JP4520188B2 - Method for detecting conductor defects in electric wires - Google Patents

Method for detecting conductor defects in electric wires Download PDF

Info

Publication number
JP4520188B2
JP4520188B2 JP2004072232A JP2004072232A JP4520188B2 JP 4520188 B2 JP4520188 B2 JP 4520188B2 JP 2004072232 A JP2004072232 A JP 2004072232A JP 2004072232 A JP2004072232 A JP 2004072232A JP 4520188 B2 JP4520188 B2 JP 4520188B2
Authority
JP
Japan
Prior art keywords
magnetic field
wire
electric wire
conductor
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004072232A
Other languages
Japanese (ja)
Other versions
JP2005257593A (en
Inventor
一実 豊田
和幸 井澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Uchihashi Estec Co Ltd
Original Assignee
Tohoku Electric Power Co Inc
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Uchihashi Estec Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2004072232A priority Critical patent/JP4520188B2/en
Publication of JP2005257593A publication Critical patent/JP2005257593A/en
Application granted granted Critical
Publication of JP4520188B2 publication Critical patent/JP4520188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は電線の導体欠陥箇所を検知する方法に使用するセンサに関し、電線の導体の断線、傷、不導体化ならびに応力腐食割れ等の劣化といった不良(欠陥)を検知するのに有用である。 The present invention relates to a sensor used in a method for detecting a conductor defect portion of an electric wire, and is useful for detecting defects (defects) such as wire conductor breakage, flaws, non-conductor formation, and deterioration such as stress corrosion cracking.

断線、傷、不導体化ならびに応力腐食割れ等の劣化といった不良ならびに欠陥を検知する方法の一つとして、実際に流れている負荷電流が欠陥部分で乱れを生じ、それによって発生する磁場の変化を検出する方法が知られている。
前記欠陥が発生すると、その箇所の導体断面の輪郭が非円形化され、同断面の電流路中心がずれ、導体電流に基づく周回路磁界の分布が変化する。この事実に着目して欠陥箇所を検知することが提案されている。(特許文献1、非特許文献1)
One of the methods to detect defects and defects such as wire breakage, scratches, non-conductivity, and deterioration due to stress corrosion cracking, etc., the actual load current is disturbed in the defective part, and the change in the generated magnetic field is A method of detecting is known.
When the defect occurs, the contour of the conductor cross section at that location becomes non-circular, the center of the current path of the cross section shifts, and the distribution of the peripheral circuit magnetic field based on the conductor current changes. It has been proposed to detect a defective part by paying attention to this fact. (Patent Document 1, Non-Patent Document 1)

特開平10−73631号公報Japanese Patent Laid-Open No. 10-73631 野中崇、他2名,「電線の非破壊磁気探傷に関する基礎的検討」T,IEEjapan,Vol,121−A,No.3,2001,p282−287Takashi Nonaka and two others, “Fundamental study on non-destructive magnetic flaw detection of electric wires” T, IEEEjapan, Vol, 121-A, No. 3,2001, p282-287

特許文献1では、図11に示す、電線の周囲にサーチコイル1o,1o'を180°隔てた対の複数対にて電線中心から等距離の位置に配設し、サーチコイルのコア方向と電線同心円の接線方向とを一致させ、各対の両サーチコイルの出力の差をセンサ出力としている。
図11において、撚線導体の電流路断面の中心の変位がゼロ、すなわち周回路磁界分布変化が無い場合、両コイルの出力が等しくセンサ出力が0となり欠陥無しとされる。周回路磁界分布変化が生じている場合、両コイルの出力が等しくならずにセンサ出力が発生し、欠陥有りと判定される。
In Patent Document 1, as shown in FIG. 11, search coils 1o and 1o ′ are arranged around the electric wire at a position equidistant from the center of the electric wire by a plurality of pairs separated by 180 °, and the search coil core direction and the electric wire are arranged. The tangential direction of the concentric circles is matched, and the difference between the outputs of both search coils of each pair is used as the sensor output.
In FIG. 11, when the displacement of the center of the current path cross section of the stranded conductor is zero, that is, there is no change in the circumferential circuit magnetic field distribution, the outputs of both coils are equal and the sensor output is 0, indicating no defect. When the peripheral circuit magnetic field distribution change occurs, the outputs of both coils are not equal and a sensor output is generated, and it is determined that there is a defect.

非特許文献1では、図12に示すように電流路断面の中心C1(Cx1,Cy1)が任意座標点p1(x1,y1)及びp2(x2,y2)とそれら任意座標点p1(x1,y1)及びp2(x2,y2)での磁束密度(Bx1,By1)及び(Bx2,By2)から次式で与えられることから

Figure 0004520188
任意座標点p1(x1,y1)における磁束密度(Bx1,By1)及びp2(x2,y2)における磁束密度(Bx2,By2)をサーチコイルにより測定し、これらの測定値から電流路断面の中心座標C1(Cx1,Cy1)を計算し、この中心座標の変位から撚線導体の欠陥箇所を評価している。 In Non-Patent Document 1, as shown in FIG. 12, the center C1 (Cx1, Cy1) of the current path cross section has arbitrary coordinate points p1 (x1, y1) and p2 (x2, y2) and these arbitrary coordinate points p1 (x1, y1). ) And magnetic flux density (Bx1, By1) and (Bx2, By2) at p2 (x2, y2)
Figure 0004520188
The magnetic flux density (Bx1, By1) at the arbitrary coordinate point p1 (x1, y1) and the magnetic flux density (Bx2, By2) at p2 (x2, y2) are measured by the search coil, and the center coordinates of the current path cross section are obtained from these measured values. C1 (Cx1, Cy1) is calculated, and the defective portion of the stranded conductor is evaluated from the displacement of the center coordinates.

しかしながら、上記従来例では磁気センサを電線に沿って移動させる間、電線の軸心に対する磁気センサのぶれが避けられず、このぶれが上記導体の電流路断面の中心のずれを相対的に生じることになるから、導体の欠陥箇所の正確な検知は困難である。   However, in the above conventional example, while the magnetic sensor is moved along the electric wire, the magnetic sensor is inevitably shaken with respect to the axis of the electric wire, and this shake causes a relative shift of the center of the current path cross section of the conductor. Therefore, it is difficult to accurately detect the defective part of the conductor.

導体電流をIとすると、導体中心から距離rにおける磁界強度Hは、
H=I/(2πr)
で与えられる。
架線された電線には、数10A〜数100Aの電流が通電されており、電線外周上での磁束密度は極めて高い。例えば、電流値を150A、電線半径を15mmとすると、電線表面での磁束密度は1600A/mもの高磁束密度となる。磁界センサには、測定限度があり1600A/mもの高磁界を測定することは困難である。
しかるに、上記従来例では、サーチコイルをその感磁方向を電線の周回路磁界の方向に向けて配設しており、150Aもの高導体電流に対しては、レンジ上、サーチコイルを電線中心からかなり隔てた位置に配置する必要があり、センサの大型化が避けられない。
更に、特許文献1記載の従来例では、電線の周囲にサーチコイルを180°隔てた対で電線中心から等距離を隔てた位置に2箇配設し、撚線導体の導電路断面の電流中心がずれたときの両サーチコイルの出力差をセンサ出力としているが、ずれΔLに対する周囲磁界強度Hの変化ΔHは、ΔH=HΔL/rで与えられ、サーチコイルを電線中心からかなり隔てた位置に配置してrを大きくすると、それだけ両サーチコイルの出力差が小さくなってセンサ出力が低下し、充分な検出感度を保証し難い。
When the conductor current is I, the magnetic field strength H at a distance r from the conductor center is
H = I / (2πr)
Given in.
A current of several tens of A to several hundreds of A is passed through the wired wire, and the magnetic flux density on the outer periphery of the wire is extremely high. For example, if the current value is 150 A and the wire radius is 15 mm, the magnetic flux density on the wire surface is as high as 1600 A / m. The magnetic field sensor has a measurement limit, and it is difficult to measure a high magnetic field of 1600 A / m.
However, in the above-described conventional example, the search coil is arranged with its magnetic sensing direction directed to the direction of the circumferential circuit magnetic field of the electric wire. It is necessary to arrange them at positions that are considerably separated from each other.
Furthermore, in the conventional example described in Patent Document 1, two search coils are arranged around the electric wire at positions spaced equidistant from the center of the electric wire in pairs separated by 180 °, and the current center of the conductor path cross section of the stranded wire conductor is arranged. The sensor output is the difference between the outputs of the two search coils at the time of deviation, but the change ΔH in the ambient magnetic field strength H with respect to the deviation ΔL is given by ΔH = HΔL / r, and the search coil is located far away from the center of the wire. If r is increased by arranging it, the output difference between the two search coils is reduced accordingly, the sensor output is lowered, and it is difficult to guarantee sufficient detection sensitivity.

近来、高い磁界検出分解能、微小寸法の磁界センサ素子として磁気インピーダンス効果素子が開発されている。   Recently, magneto-impedance effect elements have been developed as magnetic field sensor elements with high magnetic field detection resolution and micro dimensions.

本発明の目的は、電線の導体の欠陥箇所での電流乱れに起因して生じる電線長手方向磁界成分を利用して電線における欠陥箇所を小型の磁気センサで容易に充分に高い精度で検知することを可能にする。   An object of the present invention is to easily detect a defective portion in an electric wire with sufficiently high accuracy with a small magnetic sensor by using a magnetic field component in the longitudinal direction of the electric wire generated due to current disturbance at the defective portion of the conductor of the electric wire. Enable.

請求項1に係る電線の導体欠陥箇所検知方法は、アモルファスワイヤを使用した二本の磁気インピーダンス効果素子をその感磁方向と電線の長手方向が平行になるように該電線を中央に挾んで電線周方向に180°の角度を隔てて配設し、前記両素子を電線の長手方向に沿って移動させることにより、電線導体の欠陥に基づく電線長手方向検出用磁界の正負反転点を検知すると共に、この移動中の前記両素子の検出出力を、欠陥導体素線と健全導体素線との電流差に基づき電線回周磁界が導体素線撚りのためにうねり変動して生じる正弦波状の電線長手方向磁界成分を打ち消すように差動増幅または減算することを特徴とする。  In the method for detecting a conductor defect portion of an electric wire according to claim 1, the two magneto-impedance effect elements using amorphous wires are sandwiched in the center so that the magnetic sensing direction and the longitudinal direction of the electric wire are parallel to each other. While detecting the positive / negative reversal point of the magnetic field for detecting the longitudinal direction of the electric wire based on the defect of the electric wire conductor by disposing the element at an angle of 180 ° in the circumferential direction and moving both the elements along the longitudinal direction of the electric wire. The detected output of both elements during the movement is a sinusoidal wire length generated by the wire circuit magnetic field swells and fluctuates due to the conductor wire twist based on the current difference between the defective conductor wire and the healthy conductor wire. The differential amplification or subtraction is performed so as to cancel the directional magnetic field component.

電線導体の欠陥箇所では、導体断面が偏って減少され、その導体断面での図1の(イ)に示すような電流の絞り込みのために、図1の(ロ)に示すように±の電流ポールp、p’を仮想できる。この±電流ポールに基づく磁界の電線長手方向の経路a−a’に沿っての電線長手方向磁界成分は図1の(ハ)のように、欠陥箇所eを境にして波高が逆極性に急変するパターンとなる。
本発明においては、この急変点を検出して導体の欠陥箇所eを見出しており、±電流ポールの電流値が導体電流に較べて極めて小さいために、その±電流ポールに基づく電線長手方向磁界成分が小であって磁気センサの限界レンジ内におさめ得、かつその電線長手方向磁界成分の分布パターンが図1の(ハ)のように欠陥箇所eを境にして正負に急峻に反転するパターンであり、このパターンは磁気センサが多少ぶれても充分に保持されることから、電線の欠陥箇所を正確に容易に見出し得る。
At the defective portion of the wire conductor, the conductor cross section is deviated unevenly, and in order to narrow the current as shown in FIG. 1 (a) in the conductor cross section, the ± current as shown in FIG. The poles p and p ′ can be virtualized. The magnetic field component in the longitudinal direction of the wire along the wire longitudinal direction path aa ′ based on the ± current poles, as shown in FIG. Pattern.
In the present invention, this sudden change point is detected to find the defective portion e of the conductor, and the current value of the ± current pole is extremely small compared to the conductor current. Is a pattern that can be kept within the limit range of the magnetic sensor, and the distribution pattern of the magnetic field component in the longitudinal direction of the wire is a pattern that inverts positively and negatively at the defect point e as shown in FIG. In addition, since this pattern is sufficiently retained even if the magnetic sensor is slightly moved, a defective portion of the electric wire can be found accurately and easily.

また、磁気インピーダンス効果素子の感磁方向を電線長手方向に向け、磁気インピーダンス効果素子を電線の表面に近接させた磁気センサを使用でき、磁気インピーダンス効果型センサの小型・高感度のために検知作業を容易に、高感度で行なうことができる。
また、電線の通電電流に基づき発生する周回路磁界が導体の撚りの影響でうねり変動することに起因して生じる正弦波状の電線長手方向磁界成分を、前記磁気インピーダンス効果素子を二本とし両素子の出力を差動増幅もしくは減算する方式で打ち消してノイズとなるのを排除できる。
In addition, a magnetic sensor with the magneto-impedance effect element oriented in the longitudinal direction of the wire and the magneto-impedance effect element close to the surface of the wire can be used. Can be easily performed with high sensitivity.
In addition, the magnetic field effect component in the longitudinal direction of the sine wave generated due to the fluctuation of the circumferential circuit magnetic field generated based on the electric current of the electric wire due to the influence of the twisting of the conductor, the two elements of the magneto-impedance effect element It is possible to eliminate noise by canceling the output of the signal with a method of differential amplification or subtraction.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図2は本発明において使用する磁気センサの基本的構成を示している。
図2において、1は磁気インピーダンス効果素子であり、自発磁化の方向がワイヤ周方向に対し互いに逆方向の磁区が交互に磁壁で隔てられた構成の外殻部を有する、零磁歪乃至は負磁歪のアモルファス合金ワイヤが使用されている。かかる零磁歪乃至は負磁歪のアモルファス磁性ワイヤに高周波励磁電流を流したときに発生するワイヤ両端間出力電圧中のインダクタンス電圧分は、ワイヤの横断面内に生じる円周方向磁束によって上記の円周方向に易磁化性の外殻部が円周方向に磁化されることに起因して発生する。従って、周方向透磁率μθは同外殻部の円周方向の磁化に依存する。而るに、この通電中のアモルファスワイヤの軸方向(最大感磁方向)に被検出磁界を作用させると、上記通電による円周方向磁束と被検出磁界磁束との合成により、上記円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずれ、それだけ円周方向への磁化が生じ難くなり、上記周方向透磁率μθが変化し、上記インダクタンス電圧分が変動することになる。この変動現象は磁気インダクタンス効果と称され、これは上記高周波励磁電流(搬送波)が被検出波(信号波)で変調される現象ということができる。更に、上記通電電流の周波数がMHzオ−ダになると、高周波表皮効果が大きく現れ、表皮深さδ=(2ρ/wμθ1/2(μθは前記した通り円周方向透磁率、ρは電気抵抗率、wは角周波数をそれぞれ示す)がμθにより変化し、このμθが前記した通り、被検出磁界によって変化するので、ワイヤ両端間出力電圧中の抵抗電圧分も被検出磁界で変動するようになる。この変動現象は磁気インピーダンス効果と称され、これは上記高周波励磁電流(搬送波)が被検出波(信号波)で変調される現象ということができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 2 shows the basic configuration of the magnetic sensor used in the present invention.
In FIG. 2, reference numeral 1 denotes a magneto-impedance effect element, which has a zero magnetostriction or a negative magnetostriction having an outer shell portion in which magnetic domains whose spontaneous magnetization directions are opposite to each other in the circumferential direction of the wire are alternately separated by domain walls. An amorphous alloy wire is used. The inductance voltage component in the output voltage between both ends of the wire generated when a high-frequency excitation current is passed through an amorphous magnetic wire having zero magnetostriction or negative magnetostriction is obtained by the circumferential magnetic flux generated in the cross section of the wire. This occurs due to the magnetization of the easily magnetizable outer shell in the circumferential direction. Therefore, the circumferential magnetic permeability mu theta depends on the circumferential direction of magnetization of Dosotokara portion. Therefore, when a detected magnetic field is applied in the axial direction (maximum magnetosensitive direction) of the energized amorphous wire, the circumferential direction magnetic flux and the detected magnetic field magnetic flux generated by the energization are combined in the circumferential direction. The direction of the magnetic flux acting on the easily magnetized outer shell part is deviated from the circumferential direction, and the magnetization in the circumferential direction is less likely to occur, the circumferential permeability μ θ changes, and the inductance voltage changes. Will do. This fluctuation phenomenon is called a magnetic inductance effect, which can be said to be a phenomenon in which the high-frequency excitation current (carrier wave) is modulated by a detected wave (signal wave). Further, when the frequency of the energization current is in the order of MHz, a high-frequency skin effect appears greatly, and the skin depth δ = (2ρ / wμ θ ) 1/2θ is the circumferential permeability, ρ as described above. electrical resistivity, w is shows the angular frequency, respectively) is changed by mu theta, as the mu theta is the so changed by the detected magnetic field, the resistance voltage division also be detected magnetic field in the wire between both ends output voltage It will fluctuate with. This fluctuation phenomenon is called a magneto-impedance effect, which can be said to be a phenomenon in which the high-frequency excitation current (carrier wave) is modulated by a detected wave (signal wave).

図2において、2は磁気インピーダンス効果素子に高周波励磁電流を加えるための高周波電源、3は磁気インピーダンス効果素子の軸方向に作用する被検出磁界(信号波)で前記高周波励磁電流(搬送波)を変調させた被変調波を復調する復調回路、4は復調波を増幅する増幅回路、5は出力端、6は負帰還用コイル、7はバイアス磁界用コイルである。磁気インピーダンス効果素子1には、零磁歪乃至は負磁歪のアモルファスワイヤの外、アモルファスリボン、アモルファススパッタ膜等も使用できる。   In FIG. 2, 2 is a high-frequency power source for applying a high-frequency excitation current to the magneto-impedance effect element, and 3 is a modulation of the high-frequency excitation current (carrier wave) by a detected magnetic field (signal wave) acting in the axial direction of the magneto-impedance effect element. Demodulation circuit for demodulating the modulated wave thus generated, 4 an amplification circuit for amplifying the demodulated wave, 5 an output terminal, 6 a negative feedback coil, and 7 a bias magnetic field coil. For the magneto-impedance effect element 1, an amorphous ribbon, an amorphous sputtered film, or the like can be used in addition to an amorphous wire having zero magnetostriction or negative magnetostriction.

磁気インピーダンス効果素子においては、前記した通り励磁電流に基づく円周方向磁束と被検出磁界による軸方向磁束との合成により、円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずれされるために、周方向透磁率μθが変化し、インダクタンスが変動され、この円周方向透磁率μθの高周波表皮効果の表皮深さの変化でインピーダンスが変動される。従って、被検出磁界の±により上記合成磁界による周方向ずれφも±φになるが、周方向の磁界の減少倍率cos(±φ)は変わらず、従ってμθの減少度は被検出磁界の方向の正負によっては変化されない。従って、被検出磁界−出力特性は、図3の(イ)のように被検出磁界をx軸に、出力をy軸にとると、y軸に対してほぼ左右対称となる。この被検出磁界−出力特性は非線形である。非線形特性では、高感度の測定が困難である。そこで、負帰還用コイル6で負帰還をかけて図3の(ロ)に示すように特性を直線化している。図3の(ロ)において、Δwは、負帰還無しのときの利得Aが非常に大きく帰還率βのみにより利得が定まるリニア範囲である。しかし、この出力特性では、被検出磁界の極性判別を行ない得ないので、バイアス用コイル7でバイアス磁界をかけ、図3の(ハ)に示すように極性判別可能としている。すなわち、図3の(ロ)の特性を、バイアス磁界によりx軸のマイナス方向に移動させ、被検出磁界の最大範囲−Hmax〜+Hmaxを単斜め線領域の範囲内に納めている。更に、図3の(ニ)に示すように0点調整により原点を通る直線特性としている。従って、図3の(ニ)において被検出磁界を+Heとすると出力が+Eoとなり、被検出磁界を−Heとすると出力が−Eoとなって被検出磁界を極性判別のもとで正確に測定できる。 In the magneto-impedance effect element, as described above, the direction of the magnetic flux acting on the outer shell portion that is easily magnetized in the circumferential direction is obtained by combining the circumferential magnetic flux based on the excitation current and the axial magnetic flux due to the detected magnetic field. Due to the deviation from the circumferential direction, the circumferential magnetic permeability μ θ changes, the inductance is changed, and the impedance is changed by the change of the skin depth of the high frequency skin effect of the circumferential magnetic permeability μ θ . Accordingly, although even the circumferential direction positional shift phi by the synthesized magnetic field by ± of the detected magnetic field becomes ± phi, the circumferential direction of the magnetic field reduction ratio cos (± phi) is unchanged, the degree of reduction in thus mu theta is of the detected magnetic field It does not change depending on the direction. Therefore, the detected magnetic field-output characteristics are almost symmetrical with respect to the y axis when the detected magnetic field is taken on the x axis and the output is taken on the y axis as shown in FIG. This detected magnetic field-output characteristic is non-linear. With non-linear characteristics, it is difficult to measure with high sensitivity. Therefore, negative feedback is applied by the negative feedback coil 6 to linearize the characteristics as shown in FIG. In FIG. 3B, Δw is a linear range in which the gain A without negative feedback is very large and the gain is determined only by the feedback rate β. However, with this output characteristic, the polarity of the magnetic field to be detected cannot be determined, so that a bias magnetic field is applied by the bias coil 7 so that the polarity can be determined as shown in FIG. That is, the characteristic of (b) in FIG. 3 is moved in the negative direction of the x-axis by the bias magnetic field, and the maximum range −Hmax to + Hmax of the detected magnetic field is within the range of the single oblique line region. Further, as shown in FIG. 3D, linear characteristics passing through the origin are obtained by adjusting the zero point. Therefore, in FIG. 3D, when the detected magnetic field is + He, the output is + Eo, and when the detected magnetic field is -He, the output is -Eo, and the detected magnetic field can be accurately measured based on polarity discrimination. .

前記極性判別可能なリニア出力特性を得るのに図4に示すように、出力より反転入力端子に負帰還をかけた演算増幅器Q(負帰還路挿入インピーダンスZ、入力側挿入インピーダンスZ)を使用することもできる。この場合、負帰還用コイルに挿入した抵抗をR、同コイルの巻数をn、長さをL、復調増幅部34の利得をA、被検出磁界をHex、出力をEoutとすると、 As shown in FIG. 4, an operational amplifier Q (negative feedback path insertion impedance Z 2 , input side insertion impedance Z 1 ) in which negative feedback is applied to the inverting input terminal from the output is used to obtain the linear output characteristics capable of discriminating the polarity. It can also be used. In this case, if the resistance inserted in the negative feedback coil is R, the number of turns of the coil is n, the length is L, the gain of the demodulation amplifier 34 is A, the detected magnetic field is Hex, and the output is Eout,

A≫ZRL/(Zn) A >> Z 1 RL / (Z 2 n)

のもとで Under

Eout=RLZHex/(nZ)+VccZR/〔Z(Z+R)〕 Eout = RLZ 1 Hex / (nZ 2 ) + VccZ 1 R / [Z 2 (Z 2 + R)]

が成立し、この出力特性を諸定数(Z,Z,抵抗R,コイル巻数n等)の調整によりx軸の±方向にシフトさせることができ、その調整により極性判別可能な斜め直線部を最大被検出磁界の範囲±Hmax内に位置させることが可能となり、更にy軸方向の0点調整により図3の(ニ)に示すような極性判別可能な直線性の出力特性を得ることができる。 Is established, and the output characteristics can be shifted in the ± direction of the x-axis by adjusting various constants (Z 1 , Z 2 , resistance R, coil turns n, etc.), and the diagonal straight line portion whose polarity can be discriminated by the adjustment Can be positioned within the range of the maximum detected magnetic field ± Hmax, and the linearity output characteristics capable of discriminating the polarity as shown in FIG. 3 (d) can be obtained by adjusting the zero point in the y-axis direction. it can.

本発明に係る電線の導体欠陥箇所検知方法により導体の欠陥箇所を検知するには、磁気センサの感磁方向を電線の長手方向に向けて磁気センサを電線に沿い移動させていく。この場合、電線を抱挾む車輪を磁気センサに取付け、磁気センサをワイヤで牽引することができる。
磁気センサが導体の欠陥箇所を通過する際、前記欠陥箇所の電流乱れに基づく発生磁界の電線長手方向Hxを被検出磁界として、前記被検出磁界−出力特性(比例係数をkとする)に基づき、Eout=kHxが出力され、この出力kHxの検出により欠陥箇所であることを知り得る。
前記欠陥箇所の電流乱れに基づく発生磁界の電線長手方向のパターンについて考察すると、図5において、磁気センサ素子、例えば磁気インピーダンス効果素子の電線長手方向移動経路a−a’と欠陥箇所eとの距離dが大となるほど、波高値が小となるが、パターン自体は殆ど変わらない。
而るに、感磁方向を電線長手方向に向ける磁気センサ素子、例えば、磁気インピーダンス効果素子を電線を挾んで配設すれば、通常一方の磁気インピーダンス効果素子が他方の磁気インピーダンス効果素子よりも欠陥箇所との距離が近い電線長手方向経路をとることになり、一方の磁気インピーダンス効果素子側の出力が他方の磁気インピーダンス効果素子側の出力より大きくなり、かつ両出力が正負逆極性となるから、両出力を差動増幅または減算してセンサ出力とすれば、波高値の高いセンサ出力を得ることができる。
In order to detect a defective portion of a conductor by the method for detecting a defective portion of a conductor according to the present invention, the magnetic sensor is moved along the electric wire with the magnetic sensing direction of the magnetic sensor directed in the longitudinal direction of the electric wire. In this case, the wheel that holds the electric wire can be attached to the magnetic sensor, and the magnetic sensor can be pulled by the wire.
When the magnetic sensor passes through a defective portion of the conductor, based on the detected magnetic field-output characteristic (proportional coefficient is k) with the electric wire longitudinal direction Hx of the generated magnetic field based on the current disturbance of the defective portion as the detected magnetic field. , Eout = kHx is output, and it can be known that this is a defective part by detecting this output kHx.
Considering the pattern of the magnetic field generated in the longitudinal direction of the generated magnetic field based on the current disturbance of the defective portion, in FIG. 5, the distance between the longitudinal direction moving path aa ′ of the magnetic sensor element, for example, the magneto-impedance effect element, and the defective portion e. As d increases, the crest value decreases, but the pattern itself hardly changes.
Thus, if a magnetic sensor element, for example, a magneto-impedance effect element is disposed with the electric wire sandwiched between the magnetic impedance effect element and the magneto-impedance effect element is more defective than the other magneto-impedance effect element. Because it will take a wire longitudinal direction path that is close to the location, the output on one side of the magneto-impedance effect element is larger than the output on the side of the other magneto-impedance effect element, and both outputs have positive and negative polarity, If both outputs are differentially amplified or subtracted to obtain a sensor output, a sensor output having a high peak value can be obtained.

本発明者の鋭意検討結果によれば、電線の撚合導体に欠陥が生じると、欠陥素線と健全素線とに流れる電流に差が生じ、導体通電電流に基づく周回路磁界が導体の撚りの影響でうねり変動し、その結果、正弦波状に変化する電線長手方向磁界成分を発生することがある(導体の撚りに対し高調波状になり、ピッチは撚りピッチの数分の1となる)。
而るに、前記した電線を挾む二本の磁気インピーダンス効果素子を使用し、両素子の出力信号を差動増幅または減算してセンサ出力とする方式では、前記の正弦波状の電線長手方向磁界成分を打ち消し得る。
According to the present inventors' earnest study results, when a defect occurs in the twisted conductor of the electric wire, a difference occurs in the current flowing between the defective strand and the healthy strand, and the circumferential circuit magnetic field based on the conductor energization current is twisted in the conductor. As a result, a sine wave-like magnetic field component that changes in a sine wave shape may be generated (as a result, the conductor becomes twisted and the pitch becomes a fraction of the twist pitch).
Thus, in the method using the two magneto-impedance effect elements sandwiching the above-described electric wires and differentially amplifying or subtracting the output signals of both elements to obtain the sensor output, the sinusoidal electric wire longitudinal magnetic field is used. The ingredients can be countered.

磁気センサ素子、例えば磁気インピーダンス効果素子の長さは、前記正弦波状の電線長手方向磁界成分のピッチに較べて僅小であり、二本の磁気インピーダンス効果素子をその磁気インピーダンス効果素子の数倍以下の距離で電線の長手方向にずらせて差動増幅または減算によりセンサ出力を得るようにしても、前記の正弦波状の電線長手方向磁界成分を充分に打ち消し得る。   The length of the magnetic sensor element, for example, the magneto-impedance effect element is small compared to the pitch of the magnetic field component in the longitudinal direction of the sinusoidal electric wire, and the two magneto-impedance effect elements are several times less than the magneto-impedance effect element. Even if the sensor output is obtained by differential amplification or subtraction by shifting the distance in the longitudinal direction of the electric wire, the sinusoidal electric wire longitudinal direction magnetic field component can be sufficiently canceled.

本発明に係る電線の導体欠陥箇所検知方法では、磁気センサとして磁気インピーダンス効果型センサ以外に、磁気抵抗素子、またはホール素子を使用した磁気センサ或いはフラックスゲートセンサを使用することも可能である。
次に、本発明に係る電線の導体欠陥箇所検知用磁気センサの実施例について説明する。
In the method for detecting a conductor defect portion of an electric wire according to the present invention, a magnetic sensor or a fluxgate sensor using a magnetoresistive element or a Hall element can be used as the magnetic sensor, in addition to the magnetic impedance effect type sensor.
Next, the Example of the magnetic sensor for a conductor defect location detection of the electric wire which concerns on this invention is described.

図6の(イ)は本発明に係る磁気センサの一実施例とその使用状態を示す図面であり、Seはセンサ、Caは電線、Mは地上計測器である。センサには、電線抱挾車輪が取り付けられ、ワイヤの牽引でセンサが移動されるが、これらの構成は図示されていない。
図6の(ロ)は同上センサSeの回路図である。
図6において、Pは基板である。1は磁気インピーダンス効果素子であり、出力特性をリニア特性とするための負帰還用コイル6及び出力特性を極性判別可能とするためのバイアス用コイル7を付設してある。
FIG. 6 (a) is a drawing showing an embodiment of the magnetic sensor according to the present invention and the state of use thereof, wherein Se is a sensor, Ca is an electric wire, and M is a ground measuring instrument. An electric wire holding wheel is attached to the sensor, and the sensor is moved by pulling the wire, but these configurations are not shown.
FIG. 6B is a circuit diagram of the sensor Se.
In FIG. 6, P is a substrate. Reference numeral 1 denotes a magneto-impedance effect element, which is provided with a negative feedback coil 6 for making the output characteristics linear and a bias coil 7 for making it possible to determine the polarity of the output characteristics.

図7はそのコイル付き磁気インピーダンス効果素子の一例を示す側面図、図7の(ロ)は同じく底面図、図7の(ハ)は図7の(ロ)におけるハ−ハ断面図である。
図7において、100は基板チツプであり、例えばセラミックス板を使用できる。101は基板片の片面に設けた電極であり、エレメント接続用突部102を備えている。この電極は導電ペースト、例えば銀ペーストの印刷・焼付けにより設けることができる。1xは電極101,101の突部102,102間にはんだ付けや溶接により接続した磁気インピーダンス効果素子であり、前記した通り零磁歪乃至負磁歪のアモルファスワイヤ、アモルファスリボン、スパッタ膜等を使用できる。103はC型鉄芯、6xはC型鉄芯に巻装した負帰還用コイル、7xは同じくバイアス磁界用コイルであり、磁気インピーダンス効果素子1xとC型鉄芯103とでループ磁気回路を構成するように、C型鉄芯103の両端を基板片100の他面に接着剤等で固定してある。鉄芯材料としては、残留磁束密度の小さい磁性体であればよく、例えば、パーマロイ、フェライト、鉄、アモルファス磁性合金の他、磁性体粉末混合プラスチック等を挙げることができる。104,104は電極102,102に溶接等により接合したリード導体である。
7 is a side view showing an example of the magneto-impedance effect element with a coil, FIG. 7B is a bottom view, and FIG. 7C is a cross-sectional view of FIG.
In FIG. 7, reference numeral 100 denotes a substrate chip, and for example, a ceramic plate can be used. Reference numeral 101 denotes an electrode provided on one surface of the substrate piece, and includes an element connecting projection 102. This electrode can be provided by printing and baking a conductive paste, for example, a silver paste. 1x is a magneto-impedance effect element connected between the protrusions 102 and 102 of the electrodes 101 and 101 by soldering or welding, and an amorphous wire, amorphous ribbon, sputtered film, or the like having zero or negative magnetostriction can be used as described above. 103 is a C-type iron core, 6x is a negative feedback coil wound around the C-type iron core, 7x is also a bias magnetic field coil, and the magneto-impedance effect element 1x and the C-type iron core 103 constitute a loop magnetic circuit. Thus, both ends of the C-shaped iron core 103 are fixed to the other surface of the substrate piece 100 with an adhesive or the like. The iron core material may be a magnetic material having a small residual magnetic flux density. Examples thereof include permalloy, ferrite, iron, amorphous magnetic alloy, magnetic powder mixed plastic, and the like. 104 and 104 are lead conductors joined to the electrodes 102 and 102 by welding or the like.

図6において、uはコイル付き磁気インピーダンス効果素子である。Pは基板であり、コイル付き磁気インピーダンス効果素子uをリード導体104において支持し、磁気インピーダンス効果素子の感磁方向(軸方向)を電線の長手方向に向けるようにリード導体104を折り曲げてある。
2は磁気インピーダンス効果素子1を励磁するための高周波電流源であり、被検出磁界(導体の欠陥箇所での電流乱れに基づき発生する磁界の電線長手方向成分)を信号波とし、高周波励磁電流を搬送波とする被変調波が磁気インピーダンス効果素子1の出力端に現れる。3は復調回路であり、前記被変調波が復調されて前記の信号波が出力される。4は増幅器であり、出力が負帰還用コイル6を経て磁気インピーダンス効果素子1に負帰還されて出力が直線化される。また+Vcc電源でバイアス用コイル7を経て磁気インピーダンス効果素子1にバイアス磁界がかけられて出力特性が極性判別可能とされる。
上記の高周波電流源2、復調回路3及び増幅器4は基板Pに搭載されている。
In FIG. 6, u is a magneto-impedance effect element with a coil. P is a substrate, and the magneto-impedance effect element u with coil is supported by the lead conductor 104, and the lead conductor 104 is bent so that the magnetosensitive direction (axial direction) of the magneto-impedance effect element is directed to the longitudinal direction of the electric wire.
Reference numeral 2 denotes a high-frequency current source for exciting the magneto-impedance effect element 1, and a detected magnetic field (a longitudinal component of a magnetic field generated based on current disturbance at a defective portion of the conductor) is used as a signal wave, and a high-frequency excitation current is generated. A modulated wave as a carrier wave appears at the output end of the magneto-impedance effect element 1. Reference numeral 3 denotes a demodulation circuit, which demodulates the modulated wave and outputs the signal wave. Reference numeral 4 denotes an amplifier. The output is negatively fed back to the magneto-impedance effect element 1 through the negative feedback coil 6 and the output is linearized. In addition, a bias magnetic field is applied to the magneto-impedance effect element 1 through the bias coil 7 with the + Vcc power source, and the polarity of the output characteristics can be discriminated.
The high-frequency current source 2, the demodulation circuit 3, and the amplifier 4 are mounted on the substrate P.

図8の(イ)は本発明に係る磁気センサの別実施例とその使用状態を示す図面であり、Seはセンサ、Caは電線、Mは地上計測器である。センサには、電線抱挾車輪が取り付けられ、ワイヤの牽引でセンサが移動されるが、これらの構成は図示されていない。
図8の(ロ)は同上センサSeの回路図である。
図8において、Pは基板であり、電線挿通用切欠部hを設けてある。u,uは二本のコイル付き磁気インピーダンス効果素子であり、図7に示したものを使用でき、電線Caを挾み、感磁方向を電線Caの長手方向に向けるようにリード導体104を折り曲げて基板Pに支持してある。2は両磁気インピーダンス効果素子を励磁するための高周波電流源、3a,3bは各磁気インピーダンス効果素子1a,1bの出力端に接続した復調回路、4dは差動増幅器であり、これらは基板Pに搭載してある。
前記二本の磁気インピーダンス効果素子は電線を中央に挾んで180°の角度で隔てられており、図9に示すように導体の欠陥箇所eの電流乱れに基づき発生する磁場を、例えば一方の磁気インピーダンス効果素子1aが電線長手方向経路a−a’で、他方の磁気インピーダンス効果素子1bがその電線長手方向経路a−a’に対しほぼ電線の半周の距離w/2を隔てた電線長手方向経路b−b’で移動される。これら両経路に沿っての被検出磁界(電線長手方向磁界成分)は、極性が正負逆でかつ波高値が異なる点を除けば実質的に同パターンの波形であると推定でき、差動増幅のために両磁気インピーダンス効果素子の検出信号の絶対値が加算されてセンサ出力とされる。
FIG. 8 (a) is a drawing showing another embodiment of the magnetic sensor according to the present invention and the state of use thereof, wherein Se is a sensor, Ca is an electric wire, and M is a ground measuring instrument. An electric wire holding wheel is attached to the sensor, and the sensor is moved by pulling the wire, but these configurations are not shown.
FIG. 8B is a circuit diagram of the sensor Se.
In FIG. 8, P is a board | substrate and the notch part h for electric wire insertion is provided. u and u are magneto-impedance effect elements with two coils, and the one shown in FIG. 7 can be used, and the lead conductor 104 is bent so that the electric wire Ca is sandwiched and the magnetic sensing direction is oriented in the longitudinal direction of the electric wire Ca. Are supported on the substrate P. 2 is a high-frequency current source for exciting both magneto-impedance effect elements, 3a and 3b are demodulator circuits connected to the output terminals of the respective magneto-impedance effect elements 1a and 1b, and 4d is a differential amplifier. It is installed.
The two magneto-impedance effect elements are separated by an angle of 180 ° with the electric wire in the center, and as shown in FIG. 9, the magnetic field generated based on the current disturbance at the defective portion e of the conductor is generated by, for example, one magnetic field. The impedance effect element 1a is a wire longitudinal path aa ', and the other magnetic impedance effect element 1b is a wire longitudinal path that is separated from the wire longitudinal path aa' by a distance w / 2 that is substantially a half circumference of the wire. It is moved by bb ′. The detected magnetic field (wire longitudinal magnetic field component) along these two paths can be estimated to have substantially the same waveform except that the polarity is positive and negative and the peak value is different. Therefore, the absolute values of the detection signals of both magneto-impedance effect elements are added to form a sensor output.

既述した通り、電線の導体に欠陥が発生すると、欠陥導体素線と健全素線との間に電流差が生じ、導体電流に基づく周回路磁界が撚合導体の撚りの影響でうねり変動され、正弦波状の電線長手方向磁界成分が発生する。その正弦波は導体の撚りに対し高調波状とみなし得、そのピッチは撚合導体の撚りピッチより短いが磁気インピーダンス効果素子の長さに較べて極めて長い。従って、前記正弦波状の電線長手方向磁界成分は両磁気インピーダンス効果素子に対し、実質的に同一値磁界として作用し、差動増幅のために打ち消されてセンサ出力としては現れない。また、各復調回路等に温度等の影響で発生する内部ノイズも、差動増幅のために打ち消されてセンサ出力としては現れない。   As described above, when a defect occurs in the conductor of the electric wire, a current difference is generated between the defective conductor wire and the healthy wire, and the circumferential circuit magnetic field based on the conductor current is swelled and fluctuated due to the twist of the twisted conductor. A sinusoidal electric wire longitudinal direction magnetic field component is generated. The sine wave can be regarded as a harmonic with respect to the twist of the conductor, and the pitch is shorter than the twist pitch of the twisted conductor, but is extremely longer than the length of the magneto-impedance effect element. Therefore, the sinusoidal wire longitudinal magnetic field component acts as a substantially identical magnetic field on both magneto-impedance effect elements, cancels out for differential amplification, and does not appear as a sensor output. In addition, internal noise generated by the influence of temperature or the like in each demodulating circuit is canceled out due to differential amplification and does not appear as a sensor output.

実施例2のように、増幅を差動増幅により行なう場合、図10に示すように一方の磁気インピーダンス効果素子にかけるバイアス磁界Hbの方向と他方の磁気インピーダンス効果素子にかけるバイアス磁界Hbの方向とが逆方向とされ、互いに逆相の復調出力(磁界検出信号)がE+、E−で表わされ、その差がE±で示すように直線に近づくので、負帰還を省略することも可能である。   When amplification is performed by differential amplification as in the second embodiment, the direction of the bias magnetic field Hb applied to one magnetoimpedance effect element and the direction of the bias magnetic field Hb applied to the other magnetoimpedance effect element as shown in FIG. Is reversed, and the demodulated outputs (magnetic field detection signals) with opposite phases are represented by E + and E−, and the difference approaches a straight line as indicated by E ±, so negative feedback can be omitted. is there.

実施例1及び2において、高周波励磁電流としては、例えば連続正弦波、パスル波、三角波等の通常の高周波を使用でき、高周波励磁電流源としては、例えばハートレー発振回路、コルピッツ発振回路、コレクタ同調発振回路、ベース同調発振回路のような通常の発振回路の外、水晶発振器の矩形波出力を直流分カットコンデンサを経て積分回路で積分しこの積分出力の三角波を増幅回路で増幅する三角波発生器、COMS−ICを発振部として使用した三角波発生器等を使用できる。   In the first and second embodiments, a normal high frequency such as a continuous sine wave, a pulse wave, or a triangular wave can be used as the high frequency excitation current, and the Hartley oscillation circuit, Colpitts oscillation circuit, collector tuned oscillation can be used as the high frequency excitation current source, for example. In addition to a normal oscillation circuit such as a circuit and a base tuned oscillation circuit, a triangular wave generator that integrates a square wave output of a crystal oscillator through an integration circuit via a DC component cut capacitor, and amplifies the triangular wave of the integration output by an amplification circuit, COMS -A triangular wave generator using an IC as an oscillator can be used.

復調回路としては、例えば被変調波を演算増幅回路で半波整流しこの半波整流波を並列RC回路またはRCローパスフィルターで処理して半波整流波の包絡線出力を得る構成、被変調波をダイオードで半波整流しこの半波整流波を並列RC回路またはRCローパスフィルターで処理して半波整流波の包絡線出力を得る構成等を使用できる。   As a demodulator circuit, for example, a configuration in which a modulated wave is half-wave rectified by an operational amplifier circuit and the half-wave rectified wave is processed by a parallel RC circuit or an RC low-pass filter to obtain an envelope output of the half-wave rectified wave, the modulated wave The half-wave rectified wave is processed by a diode, and the half-wave rectified wave is processed by a parallel RC circuit or an RC low-pass filter to obtain an envelope output of the half-wave rectified wave.

上記の実施例では、被変調波の復調によって被検出量を取り出しているが、これに限定されず、磁気インピーダンス効果素子に作用する被検出磁界による磁界検出信号から被検出磁界に相当する被検出量を取り出し得るものであれば、適宜の回路構成を使用できる。   In the above embodiment, the detected amount is extracted by demodulating the modulated wave. However, the present invention is not limited to this, and the detected amount corresponding to the detected magnetic field is detected from the magnetic field detection signal by the detected magnetic field acting on the magneto-impedance effect element. Any circuit configuration can be used as long as the amount can be extracted.

本発明に係る電線の導体欠陥箇所検知方法の効果の説明に使用した図面である。It is drawing used for description of the effect of the conductor defect location detection method of the electric wire which concerns on this invention. 本発明において使用する磁気インピーダンス効果型センサを示す図面である。It is drawing which shows the magneto-impedance effect type sensor used in this invention. 本発明において使用する磁気インピーダンス効果型センサの出力特性を示す図面である。It is drawing which shows the output characteristic of the magneto-impedance effect type sensor used in this invention. 本発明において使用する磁気インピーダンス効果型センサの別例を示す図面である。It is drawing which shows another example of the magneto-impedance effect type sensor used in this invention. 本発明に係る電線の導体欠陥箇所検知方法の一実施例におけるセンサの移動経路を示す図面である。It is drawing which shows the movement path | route of the sensor in one Example of the conductor defect location detection method of the electric wire which concerns on this invention. 本発明に係るセンサの一実施例を示す図面である。It is drawing which shows one Example of the sensor which concerns on this invention. 図5のセンサにおけるコイル付き磁気インピーダンス効果素子を示すFIG. 5 shows a magnetoimpedance effect element with a coil in the sensor of FIG. 本発明に係るセンサの別実施例を示す図面である。It is drawing which shows another Example of the sensor which concerns on this invention. 本発明に係る電線の導体欠陥箇所検知方法の別実施例におけるセンサの移動経路を示す図面である。It is drawing which shows the movement path | route of the sensor in another Example of the conductor defect location detection method of the electric wire which concerns on this invention. 本発明に係るセンサの別実施例の要部を説明するために使用した図面である。It is drawing used in order to demonstrate the principal part of another Example of the sensor which concerns on this invention. 従来例を示す図面である。It is drawing which shows a prior art example. 上記とは別の従来例を示す図面である。It is drawing which shows the prior art example different from the above.

1 磁気インピーダンス効果素子
1a 磁気インピーダンス効果素子
1b 磁気インピーダンス効果素子
2 高周波励磁用電流源
3 復調回路
3a 復調回路
3b 復調回路
4 増幅器
4d 差動増幅器
Ca 電線
e 導体の欠陥箇所

DESCRIPTION OF SYMBOLS 1 Magneto-impedance effect element 1a Magneto-impedance effect element 1b Magnet-impedance effect element 2 Current source 3 for high frequency excitation Demodulation circuit 3a Demodulation circuit 3b Demodulation circuit 4 Amplifier 4d Differential amplifier Ca Electric wire e Defect location of conductor

Claims (1)

アモルファスワイヤを使用した二本の磁気インピーダンス効果素子をその感磁方向と電線の長手方向が平行になるように該電線を中央に挾んで電線周方向に180°の角度を隔てて配設し、前記両素子を電線の長手方向に沿って移動させることにより、電線導体の欠陥に基づく電線長手方向検出用磁界の正負反転点を検知すると共に、この移動中の前記両素子の検出出力を、欠陥導体素線と健全導体素線との電流差に基づき電線回周磁界が導体素線撚りのためにうねり変動して生じる正弦波状の電線長手方向磁界成分を打ち消すように差動増幅または減算することを特徴とする電線の導体欠陥箇所検知方法。 Two magneto-impedance effect elements using amorphous wires are arranged at an angle of 180 ° in the circumferential direction of the electric wire with the electric wire sandwiched in the center so that the magnetic sensing direction and the longitudinal direction of the electric wire are parallel to each other, By moving both the elements along the longitudinal direction of the electric wire, the positive and negative reversal points of the magnetic field for detecting the longitudinal direction of the electric wire based on the defect of the electric wire conductor are detected, and the detection outputs of the both elements during the movement are detected as defects. Differential amplification or subtraction so as to cancel the sinusoidal wire longitudinal magnetic field component generated by the wire gyrating magnetic field wandering due to twisting of the conductor wire based on the current difference between the conductor wire and the healthy conductor wire A method for detecting a conductor defect in an electric wire.
JP2004072232A 2004-03-15 2004-03-15 Method for detecting conductor defects in electric wires Expired - Fee Related JP4520188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004072232A JP4520188B2 (en) 2004-03-15 2004-03-15 Method for detecting conductor defects in electric wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004072232A JP4520188B2 (en) 2004-03-15 2004-03-15 Method for detecting conductor defects in electric wires

Publications (2)

Publication Number Publication Date
JP2005257593A JP2005257593A (en) 2005-09-22
JP4520188B2 true JP4520188B2 (en) 2010-08-04

Family

ID=35083440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004072232A Expired - Fee Related JP4520188B2 (en) 2004-03-15 2004-03-15 Method for detecting conductor defects in electric wires

Country Status (1)

Country Link
JP (1) JP4520188B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5831073B2 (en) * 2011-09-15 2015-12-09 スズキ株式会社 Control device for small electric vehicle
DE102018114707B3 (en) * 2018-06-19 2019-08-22 Robert Kölling Method for locating an electrical short between two insulated conductors of a twisted conductor and shorting detector therefor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287168A (en) * 1989-04-27 1990-11-27 Hitachi Cable Ltd Locating method for faulty point of underground line
JPH1019967A (en) * 1996-06-27 1998-01-23 Kyushu Electric Power Co Inc Ground fault memory sensor for distribution line
JPH1073631A (en) * 1996-08-30 1998-03-17 Fujikura Ltd Method and apparatus for detecting defect of insulated wire
JP2000193729A (en) * 1998-12-24 2000-07-14 Alps Electric Co Ltd Driving circuit for magnetic impedance effect element
JP2000258464A (en) * 1999-03-09 2000-09-22 Mitsubishi Materials Corp Electric current sensor
JP2002228700A (en) * 2001-01-30 2002-08-14 Mitsubishi Heavy Ind Ltd Wire breaking detector
JP2002289940A (en) * 2001-03-28 2002-10-04 Uchihashi Estec Co Ltd Magnetic impedance effect sensor
JP2003322640A (en) * 2002-05-07 2003-11-14 Nippon Steel Corp Surface scratch detecting apparatus for steel material
JP2004069443A (en) * 2002-08-06 2004-03-04 Seiko Instruments Inc High tension insulated wire inspection method using superconducting quantum interference device (squid) and inspection apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287168A (en) * 1989-04-27 1990-11-27 Hitachi Cable Ltd Locating method for faulty point of underground line
JPH1019967A (en) * 1996-06-27 1998-01-23 Kyushu Electric Power Co Inc Ground fault memory sensor for distribution line
JPH1073631A (en) * 1996-08-30 1998-03-17 Fujikura Ltd Method and apparatus for detecting defect of insulated wire
JP2000193729A (en) * 1998-12-24 2000-07-14 Alps Electric Co Ltd Driving circuit for magnetic impedance effect element
JP2000258464A (en) * 1999-03-09 2000-09-22 Mitsubishi Materials Corp Electric current sensor
JP2002228700A (en) * 2001-01-30 2002-08-14 Mitsubishi Heavy Ind Ltd Wire breaking detector
JP2002289940A (en) * 2001-03-28 2002-10-04 Uchihashi Estec Co Ltd Magnetic impedance effect sensor
JP2003322640A (en) * 2002-05-07 2003-11-14 Nippon Steel Corp Surface scratch detecting apparatus for steel material
JP2004069443A (en) * 2002-08-06 2004-03-04 Seiko Instruments Inc High tension insulated wire inspection method using superconducting quantum interference device (squid) and inspection apparatus

Also Published As

Publication number Publication date
JP2005257593A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
US20090206831A1 (en) Method and device for non destructive evaluation of defects in a metallic object
JP4495635B2 (en) Magneto-impedance effect sensor and method of using magneto-impedance effect sensor
JP4619884B2 (en) Diagnosis method for ferrous materials in concrete structures embedded in ferrous materials
JP4917812B2 (en) Deterioration diagnosis method for iron-based structures
JP4520188B2 (en) Method for detecting conductor defects in electric wires
JP2005055326A (en) Conductor current measurement method and magnetic field sensor for measuring conductor current
JP2006322706A (en) Method of measuring conductor current
JP4698958B2 (en) Sensor for detecting conductor defects in electric wires
JP4476746B2 (en) Corrosion / thinning inspection method for the back of steel walls
JP4286693B2 (en) Method for detecting conductor defects in electric wires
JP4878903B2 (en) Magnetic sensor for pillar transformer diagnosis
JP4286686B2 (en) Sensor for detecting conductor defects in electric wires
JP4808411B2 (en) Magnetic field detection circuit
JP2005061980A (en) Conductor current measuring method
JP2005257594A (en) Fault region detecting method for conductor of wire
JP4722717B2 (en) Current sensor
JP4938740B2 (en) Magnetic field detector
JP2006337040A (en) Defect-detecting method of metal body, and scanning type magnetic detector
JP4600989B2 (en) Defect detection method for metal body and scanning magnetic detector
JP2005043254A (en) Method for measuring conductor current
JP4619864B2 (en) Defect detection method for metal body and scanning magnetic detector
JP4739097B2 (en) Diagnosis method of pole transformer
JP2003177167A (en) Magnetic sensor
JP4630401B2 (en) Current sensor and current detection method
JP4865343B2 (en) Inspection method for iron-based structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees