JP2005257594A - Fault region detecting method for conductor of wire - Google Patents

Fault region detecting method for conductor of wire Download PDF

Info

Publication number
JP2005257594A
JP2005257594A JP2004072233A JP2004072233A JP2005257594A JP 2005257594 A JP2005257594 A JP 2005257594A JP 2004072233 A JP2004072233 A JP 2004072233A JP 2004072233 A JP2004072233 A JP 2004072233A JP 2005257594 A JP2005257594 A JP 2005257594A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
conductor
wire
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004072233A
Other languages
Japanese (ja)
Inventor
Kazumi Toyoda
一実 豊田
Kazuyuki Izawa
和幸 井澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Uchihashi Estec Co Ltd
Original Assignee
Tohoku Electric Power Co Inc
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Uchihashi Estec Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2004072233A priority Critical patent/JP2005257594A/en
Publication of JP2005257594A publication Critical patent/JP2005257594A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To sufficiently accurately detect a fault region in a wire easily with a small magnetic sensor by utilizing a magnetic field component in a longitudinal direction of the wire caused by current perturbation in the fault region of the conductor of the wire. <P>SOLUTION: In the fault region of conductor in the wire, a local sudden variation magnetic field occurs due to the current perturbation and a large circumferential circuit magnetic field due to a conductor electric current works. When the angle between the sensing direction of the magnetic sensor and the longitudinal direction of the wire is set to θ, the magnetic sensing quantity of the magnetic sensor to the circumferential circuit magnetic field and the sudden variation magnetic field changes with the angle θ. As the angle θ is controlled so as to contain the magnetic sensing quantity within the measurement rage of the magnetic sensor and local sudden variation magnetic field due to current perturbation is sensed even with a little movement of the magnetic sensor, the fault region of the conductor can be exactly found. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は電線の導体欠陥箇所を検知する方法に関し、電線の導体の断線、傷、不導体化並びに応力腐食割れ等の劣化といった不良(欠陥)を検知するのに有用である。   The present invention relates to a method for detecting a conductor defect portion of an electric wire, and is useful for detecting defects (defects) such as wire conductor breakage, scratches, non-conductor formation, and deterioration such as stress corrosion cracking.

断線、傷、不導体化ならびに応力腐食割れ等の劣化といった不良ならびに欠陥を検知する方法の一つとして、実際に流れている負荷電流が欠陥部分で乱れを生じ、そによって発生する磁場の変化を検出する方法が知られている。
前記欠陥が発生すると、その箇所の導体断面の輪郭が非円形化され、同断面の電流路中心がずれ、導体電流に基づく周回路磁界の分布が変化する。この事実に着目して欠陥箇所を検知することが提案されている。(特許文献1、非特許文献1)
One of the methods to detect defects and defects such as wire breakage, scratches, non-conductivity, and deterioration due to stress corrosion cracking, etc., the load current that is actually flowing is disturbed in the defective part, and the change in the magnetic field generated thereby is detected. A method of detecting is known.
When the defect occurs, the contour of the conductor cross section at that location becomes non-circular, the center of the current path of the cross section shifts, and the distribution of the peripheral circuit magnetic field based on the conductor current changes. It has been proposed to detect a defective part by paying attention to this fact. (Patent Document 1, Non-Patent Document 1)

特開平10−73631号公報Japanese Patent Laid-Open No. 10-73631 野中崇、他2名,「電線の非破壊磁気探傷に関する基礎的検討」T,IEEjapan,Vol,121−A,No.3,2001,p282−287Takashi Nonaka and two others, “Fundamental study on non-destructive magnetic flaw detection of electric wires” T, IEEEjapan, Vol, 121-A, No. 3,2001, p282-287

特許文献1では、図9に示す、電線の周囲にサーチコイル1o,1o'を180°隔てた対の複数対にて電線中心から等距離の位置に配設し、サーチコイルのコア方向と電線同心円の接線方向とを一致させ、各対の両サーチコイルの出力の差をセンサ出力としている。
図9において、撚線導体の電流路断面の中心の変位がゼロ、すなわち周回路磁界分布変化が無い場合、両コイルの出力が等しくセンサ出力が0となり欠陥無しとされる。周回路磁界分布変化が生じている場合、両コイルの出力が等しくならずにセンサ出力が発生し、欠陥有りと判定される。
In Patent Document 1, as shown in FIG. 9, search coils 1o and 1o ′ are arranged around the electric wire at a position equidistant from the center of the electric wire in a plurality of pairs separated by 180 °, and the core direction of the search coil and the electric wire The tangential direction of the concentric circles is matched, and the difference between the outputs of both search coils of each pair is used as the sensor output.
In FIG. 9, when the displacement of the center of the current path cross section of the stranded wire conductor is zero, that is, there is no change in the circumferential circuit magnetic field distribution, the outputs of both coils are equal and the sensor output is 0, indicating no defect. When the peripheral circuit magnetic field distribution change occurs, the outputs of both coils are not equal and a sensor output is generated, and it is determined that there is a defect.

非特許文献1では、図10に示すように電流路断面の中心C1(Cx1,Cy1)が任意座標点p1(x1,y1)及びp2(x2,y2)とそれら任意座標点p1(x1,y1)及びp2(x2,y2)での磁束密度(Bx1,By1)及び(Bx2,By2)から次式で与えられることから

Figure 2005257594
任意座標点p1(x1,y1)における磁束密度(Bx1,By1)及びp2(x2,y2)における磁束密度(Bx2,By2)をサーチコイルにより測定し、これらの測定値から電流路断面の中心座標C1(Cx1,Cy1)を計算し、この中心座標の変位から撚線導体の欠陥箇所を評価している。 In Non-Patent Document 1, as shown in FIG. 10, the center C1 (Cx1, Cy1) of the current path cross section has arbitrary coordinate points p1 (x1, y1) and p2 (x2, y2) and these arbitrary coordinate points p1 (x1, y1). ) And magnetic flux density (Bx1, By1) and (Bx2, By2) at p2 (x2, y2)
Figure 2005257594
The magnetic flux density (Bx1, By1) at the arbitrary coordinate point p1 (x1, y1) and the magnetic flux density (Bx2, By2) at p2 (x2, y2) are measured by the search coil, and the center coordinates of the current path cross section are obtained from these measured values. C1 (Cx1, Cy1) is calculated, and the defective portion of the stranded conductor is evaluated from the displacement of the center coordinates.

しかしながら、上記従来例では、磁気センサを電線に沿って移動させる間、電線の軸心に対する磁気センサのぶれが避けられず、このぶれが上記撚線導体の電流路断面の中心のずれを相対的に生じることになるから、導体の欠陥箇所の正確な検知は困難である。   However, in the above conventional example, during the movement of the magnetic sensor along the electric wire, the shake of the magnetic sensor with respect to the axis of the electric wire is unavoidable, and this shake causes a relative shift of the center of the current path cross section of the stranded conductor. Therefore, it is difficult to accurately detect a defective portion of the conductor.

導体電流をIとすると、導体中心から距離rにおける磁界強度Hは、
H=I/(2πr)
で与えられる。
架線された電線には、数10A〜数100Aの電流が通電されており、電線外周上での磁束密度は極めて高い。例えば、電流値を150A、電線半径を15mmとすると、電線表面での磁束密度は1600A/mもの高磁束密度となる。磁界センサには、測定限度があり1600A/mもの高磁界を測定することは困難である。
しかるに、上記従来例では、サーチコイルをその感磁方向を電線の周回路磁界の方向に向けて配設しており、150Aもの高導体電流に対しては、レンジ上、サーチコイルを電線中心からかなり隔てた位置に配置する必要があり、センサの大型化が避けられない。
更に、特許文献1記載の従来例では、電線の周囲にサーチコイルを180°隔てた対で電線中心から等距離を隔てた位置に2箇配設し、撚線導体の導電路断面の電流中心がずれたときの両サーチコイルの出力差をセンサ出力としているが、ずれΔLに対する周囲磁界強度Hの変化ΔHは、ΔH=HΔL/rで与えられ、サーチコイルを電線中心からかなり隔てた位置に配置してrを大きくすると、それだけ両サーチコイルの出力差が小さくなってセンサ出力ΔHが低下し、充分な検出感度を保証し難い。
When the conductor current is I, the magnetic field strength H at a distance r from the conductor center is
H = I / (2πr)
Given in.
A current of several tens of A to several hundreds of A is passed through the wired wire, and the magnetic flux density on the outer periphery of the wire is extremely high. For example, if the current value is 150 A and the wire radius is 15 mm, the magnetic flux density on the wire surface is as high as 1600 A / m. The magnetic field sensor has a measurement limit, and it is difficult to measure a high magnetic field of 1600 A / m.
However, in the above-described conventional example, the search coil is arranged with its magnetic sensing direction directed to the direction of the circumferential circuit magnetic field of the electric wire. It is necessary to arrange them at positions that are considerably separated, and an increase in the size of the sensor is inevitable.
Furthermore, in the conventional example described in Patent Document 1, two search coils are arranged around the electric wire at positions spaced equidistant from the center of the electric wire in pairs separated by 180 °, and the current center of the conductor path cross section of the stranded wire conductor is arranged. The sensor output is the difference between the outputs of the two search coils at the time of deviation, but the change ΔH in the ambient magnetic field strength H with respect to the deviation ΔL is given by ΔH = HΔL / r, and the search coil is located far away from the center of the wire. If r is increased by arranging it, the output difference between the two search coils is reduced accordingly, the sensor output ΔH is lowered, and it is difficult to ensure sufficient detection sensitivity.

近来、高い磁界検出分解能、微小寸法の磁界センサ素子として磁気インピーダンス効果素子が開発されている。   Recently, magneto-impedance effect elements have been developed as magnetic field sensor elements with high magnetic field detection resolution and micro dimensions.

本発明の目的は、電線の導体の欠陥箇所での電流乱れに起因して生じる電線長手方向磁界成分を利用して電線における欠陥箇所を小型の磁気センサで容易に充分に高い精度で正確に検知することを可能にする。   The object of the present invention is to easily detect a defective portion in a wire with sufficiently high accuracy with a small magnetic sensor using a magnetic field component in the longitudinal direction of the wire caused by current disturbance at the defective portion of the conductor of the wire. Makes it possible to do.

請求項1に係る電線の導体欠陥箇所検知方法は、磁気センサの感磁方向を電線の長手方向に対し、平行方向と直角方向との中間方向の向きにして磁気センサを電線に沿い移動させ、磁気センサの出力変化から電線の導体欠陥箇所を検知することを特徴とする。   The conductor defect location detection method for an electric wire according to claim 1 is configured such that the magnetic sensor is moved along the electric wire with the direction of magnetic sensing of the magnetic sensor in the middle direction between the parallel direction and the perpendicular direction with respect to the longitudinal direction of the electric wire, It is characterized in that a conductor defect portion of an electric wire is detected from an output change of the magnetic sensor.

請求項2に係る電線の導体欠陥箇所検知方法は、請求項1の電線の導体欠陥箇所検知方法において、磁気インピーダンス効果素子をセンサ素子とする磁気インピーダンス効果型磁気センサを磁気センサとして使用することを特徴とする。   According to a second aspect of the present invention, there is provided a method for detecting a defective conductor portion of an electric wire according to the first aspect of the present invention, wherein the magnetic impedance effect type magnetic sensor having a magnetic impedance effect element as a sensor element is used as a magnetic sensor. Features.

電線における導体の欠陥箇所には、電流乱れに基づく局部的な急峻変化磁界が発生すると共に導体通電電流に基づく大きな周回路磁界が作用する。磁気センサの感磁方向と電線の長手方向との間の角度をθとすると、周回路磁界と急峻変化磁界に対する磁気センサの感磁量は前記の角度θにより変化する。
本発明では、その感磁量を磁気センサの測定レンジ内に納めるように角度θを調整しており、磁気センサが多少ぶれても前記電流乱れに基づく局部的な急峻変化磁界を感磁できるから、導体の欠陥箇所を確実に検知できる。
また、磁気インピーダンス効果素子の感磁方向を電線長手方向に対し角度θに向け、磁気インピーダンス効果素子を電線の表面に近接させた磁気センサを使用でき、磁気インピーダンス効果型センサの小型・高感度のために検知作業を容易に、高感度で行なうことができる。
A local steeply changing magnetic field based on current disturbance is generated and a large peripheral circuit magnetic field based on a conductor conduction current acts on a defective portion of a conductor in an electric wire. Assuming that the angle between the magnetic sensing direction of the magnetic sensor and the longitudinal direction of the electric wire is θ, the magnetic sensitivity of the magnetic sensor with respect to the circumferential circuit magnetic field and the steeply changing magnetic field changes according to the angle θ.
In the present invention, the angle θ is adjusted so that the amount of magnetic sensitivity falls within the measurement range of the magnetic sensor, and even if the magnetic sensor is slightly deviated, the local steeply changing magnetic field based on the current disturbance can be detected. It is possible to reliably detect a defective portion of the conductor.
In addition, a magnetic sensor in which the magneto-impedance effect element is oriented at an angle θ with respect to the longitudinal direction of the electric wire and the magneto-impedance effect element is close to the surface of the electric wire can be used. Therefore, the detection operation can be easily performed with high sensitivity.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明において使用する磁気センサの基本的構成を示している。
図1において、1は磁気インピーダンス効果素子であり、自発磁化の方向がワイヤ周方向に対し互いに逆方向の磁区が交互に磁壁で隔てられた構成の外殻部を有する、零磁歪乃至は負磁歪のアモルファス合金ワイヤが使用されている。かかる零磁歪乃至は負磁歪のアモルファス磁性ワイヤに高周波励磁電流を流したときに発生するワイヤ両端間出力電圧中のインダクタンス電圧分は、ワイヤの横断面内に生じる円周方向磁束によって上記の円周方向に易磁化性の外殻部が円周方向に磁化されることに起因して発生する。従って、周方向透磁率μθは同外殻部の円周方向の磁化に依存する。而るに、この通電中のアモルファスワイヤの軸方向(最大感磁方向)に被検出磁界を作用させると、上記通電による円周方向磁束と被検出磁界磁束との合成により、上記円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずれ、それだけ円周方向への磁化が生じ難くなり、上記周方向透磁率μθが変化し、上記インダクタンス電圧分が変動することになる。この変動現象は磁気インダクタンス効果と称され、これは上記高周波励磁電流(搬送波)が被検出波(信号波)で変調される現象ということができる。更に、上記通電電流の周波数がMHzオ−ダになると、高周波表皮効果が大きく現れ、表皮深さδ=(2ρ/wμθ1/2(μθは前記した通り円周方向透磁率、ρは電気抵抗率、wは角周波数をそれぞれ示す)がμθにより変化し、このμθが前記した通り、被検出磁界によって変化するので、ワイヤ両端間出力電圧中の抵抗電圧分も被検出磁界で変動するようになる。この変動現象は磁気インピーダンス効果と称され、これは上記高周波励磁電流(搬送波)が被検出波(信号波)で変調される現象ということができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a basic configuration of a magnetic sensor used in the present invention.
In FIG. 1, reference numeral 1 denotes a magneto-impedance effect element, which has a zero magnetostriction or a negative magnetostriction having an outer shell portion in which magnetic domains whose spontaneous magnetization directions are opposite to each other in the circumferential direction of the wire are alternately separated by domain walls. An amorphous alloy wire is used. The inductance voltage component in the output voltage between both ends of the wire generated when a high-frequency excitation current is passed through an amorphous magnetic wire having zero magnetostriction or negative magnetostriction is obtained by the circumferential magnetic flux generated in the cross section of the wire. This occurs due to the magnetization of the easily magnetizable outer shell in the circumferential direction. Therefore, the circumferential magnetic permeability mu theta depends on the circumferential direction of magnetization of Dosotokara portion. Therefore, when a detected magnetic field is applied in the axial direction (maximum magnetosensitive direction) of the energized amorphous wire, the circumferential direction magnetic flux and the detected magnetic field magnetic flux generated by the energization are combined in the circumferential direction. The direction of the magnetic flux acting on the easily magnetized outer shell part is deviated from the circumferential direction, and the magnetization in the circumferential direction is less likely to occur, the circumferential permeability μ θ changes, and the inductance voltage changes. Will do. This fluctuation phenomenon is called a magnetic inductance effect, which can be said to be a phenomenon in which the high-frequency excitation current (carrier wave) is modulated by a detected wave (signal wave). Further, when the frequency of the energization current is in the order of MHz, a high-frequency skin effect appears greatly, and the skin depth δ = (2ρ / wμ θ ) 1/2θ is the circumferential permeability, ρ as described above. electrical resistivity, w is shows the angular frequency, respectively) is changed by mu theta, as the mu theta is the so changed by the detected magnetic field, the resistance voltage division also be detected magnetic field in the wire between both ends output voltage It will fluctuate with. This fluctuation phenomenon is called a magneto-impedance effect, which can be said to be a phenomenon in which the high-frequency excitation current (carrier wave) is modulated by a detected wave (signal wave).

図1において、2は磁気インピーダンス効果素子に高周波励磁電流を加えるための高周波電源、3は磁気インピーダンス効果素子の軸方向に作用する被検出磁界(信号波)で前記高周波励磁電流(搬送波)を変調させた被変調波を復調する復調回路、4は復調波を増幅する増幅回路、5は出力端、6は負帰還用コイル、7はバイアス磁界用コイルである。磁気インピーダンス効果素子1には、零磁歪乃至は負磁歪のアモルファスワイヤの外、アモルファスリボン、アモルファススパッタ膜等も使用できる。   In FIG. 1, 2 is a high-frequency power source for applying a high-frequency excitation current to the magneto-impedance effect element, and 3 is a modulation of the high-frequency excitation current (carrier wave) by a detected magnetic field (signal wave) acting in the axial direction of the magneto-impedance effect element. Demodulation circuit for demodulating the modulated wave thus generated, 4 an amplification circuit for amplifying the demodulated wave, 5 an output terminal, 6 a negative feedback coil, and 7 a bias magnetic field coil. For the magneto-impedance effect element 1, an amorphous ribbon, an amorphous sputtered film, or the like can be used in addition to zero magnetostrictive or negative magnetostrictive amorphous wires.

磁気インピーダンス効果素子においては、前記した通り励磁電流に基づく円周方向磁束と被検出磁界による軸方向磁束との合成により、円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずれされるために、周方向透磁率μθが変化し、インダクタンスが変動され、この円周方向透磁率μθの高周波表皮効果の表皮深さの変化でインピーダンスが変動される。従って、被検出磁界の±により上記合成磁界による周方向ずれφも±φになるが、周方向の磁界の減少倍率cos(±φ)は変わらず、従ってμθの減少度は被検出磁界の方向の正負によっては変化されない。従って、被検出磁界−出力特性は、図2の(イ)のように被検出磁界をx軸に、出力をy軸にとると、y軸に対してほぼ左右対称となる。この被検出磁界−出力特性は非線形である。非線形特性では、高感度の測定が困難である。そこで、負帰還用コイル6で負帰還をかけて図2の(ロ)に示すように特性を直線化している。図2の(ロ)において、Δwは、負帰還無しのときの利得 が非常に大きく帰還率βのみにより利得が定まるリニア範囲である。しかし、この出力特性では、被検出磁界の極性判別を行ない得ないので、バイアス用コイル7でバイアス磁界をかけ、図2の(ハ)に示すように極性判別可能としている。すなわち、図2の(ロ)の特性を、バイアス磁界によりx軸のマイナス方向に移動させ、被検出磁界の最大範囲−Hmax〜+Hmaxを単斜め線領域の範囲内に納めている。更に、図2の(ニ)に示すように0点調整により原点を通る直線特性としている。従って、図2の(ニ)において被検出磁界を+Heとすると出力が+Eoとなり、被検出磁界を−Heとすると出力が−Eoとなって被検出磁界を極性判別のもとで正確に測定できる。 In the magneto-impedance effect element, as described above, the direction of the magnetic flux acting on the outer shell portion that is easily magnetized in the circumferential direction is obtained by combining the circumferential magnetic flux based on the excitation current and the axial magnetic flux due to the detected magnetic field. Due to the deviation from the circumferential direction, the circumferential magnetic permeability μ θ changes, the inductance is changed, and the impedance is changed by the change of the skin depth of the high frequency skin effect of the circumferential magnetic permeability μ θ . Accordingly, although even the circumferential direction positional shift phi by the synthesized magnetic field by ± of the detected magnetic field becomes ± phi, the circumferential direction of the magnetic field reduction ratio cos (± phi) is unchanged, the degree of reduction in thus mu theta is of the detected magnetic field It does not change depending on the direction. Accordingly, the detected magnetic field-output characteristics are substantially bilaterally symmetrical with respect to the y axis when the detected magnetic field is taken on the x axis and the output is taken on the y axis as shown in FIG. This detected magnetic field-output characteristic is non-linear. With non-linear characteristics, it is difficult to measure with high sensitivity. Therefore, negative feedback is applied by the negative feedback coil 6 to linearize the characteristics as shown in FIG. In FIG. 2B, Δw is a linear range where the gain without negative feedback is very large and the gain is determined only by the feedback rate β. However, since the polarity of the detected magnetic field cannot be determined with this output characteristic, the bias magnetic field is applied by the bias coil 7 so that the polarity can be determined as shown in FIG. That is, the characteristic of (b) in FIG. 2 is moved in the negative direction of the x-axis by the bias magnetic field, and the maximum range −Hmax to + Hmax of the detected magnetic field is within the range of the single oblique line region. Further, as shown in FIG. 2 (d), a linear characteristic passing through the origin is obtained by adjusting the zero point. Therefore, in FIG. 2D, when the detected magnetic field is + He, the output is + Eo, and when the detected magnetic field is -He, the output is -Eo, and the detected magnetic field can be accurately measured based on polarity discrimination. .

前記極性判別可能なリニア出力特性を得るのに図3に示すように、出力より反転入力端子に負帰還をかけた演算増幅器Q(負帰還路挿入インピーダンスZ、入力側挿入インピーダンスZ)を使用することもできる。この場合、負帰還用コイルに挿入した抵抗をR、同コイルの巻数をn、長さをL、復調増幅部34の利得をA、被検出磁界をHex、出力をEoutとすると、 As shown in FIG. 3, an operational amplifier Q (negative feedback path insertion impedance Z 2 , input side insertion impedance Z 1 ) that applies negative feedback from the output to the inverting input terminal is used to obtain the linear output characteristics capable of discriminating the polarity. It can also be used. In this case, if the resistance inserted in the negative feedback coil is R, the number of turns of the coil is n, the length is L, the gain of the demodulation amplifier 34 is A, the detected magnetic field is Hex, and the output is Eout,

A≫ZRL/(Zn) A >> Z 1 RL / (Z 2 n)

のもとで Under

Eout=RLZHex/(nZ)+VccZR/〔Z(Z+R)〕 Eout = RLZ 1 Hex / (nZ 2 ) + VccZ 1 R / [Z 2 (Z 2 + R)]

が成立し、この出力特性を諸定数(Z,Z,抵抗R,コイル巻数n等)の調整によりx軸の±方向にシフトさせることができ、その調整により極性判別可能な斜め直線部を最大被検出磁界の範囲±Hmax内に位置させることが可能となり、更にy軸方向の0点調整により図2の(ニ)に示すような極性判別可能な直線性の出力特性を得ることができる。 Is established, and the output characteristics can be shifted in the ± direction of the x-axis by adjusting various constants (Z 1 , Z 2 , resistance R, coil turns n, etc.), and the diagonal straight line portion whose polarity can be discriminated by the adjustment 2 can be positioned within the range of the maximum detected magnetic field ± Hmax, and the linearity output characteristics capable of discriminating the polarity as shown in FIG. 2 (d) can be obtained by adjusting the zero point in the y-axis direction. it can.

図4の(イ)は本発明において使用する磁気センサの一例を使用状態により示す図面であり、Seはセンサ、Caは電線、Mは地上計測器である。センサには、電線抱挾車輪が取り付けられ、ワイヤの牽引でセンサが移動されるが、これらの構成は図示されていない。
図4の(ロ)は同上センサの回路図である。
図4において、pは基板である。1は磁気インピーダンス効果素子であり、出力特性をリニア特性とするための負帰還用コイル及び出力特性を極性判別可能とするためのバイアス用コイルを付設してある。
FIG. 4 (a) is a drawing showing an example of a magnetic sensor used in the present invention, in which Se is a sensor, Ca is an electric wire, and M is a ground measuring instrument. An electric wire holding wheel is attached to the sensor, and the sensor is moved by pulling the wire, but these configurations are not shown.
FIG. 4B is a circuit diagram of the sensor.
In FIG. 4, p is a substrate. Reference numeral 1 denotes a magneto-impedance effect element, which is provided with a negative feedback coil for making the output characteristics linear and a bias coil for making it possible to determine the polarity of the output characteristics.

図5の(イ)はそのコイル付き磁気インピーダンス効果素子の一例を示す側面図、図5の(ロ)は同じく底面図、図5の(ハ)は図5の(ロ)におけるハ−ハ断面図である。
図5において、100は基板チツプであり、例えばセラミックス板を使用できる。101は基板片の片面に設けた電極であり、エレメント接続用突部102を備えている。この電極は導電ペースト、例えば銀ペーストの印刷・焼付けにより設けることができる。1xは電極101,101の突部102,102間にはんだ付けや溶接により接続した磁気インピーダンス効果素子であり、前記した通り零磁歪乃至負磁歪のアモルファスワイヤ、アモルファスリボン、スパッタ膜等を使用できる。103はC型鉄芯、6xはC型鉄芯に巻装した負帰還用コイル、7xは同じくバイアス磁界用コイルであり、磁気インピーダンス効果素子1xとC型鉄芯103とでループ磁気回路を構成するように、C型鉄芯103の両端を基板片100の他面に接着剤等で固定してある。鉄芯材料としては、残留磁束密度の小さい磁性体であればよく、例えば、パーマロイ、フェライト、鉄、アモルファス磁性合金の他、磁性体粉末混合プラスチック等を挙げることができる。104,104は電極102,102に溶接等により接合したリード導体である。
5A is a side view showing an example of the magneto-impedance effect element with a coil, FIG. 5B is a bottom view, and FIG. 5C is a cross-sectional view of FIG. FIG.
In FIG. 5, reference numeral 100 denotes a substrate chip, and for example, a ceramic plate can be used. Reference numeral 101 denotes an electrode provided on one surface of the substrate piece, and includes an element connecting projection 102. This electrode can be provided by printing and baking a conductive paste, for example, a silver paste. 1x is a magneto-impedance effect element connected between the protrusions 102 and 102 of the electrodes 101 and 101 by soldering or welding. As described above, an amorphous wire, amorphous ribbon, sputtered film or the like having zero or negative magnetostriction can be used. 103 is a C-type iron core, 6x is a negative feedback coil wound around the C-type iron core, 7x is also a bias magnetic field coil, and the magneto-impedance effect element 1x and the C-type iron core 103 constitute a loop magnetic circuit. Thus, both ends of the C-shaped iron core 103 are fixed to the other surface of the substrate piece 100 with an adhesive or the like. The iron core material may be a magnetic material having a small residual magnetic flux density. Examples thereof include permalloy, ferrite, iron, amorphous magnetic alloy, magnetic powder mixed plastic, and the like. 104 and 104 are lead conductors joined to the electrodes 102 and 102 by welding or the like.

図4において、uはコイル付き磁気インピーダンス効果素子である。pは基板であり、コイル付き磁気インピーダンス効果素子uをリード導体104において支持し、磁気インピーダンス効果素子1の感磁方向(軸方向)を電線Caの長手方向に対し角度θとするようにリード導体104を曲げてある。
2は磁気インピーダンス効果素子を励磁するための高周波電流源であり、被検出磁界(導体の欠陥箇所での電流乱れに基づき発生する磁界の電線長手方向成分)を信号波とし、高周波励磁電流を搬送波とする被変調波が磁気インピーダンス効果素子の出力端に現れる。3は復調回路であり、前記被変調波が復調されて前記の信号波が出力される。4は増幅器であり、出力が負帰還用コイル6を経て磁気インピーダンス効果素子1に負帰還されて出力が直線化される。また+Vcc電源でバイアス用コイル7を経て磁気インピーダンス効果素子1にバイアス磁界がかけられて出力特性が極性判別可能とされる。
上記の高周波電流源、復調回路及び増幅器は基板に搭載されている。
In FIG. 4, u is a magneto-impedance effect element with a coil. p is a substrate, and the magneto-impedance effect element u with coil is supported by the lead conductor 104, and the lead conductor is set so that the magnetosensitive direction (axial direction) of the magneto-impedance effect element 1 is an angle θ with respect to the longitudinal direction of the electric wire Ca. 104 is bent.
Reference numeral 2 denotes a high-frequency current source for exciting the magneto-impedance effect element. The magnetic field to be detected (wire longitudinal component of the magnetic field generated based on the current disturbance at the defective portion of the conductor) is used as a signal wave, and the high-frequency excitation current is a carrier wave. The modulated wave as shown above appears at the output end of the magneto-impedance effect element. Reference numeral 3 denotes a demodulation circuit, which demodulates the modulated wave and outputs the signal wave. Reference numeral 4 denotes an amplifier. The output is negatively fed back to the magneto-impedance effect element 1 through the negative feedback coil 6 and the output is linearized. In addition, a bias magnetic field is applied to the magneto-impedance effect element 1 through the bias coil 7 with the + Vcc power source, and the polarity of the output characteristics can be discriminated.
The high-frequency current source, the demodulation circuit, and the amplifier are mounted on the substrate.

本発明により、電線の導体の欠陥箇所を検知するには、磁気センサの感磁方向を電線の長手方向に対し、平行方向と直角方向との中間方向の角度θに向けて磁気センサを電線に沿い移動させ、磁気センサの出力変化が生じた位置を電線の導体の欠陥箇所と判定する。   According to the present invention, in order to detect a defective portion of a conductor of an electric wire, the magnetic sensor is attached to the electric wire so that the magnetic sensing direction of the magnetic sensor is at an angle θ between the parallel direction and the perpendicular direction with respect to the longitudinal direction of the electric wire. The position where the change in the output of the magnetic sensor occurs is determined as a defective portion of the conductor of the electric wire.

電線の導体に欠陥が発生すると、その発生箇所の導体断面が偏って減少され、図6の(イ)に示すように電流が絞られるため、図6の(ロ)に示すように対をなす逆極性の電流ポールp,p’を仮想でき、この電流ホールにより磁界が発生される。
この磁界の電線長手方向に沿っての直角方向成分Hyの分布パターンを考察すると、狭い間隔の電流ポールp,p’間に高密度磁束が凝縮され、電流ポールの外側では磁束が打消されて粗密度とされるために、図6の(ハ)に示すように欠陥箇所e近傍での変化が急峻で、かつ波高値が高いパターンとなる。
電線長手方向と磁気センサとの間の角度をθにして磁気センサを電線の長手方向に移動させると、前記直角方向成分Hyに対する磁気センサの感磁量はHy・cosθとなる。 更に、導体の通電電流による周回路磁界Hcに対する前記磁気センサの感磁量がHc・cosθであるから、総感磁量は(Hy・cosθ+Hc・cosθ)で与えられる。
Hy・cosθが、磁気センサの導体欠陥箇所通過時に突然に感磁される磁界であるのに対し、Hc・cosθは磁界センサの移動中コンスタントに感磁される磁界であり、総感磁量(Hy・cosθ+Hc・cosθ)を磁気センサの感磁量−出力特性に併記すれば、図7の通りである。
本発明においては、磁気センサの感磁方向の電線長手方向に対する角度θを調整することにより総感磁量(Hy・cosθ+Hc・cosθ)を測定レンジ−Hmax〜+Hmaxの範囲内に納め得る限度内で可能な限り小さくして磁界センサをこの傾き角度θで電線の長手方向に移動させていき、急峻変化磁界を検出し、この検出時の磁界センサ位置を導体の欠陥箇所と判定する。
When a defect occurs in the conductor of the electric wire, the conductor cross section at the occurrence location is reduced and the current is reduced as shown in FIG. 6 (a), so that a pair is formed as shown in FIG. 6 (b). Reverse polarity current poles p and p 'can be assumed, and a magnetic field is generated by the current holes.
Considering the distribution pattern of the perpendicular component Hy along the longitudinal direction of the electric field of the magnetic field, high-density magnetic flux is condensed between the current poles p and p ′ having a narrow interval, and the magnetic flux is canceled and coarsened outside the current pole. Because of the density, as shown in FIG. 6C, the pattern has a steep change near the defect location e and a high peak value.
When the magnetic sensor is moved in the longitudinal direction of the electric wire by setting the angle between the longitudinal direction of the electric wire and the magnetic sensor to θ, the magnetic sensitivity of the magnetic sensor with respect to the perpendicular component Hy becomes Hy · cos θ. Further, since the magnetic sensitivity of the magnetic sensor with respect to the circumferential circuit magnetic field Hc caused by the current flowing through the conductor is Hc · cos θ, the total magnetic sensitivity is given by (Hy · cos θ + Hc · cos θ).
Hy · cos θ is a magnetic field that is suddenly sensed when the magnetic sensor passes through a defective conductor. On the other hand, Hc · cos θ is a magnetic field that is constantly sensed during the movement of the magnetic sensor, and the total magnetosensitive amount ( If Hy · cos θ + Hc · cos θ) is written together with the magnetosensitive amount-output characteristics of the magnetic sensor, it is as shown in FIG.
In the present invention, by adjusting the angle θ of the magnetic sensor with respect to the longitudinal direction of the electric wire, the total amount of magnetic sensitivity (Hy · cos θ + Hc · cos θ) is within the limit that can be accommodated within the measurement range −Hmax to + Hmax. The magnetic field sensor is moved as much as possible in the longitudinal direction of the electric wire at this inclination angle θ, a steeply changing magnetic field is detected, and the magnetic field sensor position at the time of detection is determined as a defective portion of the conductor.

上記実施例では使用する磁気インピーダンス素子の本数を一本としているが、二本の磁気インピーダンス効果素子を電線を中央に挾んで配設し、図8に示すように導体の欠陥箇所の電流乱れに基づき発生する磁場を、例えば一方の磁気インピーダンス効果素子1aを電線長手方向経路a−a’で、他方の磁気インピーダンス効果素子1bをその電線長手方向経路a−a’に対しほぼ電線の半周の距離w/2を隔てた電線長手方向経路b−b’で移動させるようにすれば、何れか一方の経路を導体の欠陥箇所eに充分に近くできてその経路を移動する磁気センサが感磁するHyの感磁量Hy・cosθを大きくできるから、検出感度が経路に影響されるのをよく軽減できる。   In the above embodiment, the number of magneto-impedance elements to be used is one, but two magneto-impedance effect elements are arranged with the electric wire in the center, and as shown in FIG. The magnetic field generated on the basis of, for example, one magneto-impedance effect element 1a in the wire longitudinal direction path aa ', and the other magneto-impedance effect element 1b in the distance about the half circumference of the wire with respect to the wire longitudinal direction path a-a'. If the wire is moved along the wire longitudinal direction path bb ′ separated by w / 2, one of the paths can be sufficiently close to the defective portion e of the conductor, and the magnetic sensor moving along the path is sensitive. Since the magnetosensitive amount Hy · cos θ of Hy can be increased, it is possible to well reduce the influence of the detection sensitivity on the path.

本発明において使用する磁気インピーダンス効果型センサを示す図面である。It is drawing which shows the magneto-impedance effect type sensor used in this invention. 本発明において使用する磁気インピーダンス効果型センサの出力特性を示す図面である。It is drawing which shows the output characteristic of the magneto-impedance effect type sensor used in this invention. 本発明において使用する磁気インピーダンス効果型センサの別例を示す図面である。It is drawing which shows another example of the magneto-impedance effect type sensor used in this invention. 本発明において使用する導体欠陥箇所検知用センサの一例を示す図面である。It is drawing which shows an example of the sensor for a conductor defect location detection used in this invention. 図4のセンサにおけるコイル付き磁気インピーダンス効果素子を示す図面である。It is drawing which shows the magneto-impedance effect element with a coil in the sensor of FIG. 本発明に係る電線の導体欠陥箇所検知方法で検知する磁界を示す図面である。It is drawing which shows the magnetic field detected with the conductor defect location detection method of the electric wire which concerns on this invention. 本発明に係る電線の導体欠陥箇所検知方法において磁気ゼンサの感磁方向の電線に対する角度θとセンサの出力特性との関係を示す図面である。It is drawing which shows the relationship between angle (theta) with respect to the electric wire of the magnetic sensing direction of a magnetic sensor in the conductor defect location detection method of the electric wire which concerns on this invention, and the output characteristic of a sensor. 本発明に係る電線の導体欠陥箇所検知方法の別実施例を示す図面である。It is drawing which shows another Example of the conductor defect location detection method of the electric wire which concerns on this invention. 従来例を示す図面である。It is drawing which shows a prior art example. 上記とは別の従来例を示す図面である。It is drawing which shows the prior art example different from the above.

符号の説明Explanation of symbols

1 磁気インピーダンス効果素子
2 高周波励磁用電流源
3 復調回路
4 増幅器
Ca 電線
e 導体の欠陥箇所
DESCRIPTION OF SYMBOLS 1 Magneto-impedance effect element 2 Current source for high frequency excitation 3 Demodulation circuit 4 Amplifier Ca Electric wire e Defect location of conductor

Claims (2)

磁気センサの感磁方向を電線の長手方向に対し、平行方向と直角方向との中間方向の向きにして磁気センサを電線に沿い移動させ、磁気センサの出力変化から電線の導体欠陥箇所を検知することを特徴とする電線の導体欠陥箇所検知方法。 Move the magnetic sensor along the electric wire with the magnetic sensing direction of the magnetic sensor in the middle direction between the parallel direction and the perpendicular direction to the longitudinal direction of the electric wire, and detect the conductor defect location of the electric wire from the change in output of the magnetic sensor A method for detecting a conductor defect portion of an electric wire. 磁気インピーダンス効果素子をセンサ素子とする磁気インピーダンス効果型磁気センサを磁気センサとして使用することを特徴とする請求項1記載の電線の導体欠陥箇所検知方法。 The method for detecting a conductor defect portion of an electric wire according to claim 1, wherein a magnetic impedance effect type magnetic sensor using the magnetoimpedance effect element as a sensor element is used as the magnetic sensor.
JP2004072233A 2004-03-15 2004-03-15 Fault region detecting method for conductor of wire Pending JP2005257594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004072233A JP2005257594A (en) 2004-03-15 2004-03-15 Fault region detecting method for conductor of wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004072233A JP2005257594A (en) 2004-03-15 2004-03-15 Fault region detecting method for conductor of wire

Publications (1)

Publication Number Publication Date
JP2005257594A true JP2005257594A (en) 2005-09-22

Family

ID=35083441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004072233A Pending JP2005257594A (en) 2004-03-15 2004-03-15 Fault region detecting method for conductor of wire

Country Status (1)

Country Link
JP (1) JP2005257594A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121922A (en) * 2014-12-24 2016-07-07 川崎重工業株式会社 Shield deterioration inspection system and method of shield cable
CN108872689A (en) * 2018-06-13 2018-11-23 国网浙江省电力有限公司金华供电公司 A kind of UHVDC Transmission Lines electroscopic device based on feature electric and magnetic fields

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121922A (en) * 2014-12-24 2016-07-07 川崎重工業株式会社 Shield deterioration inspection system and method of shield cable
CN108872689A (en) * 2018-06-13 2018-11-23 国网浙江省电力有限公司金华供电公司 A kind of UHVDC Transmission Lines electroscopic device based on feature electric and magnetic fields
CN108872689B (en) * 2018-06-13 2023-12-05 国网浙江省电力有限公司金华供电公司 Extra-high voltage direct current line electroscope based on characteristic electric field and magnetic field

Similar Documents

Publication Publication Date Title
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
JP4495635B2 (en) Magneto-impedance effect sensor and method of using magneto-impedance effect sensor
JP3764834B2 (en) Current sensor and current detection device
JP2005055326A (en) Conductor current measurement method and magnetic field sensor for measuring conductor current
JP2006322706A (en) Method of measuring conductor current
JP4192708B2 (en) Magnetic sensor
JP2005257594A (en) Fault region detecting method for conductor of wire
JP2007003509A (en) Method and apparatus for diagnosing degradation of steel framed structure
JP4520188B2 (en) Method for detecting conductor defects in electric wires
JP4698958B2 (en) Sensor for detecting conductor defects in electric wires
JP4286686B2 (en) Sensor for detecting conductor defects in electric wires
JP2005061980A (en) Conductor current measuring method
JP4476746B2 (en) Corrosion / thinning inspection method for the back of steel walls
JP4286693B2 (en) Method for detecting conductor defects in electric wires
JP4878903B2 (en) Magnetic sensor for pillar transformer diagnosis
JP4808411B2 (en) Magnetic field detection circuit
JP2006337040A (en) Defect-detecting method of metal body, and scanning type magnetic detector
JP4722717B2 (en) Current sensor
JP4938740B2 (en) Magnetic field detector
JP4739097B2 (en) Diagnosis method of pole transformer
JP4600989B2 (en) Defect detection method for metal body and scanning magnetic detector
JP4619864B2 (en) Defect detection method for metal body and scanning magnetic detector
JP2005043254A (en) Method for measuring conductor current
JP4630401B2 (en) Current sensor and current detection method
JP2005315732A (en) Instrument for measuring displacement of ferromagnetic body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929