external magnetic field applied to the magneto-impedance effect element 1 ′, and (4) demodulation. It comprises an amplifier 4 'for amplifying a wave and (5) an output display section 8'.
In FIG. 4B, (a) shows a detected magnetic field Hex applied to the magnetic impedance effect element 1 ′, (b) shows a high-frequency excitation current wave (carrier wave) Ic passed through the magnetic impedance effect element 1 ′, (C) shows the modulated wave as the magnetic impedance effect element output, (D) shows the envelope waveform of the modulated wave, and (E) shows the demodulated wave. (E) in FIG. 4B shows the output V of the amplifier, and the peak value thereof is adjusted so that + Vcc to 0 and −Vcc to 0 are stored with respect to the power supply voltages + Vcc and −Vcc of the amplifier.

図4−2の被検出磁界Hexの振幅と出力Vの振幅との関係を図示すると前記の左右対称性及び非線形性から図5の(イ)のように表わすことができる。
そこで、図4−1の回路において、51’で示す負帰還用コイルで負帰還をかけて図5の(ロ)に示すように特性を直線化することが公知である。図5の(ロ)において、Δwは、負帰還無しのときの利得Aが非常に大きく帰還率βのみにより利得が定まる範囲である。
更に、図4−1の回路において、6’で示すようにバイアス用コイルでバイアス磁界をかけ、図5の(ニ)に示すように極性判別可能な直線特性にすることも公知である。すなわち、図5の(ロ)の特性を、図5の(ハ)に示すようにバイアス磁界により矢印方向に移動させ、被検出磁界の最大範囲−Hmax〜+Hmaxを一斜線領域Δw'の範囲内に納め、図5の(ニ)のように零点調整することも公知である。
前記被検出磁界の波高値Hexと増幅器出力の波高値Vとの関係を図示する図5の(ニ)の通り、V=KHexとなっている。
The relationship between the amplitude of the detected magnetic field Hex and the amplitude of the output V in FIG. 4-2 can be expressed as shown in FIG. 5A from the left-right symmetry and nonlinearity.
In the circuit of FIG. 4A, it is well known that the characteristic is linearized as shown in FIG. 5B by applying negative feedback with a negative feedback coil 51 ′. In FIG. 5B, Δw is a range in which the gain A without negative feedback is very large and the gain is determined only by the feedback rate β.
Further, in the circuit shown in FIG. 4A, it is also known to apply a bias magnetic field with a biasing coil as indicated by 6 'to obtain a linear characteristic capable of discriminating polarity as shown in FIG. That is, the characteristic of (b) in FIG. 5 is moved in the direction of the arrow by the bias magnetic field as shown in (c) of FIG. 5, and the maximum range −Hmax to + Hmax of the detected magnetic field is within the range of the oblique line region Δw ′. It is also known to adjust the zero point as shown in FIG.
As the (D) Figure 5 illustrates the relationship between the pulse height H ex and the peak value V of the amplifier output of the object detection field, and has a V = KH ex.

周知の通り、導体に電流を流すと磁界が発生し、傷等の欠陥があると図6に示すように欠陥箇所を挾むある間隔b内において磁界が変化する。
従って、所定の間隔を隔てて磁界検出素子を配設し、両磁界検出素子の出力の差を出力する磁界センサを導体に沿い移動させると、欠陥箇所以外では出力が0となるが、欠陥箇所で傷情報出力が検出される。
この場合、磁界センサが可動とされ、計測器が通常固定とされるために、磁界センサの出力端に長尺ケーブルを介して計測器が接続される。
従来、2箇の磁気イスピーダンス効果素子を使用し、各磁気イスピーダンス効果素子の出力を検波して差動増幅器で差動増幅する磁界検出回路が知られている(特許文献3)。
As is well known, when a current is passed through a conductor, a magnetic field is generated, and when there is a defect such as a flaw, the magnetic field changes within a certain interval b between the defective portions as shown in FIG.
Therefore, when the magnetic field detection elements are arranged at a predetermined interval and the magnetic field sensor that outputs the difference between the outputs of the two magnetic field detection elements is moved along the conductor, the output is 0 except for the defective part. The flaw information output is detected.
In this case, since the magnetic field sensor is movable and the measuring instrument is normally fixed, the measuring instrument is connected to the output end of the magnetic field sensor via a long cable.
2. Description of the Related Art Conventionally, a magnetic field detection circuit that uses two magnetic impedance effect elements, detects the output of each magnetic impedance effect element, and differentially amplifies it with a differential amplifier is known (Patent Document 3).

特開平7−181239号公報JP 7-181239 A 特開平6−283344号公報JP-A-6-283344 特開2000−193729号公報JP 2000-193729 A

この場合、差動増幅器の出力〔各磁気イスピーダンス効果素子に加わる被検出磁界をHex1、Hex2とすると、K(Hex1−Hex2)で与えられる〕は、差動増幅器のレベル出力電圧が0であるので、Hex1>Hex2に対しては+Vcc〜0の範囲に収まるように、Hex1<Hex2に対しては−Vcc〜0に収まるように調整されている。 In this case, [the the detected magnetic field applied to the magnetic chair are impedance effect element and H ex1, H ex2, K given by (H ex1 -H ex2)] output of the differential amplifier, level output voltage of the differential amplifier Since H is 0, it is adjusted so that it falls within the range of + Vcc to 0 for H ex1 > H ex2 and −Vcc to 0 for H ex1 <H ex2 .

この差動増幅器の出力端に前記したように長尺ケーブルを介して計測器を接続する場合、ケーブルの容量変化などによって、差動増幅器から見たケーブル含めた計測機器の入力インピーダンスが低かったり、変化した場合は正確な計測が困難である。
また、計測現場に他の電子電気機器が存在する場合、その機器から発せられるノイズが長尺ケーブルより進入することが避けられず、このノイズが負帰還回路に流入し負帰還が擾乱されて安定な直線化を得ることが難しい。
When connecting a measuring instrument to the output end of this differential amplifier via a long cable as described above, the input impedance of the measuring instrument including the cable viewed from the differential amplifier is low due to a change in the capacity of the cable, If it changes, accurate measurement is difficult.
In addition, when other electronic and electrical equipment is present at the measurement site, it is inevitable that noise emitted from the equipment enters from the long cable, and this noise flows into the negative feedback circuit and the negative feedback is disturbed and stabilized. It is difficult to obtain a straight line.

本発明の目的は、2箇の磁気インピーダンス効果素子を用いた差動増幅型磁界検出回路において、出力端に長尺のケーブルを介し計測器を接続して計測しても、長尺のケーブルの容量変化や外部誘導ノイズの影響をよく排除して安定に計測し得、駆動できる磁界検出回路を提供することにある。   The object of the present invention is to provide a differential amplification type magnetic field detection circuit using two magneto-impedance effect elements, even if a measuring instrument is connected to the output end via a long cable, It is an object of the present invention to provide a magnetic field detection circuit that can stably measure and eliminate the influence of capacitance change and externally induced noise.

請求項1に係る磁界検出回路は、第1磁気インピーダンス効果素子及び第2磁気インピーダンス効果素子と、第1磁気インピーダンス効果素子にバイアス磁界を印加する第1バイアス磁界用コイル及び第2磁気インピーダンス効果素子にバイアス磁界を印加する第2バイアス磁界用コイルと、各磁気インピーダンス効果素子に励磁電流を供給する励磁電流源と、各磁気インピーダンス効果素子に加わる被検出磁界で各磁気インピーダンス効果素子の励磁電流が変調された波形の各磁気インピーダンス効果素子出力を検波する第1検波回路及び第2検波回路と、各検波回路の出力v、vを差動増幅する差動増幅回路と、差動増幅回路の出力端に接続された正相増幅回路と、正相増幅回路の出力端に接続された被検出磁界計測器と、正相増幅回路の出力を第1磁気インピーダンス効果素子及び第2磁気インピーダンス効果素子に第1負帰還磁界用コイル及び第2負帰還磁界用コイルを介して負帰還させる負帰還回路とを備えていることを特徴とする。 The magnetic field detection circuit according to claim 1 includes a first magneto-impedance effect element, a second magneto-impedance effect element, a first bias magnetic field coil for applying a bias magnetic field to the first magneto-impedance effect element, and a second magneto-impedance effect element. A second bias magnetic field coil for applying a bias magnetic field to the magnetic field, an excitation current source for supplying an excitation current to each magneto-impedance effect element, and an excitation current for each magneto-impedance effect element by the detected magnetic field applied to each magneto-impedance effect element. A first detection circuit and a second detection circuit for detecting each magneto-impedance effect element output of the modulated waveform, a differential amplification circuit for differentially amplifying outputs v 1 and v 2 of each detection circuit, and a differential amplification circuit a positive phase amplifier circuit connected to the output terminal of the detection target field instruments connected to the output terminal of the positive-phase amplifier circuit, an increase of positive phase And a negative feedback circuit for negatively feeding back the output of the circuit to the first magneto-impedance effect element and the second magneto-impedance effect element via the first negative feedback magnetic field coil and the second negative feedback magnetic field coil. And

請求項2に係る磁界検出回路は、請求項2の磁界検出回路において、差動増幅回路が単一電源型または二電源型で各検波回路の=vに対する差動増幅回路の出力端電圧を(0.5+k) VccまたはkVcc(ただし、Vcc は電源電圧、0<k≦1)とする電圧印加手段を差動増幅回路に付設し、、前記出力端電圧を入力とする正相回路の出力電圧V’を打ち消すバイアス電圧印加回路を負帰還回路に付設したことを特徴とする。 A magnetic field detection circuit according to a second aspect is the magnetic field detection circuit according to the second aspect, wherein the differential amplifier circuit is a single power source type or a dual power source type, and the output terminal of the differential amplifier circuit for v 1 = v 2 of each detector circuit. A positive-phase circuit that has voltage application means (0.5 + k) Vcc or kVcc (where Vcc is the power supply voltage, 0 <k ≦ 1) attached to the differential amplifier circuit, and the output terminal voltage is the input A bias voltage application circuit for canceling the output voltage V 0 ′ is attached to the negative feedback circuit.

請求項3に係る磁界検出回路は、請求項1または2の磁界検出回路において、正相増幅回路の出力端にケーブルを介して被検出磁界計測器を接続したことを特徴とする。   A magnetic field detection circuit according to a third aspect is the magnetic field detection circuit according to the first or second aspect, wherein a detected magnetic field measuring instrument is connected to the output terminal of the positive phase amplifier circuit via a cable.

請求項4に係る磁界検出回路は、請求項1〜3何れかの磁界検出回路において、第1磁気インピーダンス効果素子と第2磁気インピーダンス効果素子とを所定の距離だけずらせ、かつ両磁気イスピーダンス効果素子の軸心方向を一致させて配設したことを特徴とする。   A magnetic field detection circuit according to a fourth aspect is the magnetic field detection circuit according to any one of the first to third aspects, wherein the first magnetic impedance effect element and the second magnetic impedance effect element are shifted by a predetermined distance, and both magnetic impedance effects are obtained. The element is arranged so that the axial directions of the elements coincide with each other.

請求項5に係る磁界検出回路は、請求項1〜3何れかの磁界検出回路において、第1磁気インピーダンス効果素子と第2磁気インピーダンス効果素子とを所定の間隔を隔てて並行に配設したことを特徴とする。   A magnetic field detection circuit according to a fifth aspect is the magnetic field detection circuit according to any one of the first to third aspects, wherein the first magnetic impedance effect element and the second magnetic impedance effect element are arranged in parallel at a predetermined interval. It is characterized by.

請求項6に係る磁界検出回路は、請求項1〜5何れかの磁界検出回路において、各磁気イスピーダンス効果素子が各基板片の片面に取付けられ、各基板片の他面に前記磁気イスピーダンス効果素子とで磁気回路を形成する鉄芯が取付けられ、各鉄芯に各磁気イスピーダンス効果素子に対するバイアス磁界用コイル及び負帰還磁界用コイルとが巻装されていることを特徴とする。   A magnetic field detection circuit according to a sixth aspect is the magnetic field detection circuit according to any one of the first to fifth aspects, wherein each magnetic impedance effect element is attached to one surface of each substrate piece, and the magnetic impedance is provided on the other surface of each substrate piece. An iron core that forms a magnetic circuit with the effect element is attached, and a coil for a bias magnetic field and a coil for a negative feedback magnetic field for each magnetic impedance effect element are wound around each iron core.

(1)差動増幅回路の出力端に正相増幅回路を接続しており、その正相増幅回路の出力側の入力インピーダンスが0に近いから、正相増幅回路に接続した長尺ケーブルの容量変化などによって、差動増幅回路から見たケーブルを含めた計測機器の入力インピーダンスが低かったり、変化した場合でも正確な計測が可能となる。更に、差動増幅回路の出力端に正相増幅回路を接続し、その正相増幅回路の出力を負帰還させており、正相増幅回路の出力側が並列帰還であってその出力側インピーダンスが0に近いから、正相増幅回路の出力端に計測器を接続する長尺ケーブルから外部誘導ノイズが侵入しても、そのノイズが負帰還回路に流入するのをよく排除でき、また二段増幅のために増幅ゲインを大きくでき、出力特性を安定に直線化できる。
(2)両磁気インピーダンス素子に加わる被検出磁界が等しくそれらの差動出力が0のときの正相回路の出力V’を充分に高くしてあり、正相増幅端に計測器を接続する長尺ケーブルから外部誘導ノイズが侵入しても、電圧V’によるオフセットに応じ正相増幅回路出力をカットして計測することにより、そのカット波高値以下のノイズを排除それだけ良好なS/N比で被検出磁界を計測できる。
(3)正相増幅回路の出力を第1磁気イスピーダンス効果素子及び第2磁気イスピーダンス効果素子に負帰還させる負帰還回路にバイアス電圧を印加して前記V’を打ち消す状態で負帰還をかけているから、前記V’によって負帰還回路に電流が流れるのを防止でき、負帰還回路に無駄に直流電流が流れて前記V’を保持するための電源が浪費されるのを排除できる。
(1) Since the positive phase amplifier circuit is connected to the output terminal of the differential amplifier circuit, and the input impedance on the output side of the positive phase amplifier circuit is close to 0, the capacity of the long cable connected to the positive phase amplifier circuit Even if the input impedance of the measuring instrument including the cable viewed from the differential amplifier circuit is low or changes due to a change or the like, accurate measurement is possible. Further, a positive phase amplifier circuit is connected to the output terminal of the differential amplifier circuit, and the output of the positive phase amplifier circuit is negatively fed back. The output side of the positive phase amplifier circuit is parallel feedback and the output side impedance is 0. Therefore, even if external inductive noise enters from the long cable connecting the measuring instrument to the output terminal of the positive phase amplifier circuit, it can be well excluded that the noise flows into the negative feedback circuit. Therefore, the amplification gain can be increased and the output characteristics can be linearized stably.
(2) The output V 0 ′ of the positive phase circuit when the detected magnetic fields applied to both magneto-impedance elements are equal and the differential output is 0 is sufficiently high, and a measuring instrument is connected to the positive phase amplification end. Even if external inductive noise enters from a long cable, the noise below the cut peak value is eliminated by measuring the output of the positive phase amplifier circuit according to the offset due to the voltage V 0 ′. The detected magnetic field can be measured by the ratio.
(3) Applying a bias voltage to the negative feedback circuit for negatively feeding back the output of the positive phase amplifier circuit to the first magnetic impedance effect element and the second magnetic impedance effect element, and performing negative feedback in a state where the V 0 ′ is canceled. because over, eliminating the V 0 'by prevents current from flowing in the negative feedback circuit, the V 0 wastefully DC current flows in the negative feedback circuit' of power to retain the is wasted it can.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1−1は本発明に係る磁界検出回路の一実施例を示している。
図1−1において、1a及び1bは所定の間隔を隔てて配設された第1磁気イスピーダンス効果素子及び第2磁気イスピーダンス効果素子であり、自発磁化の方向がワイヤ周方向に対し互いに逆方向の磁区が交互に磁壁で隔てられた構成の外殻部を有する零磁歪乃至は負磁歪のアモルファス合金ワイヤの他、アモルファス合金リボン、アモルファス合金スパッタ膜が使用される。これらの磁気インピーダンス効果素子としては、遷移金属と非金属の合金で非金属が10〜30原子%組成のもの、特に遷移金属と非金属との合金で非金属量が10〜30原子%を占め、遷移金属がFeとCoで非金属がBとSiであるかまたは遷移金属がFeで非金属がBとSiである組成のものを使用することができ、例えば、組成Co70.515Si10Fe4.5、長さ2000μm〜6000μm、外径30μm〜50μmφのものを使用できる。
2は第1磁気イスピーダンス効果素子1a及び第2磁気イスピーダンス効果素子1bに高周波励磁電流を印加するための電源であり、これらの磁気イスピーダンス効果素子1a,1bに電源2によって等しい励磁電流が流されるようにブリッジ回路に組み立てられている。3a,3bは各磁気イスピーダンス効果素子1a,1bの出力端に接続された検波回路であり、図1−2に示すようにダイオード31の出力側にRC平滑回路32を接続し、更に直流分カット用コンデンサ33を接続したものを使用することができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1-1 shows an embodiment of a magnetic field detection circuit according to the present invention.
In FIG. 1-1, 1a and 1b are the 1st magnetic impedance effect element and the 2nd magnetic impedance effect element which were arrange | positioned at predetermined intervals, and the direction of spontaneous magnetization is mutually opposite with respect to the wire circumferential direction. An amorphous alloy ribbon or an amorphous alloy sputtered film is used in addition to a zero magnetostrictive or negative magnetostrictive amorphous alloy wire having an outer shell having a structure in which magnetic domains in directions are alternately separated by domain walls. As these magneto-impedance effect elements, transition metals and non-metal alloys having a non-metal composition of 10 to 30 atomic%, especially transition metals and non-metal alloys account for 10 to 30 atomic%. The transition metal is Fe and Co and the nonmetal is B and Si, or the transition metal is Fe and the nonmetal is B and Si. For example, the composition Co 70.5 B 15 can be used. Si 10 Fe 4.5 having a length of 2000 μm to 6000 μm and an outer diameter of 30 μm to 50 μmφ can be used.
Reference numeral 2 denotes a power source for applying a high-frequency excitation current to the first magnetic impedance effect element 1a and the second magnetic impedance effect element 1b, and an equal excitation current is applied to these magnetic impedance effect elements 1a and 1b by the power source 2. It is assembled into a bridge circuit so that it can flow. Reference numerals 3a and 3b denote detection circuits connected to the output terminals of the magnetic impedance effect elements 1a and 1b. As shown in FIG. 1-2, an RC smoothing circuit 32 is connected to the output side of the diode 31, and a DC component is further provided. What connected the capacitor | condenser 33 for cutting can be used.

図1−1において、各磁気イスピーダンス効果素子に流れる励磁電流をIc、各磁気イスピーダンス効果素子に加えられる被検出磁界をHexとすると、磁気イスピーダンス効果素子の出力は図4−2の(ハ)で示すように、図4−2の(ロ)の励磁電流Icが図4−2の(イ)で示す被検出磁界Hexで変調された変調波となり、この磁気イスピーダンス効果素子出力が検波回路で復調されて図4−2の(ホ)に示す被検出磁界信号vが得られる。 1-1, if the exciting current flowing through each magnetic impedance effect element is Ic and the detected magnetic field applied to each magnetic impedance effect element is Hex , the output of the magnetic impedance effect element is as shown in FIG. As shown in (c), the exciting current Ic in (b) of FIG. 4-2 becomes a modulated wave modulated by the detected magnetic field Hex shown in (b) of FIG. 4-2, and this magnetic impedance effect element The output is demodulated by the detection circuit, and a detected magnetic field signal v shown in FIG.

図1−1において、4は演算差動増幅回路であり、この差動増幅回路4の両入力端子に前記の復調された被検出磁界信号が入力される。前記第1磁気イスピーダンス効果素子に加えられる被検出磁界Hex1に基づく被検出磁界信号をv、第2磁気イスピーダンス効果素子に加えられる被検出磁界Hex2に基づく被検出磁界信号をvとする。
図1−1において、40は被検出磁界信号をv、vがv=vのときの差動増幅回路4の出力電圧を所定の電圧Vとするためのオフセット手段であり、電源電圧Vccを使用して電圧リファレンス端子にkVcc(k≦1)の電圧を印加する構成とすることができる。
差動増幅回路4が+Vcc電源と−Vcc電源を使用する二電源型の場合、前記VはV=kVccとなり、差動増幅回路が+Vcc電源のみを使用する単一電源型の場合、V=(0.5+k)Vccとなる。
In FIG. 1, reference numeral 4 denotes an operational differential amplifier circuit, and the demodulated detected magnetic field signal is input to both input terminals of the differential amplifier circuit 4. The detected magnetic field signal based on the detected magnetic field H ex1 applied to the first magnetic impedance effect element is v 1 , and the detected magnetic field signal based on the detected magnetic field H ex2 applied to the second magnetic impedance effect element is v 2. And
1-1, reference numeral 40 denotes offset means for setting the output voltage of the differential amplifier circuit 4 to a predetermined voltage V 0 when the detected magnetic field signal is v 1 and v 2 is v 1 = v 2 , The power supply voltage Vcc may be used to apply a voltage of kVcc (k ≦ 1) to the voltage reference terminal.
When the differential amplifier circuit 4 is a dual power supply type using a + Vcc power supply and a -Vcc power supply, V 0 is V 0 = kVcc, and when the differential amplifier circuit is a single power supply type using only a + Vcc power supply, 0 = (0.5 + k) Vcc.

5は差動増幅回路4の出力端に接続した正相増幅回路であり、利得GはG=1+(R/R)である。
前記した通り、差動増幅回路4の両入力端への入力v,vが等しいときの差動増幅回路4の出力はVであり、V=kVccまたはV=(0.5+k)Vccである。 従って、この電圧Vを入力とする正相増幅回路5の出力、すなわち第1磁気イスピーダンス効果素子1aに加わる被検出磁界Hex1と第2磁気イスピーダンス効果素子1bに加わる被検出磁界Hex2との差が0のときの正相増幅回路5の出力V’は、V’=kVcc〔1+(R/R)〕またはV’=(0.5+k)Vcc〔1+(R/R)〕である。
Reference numeral 5 denotes a positive phase amplifier circuit connected to the output terminal of the differential amplifier circuit 4, and the gain G is G = 1 + (R 2 / R 1 ).
As described above, the output of the differential amplifier circuit 4 when the inputs v 1 and v 2 to both input terminals of the differential amplifier circuit 4 are equal is V 0 , and V 0 = kVcc or V 0 = (0.5 + k). ) Vcc. Accordingly, the output of the positive phase amplifier circuit 5 having the voltage V 0 as an input, that is, the detected magnetic field H ex1 applied to the first magnetic impedance effect element 1a and the detected magnetic field H ex2 applied to the second magnetic impedance effect element 1b. The output V 0 ′ of the positive phase amplifying circuit 5 when the difference with respect to 0 is V 0 ′ = kVcc [1+ (R 2 / R 1 )] or V 0 ′ = (0.5 + k) Vcc [1+ (R 2 / R 1 )].

6は正相増幅回路5の出力を各磁気イスピーダンス効果素子1a,1bに負帰還させる負帰還回路であり、前記電圧V’を打ち消すためのバイアス電圧印加回路60を挿入してある。このバイアス電圧印加回路60には、+Vccの分圧電圧k’Vccを非反転入力端子に入力する電圧フォロワを使用することができ、k’=k〔1+(R/R)〕または(0.5+k)〔1+(R/R)〕に設定される。従って、差動増幅回路4の両入力端子への入力v、vが等しいときに負帰還回路に無駄に直流電流が流れるのを防止でき、オフセット手段における+Vccの浪費を防止できる。 Reference numeral 6 denotes a negative feedback circuit for negatively feeding back the output of the positive phase amplifier circuit 5 to the magnetic impedance effect elements 1a and 1b, and a bias voltage application circuit 60 for canceling the voltage V 0 ′ is inserted. The bias voltage applying circuit 60 can use a voltage follower that inputs a divided voltage k′Vcc of + Vcc to a non-inverting input terminal, and k ′ = k [1+ (R 2 / R 1 )] or ( 0.5 + k) [1+ (R 2 / R 1 )]. Therefore, when the inputs v 1 and v 2 to the both input terminals of the differential amplifier circuit 4 are equal, it is possible to prevent a direct current from flowing through the negative feedback circuit, and it is possible to prevent waste of + Vcc in the offset means.

7a及び7bは各磁気イスピーダンス効果素子1a及び1bにバイアス磁界を印加するための第1バイアス磁界用コイル及び第2バイアス磁界用コイルであり、図5の(ニ)に示すように被検出磁界Hexを極性判別して検出できるようにしている。
8は正相増幅回路5の出力端に長尺の可撓性ケーブル9を介して接続された計測器である。
Reference numerals 7a and 7b denote a first bias magnetic field coil and a second bias magnetic field coil for applying a bias magnetic field to each of the magnetic impedance effect elements 1a and 1b. As shown in FIG. Hex can be detected by detecting the polarity.
A measuring instrument 8 is connected to the output end of the positive phase amplifier circuit 5 via a long flexible cable 9.

本発明に係る磁界検出回路は基板に搭載して移動式センサとし、正相増幅回路の出力端に長尺ケーブルを介し固定の計測器を接続して使用することができる。
図6に示すような途中で磁界が変化する経路に沿って前記の移動式センサを移動させると、磁界変化箇所を通過する際、第1磁気イスピーダンス効果素子に作用する磁界Hex1と第2磁気イスピーダンス効果素子に作用する磁界Hex2とに差が生じ、正相増幅回路の出力Vは、±K|Hex1−Hex2|が前記の電圧V’でオフセットされた値、すなわち、±K|Hex1−Hex2|+V’で与えられる。
すなわち、Hex1>Hex2のときは、K(Hex1−Hex2)+V’で与えられ、Hex2>Hex1のときは、−K(Hex2−Hex1)+V’で与えられる。
而して、長尺ケーブル9に外部誘導ノイズが侵入しても、−K(Hex2−Hex1)+V’=Eが正の充分に大きな値になるようにV’やKを設定し、前記正相増幅回路5の出力を計測器8で前記電圧E以下をカットして計測すれば、電圧E以下の波高値のノイズをカットでき、それだけ検出精度を高くできる。
The magnetic field detection circuit according to the present invention is mounted on a substrate as a mobile sensor, and can be used by connecting a fixed measuring instrument to the output end of the positive phase amplifier circuit via a long cable.
When the mobile sensor is moved along a path along which the magnetic field changes in the middle as shown in FIG. 6, the magnetic field H ex1 and the second magnetic field acting on the first magnetic impedance effect element when passing through the magnetic field changing portion. There is a difference between the magnetic field H ex2 acting on the magnetic impedance effect element, and the output V of the positive phase amplifier circuit is a value obtained by offsetting ± K | H ex1 −H ex2 | by the voltage V 0 ′, that is, ± K | H ex1 −H ex2 | + V 0 ′.
That is, when H ex1 > H ex2 , it is given by K (H ex1 −H ex2 ) + V 0 ′, and when H ex2 > H ex1 , it is given by −K (H ex2 −H ex1 ) + V 0 ′. .
Thus, even if external induction noise enters the long cable 9, V 0 ′ and K are set so that −K (H ex2 −H ex1 ) + V 0 ′ = E becomes a positive and sufficiently large value. If the output of the positive phase amplifier circuit 5 is measured by cutting the voltage E or less with the measuring instrument 8, noise having a peak value below the voltage E can be cut, and the detection accuracy can be increased accordingly.

前記の各磁気イスピーダンス効果素子を含む磁界センサに作用する外部磁界ノイズは差動増幅回路に同一値、同相で入力し、また各検波回路等に生じる内部ノイズも差動増幅回路に同一値、同相で入力するから、これらのノイズの影響も排除できる。
The external magnetic field noise acting on the magnetic field sensor including each magnetic impedance effect element is input to the differential amplifier circuit with the same value and the same phase, and the internal noise generated in each detector circuit is also the same value to the differential amplifier circuit, Since they are input in phase, the effects of these noises can be eliminated.

図6に示した磁界変化は、電流により発生する磁界の乱れを伴い、電流方向と直角方向の磁界成分の変化及び電流方向の磁界成分の変化を生じる。一方、磁気イスピーダンス効果素子の感磁方向は軸方向である。従って、図2の(イ)に示すように、第1磁気インピーダンス効果素子1aと第2磁気インピーダンス効果素子1bとを所定の距離だけずらせ、かつ両磁気イスピーダンス効果素子1a,1bの軸心方向を一致させて配設することができる。また、図2の(ロ)に示すように、第1磁気インピーダンス効果素子1aと第2磁気インピーダンス効果素子1bとを所定の間隔を隔てて並行に配設することもできる。   The magnetic field change shown in FIG. 6 is accompanied by disturbance of the magnetic field generated by the current, and causes a change in the magnetic field component perpendicular to the current direction and a change in the magnetic field component in the current direction. On the other hand, the magnetosensitive direction of the magnetic impedance effect element is the axial direction. Accordingly, as shown in FIG. 2A, the first magneto-impedance effect element 1a and the second magneto-impedance effect element 1b are shifted by a predetermined distance, and the axial direction of both the magnetic impedance effect elements 1a and 1b Can be arranged to match. Further, as shown in FIG. 2B, the first magneto-impedance effect element 1a and the second magneto-impedance effect element 1b can be arranged in parallel at a predetermined interval.

本発明に係る磁界検出回路は前記実施例に限定されない。
前記検波回路におけるピークホールド回路に代え、R−Cローパスフィルターを使用することもできる。これらのピークホールド回路やR−Cローパスフィルターのコンデンサを温度補償用コンデンサとして使用することにより、温度特性の変更が可能である。
The magnetic field detection circuit according to the present invention is not limited to the above embodiment.
Instead of the peak hold circuit in the detection circuit, an RC low-pass filter may be used. The temperature characteristics can be changed by using a capacitor of these peak hold circuit or RC low-pass filter as a temperature compensation capacitor.

上記磁気インピーダンス効果素子には、零磁歪乃至は負磁歪のアモルファスワイヤ、アモルファスリボン、アモルファススパッタ膜等を使用できる。高周波励磁電流の周波数はMHzオ−ダである。
これよりも低い周波数の搬送波の場合でも、前記した磁気インダクタンス効果により搬送波を外部磁界で振幅変調させることが可能であり、本発明は磁気インダクタンス効果素子を用いて実施することもできる。
For the magneto-impedance effect element, zero magnetostrictive or negative magnetostrictive amorphous wire, amorphous ribbon, amorphous sputtered film or the like can be used. The frequency of the high frequency excitation current is in the order of MHz.
Even in the case of a carrier wave having a frequency lower than this, the carrier wave can be amplitude-modulated by an external magnetic field due to the above-described magnetic inductance effect, and the present invention can also be implemented using a magnetic inductance effect element.

上記高周波搬送波としては、連続正弦波、パルス波、三角波等の通常の高周波を使用でき、例えば、ハートレー発振回路、コルピッツ発振回路、コレクタ同調発振回路、ベース同調発振回路のような通常の発振回路の外、水晶発振器の矩形波出力を直流分カットコンデンサを経て積分回路で積分し、この積分出力の三角波を増幅回路で増幅する三角波発生器、CMOS−ICを発振部として使用した三角波発生器を用いることができる。
また、消費電力の軽減のために正弦波、パルス波、三角波のバースト波を使用することも可能である。
As the high-frequency carrier wave, a normal high-frequency wave such as a continuous sine wave, a pulse wave, or a triangular wave can be used. For example, a normal oscillation circuit such as a Hartley oscillation circuit, a Colpitts oscillation circuit, a collector-tuned oscillation circuit, or a base-tuned oscillation circuit can be used. In addition, a triangular wave generator that integrates a square wave output of a crystal oscillator through an integration circuit through a DC component cut capacitor and amplifies the triangular wave of the integrated output by an amplifier circuit, and a triangular wave generator that uses a CMOS-IC as an oscillation unit are used. be able to.
It is also possible to use a sine wave, a pulse wave, or a triangular burst wave to reduce power consumption.

上記実施例では、励磁電流を搬送波とし、この搬送波を被検出磁界で振幅変調し、この変調波を検波回路で復調して被検出磁界信号を取出しているが、磁気インピーダンス効果素子に作用する被検出磁界による磁界検出信号から被検出磁界に相当する被検出磁界信号量を取り出し得るものであれば適宜の検波回路を使用できる。   In the above embodiment, the excitation current is a carrier wave, the carrier wave is amplitude-modulated by a detected magnetic field, and the modulated wave is demodulated by a detection circuit to extract a detected magnetic field signal. An appropriate detection circuit can be used as long as the detected magnetic field signal amount corresponding to the detected magnetic field can be extracted from the magnetic field detection signal based on the detected magnetic field.

前記の負帰還磁界用コイル5a(5b)及びバイアス磁界用コイル6a(6b)は磁気インピーダンス効果素子1a(1b)に巻き付けることができる。
また、図3に示すように磁気インピーダンス効果素子とループ磁気回路を構成する鉄芯に負帰還磁界用コイル及びバイアス磁界用コイルを巻き付けることもできる。
図3の(イ)は鉄芯付き磁気インピーダンス効果ユニットの一例を示す側面図、図3の(ロ)は同じく底面図、図3の(ハ)は図3の(ロ)におけるハ−ハ断面図である。
図3において、100は基板片であり、例えばセラミックス板を使用できる。101は基板片の片面に設けた電極であり、磁気インピーダンス効果素子接続用突部102を備えている。この電極は導電ペースト、例えば銀ペーストの印刷・焼付けにより設けることができる。1xは電極101,101の突部102,102間にはんだ付けや溶接により接続した磁気インピーダンス効果素子であり、前記した通り零磁歪乃至負磁歪のアモルファスワイヤ、アモルファスリボン、スパッタ膜等を使用できる。103はC型鉄芯、5xはC型鉄芯に巻装した負帰還用コイル、6xは同じくバイアス磁界用コイルであり、磁気インピーダンス効果素子1xとC型鉄芯103とでループ磁気回路を構成するように、C型鉄芯103の両端を基板片100の他面に接着剤等で固定してある。鉄芯材料としては、残留磁束密度の小さい磁性体であればよく、例えば、パーマロイ、フェライト、鉄、アモルファス磁性合金の他、磁性体粉末混合プラスチック等を挙げることができる。
The negative feedback magnetic field coil 5a (5b) and the bias magnetic field coil 6a (6b) can be wound around the magneto-impedance effect element 1a (1b).
Further, as shown in FIG. 3, a negative feedback magnetic field coil and a bias magnetic field coil can be wound around an iron core constituting a magneto-impedance effect element and a loop magnetic circuit.
3A is a side view showing an example of a magnetic impedance effect unit with an iron core, FIG. 3B is a bottom view, and FIG. 3C is a cross-sectional view of FIG. FIG.
In FIG. 3, reference numeral 100 denotes a substrate piece, for example, a ceramic plate can be used. Reference numeral 101 denotes an electrode provided on one side of the substrate piece, and includes a magneto-impedance effect element connecting projection 102. This electrode can be provided by printing and baking a conductive paste, for example, a silver paste. 1x is a magneto-impedance effect element connected between the protrusions 102 and 102 of the electrodes 101 and 101 by soldering or welding, and an amorphous wire, amorphous ribbon, sputtered film, or the like having zero or negative magnetostriction can be used as described above. 103 is a C-type iron core, 5x is a negative feedback coil wound around the C-type iron core, and 6x is a bias magnetic field coil, and the magneto-impedance effect element 1x and the C-type iron core 103 constitute a loop magnetic circuit. Thus, both ends of the C-shaped iron core 103 are fixed to the other surface of the substrate piece 100 with an adhesive or the like. The iron core material may be a magnetic material having a small residual magnetic flux density. Examples thereof include permalloy, ferrite, iron, amorphous magnetic alloy, magnetic powder mixed plastic, and the like.

本発明に係る磁界検出回路の一実施例を示す図面である。It is drawing which shows one Example of the magnetic field detection circuit based on this invention. 図1−2の回路における検波回路の一例を示す図面である。It is drawing which shows an example of the detection circuit in the circuit of FIGS. 1-2. 本発明に係る磁界検出回路における磁気インピーダンス効果素子の異なる配設例を示す図面である。It is drawing which shows the example of different arrangement | positioning of the magneto-impedance effect element in the magnetic field detection circuit which concerns on this invention. 本発明に係る磁界検出回路において使用される磁気インピーダンス効果素子ユニットの一例を示す図面である。It is drawing which shows an example of the magneto-impedance effect element unit used in the magnetic field detection circuit which concerns on this invention. 従来の磁界検出回路を示す図面である。It is drawing which shows the conventional magnetic field detection circuit. 図4−1の回路における波形を示す図面である。It is drawing which shows the waveform in the circuit of FIGS. 磁気インピーダンス効果素子の出力特性を示す図面である。It is drawing which shows the output characteristic of a magneto-impedance effect element. 被検出磁界の分布状態を示す図面である。It is drawing which shows the distribution state of a to-be-detected magnetic field.

符号の説明Explanation of symbols

1a 第1磁気インピーダンス効果素子
1b 第2磁気インピーダンス効果素子
2 励磁電流源
3a 第1検波回路
3b 第2検波回路
4 差動増幅回路
40 所定電圧オフセット手段
5 正相増幅回路
6 負帰還回路
6a 第1負帰還磁界用コイル
6b 第2負帰還磁界用コイル
60 バイアス電圧印加回路
7a 第1バイアス磁界用コイル
7b 第2バイアス磁界用コイル
8 計測器
9 ケーブル
DESCRIPTION OF SYMBOLS 1a 1st magneto-impedance effect element 1b 2nd magneto-impedance effect element 2 Excitation current source 3a 1st detection circuit 3b 2nd detection circuit 4 Differential amplification circuit 40 Predetermined voltage offset means 5 Positive phase amplification circuit 6 Negative feedback circuit 6a 1st Negative feedback magnetic field coil 6b Second negative feedback magnetic field coil 60 Bias voltage application circuit 7a First bias magnetic field coil 7b Second bias magnetic field coil 8 Measuring instrument 9 Cable

Claims (6)

第1磁気インピーダンス効果素子及び第2磁気インピーダンス効果素子と、第1磁気インピーダンス効果素子にバイアス磁界を印加する第1バイアス磁界用コイル及び第2磁気インピーダンス効果素子にバイアス磁界を印加する第2バイアス磁界用コイルと、各磁気インピーダンス効果素子に励磁電流を供給する励磁電流源と、各磁気インピーダンス効果素子に加わる被検出磁界で各磁気インピーダンス効果素子の励磁電流が変調された波形の各磁気インピーダンス効果素子出力を検波する第1検波回路及び第2検波回路と、各検波回路の出力v、vを差動増幅する差動増幅回路と、差動増幅回路の出力端に接続された正相増幅回路と、正相増幅回路の出力端に接続された被検出磁界計測器と、正相増幅回路の出力を第1磁気インピーダンス効果素子及び第2磁気インピーダンス効果素子に第1負帰還磁界用コイル及び第2負帰還磁界用コイルを介して負帰還させる負帰還回路とを備えていることを特徴とする磁界検出回路。 The first and second magneto-impedance effect elements, the first bias magnetic field coil for applying a bias magnetic field to the first magneto-impedance effect element, and the second bias magnetic field for applying a bias magnetic field to the second magneto-impedance effect element Coil, excitation current source for supplying excitation current to each magneto-impedance effect element, and each magneto-impedance effect element having a waveform in which the excitation current of each magneto-impedance effect element is modulated by a detected magnetic field applied to each magneto-impedance effect element First detection circuit and second detection circuit for detecting output, differential amplification circuit for differentially amplifying outputs v 1 and v 2 of each detection circuit, and positive phase amplification connected to the output terminal of the differential amplification circuit circuit and positive-phase connected to the output terminal of the amplifier circuit and the detected magnetic field measuring instrument, first magnetic Inpi the output of the positive-phase amplifier circuit Field detector characterized by comprising a negative feedback circuit for negatively fed back through the Nsu effect element and the second magneto-impedance effect first negative feedback magnetic field coil and the second negative feedback magnetic field coil in the element. 差動増幅回路が単一電源型または二電源型で各検波回路の=vに対する差動増幅回路の出力端電圧を(0.5+k) VccまたはkVcc(ただし、Vcc は電源電圧、0<k≦1)とする電圧印加手段を差動増幅回路に付設し、、前記出力端電圧を入力とする正相回路の出力電圧V’を打ち消すバイアス電圧印加回路を負帰還回路に付設したことを特徴とする請求項1記載の磁界検出回路。 When the differential amplifier circuit is a single power supply type or a dual power supply type, the output terminal voltage of the differential amplifier circuit with respect to v 1 = v 2 of each detector circuit is (0.5 + k) Vcc or kVcc (where Vcc is the power supply voltage, 0 <k ≦ 1) is applied to the differential amplifier circuit, and a bias voltage application circuit that cancels the output voltage V 0 ′ of the positive phase circuit that receives the output terminal voltage is added to the negative feedback circuit. The magnetic field detection circuit according to claim 1. 正相増幅回路の出力端にケーブルを介して被検出磁界計測器を接続したことを特徴とする請求項1または2記載の磁界検出回路。 3. The magnetic field detection circuit according to claim 1, wherein a detected magnetic field measuring instrument is connected to the output terminal of the positive phase amplifier circuit via a cable. 第1磁気インピーダンス効果素子と第2磁気インピーダンス効果素子とを所定の距離だけずらせ、かつ両磁気インピーダンス効果素子の軸心方向を一致させて配設したことを特徴とする請求項1〜3何れか記載の磁界検出回路。 The first magneto-impedance effect element and the second magneto-impedance effect element are disposed by being shifted by a predetermined distance, and the axial center directions of the both magneto-impedance effect elements are aligned with each other. The magnetic field detection circuit described. 第1磁気インピーダンス効果素子と第2磁気インピーダンス効果素子とを所定の間隔を隔てて並行に配設したことを特徴とする請求項1〜3何れか記載の磁界検出回路。 4. The magnetic field detection circuit according to claim 1, wherein the first magnetic impedance effect element and the second magnetic impedance effect element are arranged in parallel at a predetermined interval. 各磁気インピーダンス効果素子が各基板片の片面に取付けられ、各基板片の他面に前記磁気インピーダンス効果素子とで磁気回路を形成する鉄芯が取付けられ、各鉄芯に各磁気インピーダンス効果素子に対するバイアス磁界用コイル及び負帰還磁界用コイルとが巻装されていることを特徴とする請求項1〜5何れか記載の磁界検出回路。 Each magneto-impedance effect element is attached to one surface of each substrate piece, and an iron core that forms a magnetic circuit with the magneto-impedance effect element is attached to the other surface of each substrate piece, and each iron core is attached to each magneto-impedance effect element. 6. The magnetic field detection circuit according to claim 1, wherein a bias magnetic field coil and a negative feedback magnetic field coil are wound.
JP2005019657A 2005-01-27 2005-01-27 Magnetic field detection circuit Expired - Fee Related JP4808411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019657A JP4808411B2 (en) 2005-01-27 2005-01-27 Magnetic field detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005019657A JP4808411B2 (en) 2005-01-27 2005-01-27 Magnetic field detection circuit

Publications (2)

Publication Number Publication Date
JP2006208147A JP2006208147A (en) 2006-08-10
JP4808411B2 true JP4808411B2 (en) 2011-11-02

Family

ID=36965178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019657A Expired - Fee Related JP4808411B2 (en) 2005-01-27 2005-01-27 Magnetic field detection circuit

Country Status (1)

Country Link
JP (1) JP4808411B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164310A (en) * 2006-12-27 2008-07-17 Uchihashi Estec Co Ltd Magnetic impedance effect sensor head, sensor and magnetic inspection method
JP5085123B2 (en) * 2006-12-27 2012-11-28 双日マシナリー株式会社 Magnetic detection method for magnetic metal pieces
JP4938740B2 (en) * 2008-09-24 2012-05-23 双日マシナリー株式会社 Magnetic field detector

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4089985B2 (en) * 1997-07-17 2008-05-28 内橋エステック株式会社 Multi-head magnetic field sensor
JP2000193729A (en) * 1998-12-24 2000-07-14 Alps Electric Co Ltd Driving circuit for magnetic impedance effect element
JP2002181908A (en) * 2000-12-11 2002-06-26 Alps Electric Co Ltd Magnetic field sensor
JP2002277521A (en) * 2001-03-15 2002-09-25 Uchihashi Estec Co Ltd Drive circuit for magnetic impedance effect element
JP4460188B2 (en) * 2001-04-10 2010-05-12 内橋エステック株式会社 Magnetic sensor
JP3972116B2 (en) * 2001-12-28 2007-09-05 アイチ・マイクロ・インテリジェント株式会社 Magnetic attractive force measuring device for magnet body

Also Published As

Publication number Publication date
JP2006208147A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
WO1991018299A1 (en) Device for sensing magnetism
JP4495635B2 (en) Magneto-impedance effect sensor and method of using magneto-impedance effect sensor
JP4307695B2 (en) Magnetic detection device and magnetic field detection method
JP4808411B2 (en) Magnetic field detection circuit
JP2006322706A (en) Method of measuring conductor current
JP4808410B2 (en) Magnetic field detection circuit
JP2005055326A (en) Conductor current measurement method and magnetic field sensor for measuring conductor current
JP4878903B2 (en) Magnetic sensor for pillar transformer diagnosis
JP4722717B2 (en) Current sensor
JP2007322125A (en) Magnetic impedance effect sensor and method for detecting external magnetic field
JP4938740B2 (en) Magnetic field detector
JP4476746B2 (en) Corrosion / thinning inspection method for the back of steel walls
JP2005061980A (en) Conductor current measuring method
JP4878856B2 (en) Magneto-impedance effect sensor
JP4630401B2 (en) Current sensor and current detection method
JP4865343B2 (en) Inspection method for iron-based structures
JP2000266785A (en) Current measuring device
JP5085274B2 (en) Magnetic field sensor
JP4739097B2 (en) Diagnosis method of pole transformer
JP2005043254A (en) Method for measuring conductor current
JP2006064462A (en) Electric current sensor, electric current detection method, and electric current measuring instrument
JP4520188B2 (en) Method for detecting conductor defects in electric wires
JP5241200B2 (en) Magnetic detection method
JP2006337040A (en) Defect-detecting method of metal body, and scanning type magnetic detector
JP4219731B2 (en) Magnetic field detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees