JP4630401B2 - Current sensor and current detection method - Google Patents

Current sensor and current detection method Download PDF

Info

Publication number
JP4630401B2
JP4630401B2 JP2006025182A JP2006025182A JP4630401B2 JP 4630401 B2 JP4630401 B2 JP 4630401B2 JP 2006025182 A JP2006025182 A JP 2006025182A JP 2006025182 A JP2006025182 A JP 2006025182A JP 4630401 B2 JP4630401 B2 JP 4630401B2
Authority
JP
Japan
Prior art keywords
current
output
magneto
offset
impedance effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006025182A
Other languages
Japanese (ja)
Other versions
JP2006250921A (en
Inventor
一実 豊田
和幸 井澤
佐加枝 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP2006025182A priority Critical patent/JP4630401B2/en
Publication of JP2006250921A publication Critical patent/JP2006250921A/en
Application granted granted Critical
Publication of JP4630401B2 publication Critical patent/JP4630401B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は機器や設備の表面に流れる電流を検出するために当該機器や設備の表面にスキャンニングして使用される電流センサ及びその電流センサを使用しての電流の検出方法に関するものである。   The present invention relates to a current sensor that is used by scanning the surface of the device or equipment to detect the current flowing on the surface of the device or equipment, and a current detection method using the current sensor.

導体に対し一定の位置に磁気センサを設けて導体電流を測定することは常套手段である。
すなわち、図11の(イ)において、aを導体、sを導体から距離rを隔てた位置に配設した磁気センサとし、導体電流をI、磁気センサが感磁計測する磁界をHとすると、2πrH=Iが成立し、計測磁界Hから導体電流を求めることができる。
近来、高感度・高精度の磁界センサとして、磁気インピーダンス効果素子を用いた磁気インピーダンス効果型磁気センサが開発され、磁気センサに磁気インピーダンス効果型磁気センサを使用して電流を測定することも提案されている(例えば、特許文献1〜3)。
特開平2002−243766号公報 特開平2002−286764号公報 特開平2004−132790号公報
It is common practice to measure the conductor current by providing a magnetic sensor at a fixed position relative to the conductor.
That is, in (b) of FIG. 11, a is a conductor, s is a magnetic sensor disposed at a distance r from the conductor, a conductor current is I, and a magnetic field measured by the magnetic sensor is H. 2πrH = I is established, and the conductor current can be obtained from the measurement magnetic field H.
Recently, a magneto-impedance effect type magnetic sensor using a magneto-impedance effect element has been developed as a high-sensitivity and high-precision magnetic field sensor, and it has also been proposed to use a magneto-impedance effect type magnetic sensor as a magnetic sensor to measure current. (For example, Patent Documents 1 to 3).
Japanese Patent Laid-Open No. 2002-243766 Japanese Patent Application Laid-Open No. 2002-286664 Japanese Patent Laid-Open No. 2004-132790

磁気インピーダンス効果素子自体は、図2の(イ)に示すような感磁特性を呈し(Hexは軸方向磁界、Eoutは出力)、非線形・対称形である。この特性を図2の(ニ)に示すような極性判別可能・線形とするために、例えばバイアス磁界と負帰還をかけることが知られ、磁気センサにこの極性判別可能・線形の磁気インピーダンス効果型磁気センサを使用して電流を測定することも提案されている(例えば、特許文献3)。
導体電流を測定するのに、2個の極性判別可能・線形の磁気インピーダンス効果型磁気センサを使用して電流を測定することも提案されている(例えば、特許文献1、2)。
図11の(ロ)において、aは導体を示している。S,S’は導体aから等距離rで、かつ相互間の角度が2θの位置に配設した極性判別可能な磁気インピーダンス効果型磁気センサを示し、導体を中心とする放射方向に対し角度θの方向を感磁方向とするように配向してある。
図11の(ロ)において、各磁気インピーダンス効果型磁気センサが感磁する磁界Hyは絶対値が等しく、極性が逆であり、
│Hy│=Isinθ/2πr
で与えられる。
従って、両磁気センサの出力を差動増幅すれば、2│Hy│に比例した検出出力が得られ、この検出値から導体電流Iを計測できる。
The magneto-impedance effect element itself exhibits a magnetosensitive characteristic as shown in FIG. 2 (a) (Hex is an axial magnetic field, Eout is an output), and is non-linear and symmetric. In order to make this characteristic linearly distinguishable and linear as shown in (d) of FIG. 2, it is known to apply a negative magnetic field and a negative feedback, for example. It has also been proposed to measure current using a magnetic sensor (for example, Patent Document 3).
In order to measure the conductor current, it has also been proposed to measure the current using two linearly distinguishable and linear magneto-impedance effect type magnetic sensors (for example, Patent Documents 1 and 2).
In (b) of FIG. 11, a indicates a conductor. S and S ′ are magneto-impedance effect type magnetic sensors capable of discriminating polarities arranged at the same distance r from the conductor a and at an angle of 2θ between them. The orientation is such that the direction is the magnetosensitive direction.
In (b) of FIG. 11, the magnetic field Hy that each magnetoimpedance effect type magnetic sensor senses has the same absolute value and the opposite polarity.
│Hy│ = Isinθ / 2πr
Given in.
Therefore, if the outputs of both magnetic sensors are differentially amplified, a detection output proportional to 2 | Hy | is obtained, and the conductor current I can be measured from this detection value.

プリント配線基板の複雑な導体回路を流れている電流や絶縁体の表面を流れる漏洩電流のような面上を流れる電流を検出する場合、導体回路が複雑であるため電流がどのような経路で流れているのか不定であることが多い。
前記した電流測定法は、電流路と磁気インピーダンス効果型磁気センサとの相対的位置関係が既知であることを前提としており、この場合の電流の検出・測定には適合しない。
強いて適用すると、漏洩電流が微弱であるから、電流Iが微小でも、前記│Hy│=Isinθ/2πrを充分に大きくするために、すなわち、高感度を保証するために、θを大きくするように両磁気インピーダンス効果型磁気センサを配設する必要があり、センサ全体の大型化が避けられない。
When detecting a current flowing on a surface such as a current flowing through a complicated conductor circuit on a printed wiring board or a leakage current flowing through the surface of an insulator, the current flows in any path because the conductor circuit is complex. Often it is uncertain.
The current measurement method described above is based on the premise that the relative positional relationship between the current path and the magneto-impedance effect type magnetic sensor is known, and is not suitable for current detection and measurement in this case.
When applied strongly, since the leakage current is weak, even if the current I is small, in order to sufficiently increase | Hy | = Isinθ / 2πr, that is, in order to guarantee high sensitivity, θ should be increased. Both magneto-impedance effect type magnetic sensors need to be disposed, and the overall size of the sensor cannot be avoided.

本発明の目的は、面上を流れる電流を磁気インピーダンス効果素子を使用して高精度で検出できる電流センサを提供することにある。   An object of the present invention is to provide a current sensor that can detect a current flowing on a surface with high accuracy using a magneto-impedance effect element.

請求項1に係る電流センサは、機器や設備の表面に流れる電流を検出するために当該機器や設備の表面に走査させるセンサであり、並列配置で感磁方向が互いに逆の磁気インピーダンス効果素子を複数組有し、この複数組の一方の感磁方向の磁気インピーダンス効果素子群及び他方の感磁方向の磁気インピーダンス効果素子群のそれぞれの直列接続素子の出力を検波するそれぞれの復調回路とこれら復調回路の検波出力を差動増幅する差動増幅器を有し、該差動増幅器の出力のオフセットを入力信号としてそのオフセットを打ち消すための補償用信号を発生させこの補償用信号を前記増幅器に前記オフセットを消去するための入力として加える補正回路を設けたことを特徴とする。
請求項に係る電流センサは、請求項1の電流センサにおいて、補正回路に、増幅器または差動増幅器出力のオフセットが所定値に達したときに補償用出力を発生する手段を付設したことを特徴とする。
請求項に係る電流センサは、請求項の電流センサにおいて、増幅器または差動増幅器出力のオフセットをn倍(n>1)して補正回路に入力する手段を付設したことを特徴とする。
請求項4に係る電流の検出方法は、請求項1〜3何れかの電流センサを被検出電流路を横断して移動させ、センサ出力の前記被検出電流路を挾んでの左右対称性から電流を検出することを特徴とする。
The current sensor according to claim 1 is a sensor that scans the surface of the equipment or facility in order to detect a current flowing through the surface of the equipment or facility. Each of the demodulating circuits for detecting the outputs of the series connected elements of the magneto-impedance effect element group in one of the magnetic sensing directions and the magneto-impedance effect element group in the other magnetic sensing direction of the plurality of sets and the demodulation thereof A differential amplifier for differentially amplifying the detection output of the circuit, and using the offset of the output of the differential amplifier as an input signal, a compensation signal for canceling the offset is generated, and the compensation signal is supplied to the amplifier A correction circuit that is added as an input for erasing the image is provided.
The current sensor according to claim 2 is characterized in that, in the current sensor according to claim 1 , means for generating a compensation output when the offset of the amplifier or differential amplifier output reaches a predetermined value is added to the correction circuit. And
According to a third aspect of the present invention, there is provided the current sensor according to the second aspect , further comprising means for multiplying the offset of the amplifier or differential amplifier output by n (n> 1) and inputting the result to the correction circuit.
Detection method of a current according to claim 4, claims 1 to 3 What Re of the current sensor is moved across the object to be detected current path, from the left and right symmetry of sandwiching the object to be detected current path of the sensor output It is characterized by detecting current.

磁気インピーダンス効果センサを移動して得られる磁気分布の左右対称性から電流が流れている位置を検知する。而るに、磁気インピーダンス効果素子内を通過する地磁気成分等の外部ノイズは場所による変化が殆どなく、外部ノイズに曝されても、磁気分布の左右対称性を維持できる。また、励磁電源回路や各検波回路のダイオード等の回路素子の温度変化等に起因して発生する内部ノイズは差動増幅に対し同相であり、差動型磁気センサの使用により打ち消される。また、差動増幅器の出力がオフセットしようとしても、調整回路によりそのオフセットが自動的に消去され、電流センサの移動中、温度や浮遊キャパシタンスが変動しても、検出出力変動として現れない。
従って、 磁気インピーダンス効果素子を用いた磁気センサの高検出機能を内外ノイズの影響を排除して効果的に発揮させ得、電流が流れていることを高精度で安定に検出できる。
更に、図11の(ロ)に対し、両磁気インピーダンス効果素子を相互角θを0にし、かつ導体を中心とする放射方向に直角向きに配向させる、従って実質上同じ位置に配設でき、センサを小型化できる。
The position where the current flows is detected from the left-right symmetry of the magnetic distribution obtained by moving the magneto-impedance effect sensor. Thus, the external noise such as the geomagnetic component passing through the magneto-impedance effect element hardly changes depending on the location, and the left-right symmetry of the magnetic distribution can be maintained even when exposed to the external noise. Also, internal noise generated due to temperature changes of circuit elements such as excitation power supply circuits and diodes of each detection circuit is in phase with the differential amplification and is canceled by using the differential magnetic sensor. Further, even if the output of the differential amplifier is about to be offset, the offset is automatically erased by the adjustment circuit, and even if the temperature or the floating capacitance fluctuates during the movement of the current sensor, it does not appear as a detection output fluctuation.
Therefore, the high detection function of the magnetic sensor using the magneto-impedance effect element can be effectively exerted by eliminating the influence of internal and external noise, and the current flowing can be detected with high accuracy and stability.
Furthermore, with respect to (b) of FIG. 11, both magneto-impedance effect elements are oriented at a right angle to the radial direction centered on the conductor with the mutual angle θ being 0, so that they can be disposed at substantially the same position. Can be miniaturized.

図1は磁気インピーダンス効果素子を使用した磁気センサの基本的構成を示している。
図1において、1は磁気インピーダンス効果素子であり、自発磁化の方向がワイヤ周方向に対し互いに逆方向の磁区が交互に磁壁で隔てられた構成の外殻部を有する、零磁歪乃至は負磁歪のアモルファス合金ワイヤが使用される。かかる零磁歪乃至は負磁歪のアモルファス磁性ワイヤに高周波励磁電流を流したときに発生するワイヤ両端間出力電圧中のインダクタンス電圧分は、ワイヤの横断面内に生じる円周方向磁束によって上記の円周方向に易磁化性の外殻部が円周方向に磁化されることに起因して発生する。従って、周方向透磁率μθは同外殻部の円周方向の磁化に依存する。而るに、この通電中のアモルファスワイヤの軸方向に被検出磁界を作用させると、上記通電による円周方向磁束と被検出磁界磁束との合成により、上記円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずれ、それだけ円周方向への磁化が生じ難くなり、上記周方向透磁率μθが変化し、上記インダクタンス電圧分が変動することになる。この変動現象は磁気インダクタンス効果と称され、これは上記高周波励磁電流(搬送波)が被検出波(信号波)で変調される現象ということができる。更に、上記通電電流の周波数がMHzオ−ダになると、高周波表皮効果が大きく現れ、表皮深さδ=(2ρ/wμθ1/2(μθは前記した通り円周方向透磁率、ρは電気抵抗率、wは角周波数をそれぞれ示す)がμθにより変化し、このμθが前記した通り、被検出磁界によって変化するので、ワイヤ両端間出力電圧中の抵抗電圧分も被検出磁界で変動するようになる。この変動現象は磁気インピーダンス効果と称され、これは上記高周波励磁電流(搬送波)が被検出波(信号波)で変調される現象ということができる。
FIG. 1 shows a basic configuration of a magnetic sensor using a magneto-impedance effect element.
In FIG. 1, reference numeral 1 denotes a magneto-impedance effect element, which has a zero magnetostriction or a negative magnetostriction having an outer shell portion in which magnetic domains whose spontaneous magnetization directions are opposite to each other in the circumferential direction of the wire are alternately separated by domain walls. Amorphous alloy wire is used. The inductance voltage component in the output voltage between both ends of the wire generated when a high-frequency excitation current is passed through an amorphous magnetic wire having zero magnetostriction or negative magnetostriction is obtained by the circumferential magnetic flux generated in the cross section of the wire. This occurs due to the magnetization of the easily magnetizable outer shell in the circumferential direction. Therefore, the circumferential magnetic permeability mu theta depends on the circumferential direction of magnetization of Dosotokara portion. Therefore, when a detected magnetic field is applied in the axial direction of the amorphous wire being energized, the circumferential magnetic flux and the detected magnetic field magnetic flux generated by the energization are combined to generate an externally magnetizable external material. shift direction of the magnetic flux acting on the shell from the circumferential direction, correspondingly hardly occur magnetization in the circumferential direction, the circumferential permeability mu theta changes, the inductance voltage content will vary. This fluctuation phenomenon is called a magnetic inductance effect, which can be said to be a phenomenon in which the high-frequency excitation current (carrier wave) is modulated by a detected wave (signal wave). Further, when the frequency of the energization current is in the order of MHz, a high-frequency skin effect appears greatly, and the skin depth δ = (2ρ / wμ θ ) 1/2θ is the circumferential permeability, ρ as described above. electrical resistivity, w is shows the angular frequency, respectively) is changed by mu theta, as the mu theta is the so changed by the detected magnetic field, the resistance voltage division also be detected magnetic field in the wire between both ends output voltage It will fluctuate with. This fluctuation phenomenon is called a magneto-impedance effect, which can be said to be a phenomenon in which the high-frequency excitation current (carrier wave) is modulated by a detected wave (signal wave).

図1において、2は磁気インピーダンス効果素子に高周波励磁電流を加えるための高周波電源、3は磁気インピーダンス効果素子の軸方向に作用する被検出磁界(信号波)で前記高周波励磁電流(搬送波)を変調させた被変調波を復調する復調回路、4は復調波を増幅する増幅回路、5は出力端、6は負帰還用コイル、7はバイアス磁界用コイルである。   In FIG. 1, 2 is a high-frequency power source for applying a high-frequency excitation current to the magneto-impedance effect element, and 3 is a modulation of the high-frequency excitation current (carrier wave) by a detected magnetic field (signal wave) acting in the axial direction of the magneto-impedance effect element. Demodulator circuit for demodulating the modulated wave thus generated, 4 an amplifier circuit for amplifying the demodulated wave, 5 an output terminal, 6 a negative feedback coil, and 7 a bias magnetic field coil.

磁気インピーダンス効果素子1においては、前記した通り励磁電流に基づく円周方向磁束と被検出磁界による軸方向磁束との合成により、円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずらされるために、周方向透磁率μθが変化し、インダクタンスが変動され、この円周方向透磁率μθの高周波表皮効果の表皮深さの変化でインピーダンスが変動される。従って、被検出磁界の±により上記合成磁界による周方向ずれφも±φになるが、周方向の磁界の減少倍率cos(±φ)は変わらず、従ってμθの減少度は被検出磁界の方向の正負によっては変化されない。従って、被検出磁界−出力特性は、図2の(イ)のように被検出磁界をx軸に、出力をy軸にとると、y軸に対してほぼ左右対称となる。この被検出磁界−出力特性は非線形である。非線形特性では、高感度の測定が困難である。そこで、負帰還用コイルで負帰還をかけて図2の(ロ)に示すように出力特性を直線化している。図2の(ロ)において、Δwは、負帰還無しのときの利得Aが非常に大きく帰還率βのみにより利得が定まるリニア範囲である。しかし、この出力特性では、被検出磁界の極性判別を行ない得ないので、バイアス用コイル7でバイアス磁界をかけ、図2の(ハ)に示すように極性判別可能としている。すなわち、図2の(ロ)の特性を、バイアス磁界によりx軸のマイナス方向に移動させ、被検出磁界の最大範囲−Hmax〜+Hmaxを単斜め線領域の範囲内に納めている。更に、図2の(ニ)に示すように0点調整により原点を通る直線特性としている。従って、図2の(ニ)において被検出磁界を+Heとすると出力が+Eoとなり、被検出磁界を−Heとすると出力が−Eoとなって被検出磁界を極性判別のもとで正確に測定できる。
図2の(ニ)から理解できる通り、磁気インピーダンス効果素子の感磁方向が逆になれば、出力が逆極性になる。
In the magneto-impedance effect element 1, as described above, the direction of the magnetic flux acting on the outer shell portion that is easily magnetized in the circumferential direction by combining the circumferential magnetic flux based on the excitation current and the axial magnetic flux due to the detected magnetic field. Is shifted from the circumferential direction, the circumferential permeability μ θ is changed, the inductance is changed, and the impedance is changed by the change of the skin depth of the high frequency skin effect of the circumferential permeability μ θ . Accordingly, although even the circumferential direction positional shift phi by the synthesized magnetic field by ± of the detected magnetic field becomes ± phi, the circumferential direction of the magnetic field reduction ratio cos (± phi) is unchanged, the degree of reduction in thus mu theta is of the detected magnetic field It does not change depending on the direction. Accordingly, the detected magnetic field-output characteristics are substantially bilaterally symmetrical with respect to the y axis when the detected magnetic field is taken on the x axis and the output is taken on the y axis as shown in FIG. This detected magnetic field-output characteristic is non-linear. With non-linear characteristics, it is difficult to measure with high sensitivity. Therefore, negative feedback is applied by a negative feedback coil to linearize the output characteristics as shown in FIG. In FIG. 2B, Δw is a linear range in which the gain A without negative feedback is very large and the gain is determined only by the feedback rate β. However, since the polarity of the detected magnetic field cannot be determined with this output characteristic, the bias magnetic field is applied by the bias coil 7 so that the polarity can be determined as shown in FIG. That is, the characteristic of (b) in FIG. 2 is moved in the negative direction of the x-axis by the bias magnetic field, and the maximum range −Hmax to + Hmax of the detected magnetic field is within the range of the single oblique line region. Further, as shown in FIG. 2 (d), a linear characteristic passing through the origin is obtained by adjusting the zero point. Therefore, in FIG. 2D, when the detected magnetic field is + He, the output is + Eo, and when the detected magnetic field is -He, the output is -Eo, and the detected magnetic field can be accurately measured based on polarity discrimination. .
As can be understood from FIG. 2D, when the magnetosensitive effect direction of the magneto-impedance effect element is reversed, the output has a reverse polarity.

上記磁気インピーダンス効果素子としては、遷移金属と非金属の合金で非金属が10〜30原子%組成のもの、特に遷移金属と非金属との合金で非金属量が10〜30原子%を占め、遷移金属がFeとCoで非金属がBとSiであるかまたは遷移金属がFeで非金属がBとSiである組成のものを使用することができ、例えば、組成Co70.515Si10Fe4.5、長さ2000μm〜6000μm、外径30μm〜50μmφのものを使用できる。磁気インピーダンス効果素子1には、零磁歪乃至は負磁歪のアモルファスワイヤの外、アモルファスリボン、アモルファススパッタ膜等も使用できる。 As the magneto-impedance effect element, an alloy of transition metal and non-metal having a non-metal composition of 10 to 30 atomic%, particularly an alloy of transition metal and non-metal occupying a non-metal amount of 10 to 30 atomic%, A composition in which the transition metal is Fe and Co and the nonmetal is B and Si or the transition metal is Fe and the nonmetal is B and Si can be used. For example, the composition Co 70.5 B 15 Si 10 Fe 4.5 , length 2000 μm to 6000 μm, outer diameter 30 μm to 50 μmφ can be used. For the magneto-impedance effect element 1, an amorphous ribbon, an amorphous sputtered film, or the like can be used in addition to an amorphous wire having zero magnetostriction or negative magnetostriction.

上記において、高周波励磁電流には、例えば連続正弦波、パルス波、三角波等の通常の高周波を使用でき、高周波励磁電流源としては、例えばハートレー発振回路、コルピッツ発振回路、コレクタ同調発振回路、ベース同調発振回路のような通常の発振回路の外、水晶発振器の矩形波出力を直流分カットコンデンサを経て積分回路で積分しこの積分出力の三角波を増幅回路で増幅する三角波発生器、CMOS−ICを発振部として使用した三角波発生器等を使用できる。   In the above, normal high frequency such as continuous sine wave, pulse wave, triangular wave, etc. can be used as the high frequency excitation current, and examples of the high frequency excitation current source include Hartley oscillation circuit, Colpitts oscillation circuit, collector tuned oscillation circuit, base tuning In addition to a normal oscillation circuit such as an oscillation circuit, a square wave generator that integrates the square wave output of a crystal oscillator via a DC component cut-off capacitor with an integration circuit and amplifies the triangular wave of this integration output with an amplification circuit, and oscillates a CMOS-IC The triangular wave generator etc. which were used as a part can be used.

上記の復調回路としては、例えば被変調波を演算増幅回路で半波整流しこの半波整流波を並列RC回路またはRCローパスフィルターで処理して半波整流波の包絡線出力を得る構成、被変調波をダイオードで半波整流しこの半波整流波を並列RC回路またはRCローパスフィルターで処理して半波整流波の包絡線出力を得る構成等を使用できる。また、被変調波(周波数fs)に同調させた周波数fsの方形波を被変調波に乗算して信号波をサンプリングする同調検波を使用することができる。
上記の実施例では、被変調波の復調によって被検出磁界を取り出しているが、これに限定されず、磁気インピーダンス効果素子に作用する被検出磁界(信号波)で変調された高周波励磁電流波(搬送波)から被検出磁界を検波し得るもので適宜の検波手段を使用できる。
The demodulating circuit includes, for example, a configuration in which a modulated wave is half-wave rectified by an operational amplifier circuit, and this half-wave rectified wave is processed by a parallel RC circuit or an RC low-pass filter to obtain an envelope output of the half-wave rectified wave. A configuration in which the modulated wave is half-wave rectified by a diode and the half-wave rectified wave is processed by a parallel RC circuit or an RC low-pass filter to obtain an envelope output of the half-wave rectified wave can be used. Further, it is possible to use tuning detection in which a signal wave is sampled by multiplying the modulated wave by a square wave having a frequency fs tuned to the modulated wave (frequency fs).
In the above-described embodiment, the detected magnetic field is extracted by demodulating the modulated wave. However, the present invention is not limited to this, and a high-frequency excitation current wave modulated by the detected magnetic field (signal wave) acting on the magneto-impedance effect element ( An appropriate detection means can be used since the detected magnetic field can be detected from a carrier wave.

前記負帰還用コイル及びバイアス磁界用コイルは磁気インピーダンス効果素子に巻き付けることができる。また、図3に示すように磁気インピーダンス効果素子とループ磁気回路を構成する鉄芯に負帰還用コイル及びバイアス磁界用コイルを巻き付けることもできる。 図3の(イ)は鉄芯付き磁気インピーダンス効果ユニットの一例を示す側面図、図3の(ロ)は同じく底面図、図3の(ハ)は図3の(ロ)におけるハ−ハ断面図である。
図3において、100は基板チップであり、例えばセラミックス板を使用できる。101は基板片の片面に設けた電極であり、磁気インピーダンス効果素子接続用突部102を備えている。この電極は導電ペースト、例えば銀ペーストの印刷・焼付けにより設けることができる。1xは電極101,101の突部102,102間にはんだ付けや溶接により接続した磁気インピーダンス効果素子であり、前記した通り零磁歪乃至負磁歪のアモルファスワイヤ、アモルファスリボン、スパッタ膜等を使用できる。103はC型鉄芯、6xはC型鉄芯に巻装した負帰還用コイル、7xは同じくバイアス磁界用コイルであり、磁気インピーダンス効果素子1xとC型鉄芯103とでループ磁気回路を構成するように、C型鉄芯103の両端を基板片100の他面に接着剤等で固定してある。鉄芯材料としては、残留磁束密度の小さい磁性体であればよく、例えば、パーマロイ、フェライト、鉄、アモルファス磁性合金の他、磁性体粉末混合プラスチック等を挙げることができる。
The negative feedback coil and the bias magnetic field coil can be wound around a magneto-impedance effect element. Further, as shown in FIG. 3, a negative feedback coil and a bias magnetic field coil can be wound around an iron core constituting a magneto-impedance effect element and a loop magnetic circuit. 3A is a side view showing an example of a magnetic impedance effect unit with an iron core, FIG. 3B is a bottom view, and FIG. 3C is a cross-sectional view of FIG. FIG.
In FIG. 3, reference numeral 100 denotes a substrate chip, and for example, a ceramic plate can be used. Reference numeral 101 denotes an electrode provided on one side of the substrate piece, and includes a magneto-impedance effect element connecting projection 102. This electrode can be provided by printing and baking a conductive paste, for example, a silver paste. 1x is a magneto-impedance effect element connected between the protrusions 102 and 102 of the electrodes 101 and 101 by soldering or welding, and an amorphous wire, amorphous ribbon, sputtered film, or the like having zero or negative magnetostriction can be used as described above. 103 is a C-type iron core, 6x is a negative feedback coil wound around the C-type iron core, 7x is also a bias magnetic field coil, and the magneto-impedance effect element 1x and the C-type iron core 103 constitute a loop magnetic circuit. Thus, both ends of the C-shaped iron core 103 are fixed to the other surface of the substrate piece 100 with an adhesive or the like. The iron core material may be a magnetic material having a small residual magnetic flux density. Examples thereof include permalloy, ferrite, iron, amorphous magnetic alloy, magnetic powder mixed plastic, and the like.

図4は電流センサの一参考例の回路図を示している。
図4において、1a,1bは磁気インピーダンス効果素子であり、その感磁方向を互いに逆方向として近接の並列配置としてある。2は磁気インピーダンス効果素子に励磁電流を通電するための高周波励磁電源である。3a,3bは各磁気インピーダンス効果素子1a,1bの出力端に接続した復調回路、40は両復調回路3a,3bの出力端に接続した演算差動増幅回路である。60は増幅出力を磁気インピーダンス効果素子1a,1bに負帰還させてリニア出力特性を得るための負帰還回路、6a,6bは負帰還用コイルである。7a,7bは磁気インピーダンス効果素子1a,1bにバイアス磁界をかけて出力特性を極性判別可能とするためのバイアス磁界用コイルであり、+Vcc電源が起磁力として用いられる。この+Vcc電源は励磁電流源回路2の電源としても使用される。
FIG. 4 shows a circuit diagram of a reference example of the current sensor.
In FIG. 4, reference numerals 1a and 1b denote magneto-impedance effect elements, which are arranged in parallel in close proximity with their magnetic sensing directions being opposite to each other. Reference numeral 2 denotes a high-frequency excitation power source for supplying an excitation current to the magneto-impedance effect element. Reference numerals 3a and 3b denote demodulator circuits connected to the output terminals of the magneto-impedance effect elements 1a and 1b, and reference numeral 40 denotes an operational differential amplifier circuit connected to the output terminals of the demodulator circuits 3a and 3b. Reference numeral 60 denotes a negative feedback circuit for negatively feeding back the amplified output to the magneto-impedance effect elements 1a and 1b to obtain linear output characteristics. Reference numerals 6a and 6b denote negative feedback coils. Reference numerals 7a and 7b denote bias magnetic field coils for applying a bias magnetic field to the magneto-impedance effect elements 1a and 1b so that the polarity of the output characteristics can be discriminated, and a + Vcc power source is used as a magnetomotive force. This + Vcc power source is also used as a power source for the exciting current source circuit 2.

図4において、近接配列の磁気インピーダンス効果素子1a、1bに作用する被検出磁界をHとすれば、感磁方向が互いに逆方向であるから検波出力がHと−Hとなり、差動増幅出力Eはk〔H−(−H)〕(kは増幅ゲイン)、すなわち
〔数式1〕 E=2kH
で与えられる。
In FIG. 4, if the magnetic field to be detected acting on the magneto-impedance effect elements 1a and 1b in the close array is H, the detection outputs become H and -H because the magnetosensitive directions are opposite to each other, and the differential amplification output E Is k [H − (− H)] (k is an amplification gain), that is, [Equation 1] E = 2 kH
Given in.

図5の(イ)は請求項5に係る電流検知方法を示す平面図、図5の(ロ)は図5の(イ)におけるロ−ロ断面図を示している。
図5の(ロ)に示すように、表面下に導体cがあり、この導体cに電流が流れているとして、図5の(イ)、(ロ)の矢印線で示すように、前記の電流センサを両磁気インピーダンス効果素子1a,1bの軸線n−nの方向に移動させていく。
この移動方向n−nと導体cとの間の角度をα、導体電流をI、導体直上点pから素子中央位置までの距離をx、表面から導体中心までの距離をhとすれば、近接磁気インピーダンス効果素子1a,1bの軸方向に作用する磁界成分Hは、r=〔x+h1/2、sinθ=h/rとして、H=Isinα・sinθ/(2πr)より
H=hIsinα/{2π〔x+h〕}
で与えられる。
従って、〔数式1〕の差動増幅出力E=2kHは、
E=(hIksinα/π)・1/〔x+h
で与えられ、図示すれば図6の通り導体cを挾んで左右対称のパターンとなる。従って、最大ピーク点を探知することにより、電流導体直上位置を知ることができる。
この場合、両復調回路3a,3bの回路素子例えばダイオードの温度による特性変化や励磁電源回路の特性変化等により生じるコモンモードノイズは同相であるために差動増幅で打消し得、いわゆる内部ノイズの影響を良好に排除できる。また、地磁気等の外部ノイズは位置が変わっても殆ど変化せずにほぼ一定であるから、図6に示す出力がy軸方向にシフトされるだけであり、左右対称性が維持されるので、外部ノイズの影響もよく排除できる。更に、電流値Iが小であったり、導体の地表面下深さhが大であっても、磁気インピーダンス効果素子の検出能が高いこと、増幅ゲインkを大きくする等により高感度で検出できる。
Figure 5 (b) is a plan view illustrating a current sensing method according to claim 5, (b) in FIG. 5 B in (b) of FIG. 5 - shows a B cross-sectional view.
As shown in (b) of FIG. 5, there is a conductor c below the surface, and current is flowing through the conductor c. As shown by the arrow lines in (a) and (b) of FIG. The current sensor is moved in the direction of the axis nn of both magneto-impedance effect elements 1a and 1b.
If the angle between the moving direction nn and the conductor c is α, the conductor current is I, the distance from the point p directly above the conductor to the element center position is x, and the distance from the surface to the conductor center is h, the proximity magneto-impedance effect element 1a, the magnetic field component H which acts in the axial direction of 1b is, r = [x 2 + h 2] 1/2, as sinθ = h / r, H = Isinα · sinθ / (2πr) than H = HIsinarufa / {2π [x 2 + h 2 ]}
Given in.
Therefore, the differential amplification output E = 2 kH of [Equation 1] is
E = (hIksin α / π) · 1 / [x 2 + h 2 ]
As shown in FIG. 6, the pattern is symmetrical with respect to the conductor c. Therefore, the position immediately above the current conductor can be known by detecting the maximum peak point.
In this case, the common mode noise generated by the characteristic change of the circuit elements of both the demodulating circuits 3a and 3b, for example, the diode temperature or the characteristic change of the excitation power supply circuit is in-phase, and can be canceled by differential amplification. The influence can be eliminated well. Further, since external noise such as geomagnetism is almost constant without changing even if the position is changed, the output shown in FIG. 6 is only shifted in the y-axis direction, and left-right symmetry is maintained. The effect of external noise can be eliminated well. Furthermore, even if the current value I is small or the depth h below the ground surface of the conductor is large, it can be detected with high sensitivity by increasing the detection capability of the magneto-impedance effect element and increasing the amplification gain k. .

本発明に係る電流センサにおいては、通常、図7に示すように、近接並列配置の磁気インピーダンス効果素子1a,1b、復調回路3a,3b、差動増幅回路4、高周波励磁電源回路2、バイアス磁界や励磁電流の+Vcc電源が共通の基板8上に搭載される。この場合、基板8の片面側に近接並列配置の磁気インピーダンス効果素子1a,1bを、他面側に復調回路3a,3b、差動増幅回路4、高周波励磁電源回路2、バイアス磁界や励磁電流の+Vcc電源を搭載し磁気インピーダンス効果素子を電流検出面に近接させて移動可能とすることができる。
検出信号をディスプレイに表示させる場合、固定のディスプレイに対し前記基板を移動可能とするために基板の信号検出端に可撓性リード線を介してディスプレイが接続される。
本発明においては、電流検出範囲を広くするために、図8−1の(イ)に示すように近接の並列配置で、かつ感磁方向が逆方向の磁気インピーダンス効果素子1ma,1mbの対を複数箇(m=1〜n)とし、図8−1の(ロ)に示すように同一感磁方向の磁気インピーダンス効果素子11a〜1na,11b〜1nbを直列に接続し、各直列接続素子の出力端にそれぞれ復調回路3a,3bを接続し、両復調回路3a,3bの出力端を演算差動増幅回路4に接続し、その増幅出力を各磁気インピーダンス効果素子1ma,1mb(m=1〜n)に各負帰還用コイル6ma,6mb(m=1〜n)を経て負帰還させ、各磁気インピーダンス効果素子1ma,1mb(m=1〜n)にその感磁方向に応じた極性で+Vcc電源でバイアス磁界用コイル7ma,7mb(m=1〜n)を介してバイアスをかけることができる。2は励磁用電源回路である。
In the current sensor according to the present invention, normally, as shown in FIG. 7, the magneto-impedance effect elements 1a and 1b, the demodulating circuits 3a and 3b, the differential amplifier circuit 4, the high frequency excitation power supply circuit 2, the bias magnetic field arranged in close proximity and parallel arrangement. And a + Vcc power source of exciting current is mounted on a common substrate 8. In this case, the magneto-impedance effect elements 1a and 1b arranged in close proximity and parallel on one side of the substrate 8, the demodulation circuits 3a and 3b, the differential amplifier circuit 4, the high frequency excitation power supply circuit 2, the bias magnetic field and the excitation current on the other side. A + Vcc power source is mounted, and the magneto-impedance effect element can be moved close to the current detection surface.
When the detection signal is displayed on the display, the display is connected to the signal detection end of the substrate via a flexible lead wire so that the substrate can be moved relative to the fixed display.
In the present invention, in order to widen the current detection range, a pair of magneto-impedance effect elements 1ma and 1mb having a parallel arrangement close to each other as shown in FIG. As shown in (b) of FIG. 8A, magnetoimpedance effect elements 11 a to 1 na and 11 b to 1 nb in the same magnetosensitive direction are connected in series as shown in FIG. Demodulator circuits 3a and 3b are connected to the output terminals, the output terminals of both demodulator circuits 3a and 3b are connected to the operational differential amplifier circuit 4, and the amplified outputs are connected to the magneto-impedance effect elements 1ma and 1mb (m = 1 to 1). n) is negatively fed back through the negative feedback coils 6ma and 6mb (m = 1 to n), and each magneto-impedance effect element 1ma and 1mb (m = 1 to n) is + Vcc with a polarity corresponding to the magnetic sensing direction. For bias magnetic field at power supply Yl 7 mA, can be biased through the 7mb (m = 1~n). Reference numeral 2 denotes an excitation power supply circuit.

また、図8−2に示すように、対(1ma,1mb)の磁気インピーダンス効果素子に対し、各磁気インピーダンス効果素子1ma,1mb(m=1〜n)の出力端に復調回路3ma,3mb(m=1〜n)を接続し、これら復調回路の出力端を演算差動増幅回路40m(m=1〜n)に接続し、この増幅回路40m(m=1〜n)の出力を各磁気インピーダンス効果素子1ma,1mb(m=1〜n)に各負帰還用コイル6ma,6mb(m=1〜n)を経て負帰還させ、各磁気インピーダンス効果素子1ma,1mb(m=1〜n)にその感磁方向に応じ+Vccによりバイアス磁界用コイル7ma,7mb(m=1〜n)を介してバイアス磁界をかけるn箇のユニット回路の差動増幅回路40m(m=1〜n)の出力端を加算器50に接続してその加算器出力端を検出端とし、共通の励磁用電源回路2を接続することもできる。
本発明に係る電流センサにおいては、磁気インピーダンス効果素子を搭載する基板と検波増幅回路や励磁用電源回路や+Vcc電源等を搭載する基板とを別体とし両者間を可撓性電線で連結することもできる。
Further, as shown in FIG. 8B, for the pair (1 ma, 1 mb) of the magneto-impedance effect elements, the demodulating circuits 3 ma, 3 mb (at the output terminals of the magneto-impedance effect elements 1 ma, 1 mb (m = 1 to n)). m = 1 to n), the output terminals of these demodulation circuits are connected to the operational differential amplifier circuit 40m (m = 1 to n), and the output of this amplifier circuit 40m (m = 1 to n) is connected to each magnetic field. The impedance effect elements 1ma and 1mb (m = 1 to n) are negatively fed back via the negative feedback coils 6ma and 6mb (m = 1 to n), and the magneto-impedance effect elements 1ma and 1mb (m = 1 to n) are returned. The output of the differential amplifier circuit 40m (m = 1 to n) of n unit circuits for applying a bias magnetic field via the bias magnetic field coils 7ma and 7mb (m = 1 to n) by + Vcc according to the magnetic sensing direction. End to adder 50 Continued to the detection end and the adder output, it can be connected in common to the excitation power supply circuit 2.
In the current sensor according to the present invention, the substrate on which the magneto-impedance effect element is mounted and the substrate on which the detection amplification circuit, the excitation power supply circuit, the + Vcc power supply, and the like are separated and are connected by a flexible wire. You can also.

上記電流センサの走行中、周囲温度の変動が顕著であったり、浮遊キャパシタンスの変動が顕著であると、差動増幅器の出力にオフセット変動が生じ検出出力が不安定化する。
図9−1aは前記とは別の参考例を及び図9−1bは本発明に係る電流センサの実施例を示し、図4及び図8−1に示した電流センサに対し、差動増幅器の出力のオフセット変動を抑制して検出出力の安定化を図っている。
図9−1a及び図9−1bにおいて、400は出力補正回路を示し、他の構成は図4及び図8−1に示した電流センサに同じである。出力補正回路400は、演算作動増幅器4の出力のオフセットを入力信号としてそのオフセットを打ち消すための補償用信号を発生させこの補償用信号を前記作動増幅器に前記オフセットを消去するための入力として作動増幅器4のオフセット調整端子に加え、前記オフセットを消去するものである。
If the ambient temperature fluctuates significantly or the stray capacitance fluctuates significantly while the current sensor is running, offset fluctuation occurs in the output of the differential amplifier and the detection output becomes unstable.
FIG. 9-1a shows a reference example different from the above, and FIG. 9-1b shows an embodiment of the current sensor according to the present invention . In contrast to the current sensor shown in FIGS. The output offset fluctuation is suppressed and the detection output is stabilized.
In FIGS. 9-1a and 9-1b, reference numeral 400 denotes an output correction circuit, and other configurations are the same as those of the current sensor shown in FIGS. The output correction circuit 400 uses the offset of the output of the operational operational amplifier 4 as an input signal, generates a compensation signal for canceling the offset, and uses the compensation signal as an input for erasing the offset in the operational amplifier. In addition to the offset adjustment terminal 4, the offset is erased.

図9−2は出力補正回路の一例を示し、演算差動増幅器の差出力と入力とを比較してオフセットを検出し、オフセットが正(負)であると、電子ボリュームのスイッチSW−1、SW−2、……(SW+1、SW+2、……)が制御ICで順次にオン・オフされて負(正)の出力電圧が演算差動増幅器のオフセット調整端子に送入されて増幅器出力のオフセットが減じられ、その増幅器出力のオフセットが0になると、その時のスイッチ状態が保持される。
演算差動増幅器の出力のオフセットを所定の範囲、例えば−1v〜+1vの範囲に納めるようにしてもよく、この場合、増幅器出力のオフセットが−1vまたは+1vを越えると、電子ボリュームが操作される。
更に、ゲインが1以上、例えば2倍のバッファを制御ICに組み込んで±0.5vを越えると電子ボリュームが操作されるようにして演算差動増幅器の出力のオフセットを−0.5v〜+0.5vの範囲に納めるようにすることもできる。
FIG. 9-2 shows an example of an output correction circuit. The difference output and input of the operational differential amplifier are compared to detect an offset. If the offset is positive (negative), the electronic volume switch SW −1 , SW −2 ,... (SW +1 , SW +2 ,...) Are sequentially turned on / off by the control IC, and a negative (positive) output voltage is sent to the offset adjustment terminal of the operational differential amplifier to output the amplifier. When the offset of the amplifier is reduced and the offset of the amplifier output becomes zero, the current switch state is maintained.
The offset of the output of the operational differential amplifier may be set within a predetermined range, for example, a range of -1v to + 1v. In this case, when the offset of the amplifier output exceeds -1v or + 1v, the electronic volume is manipulated. .
Furthermore, when a buffer having a gain of 1 or more, for example, 2 times, is incorporated in the control IC and exceeds ± 0.5 V, the electronic volume is operated so that the offset of the output of the operational differential amplifier is −0.5 V to +0. It can also be set within the range of 5v.

図10−1aは前記とは別の参考例を及び図10−1bは本発明に係る電流センサの上記とは別の実施例を示し、図4及び図8−1に示した電流センサに対し、演算差動増幅器の両入力端子間に出力補正回路400を接続し、演算差動増幅器4の出力のオフセットを入力信号としてそのオフセットを打ち消すための補償用信号を発生させこの補償用信号を前記増幅器の両入力端子間に前記オフセットを消去するための入力として加えている。 FIG. 10-1a shows a reference example different from the above, FIG. 10-1b shows an embodiment different from the above of the current sensor according to the present invention, and the current sensor shown in FIG. 4 and FIG. The output correction circuit 400 is connected between both input terminals of the operational differential amplifier, and the compensation signal for canceling the offset is generated using the offset of the output of the operational differential amplifier 4 as an input signal. The offset is added as an input for canceling the offset between both input terminals of the amplifier.

図10−2の(イ)はその出力補正回路の一例を示し、差動増幅器の出力と差動増幅器の差入力とを比較してオフセットを検出し、そのオフセットを図10−2の(ロ)に示すボリューム操作により0にすることを、そのオフセット値を入力信号として制御ICで電子ボリュームのスイッチSW−0、SW−1、SW−2、……、SW−0、SW+1、SW+2、……を操作させることにより行うものである。
前記と同様に演算差動増幅器の出力のオフセットを所定の範囲、例えば−1v〜+1vの範囲に納めるようにしてもよく、この場合は、増幅器出力のオフセットが−1vまたは+1vを越えると、電子ボリュームが操作される。この場合、ゲインが1以上、例えば2倍のバッファを制御ICに組み込んで±0.5vを越えると電子ボリュームが操作されるようにして演算差動増幅器の出力のオフセットを−0.5v〜+0.5vの範囲に納めるようにすることもできる。
FIG. 10B shows an example of the output correction circuit. The output of the differential amplifier is compared with the difference input of the differential amplifier to detect the offset, and the offset is shown in FIG. ) Is set to 0 by the volume operation shown in FIG. 4B, and the offset value is used as an input signal to control the electronic volume switches SW- 0 , SW- 1 , SW- 2 ,..., SW- 0 , SW + 1 , SW + 2 This is done by operating.
Similarly to the above, the offset of the output of the operational differential amplifier may be set within a predetermined range, for example, the range of -1v to + 1v. In this case, if the offset of the amplifier output exceeds -1v or + 1v, Volume is manipulated. In this case, the offset of the output of the operational differential amplifier is set to −0.5v to +0 so that the electronic volume is manipulated when a gain of 1 or more, for example, a double buffer is incorporated in the control IC and exceeds ± 0.5v. It is also possible to fit within the range of .5v.

本発明に係る電流センサは、電子機器に組み込まれたプリント回路板の導体に流れる微小電流を検出することや、送電線の碍子の送電中での碍子電流(充電電流や表面電流)を測定して碍子の劣化を検出することに利用できる。   The current sensor according to the present invention detects a minute current flowing through a conductor of a printed circuit board incorporated in an electronic device, or measures an insulator current (charging current or surface current) during transmission of an insulator of a transmission line. Can be used to detect the deterioration of the insulator.

磁気インピーダンス効果素子を使用した磁気センサの回路構成を示す図面である。It is drawing which shows the circuit structure of the magnetic sensor using a magneto-impedance effect element. 磁気インピーダンス効果素子を使用した磁気センサの出力特性を示す図面である。It is drawing which shows the output characteristic of the magnetic sensor which uses a magneto-impedance effect element. 磁気インピーダンス効果素子を使用した磁気センサの素子ユニットを示す図面であるIt is drawing which shows the element unit of the magnetic sensor using a magneto-impedance effect element. 電流センサの参考例を示す回路図である。It is a circuit diagram which shows the reference example of a current sensor. 本発明に係る電流検出方法を示す図面である。 The present invention is a drawing showing the engagement Ru current detection method. 前記電流検出方法での検知特性を示す図面である。It is drawing which shows the detection characteristic in the said current detection method. 電流センサの上記とは別の参考例を示す平面面である。It is a plane surface which shows the reference example different from the above of an electric current sensor. 本発明に係る電流センサに対する参考例を示す図面である It is drawing which shows the reference example with respect to the current sensor which concerns on this invention . 電流センサの上記とは別の参考例を示す平面面である。It is a plane surface which shows the reference example different from the above of an electric current sensor. 本発明に係る電流センサに対する上記とは別の参考例を示す図面である It is drawing which shows the reference example different from the above with respect to the current sensor which concerns on this invention . 本発明に係る電流センサの別実施例を示す図面である。It is drawing which shows another Example of the current sensor which concerns on this invention . 図9−1a及び図9−1bに示す電流センサにおける出力補正回路400の一例を示す図面である。It is drawing which shows an example of the output correction circuit 400 in the current sensor shown to FIGS. 9-1a and 9-1b. 本発明に係る電流センサに対する上記とは別の参考例を示す図面である It is drawing which shows the reference example different from the above with respect to the current sensor which concerns on this invention . 本発明に係る電流センサの上記とは別の実施例を示す図面である。It is drawing which shows the Example different from the above of the current sensor which concerns on this invention. 図10−1a及び図10−1bに示す電流センサにおける出力補正回路400の一例を示す図面である。It is drawing which shows an example of the output correction circuit 400 in the current sensor shown to FIGS. 10-1a and 10-1b. 従来の電流センサの説明に使用した図面である。It is drawing used for description of the conventional current sensor.

1a 磁気インピーダンス効果素子
1b 磁気インピーダンス効果素子
21 コイル
22 透磁性コア
2 高周波励磁電源
3a 復調回路
3b 復調回路
4 演算差動増幅回路
40 出力補正回路
8 絶縁基板
DESCRIPTION OF SYMBOLS 1a Magneto-impedance effect element 1b Magneto-impedance effect element 21 Coil 22 Permeable core 2 High frequency excitation power supply 3a Demodulation circuit 3b Demodulation circuit 4 Operational differential amplification circuit 40 Output correction circuit 8 Insulating substrate

Claims (4)

機器や設備の表面に流れる電流を検出するために当該機器や設備の表面に走査させるセンサであり、並列配置で感磁方向が互いに逆の磁気インピーダンス効果素子を複数組有し、この複数組の一方の感磁方向の磁気インピーダンス効果素子群及び他方の感磁方向の磁気インピーダンス効果素子群のそれぞれの直列接続素子の出力を検波するそれぞれの復調回路とこれら復調回路の検波出力を差動増幅する差動増幅器を有し、該差動増幅器の出力のオフセットを入力信号としてそのオフセットを打ち消すための補償用信号を発生させこの補償用信号を前記増幅器に前記オフセットを消去するための入力として加える補正回路を設けたことを特徴とする電流センサ。 A sensor that scans the surface of the equipment or facility to detect the current flowing on the surface of the equipment or facility, and has a plurality of sets of magneto-impedance effect elements that are arranged in parallel and opposite to each other in the magnetosensitive direction. Each demodulating circuit for detecting the output of each serially connected element of the magneto-impedance effect element group in one magnetic sensing direction and the magneto-impedance effect element group in the other magnetic sensing direction, and differential detection of the detection output of these demodulation circuits A correction having a differential amplifier, generating a compensation signal for canceling the offset by using the offset of the output of the differential amplifier as an input signal, and applying the compensation signal to the amplifier as an input for erasing the offset A current sensor comprising a circuit. 補正回路に、増幅器または差動増幅器出力のオフセットが所定値に達したときに補償用出力を発生する手段を付設したことを特徴とする請求項1記載の電流センサ。 2. The current sensor according to claim 1, wherein means for generating a compensation output when the offset of the amplifier or differential amplifier output reaches a predetermined value is added to the correction circuit. 増幅器または差動増幅器出力のオフセットをn倍(n>1)して補正回路に入力する手段を付設したことを特徴とする請求項2記載の電流センサ。 3. A current sensor according to claim 2, further comprising means for multiplying an offset of an amplifier or differential amplifier output by n (n> 1) and inputting the result to a correction circuit. 請求項1〜3何れか記載の電流センサを被検出電流路を横断して移動させ、センサ出力の前記被検出電流路を挾んでの左右対称性から電流を検出することを特徴とする電流の検出方法。 The current sensor of claim 1 what Re claimed or moving across the object to be detected current path, the current and detecting a current from the left-right symmetry of sandwiching the object to be detected current path of the sensor output Detection method.
JP2006025182A 2005-02-10 2006-02-02 Current sensor and current detection method Expired - Fee Related JP4630401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025182A JP4630401B2 (en) 2005-02-10 2006-02-02 Current sensor and current detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005033922 2005-02-10
JP2006025182A JP4630401B2 (en) 2005-02-10 2006-02-02 Current sensor and current detection method

Publications (2)

Publication Number Publication Date
JP2006250921A JP2006250921A (en) 2006-09-21
JP4630401B2 true JP4630401B2 (en) 2011-02-09

Family

ID=37091577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025182A Expired - Fee Related JP4630401B2 (en) 2005-02-10 2006-02-02 Current sensor and current detection method

Country Status (1)

Country Link
JP (1) JP4630401B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250922A (en) * 2005-02-10 2006-09-21 Uchihashi Estec Co Ltd Electric current sensor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160810A (en) * 1996-11-27 1998-06-19 Shimadzu Corp Magnetism measuring apparatus
JPH10300795A (en) * 1997-04-22 1998-11-13 Showa Denshi Kogyo Kk Dc current sensor
JP2000002602A (en) * 1998-06-12 2000-01-07 Mitsubishi Materials Corp Torque detecting device
JP2000258464A (en) * 1999-03-09 2000-09-22 Mitsubishi Materials Corp Electric current sensor
JP2000284030A (en) * 1999-03-31 2000-10-13 Minebea Co Ltd Magnetic sensor element
JP2001153895A (en) * 1999-11-24 2001-06-08 Makome Kenkyusho:Kk Current sensor
JP2002022706A (en) * 2000-07-12 2002-01-23 Uchihashi Estec Co Ltd Magnetic sensor, magnetic leakage flux flaw detection method, and its device
JP2002022705A (en) * 2000-07-12 2002-01-23 Uchihashi Estec Co Ltd Magnetic sensor, magnetic field detection method, and its device
JP2002243766A (en) * 2001-02-16 2002-08-28 Fuji Electric Co Ltd Electric current sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160810A (en) * 1996-11-27 1998-06-19 Shimadzu Corp Magnetism measuring apparatus
JPH10300795A (en) * 1997-04-22 1998-11-13 Showa Denshi Kogyo Kk Dc current sensor
JP2000002602A (en) * 1998-06-12 2000-01-07 Mitsubishi Materials Corp Torque detecting device
JP2000258464A (en) * 1999-03-09 2000-09-22 Mitsubishi Materials Corp Electric current sensor
JP2000284030A (en) * 1999-03-31 2000-10-13 Minebea Co Ltd Magnetic sensor element
JP2001153895A (en) * 1999-11-24 2001-06-08 Makome Kenkyusho:Kk Current sensor
JP2002022706A (en) * 2000-07-12 2002-01-23 Uchihashi Estec Co Ltd Magnetic sensor, magnetic leakage flux flaw detection method, and its device
JP2002022705A (en) * 2000-07-12 2002-01-23 Uchihashi Estec Co Ltd Magnetic sensor, magnetic field detection method, and its device
JP2002243766A (en) * 2001-02-16 2002-08-28 Fuji Electric Co Ltd Electric current sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250922A (en) * 2005-02-10 2006-09-21 Uchihashi Estec Co Ltd Electric current sensor

Also Published As

Publication number Publication date
JP2006250921A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
US20220317210A1 (en) Current sensor, magnetic sensor and circuit
JP4495635B2 (en) Magneto-impedance effect sensor and method of using magneto-impedance effect sensor
JP4307695B2 (en) Magnetic detection device and magnetic field detection method
JP2006322706A (en) Method of measuring conductor current
JP4630401B2 (en) Current sensor and current detection method
JP2005055326A (en) Conductor current measurement method and magnetic field sensor for measuring conductor current
JP2000055998A (en) Magnetic sensor device and current sensor device
JP4808411B2 (en) Magnetic field detection circuit
JP2005061980A (en) Conductor current measuring method
JP4938740B2 (en) Magnetic field detector
JP4722717B2 (en) Current sensor
JP4878903B2 (en) Magnetic sensor for pillar transformer diagnosis
JP2005043254A (en) Method for measuring conductor current
JP5085274B2 (en) Magnetic field sensor
JP4476746B2 (en) Corrosion / thinning inspection method for the back of steel walls
JP4808410B2 (en) Magnetic field detection circuit
JP2007322125A (en) Magnetic impedance effect sensor and method for detecting external magnetic field
JP4878856B2 (en) Magneto-impedance effect sensor
JP2001343438A (en) Magnetic sensor
JP2006337040A (en) Defect-detecting method of metal body, and scanning type magnetic detector
JP4698958B2 (en) Sensor for detecting conductor defects in electric wires
JP2006064462A (en) Electric current sensor, electric current detection method, and electric current measuring instrument
JP4520188B2 (en) Method for detecting conductor defects in electric wires
JP4739097B2 (en) Diagnosis method of pole transformer
JPH09105772A (en) Magnetic detecting device and magnetic detecting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees