JP4722717B2 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP4722717B2
JP4722717B2 JP2006025184A JP2006025184A JP4722717B2 JP 4722717 B2 JP4722717 B2 JP 4722717B2 JP 2006025184 A JP2006025184 A JP 2006025184A JP 2006025184 A JP2006025184 A JP 2006025184A JP 4722717 B2 JP4722717 B2 JP 4722717B2
Authority
JP
Japan
Prior art keywords
output
offset
magneto
differential amplifier
impedance effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006025184A
Other languages
Japanese (ja)
Other versions
JP2006250922A (en
Inventor
一実 豊田
和幸 井澤
佐加枝 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP2006025184A priority Critical patent/JP4722717B2/en
Publication of JP2006250922A publication Critical patent/JP2006250922A/en
Application granted granted Critical
Publication of JP4722717B2 publication Critical patent/JP4722717B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本発明は電流センサに関し、電力用機器や設備の漏れ電流等を検出するのに利用でき、例えば、碍子の充電電流や漏れ電流を測定して碍子の劣化程度を判定するのに有用である。   The present invention relates to a current sensor and can be used to detect a leakage current or the like of power equipment or equipment. For example, the present invention is useful for measuring the charging current or leakage current of an insulator to determine the degree of deterioration of the insulator.

碍子劣化を受電のままで検出する方法として、碍子の充電電流を測定しその測定値から碍子の劣化を判定することや、碍子表面の電位分布を測定しその測定値から碍子の劣化を判定することが知られている。
これらは、碍子が健全なときは充電電流値や表面電位分布が正常であるが、碍子が劣化するとその充電電流値や表面電位分布が異常となることを利用しており、次の方法が公知である(非特許文献1)。
新宮 行太,碍子とブッシング,オーム社昭和32年,p252〜258
As a method to detect the insulator deterioration while receiving power, measure the insulator charging current and determine the insulator deterioration from the measured value, or measure the insulator surface potential distribution and determine the insulator deterioration from the measured value. It is known.
When the insulator is healthy, the charging current value and the surface potential distribution are normal. However, when the insulator is deteriorated, the charging current value and the surface potential distribution become abnormal, and the following method is known. (Non-Patent Document 1).
Shingu Shinta, Saeko and Bushing, Ohmsha Showa 32, p252-258

(1)木柱や腕木に取付けたピン碍子では、交流用電流計の一端を接地し、他端を碍子のピンに接続することにより充電電流を測定でき、劣化碍子ではこの電流値が異常となるので、その測定結果からピン碍子の劣化を検出できる。
(2)火花間隙を隔てた両電極を碍子の両端にコンデンサを介して接続し、火花間隙の間隙調整によりその間隙に火花放電を発生させて碍子が分担している電圧の大小を測定する。劣化碍子では分担電圧が異常に小さくなるので、その測定結果から碍子の劣化を検知できる。
(3)碍子をコンデンサとみなし、碍子に適当なインダクタンスを分路することにより振動回路を構成し、インダクタンスの一端と碍子との接離により振動波を発生させこの振動波を測定する。この振動波は碍子の分担電圧と密接な関係があり、劣化碍子では、その分担電圧が異常に小さくなるので、その測定結果から碍子の劣化を検知できる。
(1) With a pin insulator attached to a wooden pole or brace, the charging current can be measured by grounding one end of the AC ammeter and connecting the other end to the pin of the insulator. Therefore, the deterioration of the pin insulator can be detected from the measurement result.
(2) Connect both electrodes separated by a spark gap to both ends of the insulator via a capacitor, and generate a spark discharge in the gap by adjusting the gap of the spark gap to measure the magnitude of the voltage shared by the insulator. Since the shared voltage becomes abnormally small in the deteriorated insulator, deterioration of the insulator can be detected from the measurement result.
(3) The insulator is regarded as a capacitor, and an oscillation circuit is configured by shunting an appropriate inductance to the insulator, and a vibration wave is generated by contact and separation between one end of the inductance and the insulator, and the vibration wave is measured. This vibration wave has a close relationship with the shared voltage of the insulator, and in the case of a deteriorated insulator, the shared voltage becomes abnormally small, so that deterioration of the insulator can be detected from the measurement result.

しかしながら、前記何れの方法でも、碍子と電流計やインダクタンスとの接続が必要であり、これらの接続作業やインダクタンスの接離を鉄塔や電柱上の高所で、しかも活線下で行わなければならないので危険である。
特に、(1)の方法では、木柱や腕木に取付けられた碍子に適用できても、鉄塔上に取付けられた碍子には適用できない不具合もある。
However, in any of the above methods, connection between the insulator and the ammeter and the inductance is necessary, and the connection work and the connection / separation of the inductance must be performed at a high place on the steel tower or the utility pole and under the live line. So it is dangerous.
In particular, in the method (1), even if it can be applied to an insulator attached to a wooden pole or arm, there is a problem that it cannot be applied to an insulator attached to a steel tower.

導体に対し一定の位置に磁気センサを設けて導体電流を測定することは常套手段である。
すなわち、図8の(イ)において、aを導体、sを導体から距離rを隔てた位置に配設した磁気センサとし、導体電流をI、磁気センサが感磁計測する磁界をHとすると、2πrH=Iが成立し、計測磁界Hから導体電流を求めることができる。
近来、高感度・高精度の磁界センサとして、磁気インピーダンス効果素子を用いた磁気インピーダンス効果型磁気センサが開発され、磁気センサに磁気インピーダンス効果型磁気センサを使用して電流を測定することも提案されている(例えば、特許文献1〜3)。
特開平2002−243766号公報 特開平2002−286764号公報 特開平2004−132790号公報
It is common practice to measure the conductor current by providing a magnetic sensor at a fixed position relative to the conductor.
That is, in FIG. 8A, when a is a conductor, s is a magnetic sensor arranged at a distance r from the conductor, the conductor current is I, and the magnetic field that the magnetic sensor measures magnetically is H. 2πrH = I is established, and the conductor current can be obtained from the measurement magnetic field H.
Recently, a magneto-impedance effect type magnetic sensor using a magneto-impedance effect element has been developed as a high-sensitivity and high-precision magnetic field sensor, and it has also been proposed to use a magneto-impedance effect type magnetic sensor as a magnetic sensor to measure current. (For example, Patent Documents 1 to 3).
Japanese Patent Laid-Open No. 2002-243766 Japanese Patent Application Laid-Open No. 2002-286664 Japanese Patent Laid-Open No. 2004-132790

磁気インピーダンス効果素子自体は、図2の(イ)に示すような感磁特性を呈し(Hexは軸方向磁界、Eoutは出力)、非線形・対称形であり、この特性を図2の(ニ)に示すような極性判別可能・線形とするために、例えばバイアス磁界と負帰還をかけることが知られ、磁気センサにこの極性判別可能・線形の磁気インピーダンス効果型磁気センサを使用して電流を測定することも提案されている(例えば、特許文献3)。
導体電流を測定するのに、2個の極性判別可能・線形の磁気インピーダンス効果型磁気センサを使用して電流を測定することも提案されている(例えば、特許文献1、2)。
図8の(ロ)において、aは導体を示している。s,s’は導体から等距離rで、かつ相互間の角度が2θの位置に配設した極性判別可能な磁気インピーダンス効果素子を示し、導体を中心とする放射方向に対し角度θの方向を感磁方向とするように配向してある。
図8の(ロ)において、各磁気インピーダンス効果型磁気センサが感磁する磁界Hyは絶対値が等しく、極性が逆であり、
│Hy│=Isinθ/2πr
で与えられる。
従って、両磁気センサの出力を差動増幅すれば、2│Hy│の検出出力が得られ、この検出値から導体電流Iを計測できる。
The magneto-impedance effect element itself exhibits a magnetosensitive characteristic as shown in FIG. 2 (a) (Hex is an axial magnetic field, Eout is an output), and is non-linear and symmetric. This characteristic is shown in FIG. For example, it is known to apply a bias magnetic field and negative feedback to make the polarity distinguishable and linear as shown in Fig. 1. Measure the current using this magnetic sensor with this polarity distinguishable and linear magnetoimpedance effect type magnetic sensor. It has also been proposed (for example, Patent Document 3).
In order to measure the conductor current, it has also been proposed to measure the current using two linearly distinguishable and linear magneto-impedance effect type magnetic sensors (for example, Patent Documents 1 and 2).
In FIG. 8B, a indicates a conductor. Reference numerals s and s ′ denote magneto-impedance effect elements that are equidistant from the conductor r and that are arranged at positions where the angle between them is 2θ. Oriented so as to have a magnetic sensitive direction.
In FIG. 8B, the magnetic field Hy that each magnetoimpedance effect type magnetic sensor senses has the same absolute value and the opposite polarity.
│Hy│ = Isinθ / 2πr
Given in.
Therefore, if the outputs of both magnetic sensors are differentially amplified, a detection output of 2 | Hy | is obtained, and the conductor current I can be measured from this detection value.

受電碍子等の表面に流れる漏洩電流は、電流がどのような経路で流れるのか不定である。
前記した電流測定法は、電流路と磁気インピーダンス効果型磁気センサとの相対的位置関係が既知であることを前提としており、受電碍子等の表面に流れる漏洩電流の検出・測定には適合しない。
The leakage current that flows on the surface of a power receiving insulator or the like is indeterminate in which path the current flows.
The above-described current measurement method is based on the premise that the relative positional relationship between the current path and the magnetoimpedance effect type magnetic sensor is known, and is not suitable for detection and measurement of leakage current flowing on the surface of a power receiving insulator or the like.

本発明の目的は、碍子等の絶縁体の表面を流れる漏洩電流のような面上を流れる電流を内・外ノイズの影響をよく排除して検出して碍子等の劣化を容易に検知できる電流センサを提供することにある。   The object of the present invention is to detect a current flowing on a surface such as a leakage current flowing on the surface of an insulator such as an insulator while eliminating the influence of internal and external noises, and easily detecting deterioration of the insulator. It is to provide a sensor.

請求項1に係る電流センサは、機器や設備の表面に流れる漏洩電流を、機器や設備の表面に当接して検出するセンサであり、並列配置で感磁方向が互いに逆の磁気インピーダンス効果素子を複数組、同一の被検出直線磁界の方向に対して素子の向きを組ごとに異ならせて基板上に配設し、この複数組の一方の感磁方向の磁気インピーダンス効果素子群及び他方の感磁方向の磁気インピーダンス効果素子群のそれぞれの直列接続素子の出力を検波するそれぞれの復調回路とこれら復調回路の検波出力を差動増幅する差動増幅器を設けたセンサにおいて、差動増幅器の出力のオフセットを入力信号としてそのオフセットを打ち消すための補償用信号を発生させこの補償用信号を前記増幅器に前記オフセットを消去するための入力として加える補正回路を設けたことを特徴とする。
請求項2に係る電流センサは、機器や設備の表面に流れる漏洩電流を、機器や設備の表面に当接して検出するセンサであり、並列配置で感磁方向が互いに逆の磁気インピーダンス効果素子を複数組、同一の被検出直線磁界の方向に対して素子の向きを組ごとに異ならせて基板上に配設し、この複数組の各組に対して一方の感磁方向の磁気インピーダンス効果素子及び他方の感磁方向の磁気インピーダンス効果素子のそれぞれに素子の出力を検波するそれぞれの復調回路とこれら復調回路の検波出力を差動増幅する差動増幅器を設け、これら差動増幅器の出力の総和を検出出力とするセンサにおいて、差動増幅器の出力のオフセットを入力信号としてそのオフセットを打ち消すための補償用信号を発生させこの補償用信号を前記増幅器に前記オフセットを消去するための入力として加える補正回路を設けたことを特徴とする。
請求項3に係る電流センサは、請求項1〜2何れかの電流センサにおいて、差動増幅器の両入力端子間に、差動増幅器出力のオフセットを入力信号としてそのオフセットを打ち消すための補償用信号を発生させこの補償用信号を前記増幅器の両入力端子間に前記オフセットを消去するための入力として加える補正回路を設けたことを特徴とする。
請求項4に係る電流センサは、請求項3の電流センサにおいて、補正回路に、増幅器または差動増幅器出力のオフセットが所定値に達したときに補償用出力を発生する手段を付設したことを特徴とする。
請求項5に係る電流センサは、請求項4の電流センサにおいて、増幅器または差動増幅器出力のオフセットをn倍(n>1)して補正回路に入力する手段を付設したことを特徴とする。
〔発明の効果〕
The current sensor according to claim 1 is a sensor that detects a leakage current flowing on the surface of the device or the equipment by contacting the surface of the device or the equipment, and includes a magneto-impedance effect element in which the magnetosensitive directions are opposite to each other in the parallel arrangement. Multiple sets are arranged on the substrate with the orientation of the elements different for each set with respect to the direction of the same detected linear magnetic field . In a sensor provided with a respective demodulating circuit for detecting the output of each series-connected element of the magneto-impedance effect element group in the magnetic direction and a differential amplifier for differentially amplifying the detected output of these demodulating circuits, the output of the differential amplifier Correction using offset as an input signal to generate a compensation signal for canceling the offset, and applying this compensation signal to the amplifier as an input for erasing the offset Characterized in that a road.
The current sensor according to claim 2 is a sensor that detects a leakage current flowing on the surface of the device or the equipment by contacting the surface of the device or the equipment. A plurality of sets of elements arranged in different directions in the direction of the same linear magnetic field to be detected are arranged on the substrate, and a magneto-impedance effect element having one magnetosensitive direction for each of the plurality of sets. And each of the magneto-impedance effect elements in the other magnetosensitive direction are provided with respective demodulating circuits for detecting the output of the elements and differential amplifiers for differentially amplifying the detected outputs of these demodulating circuits, and the sum of the outputs of these differential amplifiers Is used as a detection output, and an offset of the output of the differential amplifier is used as an input signal to generate a compensation signal for canceling the offset, and this compensation signal is sent to the amplifier. Characterized in that a correction circuit to apply as input for erasing the set.
Current sensor according to claim 3, in claim 1 or 2 something Re of the current sensor, between the two input terminals of the differential amplifier, for compensating for canceling the offset as an input signal the offset of the differential amplifier output A correction circuit for generating a signal and applying the compensation signal as an input for eliminating the offset between both input terminals of the amplifier is provided.
According to a fourth aspect of the present invention, in the current sensor of the third aspect , the correction circuit is provided with means for generating a compensation output when the offset of the amplifier or differential amplifier output reaches a predetermined value. And
According to a fifth aspect of the present invention, there is provided the current sensor according to the fourth aspect , further comprising means for multiplying the offset of the amplifier or differential amplifier output by n (n> 1) and inputting the offset to the correction circuit.
〔The invention's effect〕

電流により発生する磁界(信号)を磁気インピーダンス効果センサにより測定して電流を検出するのに、磁気インピーダンス効果素子を並列配置で感磁方向を逆方向とし、その磁気インピーダンス効果素子の出力を検波して得られる信号を差動増幅しているから、差動増幅に対し同相入力となる内部ノイズ(励磁電源回路や各検波回路のダイオード等の回路素子の温度変化等に起因して発生するノイズ)を打消し得、また地磁気成分等の外部ノイズは場所による変化が殆どなく、本件電流センサの位置を変えても実質的に変化しないことから容易に排除できる。また、差動増幅器の出力がオフセットしようとしても、調整回路によりそのオフセットが自動的に消去され、電流センサの移動中、温度や浮遊キャパシタンスが変動しても、検出出力変動として現れない。
更に、並列配置で感磁方向が逆方向の磁気インピーダンス効果素子の軸方向を配置ごとに異ならせることにより被検出電流の方向に電流センサの向きを整合させなくても電流を測定できる。
従って、受電のままで本発明に係る電流センサを碍子に接触させることにより碍子の充電電流や表面電流(漏れ電流)を容易に高精度で測定できる。
In order to detect the current by measuring the magnetic field (signal) generated by the current using a magneto-impedance effect sensor, the magneto-impedance effect element is arranged in parallel, the magnetic sensing direction is reversed, and the output of the magneto-impedance effect element is detected. Because the signal obtained by differential amplification is differentially amplified, internal noise that becomes an in-phase input for differential amplification (noise generated due to temperature changes in circuit elements such as the excitation power supply circuit and diodes in each detection circuit) The external noise such as the geomagnetic component hardly changes depending on the location and can be easily eliminated because it does not substantially change even if the position of the current sensor is changed. Further, even if the output of the differential amplifier is about to be offset, the offset is automatically erased by the adjustment circuit, and even if the temperature or the floating capacitance fluctuates during the movement of the current sensor, it does not appear as a detection output fluctuation.
Furthermore, the current can be measured without matching the direction of the current sensor with the direction of the current to be detected by changing the axial direction of the magneto-impedance effect element in which the magnetosensitive effect direction is opposite in the parallel arrangement for each arrangement.
Therefore, the charging current and surface current (leakage current) of the insulator can be easily measured with high accuracy by bringing the current sensor according to the present invention into contact with the insulator while receiving power.

図1は磁気インピーダンス効果素子を使用した磁気センサの基本的構成を示している。
図1において、1は磁気インピーダンス効果素子であり、自発磁化の方向がワイヤ周方向に対し互いに逆方向の磁区が交互に磁壁で隔てられた構成の外殻部を有する、零磁歪乃至は負磁歪のアモルファス合金ワイヤが使用される。かかる零磁歪乃至は負磁歪のアモルファス磁性ワイヤに高周波励磁電流を流したときに発生するワイヤ両端間出力電圧中のインダクタンス電圧分は、ワイヤの横断面内に生じる円周方向磁束によって上記の円周方向に易磁化性の外殻部が円周方向に磁化されることに起因して発生する。従って、周方向透磁率μθは同外殻部の円周方向の磁化に依存する。而るに、この通電中のアモルファス磁性ワイヤの軸方向に被検出磁界を作用させると、上記通電による円周方向磁束と被検出磁界磁束との合成により、上記円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずれ、それだけ円周方向への磁化が生じ難くなり、上記周方向透磁率μθが変化し、上記インダクタンス電圧分が変動することになる。この変動現象は磁気インダクタンス効果と称され、これは上記高周波励磁電流(搬送波)が被検出波(信号波)で変調される現象ということができる。更に、上記通電電流の周波数がMHzオ−ダになると、高周波表皮効果が大きく現れ、表皮深さδ=(2ρ/wμθ1/2(μθは前記した通り円周方向透磁率、ρは電気抵抗率、wは角周波数をそれぞれ示す)がμθにより変化し、このμθが前記した通り、被検出磁界によって変化するので、ワイヤ両端間出力電圧中の抵抗電圧分も被検出磁界で変動するようになる。この変動現象は磁気インピーダンス効果と称され、これは上記高周波励磁電流(搬送波)が被検出波(信号波)で変調される現象ということができる。
FIG. 1 shows a basic configuration of a magnetic sensor using a magneto-impedance effect element.
In FIG. 1, reference numeral 1 denotes a magneto-impedance effect element, which has a zero magnetostriction or a negative magnetostriction having an outer shell portion in which magnetic domains whose spontaneous magnetization directions are opposite to each other in the circumferential direction of the wire are alternately separated by domain walls. Amorphous alloy wire is used. The inductance voltage component in the output voltage between both ends of the wire generated when a high-frequency excitation current is passed through an amorphous magnetic wire having zero magnetostriction or negative magnetostriction is obtained by the circumferential magnetic flux generated in the cross section of the wire. This occurs due to the magnetization of the easily magnetizable outer shell in the circumferential direction. Therefore, the circumferential magnetic permeability mu theta depends on the circumferential direction of magnetization of Dosotokara portion. Thus, when a magnetic field to be detected is applied in the axial direction of the amorphous magnetic wire that is being energized, the circumferential magnetic flux and the magnetic field magnetic flux to be detected are easily magnetized by the synthesis of the magnetic flux to be detected and the magnetic field magnetic flux to be detected. shift direction of the magnetic flux acting on the outer shell portion from the circumferential direction, correspondingly hardly occur magnetization in the circumferential direction, the circumferential permeability mu theta changes, the inductance voltage content will vary. This fluctuation phenomenon is called a magnetic inductance effect, which can be said to be a phenomenon in which the high-frequency excitation current (carrier wave) is modulated by a detected wave (signal wave). Further, when the frequency of the energization current is in the order of MHz, a high-frequency skin effect appears greatly, and the skin depth δ = (2ρ / wμ θ ) 1/2θ is the circumferential permeability, ρ as described above. electrical resistivity, w is shows the angular frequency, respectively) is changed by mu theta, as this μθ is the so changed by the detected magnetic field, the resistance voltage of the in wire ends between the output voltage at the detection field It will fluctuate. This fluctuation phenomenon is called a magneto-impedance effect, which can be said to be a phenomenon in which the high-frequency excitation current (carrier wave) is modulated by a detected wave (signal wave).

図1において、2は磁気インピーダンス効果素子に高周波励磁電流を加えるための高周波電源、3は磁気インピーダンス効果素子の軸方向に作用する被検出磁界(信号波)で前記高周波励磁電流(搬送波)を変調させた被変調波を復調する復調回路、4は復調波を増幅する増幅回路、5は出力端、6は負帰還用コイル、7はバイアス磁界用コイルである。 磁気インピーダンス効果素子1には、零磁歪乃至は負磁歪のアモルファスワイヤの外、アモルファスリボン、アモルファススパッタ膜等も使用できる。   In FIG. 1, 2 is a high-frequency power source for applying a high-frequency excitation current to the magneto-impedance effect element, and 3 is a modulation of the high-frequency excitation current (carrier wave) by a detected magnetic field (signal wave) acting in the axial direction of the magneto-impedance effect element. Demodulator circuit for demodulating the modulated wave thus generated, 4 an amplifier circuit for amplifying the demodulated wave, 5 an output terminal, 6 a negative feedback coil, and 7 a bias magnetic field coil. For the magneto-impedance effect element 1, an amorphous ribbon, an amorphous sputtered film, or the like can be used in addition to zero magnetostrictive or negative magnetostrictive amorphous wires.

磁気インピーダンス効果素子1においては、前記した通り励磁電流に基づく円周方向磁束と被検出磁界による軸方向磁束との合成により、円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずらされるために、周方向透磁率μθが変化し、インダクタンスが変動され、この円周方向透磁率μθの高周波表皮効果の表皮深さの変化でインピーダンスが変動される。従って、被検出磁界の±により上記合成磁界による周方向ずれφも±φになるが、周方向の磁界の減少倍率cos(±φ)は変わらず、従ってμθの減少度は被検出磁界の方向の正負によっては変化されない。従って、被検出磁界−出力特性は、図2の(イ)のように被検出磁界をx軸に、出力をy軸にとると、y軸に対してほぼ左右対称となる。この被検出磁界−出力特性は非線形である。非線形特性では、高感度の測定が困難である。そこで、負帰還用コイルで負帰還をかけて図2の(ロ)に示すように出力特性を直線化している。図2の(ロ)において、Δwは、負帰還無しのときの利得Aが非常に大きく帰還率βのみにより利得が定まるリニア範囲である。しかし、この出力特性では、被検出磁界の極性判別を行ない得ないので、バイアス用コイル7でバイアス磁界をかけ、図2の(ハ)に示すように極性判別可能としている。すなわち、図2の(ロ)の特性を、バイアス磁界によりx軸のマイナス方向に移動させ、被検出磁界の最大範囲−Hmax〜+Hmaxを単斜め線領域の範囲内に納めている。更に、図2の(ニ)に示すように0点調整により原点を通る直線特性(勾配係数kは変わらない)としている。従って、図2の(ニ)において被検出磁界を+Heとすると出力が+Eoとなり、被検出磁界を−Heとすると出力が−Eoとなって被検出磁界を極性判別のもとで正確に測定できる。
図2の(ニ)から理解できる通り、磁気インピーダンス効果素子の感磁方向が逆になれば、出力が逆極性になる。
In the magneto-impedance effect element 1, as described above, the direction of the magnetic flux acting on the outer shell portion that is easily magnetized in the circumferential direction by combining the circumferential magnetic flux based on the excitation current and the axial magnetic flux due to the detected magnetic field. There to be offset from the circumferential direction, the circumferential direction permeability μθ changes, be varied inductance, impedance is varied by a change in the skin depth of the radio frequency skin effect of the circumferential permeability mu theta. Accordingly, although even the circumferential direction positional shift phi by the synthesized magnetic field by ± of the detected magnetic field becomes ± phi, the circumferential direction of the magnetic field reduction ratio cos (± phi) is unchanged, the degree of reduction in thus mu theta is of the detected magnetic field It does not change depending on the direction. Accordingly, the detected magnetic field-output characteristics are substantially bilaterally symmetrical with respect to the y axis when the detected magnetic field is taken on the x axis and the output is taken on the y axis as shown in FIG. This detected magnetic field-output characteristic is non-linear. With non-linear characteristics, it is difficult to measure with high sensitivity. Therefore, negative feedback is applied by a negative feedback coil to linearize the output characteristics as shown in FIG. In FIG. 2B, Δw is a linear range in which the gain A without negative feedback is very large and the gain is determined only by the feedback rate β. However, since the polarity of the detected magnetic field cannot be determined with this output characteristic, the bias magnetic field is applied by the bias coil 7 so that the polarity can be determined as shown in FIG. That is, the characteristic of (b) in FIG. 2 is moved in the negative direction of the x-axis by the bias magnetic field, and the maximum range −Hmax to + Hmax of the detected magnetic field is within the range of the single oblique line region. Further, as shown in FIG. 2D, a linear characteristic passing through the origin by zero point adjustment (the gradient coefficient k does not change). Therefore, in FIG. 2D, when the detected magnetic field is + He, the output is + Eo, and when the detected magnetic field is -He, the output is -Eo, and the detected magnetic field can be accurately measured based on polarity discrimination. .
As can be understood from FIG. 2D, when the magnetosensitive effect direction of the magneto-impedance effect element is reversed, the output has a reverse polarity.

上記磁気インピーダンス効果素子としては、遷移金属と非金属の合金で非金属が10〜30原子%組成のもの、特に遷移金属と非金属との合金で非金属量が10〜30原子%を占め、遷移金属がFeとCoで非金属がBとSiであるかまたは遷移金属がFeで非金属がBとSiである組成のものを使用することができ、例えば、組成Co70.515Si10Fe4.5、長さ2000μm〜6000μm、外径30μm〜50μmφのものを使用できる。 As the magneto-impedance effect element, an alloy of transition metal and non-metal having a non-metal composition of 10 to 30 atomic%, particularly an alloy of transition metal and non-metal occupying a non-metal amount of 10 to 30 atomic%, A composition in which the transition metal is Fe and Co and the nonmetal is B and Si or the transition metal is Fe and the nonmetal is B and Si can be used. For example, the composition Co 70.5 B 15 Si 10 Fe 4.5 , length 2000 μm to 6000 μm, outer diameter 30 μm to 50 μmφ can be used.

上記において、高周波励磁電流には、例えば連続正弦波、パルス波、三角波等の通常の高周波を使用でき、高周波励磁電流源としては、例えばハートレー発振回路、コルピッツ発振回路、コレクタ同調発振回路、ベース同調発振回路のような通常の発振回路の外、水晶発振器の矩形波出力を直流分カットコンデンサを経て積分回路で積分しこの積分出力の三角波を増幅回路で増幅する三角波発生器、CMOS−ICを発振部として使用した三角波発生器等を使用できる。   In the above, normal high frequency such as continuous sine wave, pulse wave, triangular wave, etc. can be used as the high frequency excitation current, and examples of the high frequency excitation current source include Hartley oscillation circuit, Colpitts oscillation circuit, collector tuned oscillation circuit, base tuning In addition to a normal oscillation circuit such as an oscillation circuit, a square wave generator that integrates the square wave output of a crystal oscillator via a DC component cut-off capacitor with an integration circuit and amplifies the triangular wave of this integration output with an amplification circuit, and oscillates a CMOS-IC The triangular wave generator etc. which were used as a part can be used.

上記の復調回路としては、例えば被変調波を演算増幅回路で半波整流しこの半波整流波を並列RC回路またはRCローパスフィルターで処理して半波整流波の包絡線出力を得る構成、被変調波をダイオードで半波整流しこの半波整流波を並列RC回路またはRCローパスフィルターで処理して半波整流波の包絡線出力を得る構成等を使用できる。
また、被変調波(周波数fs)に同調させた周波数fsの方形波を被変調波に乗算して信号波をサンプリングする同調検波を使用することができる。
上記の実施例では、被変調波の復調によって被検出磁界を取り出しているが、これに限定されず、磁気インピーダンス効果素子に作用する被検出磁界(信号波)で変調された高周波励磁電流波(搬送波)から被検出磁界を検波し得るもので適宜の検波手段を使用できる。
The demodulating circuit includes, for example, a configuration in which a modulated wave is half-wave rectified by an operational amplifier circuit, and this half-wave rectified wave is processed by a parallel RC circuit or an RC low-pass filter to obtain an envelope output of the half-wave rectified wave. A configuration in which the modulated wave is half-wave rectified by a diode and the half-wave rectified wave is processed by a parallel RC circuit or an RC low-pass filter to obtain an envelope output of the half-wave rectified wave can be used.
Further, it is possible to use tuning detection in which a signal wave is sampled by multiplying the modulated wave by a square wave having a frequency fs tuned to the modulated wave (frequency fs).
In the above-described embodiment, the detected magnetic field is extracted by demodulating the modulated wave. However, the present invention is not limited to this, and a high-frequency excitation current wave modulated by the detected magnetic field (signal wave) acting on the magneto-impedance effect element ( An appropriate detection means can be used since the detected magnetic field can be detected from a carrier wave.

前記負帰還用コイル及びバイアス磁界用コイルは磁気インピーダンス効果素子に巻き付けることができる。また、図3に示すように磁気インピーダンス効果素子とループ磁気回路を構成する鉄芯に負帰還用コイル及びバイアス磁界用コイルを巻き付けることもできる。 図3の(イ)は鉄芯付き磁気インピーダンス効果ユニットの一例を示す側面図、図3の(ロ)は同じく底面図、図3の(ハ)は図3の(ロ)におけるハ−ハ断面図である。
図3において、100は基板チップであり、例えばセラミックス板を使用できる。101は基板片の片面に設けた電極であり、磁気インピーダンス効果素子接続用突部102を備えている。この電極は導電ペースト、例えば銀ペーストの印刷・焼付けにより設けることができる。1xは電極101,101の突部102,102間にはんだ付けや溶接により接続した磁気インピーダンス効果素子であり、前記した通り零磁歪乃至負磁歪のアモルファスワイヤ、アモルファスリボン、スパッタ膜等を使用できる。103はC型鉄芯、6xはC型鉄芯に巻装した負帰還用コイル、7xは同じくバイアス磁界用コイルであり、磁気インピーダンス効果素子1xとC型鉄芯103とでループ磁気回路を構成するように、C型鉄芯103の両端を基板片100の他面に接着剤等で固定してある。鉄芯材料としては、残留磁束密度の小さい磁性体であればよく、例えば、パーマロイ、フェライト、鉄、アモルファス磁性合金の他、磁性体粉末混合プラスチック等を挙げることができる。
The negative feedback coil and the bias magnetic field coil can be wound around a magneto-impedance effect element. Further, as shown in FIG. 3, a negative feedback coil and a bias magnetic field coil can be wound around an iron core constituting a magneto-impedance effect element and a loop magnetic circuit. 3A is a side view showing an example of a magnetic impedance effect unit with an iron core, FIG. 3B is a bottom view, and FIG. 3C is a cross-sectional view of FIG. FIG.
In FIG. 3, reference numeral 100 denotes a substrate chip, and for example, a ceramic plate can be used. Reference numeral 101 denotes an electrode provided on one side of the substrate piece, and includes a magneto-impedance effect element connecting projection 102. This electrode can be provided by printing and baking a conductive paste, for example, a silver paste. 1x is a magneto-impedance effect element connected between the protrusions 102 and 102 of the electrodes 101 and 101 by soldering or welding, and an amorphous wire, amorphous ribbon, sputtered film, or the like having zero or negative magnetostriction can be used as described above. 103 is a C-type iron core, 6x is a negative feedback coil wound around the C-type iron core, 7x is also a bias magnetic field coil, and the magneto-impedance effect element 1x and the C-type iron core 103 constitute a loop magnetic circuit. Thus, both ends of the C-shaped iron core 103 are fixed to the other surface of the substrate piece 100 with an adhesive or the like. The iron core material may be a magnetic material having a small residual magnetic flux density. Examples thereof include permalloy, ferrite, iron, amorphous magnetic alloy, magnetic powder mixed plastic, and the like.

図4−1は請求項1に係る電流センサの一実施形態における磁気インピーダンス効果素子の配置状態を示し、図4−2は同実施形態の回路図を示している。
図4−1において、1ma,1mb(m=1〜n)は互いに並列配置の磁気インピーダンス効果素子の組であり、感磁方向を互いに逆方向とし、配置ごとに磁気インピーダンス効果素子の軸方向の向きを異ならしめてある。
図4−1に示す例では、磁気インピーダンス効果素子の組数を4組(m=1〜4)とし、m=1の組を基準として他の組の磁気インピーダンス効果素子の向きを+45°、90°、135°の向きとしてある。
図4−2において、Cm(m=1〜n)は一組の磁気インピーダンス効果素子に対するセンサユニットを示し、各磁気インピーダンス効果素子1ma,1mb(m=1〜n)の出力端に復調回路3ma,3mb(m=1〜n)を接続し、これら復調回路の出力端を演算差動増幅回路40mに接続し、この増幅回路40m(m=1〜n)の出力を各磁気インピーダンス効果素子1ma,1mb(m=1〜n)に各負帰還用コイル6ma,6mb(m=1〜n)を経て負帰還させ、各磁気インピーダンス効果素子1ma,1mb(m=1〜n)にその感磁方向に応じ+Vccによりバイアス磁界用コイル7ma,7mb(m=1〜n)を介してバイアス磁界をかけている。
図4−2に示す実施例では、n箇のセンサユニットCm(m=1〜n)の差動増幅回路40m(m=1〜n)の出力端を加算器50等により総括して検出端とし、全センサユニット(m=1〜n)に共通の励磁用電源回路2を接続している。
FIG. 4-1 shows the arrangement state of the magneto-impedance effect element in one embodiment of the current sensor according to claim 1, and FIG. 4-2 shows a circuit diagram of the embodiment.
4A, 1 ma and 1 mb (m = 1 to n) are sets of magneto-impedance effect elements arranged in parallel to each other, and the magnetosensitive directions are opposite to each other, and the axial direction of the magneto-impedance effect element is set for each arrangement. The direction is different.
In the example illustrated in FIG. 4A, the number of magneto-impedance effect elements is set to 4 (m = 1 to 4), and the direction of other sets of magneto-impedance effect elements is + 45 ° with respect to the set of m = 1. The orientations are 90 ° and 135 °.
In FIG. 4B, Cm (m = 1 to n) represents a sensor unit for a set of magneto-impedance effect elements, and a demodulator circuit 3ma is provided at the output terminal of each of the magneto-impedance effect elements 1ma and 1mb (m = 1 to n). , 3 mb (m = 1 to n) are connected, and the output terminals of these demodulation circuits are connected to the operational differential amplifier circuit 40m, and the output of the amplifier circuit 40m (m = 1 to n) is connected to each magneto-impedance effect element 1ma. , 1 mb (m = 1 to n) through negative feedback coils 6 ma and 6 mb (m = 1 to n) and negative feedback to each magnetoimpedance effect element 1 ma, 1 mb (m = 1 to n). A bias magnetic field is applied via bias magnetic field coils 7ma and 7mb (m = 1 to n) by + Vcc depending on the direction.
In the embodiment shown in FIG. 4B, the output terminals of the differential amplifier circuits 40m (m = 1 to n) of the n sensor units Cm (m = 1 to n) are integrated by the adder 50 or the like to be the detection terminals. A common excitation power supply circuit 2 is connected to all sensor units (m = 1 to n).

図4−1〜図4−2において、磁気インピーダンス効果素子1ma,1mbの軸方向に作用する磁界Hに対し磁気インピーダンス効果素子1maと磁気インピーダンス効果素子1mbの感磁方向が逆であり、これらの各素子1ma,1mbの出力の同調回路3ma,3mbによる復調波(信号波)が差動増幅されるから、演算差動増幅回路40mの出力Emはk〔H−(−H)〕となり(kは図2の(ハ)における勾配係数)、
Em=2kH
で与えられる。
In FIGS. 4-1 to 4-2, the magnetosensitive effects of the magnetic impedance effect element 1ma and the magnetic impedance effect element 1mb are opposite to the magnetic field H acting in the axial direction of the magnetoimpedance effect elements 1ma and 1mb. Since the demodulated waves (signal waves) from the tuning circuits 3ma and 3mb of the outputs of the elements 1ma and 1mb are differentially amplified, the output Em of the operational differential amplifier circuit 40m is k [H − (− H)] (k Is the slope coefficient in (c) of FIG.
Em = 2kH
Given in.

図4−1〜図4−2において、検出しようとする電流に基づく磁界の方向が磁気インピーダンス効果素子1ma,1mbの感磁方向と同方向のHmであるとすると、磁気インピーダンス効果素子1ma,1mbに基づく検出出力2kHmが最大になるが、他の磁気インピーダンス効果素子1xa,1xb(x≠m)にも前記磁界Hmに対するその磁気インピーダンス効果素子1xa,1xb(x≠m)の軸方向成分(感磁方向成分)Hx(x≠m)による検出出力Exが発生する。
すなわち、磁気インピーダンス効果素子1ma,1mbと他の磁気インピーダンス効果素子1xa,1xb(x≠m)との間の角度をxとすると、磁気インピーダンス効果素子1xa,1xb(x≠m)の軸方向成分(感磁方向成分)Hx(x≠m)は、Hx=Hmcosxで与えられ、このHxにより検出出力Ex=2kHmcosxが発生する。
従って、総括検出出力Etは
Et=2kHm+Σ2kHmcosx
で与えられ、cosxが負になる向きの磁気インピーダンス効果素子は総括検出出力Etを減じるようになる。
しかしながら、並列配置で感磁方向が逆の磁気インピーダンス効果素子の組数nや磁気インピーダンス効果素子の組の配置ごとの向きxの調整により、前記総括検出出力Etを充分に大きくでき、被検出電流の方向が未知でも充分にその電流を検出できる。
In FIGS. 4-1 to 4-2, when the direction of the magnetic field based on the current to be detected is Hm in the same direction as the magnetosensitive direction of the magnetoimpedance effect elements 1ma and 1mb, the magnetoimpedance effect elements 1ma and 1mb are used. The detection output 2kHm based on the magnetic field is maximized, but the other magnetoimpedance effect elements 1xa and 1xb (x ≠ m) also have axial components (sensations) of the magnetoimpedance effect elements 1xa and 1xb (x ≠ m) with respect to the magnetic field Hm. A detection output Ex is generated by the magnetic direction component) Hx (x ≠ m).
That is, if the angle between the magneto-impedance effect elements 1ma and 1mb and the other magneto-impedance effect elements 1xa and 1xb (x ≠ m) is x, the axial components of the magneto-impedance effect elements 1xa and 1xb (x ≠ m) (Magnetic sensing direction component) Hx (x ≠ m) is given by Hx = Hmcosx, and this Hx generates a detection output Ex = 2 kHmcosx.
Therefore, the overall detection output Et is Et = 2 kHz + Σ2 kHz mccosx
And the magneto-impedance effect element in the direction in which cosx becomes negative decreases the overall detection output Et.
However, the overall detection output Et can be made sufficiently large by adjusting the number n of magneto-impedance effect elements in which the magnetic sensing direction is reversed in the parallel arrangement and the direction x for each arrangement of the magneto-impedance effect elements. Even if the direction of is unknown, the current can be detected sufficiently.

前記のセンサユニットにおいて、励磁電源回路2や各検波回路3ma、3mbのダイオード等の回路素子の温度変化等に起因して発生するノイズは差動増幅回路40mに対し同相入力となるから打消し得る。
また、地磁気成分等の外部ノイズは場所による変化が殆どないから、本電流センサを碍子から充分に離隔して実質的に碍子電流に基づく磁界Hmが実質的に0の位置で前記の総括出力Eoutを測定すれば、その測定値が実質的に外部ノイズによる出力となり、外部ノイズの影響も排除できる(外部ノイズによる出力のもとで、図2の(ニ)の零点調整を行う)。
In the sensor unit described above, noise generated due to temperature changes of circuit elements such as the diodes of the excitation power supply circuit 2 and the detection circuits 3ma and 3mb can be canceled because they are in-phase input to the differential amplifier circuit 40m. .
Since the external noise such as the geomagnetic component hardly changes depending on the location, the current output is sufficiently separated from the insulator, and the overall output Eout is substantially at a position where the magnetic field Hm based on the insulator current is substantially zero. , The measured value becomes an output due to the external noise substantially, and the influence of the external noise can be eliminated (the zero point adjustment of (D) in FIG. 2 is performed under the output due to the external noise).

図5は請求項2に係る電流センサの一実施形態を示す回路図であり、前記図4−1に示すような並列配置で感磁方向が逆方向の磁気インピーダンス効果素子1ma,1mb(m=1〜n)のうち、一方の磁気インピーダンス効果素子群11a〜1na及び他方の磁気インピーダンス効果素子群11b〜1nbのそれぞれの総括出力端にそれぞれ復調回路3a,3bを接続し、両復調回路3a,3bの出力端を演算差動増幅回路4に接続し、その増幅出力を各磁気インピーダンス効果素子群11a〜1na、11b〜1nbに各負帰還用コイル61a〜6na、61b〜6nbを経て負帰還させ、各磁気インピーダンス効果素子群11a〜1na,11b〜1nbにその感磁方向に応じた極性で+Vcc電源によりバイアス磁界用コイル71a〜7na、71b〜7nbを介してバイアスをかけてある。2は励磁用電源回路である。   FIG. 5 is a circuit diagram showing an embodiment of a current sensor according to claim 2, and magneto-impedance effect elements 1 ma and 1 mb (m = m = m) having a parallel arrangement as shown in FIG. 1 to n), demodulating circuits 3a and 3b are connected to the respective output terminals of one of the magneto-impedance effect element groups 11a to 1na and the other magneto-impedance effect element groups 11b to 1nb, respectively. The output terminal of 3b is connected to the operational differential amplifier circuit 4, and the amplified output is negatively fed back to each of the magneto-impedance effect element groups 11a to 1na and 11b to 1nb via the negative feedback coils 61a to 6na and 61b to 6nb. Each of the magneto-impedance effect element groups 11a to 1na and 11b to 1nb has a bias magnetic field coil 71a by a + Vcc power supply with a polarity corresponding to the magnetic sensing direction. 7na, it is biased through the 71b~7nb. Reference numeral 2 denotes an excitation power supply circuit.

本発明に係る電流センサにおいては、複数組の並列配置で感磁方向が逆方向の磁気インピーダンス効果素子群、復調回路、演算差動増幅回路、励磁電流源回路、演算差動増幅回路や励磁電流源回路やバイアス磁界用コイルに対する+Vcc電源を同一の基板上に搭載することができる。
また、複数組の並列配置で感磁方向が逆方向の磁気インピーダンス効果素子群を搭載する基板と、復調回路、演算差動増幅回路、励磁電流源回路、演算差動増幅回路や励磁電流源回路やバイアス磁界用コイルに対する+Vcc電源を搭載する基板とを別体とし、両基板間を可撓性電線で連結することもできる。
特に、受電中の碍子に流れる電流を検出する場合は、後者の構成とし、複数組の並列配置で感磁方向が逆方向の磁気インピーダンス効果素子群を搭載した基板を絶縁竿の先端に取付け、磁気インピーダンス効果素子群による碍子表面のスキャンニングを絶縁竿を取手として行うことが安全である。
In the current sensor according to the present invention, the magneto-impedance effect element group, the demodulating circuit, the operational differential amplifier circuit, the exciting current source circuit, the operational differential amplifier circuit, the exciting current, and the like, which are arranged in parallel in a plurality of sets and in opposite directions. The + Vcc power source for the source circuit and the bias magnetic field coil can be mounted on the same substrate.
In addition, a board on which a group of magneto-impedance effect elements having opposite directions of magnetic sensing are mounted in parallel arrangement, a demodulation circuit, an operational differential amplifier circuit, an excitation current source circuit, an arithmetic differential amplifier circuit, and an excitation current source circuit Alternatively, the substrate on which the + Vcc power supply for the bias magnetic field coil is mounted can be separated and the two substrates can be connected by a flexible wire.
In particular, when detecting the current flowing through the insulator during power reception, the latter configuration is used, and a substrate mounted with a plurality of sets of parallel arrangements of magneto-impedance effect element groups in which the magnetosensitive direction is reverse is attached to the tip of the insulating cage, It is safe to perform the insulator surface scanning by the magneto-impedance effect element group using the insulator as a handle.

上記電流センサの走行中、周囲温度の変動が顕著であったり、浮遊キャパシタンスの変動が顕著であると、差動増幅器の出力にオフセット変動が生じ検出出力が不安定化する。
図6−1a及び図6−1bは請求項6に係る電流センサを示し、図4−2及び図5に示した電流センサに対し、差動増幅器の出力のオフセット変動を抑制して検出出力の安定化を図っている。
図6−1a及び図6−1bにおいて、400は出力補正回路を示し、他の構成は図4−2及び図5に示した電流センサに同じである。出力補正回路400は、演算作動増幅器4の出力のオフセットを入力信号としてそのオフセットを打ち消すための補償用信号を発生させこの補償用信号を前記作動増幅器に前記オフセットを消去するための入力として作動増幅器4のオフセット調整端子に加え、前記オフセットを消去するものである。
If the ambient temperature fluctuates significantly or the stray capacitance fluctuates significantly while the current sensor is running, offset fluctuation occurs in the output of the differential amplifier and the detection output becomes unstable.
FIGS. 6-1a and 6-1b show current sensors according to claim 6. In contrast to the current sensors shown in FIGS. 4-2 and 5, the offset fluctuation of the output of the differential amplifier is suppressed, and the detection output is reduced. Stabilization is planned.
In FIGS. 6-1a and 6-1b, reference numeral 400 denotes an output correction circuit, and other configurations are the same as those of the current sensor shown in FIGS. The output correction circuit 400 uses the offset of the output of the operational operational amplifier 4 as an input signal, generates a compensation signal for canceling the offset, and uses the compensation signal as an input for erasing the offset in the operational amplifier. In addition to the offset adjustment terminal 4, the offset is erased.

図6−2は出力補正回路の一例を示し、演算差動増幅器の差出力と入力とを比較してオフセットを検出し、オフセットが正(負)であると、電子ボリュームのスイッチSW−1、SW−2、……(SW+1、SW+2、……)が制御ICで順次にオン・オフされて負(正)の出力電圧が演算差動増幅器のオフセット調整端子に送入されて増幅器出力のオフセットが減じられ、その増幅器出力のオフセットが0になると、その時のスイッチ状態が保持される。
演算差動増幅器の出力のオフセットを所定の範囲、例えば−1v〜+1vの範囲に納めるようにしてもよく、この場合、増幅器出力のオフセットが−1vまたは+1vを越えると、電子ボリュームが操作される。
更に、ゲインが1以上、例えば2倍のバッファを制御ICに組み込んで±0.5vを越えると電子ボリュームが操作されるようにして演算差動増幅器の出力のオフセットを−0.5v〜+0.5vの範囲に納めるようにすることもできる。
FIG. 6B shows an example of the output correction circuit. The difference output and the input of the operational differential amplifier are compared to detect the offset. If the offset is positive (negative), the electronic volume switch SW −1 , SW −2 ,... (SW +1 , SW +2 ,...) Are sequentially turned on / off by the control IC, and a negative (positive) output voltage is sent to the offset adjustment terminal of the operational differential amplifier to output the amplifier. When the offset of the amplifier is reduced and the offset of the amplifier output becomes zero, the current switch state is maintained.
The offset of the output of the operational differential amplifier may be set within a predetermined range, for example, a range of -1v to + 1v. In this case, when the offset of the amplifier output exceeds -1v or + 1v, the electronic volume is manipulated. .
Furthermore, when a buffer having a gain of 1 or more, for example, 2 times, is incorporated in the control IC and exceeds ± 0.5 V, the electronic volume is operated so that the offset of the output of the operational differential amplifier is −0.5 V to +0. It can also be set within the range of 5v.

図7−1a及び図7−1bは請求項7に係る電流センサを示し、図4−2及び図5に示した電流センサに対し、演算差動増幅器4の両入力端子間に出力補正回路400を接続し、演算差動増幅器4の出力のオフセットを入力信号としてそのオフセットを打ち消すための補償用信号を発生させこの補償用信号を前記増幅器の両入力端子間に前記オフセットを消去するための入力として加えている。     FIGS. 7-1a and 7-1b show a current sensor according to claim 7. The output correction circuit 400 is connected between both input terminals of the operational differential amplifier 4 with respect to the current sensor shown in FIGS. , And a compensation signal for canceling the offset is generated using the offset of the output of the operational differential amplifier 4 as an input signal, and this compensation signal is input to cancel the offset between the input terminals of the amplifier. Add as.

図7−2の(イ)はその出力補正回路の一例を示し、差動増幅器の出力と差動増幅器の差入力とを比較してオフセットを検出し、そのオフセットを図7−2の(ロ)に示すボリューム操作により0にすることを、そのオフセット値を入力信号として制御ICで電子ボリュームのスイッチSW−0、SW−1、SW−2、……、SW−0、SW+1、SW+2、……を操作させることにより行うものである。
前記と同様に演算差動増幅器の出力のオフセットを所定の範囲、例えば−1v〜+1vの範囲に納めるようにしてもよく、この場合は、増幅器出力のオフセットが−1vまたは+1vを越えると、電子ボリュームが操作される。この場合、ゲインが1以上、例えば2倍のバッファを制御ICに組み込んで±0.5vを越えると電子ボリュームが操作されるようにして演算差動増幅器の出力のオフセットを−0.5v〜+0.5vの範囲に納めるようにすることもできる。
FIG. 7-2 (a) shows an example of the output correction circuit. The offset of the differential amplifier is compared with the difference input of the differential amplifier to detect the offset, and the offset is shown in FIG. ) Is set to 0 by the volume operation shown in FIG. 4B, and the offset value is used as an input signal to control the electronic volume switches SW- 0 , SW- 1 , SW- 2 ,..., SW- 0 , SW + 1 , SW + 2 This is done by operating.
Similarly to the above, the offset of the output of the operational differential amplifier may be set within a predetermined range, for example, the range of -1v to + 1v. In this case, if the offset of the amplifier output exceeds -1v or + 1v, Volume is manipulated. In this case, the offset of the output of the operational differential amplifier is set to −0.5v to +0 so that the electronic volume is manipulated when a gain of 1 or more, for example, a double buffer is incorporated in the control IC and exceeds ± 0.5v. It is also possible to fit within the range of .5v.

本発明に係る電流センサにより、碍子に流れる電流を測定しその測定結果が異常であるときに碍子劣化と判定して碍子劣化を検出することができる。
また、地中埋設金属の電食原因となる電気鉄道の迷走電流の測定にも利用できる。
更に、金属パイプに流した電流の密度分布が金属パイプ内面に発生した亀裂、減肉のために変化し、その電流に基づく磁界の分布に変化を生じることから、その磁界分布の変化を測定して金属パイプ内面の亀裂、減肉の程度を判定するのにも利用できる。
With the current sensor according to the present invention, when the current flowing through the insulator is measured and the measurement result is abnormal, it is determined that the insulator has deteriorated, and the insulator deterioration can be detected.
It can also be used to measure stray currents in electric railways that cause electrical corrosion of underground metal.
In addition, the density distribution of the current flowing through the metal pipe changes due to cracks and thinning on the inner surface of the metal pipe, and changes in the magnetic field distribution based on the current. It can also be used to determine the degree of cracking and thinning of the inner surface of a metal pipe.

磁気インピーダンス効果素子を使用した磁気センサの回路構成を示す図面である。It is drawing which shows the circuit structure of the magnetic sensor using a magneto-impedance effect element. 磁気インピーダンス効果素子を使用した磁気センサの出力特性を示す図面である。It is drawing which shows the output characteristic of the magnetic sensor which uses a magneto-impedance effect element. 磁気インピーダンス効果素子を使用した磁気センサの素子ユニットを示す図面であるIt is drawing which shows the element unit of the magnetic sensor using a magneto-impedance effect element. 本発明に係る電流センサの磁気インピーダンス効果素子の配置例を示す回路図である。It is a circuit diagram which shows the example of arrangement | positioning of the magneto-impedance effect element of the current sensor which concerns on this invention . 本発明に係る電流センサの回路構成を示す図面である。It is drawing which shows the circuit structure of the current sensor which concerns on this invention. 本発明に係る上記とは別の電流のセンサの回路構成を示す図面である。It is drawing which shows the circuit structure of the sensor of the electric current different from the above which concerns on this invention . 本発明に係る上記と別の電流センサの一実施例を示す図面である。It is drawing which shows one Example of another current sensor which concerns on this invention . 本発明に係る上記と別の電流センサの実施例を示す図面である。It is drawing which shows the Example of another current sensor different from the above based on this invention . 図6−1a及び図6−1bに示す電流センサにおける出力補正回路400の一例を示す図面である。6 is a diagram illustrating an example of an output correction circuit 400 in the current sensor illustrated in FIGS. 6-1a and 6-1b. 本発明に係る上記と別の電流センサの実施例を示す図面である。It is drawing which shows the Example of another current sensor different from the above based on this invention . 本発明に係る上記と別の電流センサの実施例を示す図面である。It is drawing which shows the Example of another current sensor different from the above based on this invention . 図7−1a及び図7−1bに示す電流センサにおける出力補正回路400の一例を示す図面である。7 is a diagram illustrating an example of an output correction circuit 400 in the current sensor illustrated in FIGS. 7-1a and 7-1b. 従来の電流センサの説明に用いた図面である。It is drawing used for description of the conventional current sensor.

1ma(m=1〜n) 磁気インピーダンス効果素子
1mb(m=1〜n) 磁気インピーダンス効果素子
2 高周波励磁電流源
3ma(m=1〜n) 復調回路
3mb(m=1〜n) 復調回路
4 演算差動増幅回路
4m(m=1〜n) 演算差動増幅回路
400 出力補正回路
Cm(m=1〜n) センサユニット
1 ma (m = 1 to n) magneto-impedance effect element 1 mb (m = 1 to n) magneto-impedance effect element 2 high frequency excitation current source 3 ma (m = 1 to n) demodulation circuit 3 mb (m = 1 to n) demodulation circuit 4 Operational differential amplifier circuit 4m (m = 1 to n) Operational differential amplifier circuit 400 Output correction circuit Cm (m = 1 to n) Sensor unit

Claims (5)

機器や設備の表面に流れる漏洩電流を、機器や設備の表面に当接して検出するセンサであり、並列配置で感磁方向が互いに逆の磁気インピーダンス効果素子を複数組、同一の被検出直線磁界の方向に対して素子の向きを組ごとに異ならせて基板上に配設し、この複数組の一方の感磁方向の磁気インピーダンス効果素子群及び他方の感磁方向の磁気インピーダンス効果素子群のそれぞれの直列接続素子の出力を検波するそれぞれの復調回路とこれら復調回路の検波出力を差動増幅する差動増幅器を設けたセンサにおいて、差動増幅器の出力のオフセットを入力信号としてそのオフセットを打ち消すための補償用信号を発生させこの補償用信号を前記増幅器に前記オフセットを消去するための入力として加える補正回路を設けたことを特徴とする電流センサ。。 The leakage current flowing through the equipment and facilities of the surface, equipment and the equipment surface a sensor for detecting contact, magneto-sensitive direction a plurality of sets of opposite magnetic impedance effect element together in a parallel arrangement, the same to be detected linear magnetic field The elements are arranged on the substrate with the orientations of the elements being different for each set, and the plurality of sets of magneto-impedance effect element groups in one magnetic sensing direction and the magneto-impedance effect element group in the other magnetic sensing direction are arranged. In a sensor provided with each demodulating circuit for detecting the output of each series connection element and a differential amplifier for differentially amplifying the detected output of these demodulating circuits, the offset of the output of the differential amplifier is canceled as an input signal. And a compensation circuit for providing the compensation signal as an input for erasing the offset to the amplifier. Flow sensor. . 機器や設備の表面に流れる漏洩電流を、機器や設備の表面に当接して検出するセンサであり、並列配置で感磁方向が互いに逆の磁気インピーダンス効果素子を複数組、同一の被検出直線磁界の方向に対して素子の向きを組ごとに異ならせて基板上に配設し、この複数組の各組に対して一方の感磁方向の磁気インピーダンス効果素子及び他方の感磁方向の磁気インピーダンス効果素子のそれぞれに素子の出力を検波するそれぞれの復調回路とこれら復調回路の検波出力を差動増幅する差動増幅器を設け、これら差動増幅器の出力の総和を検出出力とするセンサにおいて、差動増幅器の出力のオフセットを入力信号としてそのオフセットを打ち消すための補償用信号を発生させこの補償用信号を前記増幅器に前記オフセットを消去するための入力として加える補正回路を設けたことを特徴とする電流センサ。 The leakage current flowing through the equipment and facilities of the surface, equipment and the equipment surface a sensor for detecting contact, magneto-sensitive direction a plurality of sets of opposite magnetic impedance effect element together in a parallel arrangement, the same to be detected linear magnetic field The element is arranged on the substrate with the direction of the element being different for each set, and the magneto-impedance effect element in one magnetic sensitive direction and the magnetic impedance in the other magnetic sensitive direction for each of the plurality of sets. Each of the effect elements is provided with a demodulating circuit for detecting the output of the element and a differential amplifier for differentially amplifying the detected output of the demodulating circuit. An input for canceling the offset is generated in the amplifier using the offset of the output of the dynamic amplifier as an input signal to generate a compensation signal for canceling the offset. Current sensors, characterized in that a correction circuit is added to. 差動増幅器の両入力端子間に、差動増幅器出力のオフセットを入力信号としてそのオフセットを打ち消すための補償用信号を発生させこの補償用信号を前記増幅器の両入力端子間に前記オフセットを消去するための入力として加える補正回路を設けたことを特徴とする請求項1〜2何れか記載の電流センサ。 A compensation signal for canceling the offset is generated between the input terminals of the differential amplifier using the offset of the differential amplifier output as an input signal, and the offset is erased between the input terminals of the amplifier. 3. A current sensor according to claim 1, further comprising a correction circuit to be added as an input for the input. 補正回路に、増幅器または差動増幅器出力のオフセットが所定値に達したときに補償用出力を発生する手段を付設したことを特徴とする請求項3記載の電流センサ。 4. The current sensor according to claim 3, wherein means for generating a compensation output when the offset of the amplifier or differential amplifier output reaches a predetermined value is added to the correction circuit. 増幅器または差動増幅器出力のオフセットをn倍(n>1)して補正回路に入力する手段を付設したことを特徴とする請求項4記載の電流センサ。 5. The current sensor according to claim 4, further comprising means for multiplying the offset of the amplifier or differential amplifier output by n (n> 1) and inputting the offset to the correction circuit.
JP2006025184A 2005-02-10 2006-02-02 Current sensor Expired - Fee Related JP4722717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025184A JP4722717B2 (en) 2005-02-10 2006-02-02 Current sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005033923 2005-02-10
JP2005033923 2005-02-10
JP2006025184A JP4722717B2 (en) 2005-02-10 2006-02-02 Current sensor

Publications (2)

Publication Number Publication Date
JP2006250922A JP2006250922A (en) 2006-09-21
JP4722717B2 true JP4722717B2 (en) 2011-07-13

Family

ID=37091578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025184A Expired - Fee Related JP4722717B2 (en) 2005-02-10 2006-02-02 Current sensor

Country Status (1)

Country Link
JP (1) JP4722717B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2711730C2 (en) * 2015-06-15 2020-01-21 Микроэлеттрика Сцайнтифика С.П.А. Device for measuring electric power consumed by rail vehicle from high-voltage power line

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2597678T3 (en) 2011-04-21 2017-01-20 Abb Ag Current sensor that works according to the compensation principle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160810A (en) * 1996-11-27 1998-06-19 Shimadzu Corp Magnetism measuring apparatus
JPH10300795A (en) * 1997-04-22 1998-11-13 Showa Denshi Kogyo Kk Dc current sensor
JP2000002602A (en) * 1998-06-12 2000-01-07 Mitsubishi Materials Corp Torque detecting device
JP2000258464A (en) * 1999-03-09 2000-09-22 Mitsubishi Materials Corp Electric current sensor
JP2000284030A (en) * 1999-03-31 2000-10-13 Minebea Co Ltd Magnetic sensor element
JP2001153895A (en) * 1999-11-24 2001-06-08 Makome Kenkyusho:Kk Current sensor
JP2002022706A (en) * 2000-07-12 2002-01-23 Uchihashi Estec Co Ltd Magnetic sensor, magnetic leakage flux flaw detection method, and its device
JP2002022705A (en) * 2000-07-12 2002-01-23 Uchihashi Estec Co Ltd Magnetic sensor, magnetic field detection method, and its device
JP2002243766A (en) * 2001-02-16 2002-08-28 Fuji Electric Co Ltd Electric current sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4630401B2 (en) * 2005-02-10 2011-02-09 東北電力株式会社 Current sensor and current detection method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160810A (en) * 1996-11-27 1998-06-19 Shimadzu Corp Magnetism measuring apparatus
JPH10300795A (en) * 1997-04-22 1998-11-13 Showa Denshi Kogyo Kk Dc current sensor
JP2000002602A (en) * 1998-06-12 2000-01-07 Mitsubishi Materials Corp Torque detecting device
JP2000258464A (en) * 1999-03-09 2000-09-22 Mitsubishi Materials Corp Electric current sensor
JP2000284030A (en) * 1999-03-31 2000-10-13 Minebea Co Ltd Magnetic sensor element
JP2001153895A (en) * 1999-11-24 2001-06-08 Makome Kenkyusho:Kk Current sensor
JP2002022706A (en) * 2000-07-12 2002-01-23 Uchihashi Estec Co Ltd Magnetic sensor, magnetic leakage flux flaw detection method, and its device
JP2002022705A (en) * 2000-07-12 2002-01-23 Uchihashi Estec Co Ltd Magnetic sensor, magnetic field detection method, and its device
JP2002243766A (en) * 2001-02-16 2002-08-28 Fuji Electric Co Ltd Electric current sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2711730C2 (en) * 2015-06-15 2020-01-21 Микроэлеттрика Сцайнтифика С.П.А. Device for measuring electric power consumed by rail vehicle from high-voltage power line

Also Published As

Publication number Publication date
JP2006250922A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4495635B2 (en) Magneto-impedance effect sensor and method of using magneto-impedance effect sensor
US7271587B2 (en) High resolution and low power magnetometer using magnetoresistive sensors
JP2002277522A (en) Magnetic field sensor
JP4722717B2 (en) Current sensor
JP4917812B2 (en) Deterioration diagnosis method for iron-based structures
JP2000055998A (en) Magnetic sensor device and current sensor device
JP4808411B2 (en) Magnetic field detection circuit
JP2006322706A (en) Method of measuring conductor current
JP2005055326A (en) Conductor current measurement method and magnetic field sensor for measuring conductor current
JP4878903B2 (en) Magnetic sensor for pillar transformer diagnosis
JP2005061980A (en) Conductor current measuring method
JP4476746B2 (en) Corrosion / thinning inspection method for the back of steel walls
JP4630401B2 (en) Current sensor and current detection method
JP4938740B2 (en) Magnetic field detector
JP4739097B2 (en) Diagnosis method of pole transformer
JP4808410B2 (en) Magnetic field detection circuit
JP2005043254A (en) Method for measuring conductor current
JP4865343B2 (en) Inspection method for iron-based structures
JP4286686B2 (en) Sensor for detecting conductor defects in electric wires
JP4520188B2 (en) Method for detecting conductor defects in electric wires
JP4878856B2 (en) Magneto-impedance effect sensor
JP4698958B2 (en) Sensor for detecting conductor defects in electric wires
JP2003177167A (en) Magnetic sensor
JP2006337040A (en) Defect-detecting method of metal body, and scanning type magnetic detector
TW201229525A (en) Electric power measuring apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees