JP2005055326A - Conductor current measurement method and magnetic field sensor for measuring conductor current - Google Patents

Conductor current measurement method and magnetic field sensor for measuring conductor current Download PDF

Info

Publication number
JP2005055326A
JP2005055326A JP2003287105A JP2003287105A JP2005055326A JP 2005055326 A JP2005055326 A JP 2005055326A JP 2003287105 A JP2003287105 A JP 2003287105A JP 2003287105 A JP2003287105 A JP 2003287105A JP 2005055326 A JP2005055326 A JP 2005055326A
Authority
JP
Japan
Prior art keywords
magnetic field
magneto
impedance effect
effect element
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003287105A
Other languages
Japanese (ja)
Inventor
Kazumi Toyoda
一実 豊田
Toshiaki Miyazawa
稔明 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA DENSHI KOGYO KK
Uchihashi Estec Co Ltd
Original Assignee
SHOWA DENSHI KOGYO KK
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA DENSHI KOGYO KK, Uchihashi Estec Co Ltd filed Critical SHOWA DENSHI KOGYO KK
Priority to JP2003287105A priority Critical patent/JP2005055326A/en
Publication of JP2005055326A publication Critical patent/JP2005055326A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To measure a conductor current with high precision by detecting a magnetic field based on the conductor current with high precision, excluding influence by a noise magnetic field and some shift in the conductor position, by a method of detecting the magnetic field utilizing a magnetic impedance effect. <P>SOLUTION: When the conductor current is measured by detecting the magnetic field based on the conductor current around the conductor utilizing the magnetic impedance effect, two or more magnetic impedance effect element pieces 11-14 are arranged on a circumference surrounding the conductor so as to make the directions of each pair of magnetic impedance effect element pieces 11, 13 (12, 14) interposing the center of the circumference c the same direction. By series-connecting these magnetic impedance effect element pieces, a magnetic impedance effect element is formed, and by serially connected coil pieces 61-64 for magnetic feedback arranged near the individual magnetic impedance effect element pieces, a coil for negative feedback is formed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は導体電流を磁界検出により測定する方法及びその測定に使用する磁界センサに関するものである。   The present invention relates to a method for measuring a conductor current by magnetic field detection and a magnetic field sensor used for the measurement.

アモルファス合金ワイヤとして、自発磁化の方向がワイヤ周方向に対し互いに逆方向の磁区が交互に磁壁で隔てられた構成の外殻部を有する、零磁歪乃至は負磁歪のアモルファス合金ワイヤが開発されている。
かかる零磁歪乃至は負磁歪のアモルファス磁性ワイヤに高周波励磁電流したときに発生するワイヤ両端間出力電圧中のインダクタンス電圧分は、ワイヤの横断面内に生じる円周方向磁束によって上記の円周方向に易磁化性の外殻部が円周方向に磁化されることに起因して発生する。従って、周方向透磁率μθは同外殻部の円周方向の磁化に依存する。
而るに、この通電中のアモルファスワイヤの軸方向に被検出磁界を作用させると、上記通電による円周方向磁束と被検出磁界磁束との合成により、上記円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずれ、それだけ円周方向への磁化が生じ難くなり、上記周方向透磁率μθが変化し、上記インダクタンス電圧分が変動することになる。
而して、この変動現象が磁気インダクタンス効果と称され、これは上記高周波励磁電流(搬送波)が被検出波(変調波)で変調される現象ということができる。
As an amorphous alloy wire, an amorphous alloy wire having zero magnetostriction or negative magnetostriction has been developed that has an outer shell portion in which magnetic domains whose spontaneous magnetization directions are opposite to each other in the circumferential direction of the wire are separated by a domain wall. Yes.
The inductance voltage component in the output voltage across the wire generated when a high frequency excitation current is applied to the zero magnetostrictive or negative magnetostrictive amorphous magnetic wire is generated in the circumferential direction by the circumferential magnetic flux generated in the cross section of the wire. This occurs because the easily magnetizable outer shell is magnetized in the circumferential direction. Therefore, the circumferential magnetic permeability mu theta depends on the circumferential direction of magnetization of Dosotokara portion.
Therefore, when a detected magnetic field is applied in the axial direction of the amorphous wire being energized, the outer circumferential direction magnetic field is easily magnetized by the synthesis of the circumferential magnetic flux and the detected magnetic flux generated by the energization. shift direction of the magnetic flux acting on the shell from the circumferential direction, correspondingly hardly occur magnetization in the circumferential direction, the circumferential permeability mu theta changes, the inductance voltage content will vary.
Thus, this fluctuation phenomenon is called a magnetic inductance effect, which can be said to be a phenomenon in which the high-frequency excitation current (carrier wave) is modulated by a detected wave (modulated wave).

更に、上記通電電流の周波数がMHzオ−ダになると、高周波表皮効果が大きく現れ、表皮深さδ=(2ρ/wμθ1/2(μθは前記した通り、円周方向透磁率、ρは電気抵抗率、wは角周波数をそれぞれ示す)がμθにより変化し、このμθが前記した通り、被検出磁界によって変化するので、ワイヤ両端間出力電圧中の抵抗電圧分も被検出磁界で変動するようになる。
而して、この変動現象が磁気インピーダンス効果と称され、これは上記高周波励磁電流(搬送波)が被検出波(変調波)で変調される現象ということができる。
Further, when the frequency of the energization current is in the order of MHz, a high-frequency skin effect appears greatly, and the skin depth δ = (2ρ / wμ θ ) 1/2θ is the circumferential permeability, as described above, ρ is electrical resistivity, w is shows the angular frequency, respectively) is changed by mu theta, as the mu theta is the so changed by the detected magnetic field, the resistance voltage division even be detected in the wire between both ends output voltage Fluctuates with a magnetic field.
Thus, this fluctuation phenomenon is called a magnetic impedance effect, which can be said to be a phenomenon in which the high-frequency excitation current (carrier wave) is modulated by a detected wave (modulated wave).

そこで、この磁気インピーダンス効果エレメントを利用した被検出磁界検出法(例えば、特許文献1参照)及び磁気インダクタンス効果を使用した被検出磁界検出方法(例えば、特許文献2参照)が提案されている。   Therefore, a detected magnetic field detection method using the magneto-impedance effect element (for example, see Patent Document 1) and a detected magnetic field detection method using the magnetic inductance effect (for example, see Patent Document 2) have been proposed.

特開平7−181239号公報JP 7-181239 A 特開平6−283344号公報JP-A-6-283344

導体電流Iの測定方法として、周囲空間の磁界強度Hを検出することによりその導体電流Iを測定することが周知されている。すなわち、導体を囲む任意の閉曲線cのある点の磁界強度をH、閉曲線のある点での微小長さをΔl、導体電流をIとすると、アンペアの周回路の法則により   As a method for measuring the conductor current I, it is well known to measure the conductor current I by detecting the magnetic field strength H in the surrounding space. That is, if the magnetic field strength at a point of an arbitrary closed curve c surrounding the conductor is H, the minute length at a point of the closed curve is Δl, and the conductor current is I, the law of the ampere circuit

∫cHdl=I   ∫cHdl = I

が成立し、導体中心を中心とする半径rの閉曲線(円周)に沿っての磁界強さHは And the magnetic field strength H along the closed curve (circumference) of radius r centered on the conductor center is

H=I/(2πr)   H = I / (2πr)

で与えられ、、磁界強さHを計測すればこの式から導体電流Iを求めることができる。
そこで、この磁界強さHを磁気インピーダンス効果磁界検出法により検出して上記導体電流Iを測定することが提案されている。
If the magnetic field strength H is measured, the conductor current I can be obtained from this equation.
Therefore, it has been proposed to measure the conductor current I by detecting the magnetic field strength H by a magnetic impedance effect magnetic field detection method.

しかしながら、磁気インピーダンス効果アモルファスワイヤと導体との間の距離が上記rに対しずれたり、磁気インピーダンス効果アモルファスワイヤの軸方向が上記円周の接線からずれたりして測定誤差が発生し易いという不都合がある。
そこで、導体の周りに環状磁芯からなる導磁路を設け、この導磁路の途中に空隙を設け、この空隙内に磁気インピーダンス効果エレメントを配設することが考えられている。この場合、導体が環状磁芯の中心からずれて環状磁芯に対し磁界分布が変化しても、環状磁芯を通る磁束がその磁芯の強い導磁性のために元の状態に保持されようとし、導体位置が多少ずれても、環状磁芯途中の空隙の磁束、すなわち磁気インピーダンス効果エレメントを通る磁束を充分に一定にでき、磁界強度も充分に一定にできる。従って、導体の位置のずれによる導体電流測定誤差をよく抑えることができる。
しかしながら、環状磁芯にその強い導磁性のために地磁気等のノイズ磁界が通り、ノイズ磁界の影響が避けられない。
However, there is a disadvantage that the measurement error is likely to occur because the distance between the magneto-impedance effect amorphous wire and the conductor is deviated from the r and the axial direction of the magneto-impedance effect amorphous wire is deviated from the tangent line of the circumference. is there.
Therefore, it is considered to provide a magnetic path made of an annular magnetic core around the conductor, provide a gap in the middle of the magnetic path, and dispose the magneto-impedance effect element in the gap. In this case, even if the conductor is displaced from the center of the annular magnetic core and the magnetic field distribution changes with respect to the annular magnetic core, the magnetic flux passing through the annular magnetic core will be maintained in its original state due to the strong magnetic conductivity of the magnetic core. Even if the conductor position is slightly deviated, the magnetic flux in the gap in the middle of the annular magnetic core, that is, the magnetic flux passing through the magneto-impedance effect element can be made sufficiently constant, and the magnetic field strength can also be made sufficiently constant. Therefore, the conductor current measurement error due to the displacement of the conductor position can be well suppressed.
However, due to the strong magnetic conductivity of the annular magnetic core, a noise magnetic field such as geomagnetism passes and the influence of the noise magnetic field is inevitable.

本発明の目的は、磁気インピーダンス効果を利用して磁界を検出する方法により導体電流に基づく磁界を導体位置の多少のずれやノイズ磁界の影響を排除して高精度で検出し、導体電流の高精度の測定を可能にすることにある。   An object of the present invention is to detect a magnetic field based on a conductor current with high accuracy by eliminating the influence of a slight displacement of a conductor position and a noise magnetic field by a method of detecting a magnetic field using the magneto-impedance effect, It is to enable measurement of accuracy.

請求項1に係る導体電流測定方法は、磁気インピーダンス効果エレメントをバイアス磁界をかけながら励磁電流により励起し、磁気インピーダンス効果エレメントに作用する被検出磁界による磁界検出信号から被検出磁界に相当する被検出量を取り出し、磁気インピーダンス効果エレメント近傍に配設した負帰還用コイルに前記被検出量に基づく負帰還信号を負帰還させて出力−被検出磁界特性を直線化すると共に前記バイアス磁界により極性判別可能にする磁界検出方法により導体周囲の導体電流に基づく磁界を検出してその導体電流を測定する電流測定法であり、前記導体を囲む円周上に磁気インピーダンス効果エレメント片を円周中心を挾む対の磁気インピーダンス効果エレメント片の感磁方向を同一方向とするように複数箇配設し、これらの磁気インピーダンス効果エレメント片の直列接続により前記の磁気インピーダンス効果エレメントを構成し、各磁気インピーダンス効果エレメント片の近傍に配設した負帰還用コイル片の直列接続により前記の負帰還用コイルを構成することを特徴とする。   In the conductor current measuring method according to claim 1, a magneto-impedance effect element is excited by an exciting current while applying a bias magnetic field, and a detected object corresponding to a detected magnetic field is detected from a magnetic field detection signal generated by the detected magnetic field acting on the magneto-impedance effect element. The negative feedback signal based on the detected amount is negatively fed back to the negative feedback coil arranged in the vicinity of the magneto-impedance effect element to linearize the output-detected magnetic field characteristic, and the polarity can be determined by the bias magnetic field. This is a current measurement method in which a magnetic field based on a conductor current around a conductor is detected by the magnetic field detection method to measure the conductor current, and a magneto-impedance effect element piece is sandwiched around the circumference around the conductor. A plurality of magneto-impedance effect element pieces are arranged in the same direction so that the magnetosensitive direction is the same, The magneto-impedance effect element is constituted by series connection of these magneto-impedance effect element pieces, and the negative feedback coil is constituted by series connection of negative feedback coil pieces arranged in the vicinity of each magneto-impedance effect element piece. It is characterized by comprising.

請求項2に係る導体電流測定用磁界センサは、請求項1の導体電流測定方法において使用する磁界センサであり、導体挿通用孔を有する基板の孔を囲む円周上に複数箇の磁気インピーダンス効果エレメント片が円周中心を挾む対の磁気インピーダンス効果エレメント片の感磁方向を同一方向として搭載され、各磁気インピーダンス効果エレメント片の近傍に負帰還用コイル片が配設され、各磁気インピーダンス効果エレメント片の近傍にバイアス磁界用コイル片が配設され、前記の磁気インピーダンス効果エレメント片及び負帰還用コイル片がそれぞれ直列に接続され、直列接続の磁気インピーダンス効果エレメント片に対する励磁電流源回路が搭載され、磁界検出信号から被検出磁界に相当する被検出量を取り出すための検出回路が搭載されていることを特徴とする。   A magnetic field sensor for measuring a conductor current according to claim 2 is a magnetic field sensor used in the method for measuring a conductor current according to claim 1, wherein a plurality of magneto-impedance effects are provided on a circumference surrounding a hole of a substrate having a hole for inserting a conductor. A pair of magneto-impedance effect element pieces that have the center of the circumference are mounted in the same direction, and a negative feedback coil piece is arranged near each magneto-impedance effect element piece. A bias magnetic field coil piece is disposed in the vicinity of the element piece, and the magneto-impedance effect element piece and the negative feedback coil piece are connected in series, and an exciting current source circuit for the series-connected magneto-impedance effect element pieces is mounted. A detection circuit is provided to extract the detected amount corresponding to the detected magnetic field from the magnetic field detection signal. And wherein the are.

請求項3に係る導体電流測定用磁界センサは、請求項1の導体電流測定方法において使用する磁界センサであり、磁気インピーダンス効果エレメント片が基板片の片面に配設され、基板片の他面にバイアス磁界用コイル片及負帰還用コイル片が巻装されてなる磁気インピーダンス効果ユニットが導体挿通用孔を有する基板の孔を囲む円周上に複数箇、円周中心を挾む対の磁気インピーダンス効果エレメント片の感磁方向を同一方向として搭載され、前記磁気インピーダンス効果ユニットの磁気インピーダンス効果エレメント片及び負帰還用コイル片がそれぞれ直列に接続され、直列接続の磁気インピーダンス効果エレメント片に対する励磁電流源回路が搭載され、磁界検出信号から被検出磁界に相当する被検出量を取り出すための検出回路が搭載されていることを特徴とする。   A magnetic field sensor for measuring a conductor current according to claim 3 is a magnetic field sensor used in the method for measuring a conductor current according to claim 1, wherein the magneto-impedance effect element piece is disposed on one side of the substrate piece, and the other side of the substrate piece is provided. Magneto-impedance effect units, in which a bias magnetic field coil piece and a negative feedback coil piece are wound, are paired on the circumference surrounding the hole of the substrate having the conductor insertion hole, and a pair of magnetic impedances sandwiching the circumference center The effect element piece is mounted in the same direction, and the magneto-impedance effect element piece and the negative feedback coil piece of the magneto-impedance effect unit are connected in series, respectively, and an exciting current source for the series-connected magneto-impedance effect element pieces A circuit is installed, and a detection circuit for extracting the detected amount corresponding to the detected magnetic field from the magnetic field detection signal Characterized in that it is placing.

請求項4に係る導体電流測定用磁界センサは、請求項3の導体電流測定用磁界センサにおいて、磁気インピーダンス効果エレメント片が基板片の片面に配設され、基板片の他面に前記磁気インピーダンス効果エレメント片とでループ磁気回路を構成するように鉄芯が配設され、該鉄芯にバイアス磁界用コイル片及負帰還用コイル片が巻装されてなる磁気インピーダンス効果ユニットが使用されていることを特徴とする。 The conductor current measuring magnetic field sensor according to claim 4 is the conductor current measuring magnetic field sensor according to claim 3, wherein the magneto-impedance effect element piece is disposed on one surface of the substrate piece, and the magneto-impedance effect is provided on the other surface of the substrate piece. A magnetic impedance effect unit is used in which an iron core is arranged so as to form a loop magnetic circuit with an element piece, and a bias magnetic field coil piece and a negative feedback coil piece are wound around the iron core. It is characterized by.

請求項5に係る導体電流測定用磁界センサは、請求項2〜4の導体電流測定用磁界センサにおいて、バイアス磁界用コイル片が直列に接続されていることを特徴とする。   The conductor current measuring magnetic field sensor according to a fifth aspect is the conductor current measuring magnetic field sensor according to the second to fourth aspects, wherein the bias magnetic field coil pieces are connected in series.

請求項6に係る導体電流測定用磁界センサは、請求項1記載の導体電流測定方法において使用する磁界センサであり、導体挿通用孔を有する基板のその孔を囲む円周上に複数箇の磁気インピーダンス効果エレメント片が円周中心を挾む対の磁気インピーダンス効果エレメント片の感磁方向を同一方向として搭載され、各磁気インピーダンス効果エレメント片の近傍にコイル片が配設され、前記の磁気インピーダンス効果エレメント片及びコイル片がそれぞれ直列に接続され、この直列接続コイル片に直流バイアス信号と負帰還信号の重畳信号を入力させるための演算回路が負帰還回路に設けられ、直列接続の磁気インピーダンス効果エレメント片に対する励磁電流源回路が搭載され、磁界検出信号から被検出磁界に相当する被検出量を取り出すための検出回路が搭載されていることを特徴とする。   A magnetic field sensor for measuring a conductor current according to claim 6 is a magnetic field sensor used in the method for measuring a conductor current according to claim 1, wherein a plurality of magnets are arranged on a circumference surrounding the hole of the substrate having the hole for inserting the conductor. The magneto-impedance effect element pieces are mounted with the magnetosensitive effect direction of the pair of magneto-impedance effect element pieces that lie in the center of the circumference as the same direction, and coil pieces are disposed in the vicinity of each magneto-impedance effect element piece, An element piece and a coil piece are connected in series, and an arithmetic circuit for inputting a superimposed signal of a DC bias signal and a negative feedback signal to the series connected coil piece is provided in the negative feedback circuit. An excitation current source circuit for the strip is mounted, and the detected amount corresponding to the detected magnetic field is extracted from the magnetic field detection signal. Wherein the detection circuit for are mounted.

請求項7に係る導体電流測定用磁界センサは、請求項2〜6何れかの導体電流測定用磁界センサ磁気インピーダンス効果エレメント片の箇数が3個以上とされていることを特徴とする。   A magnetic field sensor for measuring a conductor current according to a seventh aspect is characterized in that the number of magnetic impedance effect element pieces for the magnetic current sensor for measuring a conductor current according to any one of the second to sixth aspects is three or more.

請求項8に係る導体電流測定用磁界センサは、請求項2〜6何れかの導体電流測定用磁界センサにおいて磁気インピーダンス効果エレメント片の箇数が4個以上の偶数箇とされていることを特徴とする。   The conductor current measuring magnetic field sensor according to claim 8 is characterized in that in the conductor current measuring magnetic field sensor according to any one of claims 2 to 6, the number of magneto-impedance effect element pieces is an even number of four or more. And

磁気インピーダンス効果を利用する磁界検出法により導体電流に基づく磁界を検出して導体電流を測定する場合、導体位置に多少のずれが生じても測定誤差を充分に軽減でき、また地磁気等のノイズ磁界による測定誤差もよく排除できる。   When measuring the conductor current by detecting the magnetic field based on the conductor current by the magnetic field detection method using the magneto-impedance effect, the measurement error can be sufficiently reduced even if there is some deviation in the conductor position, and the noise magnetic field such as geomagnetism. Measurement errors due to can be eliminated well.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明において使用する磁界検出法を示す回路図であり、磁気インピーダンス効果エレメント1に高周波励磁電流を加えるための高周波電源2と、磁気インピーダンス効果エレメント1と、磁気インピーダンス効果エレメント1の軸方向に加わる被検出磁界(変調波)Hで前記高周波励磁電流(搬送波)を変調させた被変調波を復調する復調回路3と、復調波を増幅する増幅回路4と、出力端5と、負帰還用コイル6と、バイアス磁界用コイル7等から構成されている。
磁気インピーダンス効果エレメントには、零磁歪乃至は負磁歪のアモルファスワイヤ、アモルファスリボン、アモルファススパッタ膜等を使用できる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a circuit diagram showing a magnetic field detection method used in the present invention. A high-frequency power source 2 for applying a high-frequency excitation current to the magneto-impedance effect element 1, a magneto-impedance effect element 1, and an axis of the magneto-impedance effect element 1 A demodulating circuit 3 for demodulating the modulated wave obtained by modulating the high-frequency excitation current (carrier wave) with a detected magnetic field (modulated wave) H applied in the direction; an amplifying circuit 4 for amplifying the demodulated wave; an output terminal 5; It comprises a feedback coil 6, a bias magnetic field coil 7, and the like.
For the magneto-impedance effect element, zero magnetostrictive or negative magnetostrictive amorphous wire, amorphous ribbon, amorphous sputtered film or the like can be used.

磁気インピーダンス効果エレメント1においては、前記した通り励磁電流に基づく円周方向磁束と被検出磁界による軸方向磁束との合成により、円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずれされるために、周方向透磁率μθが変化し、インダクタンスが変動され、この円周方向透磁率μθの高周波表皮効果の表皮深さの変化でインピーダンスが変動される。従って、被検出磁界の±により上記合成磁界による周方向ずれφも±φになるが、周方向の磁界の減少倍率cos(±φ)は変わらず、従ってμθの減少度は被検出磁界の方向の正負によっては変化されない。従って、被検出磁界−出力特性は、図2の(イ)のように被検出磁界をx軸に、出力をy軸にとると、y軸に対してほぼ左右対称となる。この被検出磁界−出力特性は非線形である。非線形特性では、高感度の測定が困難である。そこで、図1の負帰還用コイル6で負帰還をかけて図2の(ロ)に示すように特性を直線化している。図2の(ロ)において、Δwは、負帰還無しのときの利得Aが非常に大きく帰還率βのみにより利得が定まる範囲である。しかし、この出力特性では、被検出磁界の極性判別を行ない得ないので、図1のバイアス用コイル7でバイアス磁界をかけ、図2の(ハ)に示すように極性判別可能としている。すなわち、図2の(ロ)の特性を、バイアス磁界によりx軸のマイナス方向に移動させ、被検出磁界の最大範囲−Hmax〜+Hmaxを単斜め線領域の範囲内に納めている。更に、図2の(ニ)に示すように0点調整により原点を通る直線特性としている。従って、図2の(ニ)において被検出磁界を+Heとすると出力が+Eoとなり、被検出磁界を−Heとすると出力が−Eoとなって被検出磁界を極性判別のもとで正確に測定できる。 In the magneto-impedance effect element 1, as described above, the direction of the magnetic flux acting on the outer shell portion that is easily magnetized in the circumferential direction by combining the circumferential magnetic flux based on the excitation current and the axial magnetic flux due to the detected magnetic field. Is shifted from the circumferential direction, the circumferential permeability μ θ changes, the inductance is changed, and the impedance is changed by the change in the skin depth of the high frequency skin effect of this circumferential permeability μ θ. . Accordingly, although even the circumferential direction positional shift phi by the synthesized magnetic field by ± of the detected magnetic field becomes ± phi, the circumferential direction of the magnetic field reduction ratio cos (± phi) is unchanged, the degree of reduction in thus mu theta is of the detected magnetic field It does not change depending on the direction. Accordingly, the detected magnetic field-output characteristics are substantially bilaterally symmetrical with respect to the y axis when the detected magnetic field is taken on the x axis and the output is taken on the y axis as shown in FIG. This detected magnetic field-output characteristic is non-linear. With non-linear characteristics, it is difficult to measure with high sensitivity. Therefore, negative feedback is applied by the negative feedback coil 6 of FIG. 1 to linearize the characteristics as shown in FIG. In FIG. 2B, Δw is a range in which the gain A without negative feedback is very large and the gain is determined only by the feedback rate β. However, since the polarity of the detected magnetic field cannot be determined with this output characteristic, the polarity can be determined as shown in FIG. 2C by applying a bias magnetic field with the bias coil 7 of FIG. That is, the characteristic of (b) in FIG. 2 is moved in the negative direction of the x-axis by the bias magnetic field, and the maximum range −Hmax to + Hmax of the detected magnetic field is within the range of the single oblique line region. Further, as shown in FIG. 2 (d), a linear characteristic passing through the origin is obtained by adjusting the zero point. Therefore, in FIG. 2D, when the detected magnetic field is + He, the output is + Eo, and when the detected magnetic field is -He, the output is -Eo, and the detected magnetic field can be accurately measured based on polarity discrimination. .

図3−1は請求項1に係る導体電流測定方法に使用する磁界センサ、すなわち請求項2に係る導体電流測定用磁界センサを示し、図3−2はその導体電流測定用磁界センサの回路図を示している。
図3−1において、81は導体挿通孔82を有する基板例えばセラミックス基板、821は導体挿通孔82に対する切欠き部である。11〜14は孔82を囲む円周c上に配設した磁気インピーダンス効果エレメント片であり、図3−2に示すように直列に接続してある。これらの磁気インピーダンス効果エレメント片11〜14の軸方向は円周cの接線方向に向けられており、従って、円周cの一方向(左周り方向または右巻き方向と)と同一方向とされ、円周cの中心を挾んで対向する対を磁気インピーダンス効果エレメント片11,13(12,14)は互いに平行である。
図3−1及び図3−2において、2は高周波励磁電源回路、3は復調回路、4は増幅回路、5は出力端である。61〜64は各磁気インピーダンス効果エレメント片11〜14の近傍に配設された負帰還用コイル片であり、図3−2に示すように直列に接続してある。71〜74は各磁気インピーダンス効果エレメント片11〜14の近傍に配設されたバイアス磁界用コイル片であり、図3−2に示す例では+Vcc電源に対し直列に接続してあるが、+Vcc電源に対し並列に接続することも可能である。
FIG. 3A shows a magnetic field sensor used in the conductor current measuring method according to claim 1, that is, the conductor current measuring magnetic field sensor according to claim 2, and FIG. 3-2 is a circuit diagram of the magnetic sensor for measuring the conductor current. Is shown.
In FIG. 3A, 81 is a substrate having a conductor insertion hole 82, for example, a ceramic substrate, and 821 is a notch with respect to the conductor insertion hole 82. Reference numerals 11 to 14 denote magneto-impedance effect element pieces arranged on a circumference c surrounding the hole 82 and connected in series as shown in FIG. 3-2. The axial directions of these magneto-impedance effect element pieces 11 to 14 are directed in the tangential direction of the circumference c, and are therefore the same direction as one direction of the circumference c (the counterclockwise direction or the right-handed direction). The magneto-impedance effect element pieces 11, 13 (12, 14) are parallel to each other with the pair facing each other about the center of the circumference c.
3A and 3B, 2 is a high-frequency excitation power supply circuit, 3 is a demodulation circuit, 4 is an amplification circuit, and 5 is an output terminal. Reference numerals 61 to 64 denote negative feedback coil pieces arranged in the vicinity of the magneto-impedance effect element pieces 11 to 14, and are connected in series as shown in FIG. 3-2. Reference numerals 71 to 74 are bias magnetic field coil pieces arranged in the vicinity of the magneto-impedance effect element pieces 11 to 14, and are connected in series to the + Vcc power source in the example shown in FIG. Can be connected in parallel.

図3−1において、9は基板81の導体挿通用孔82に切欠き部821を経て挿通した直線導体であり、導体電流により発生する磁界Hの方向は、その導体電流の正負に応じ前記した円周の左回り方向または右回り方向に一致する。
而るに、図3−1、図3−2において全磁気インピーダンス効果エレメント片11〜14の向きを円周cの一方向に一致させてこれらの磁気インピーダンス効果エレメント片を直列に接続してあり、図3−1における導体電流磁界Hを記入した図3−2からも明らかなように、各磁気インピーダンス効果エレメント片11〜14に導体電流発生磁界Hが同一の方向で作用することになる。この磁界Hに対する直列接続された全磁気インピーダンス効果エレメント片全体の出力は磁気インピーダンス効果エレメント片の長さの総計にほぼ比例し、その長さをwとすると、長さwの磁気インピーダンス効果エレメントに磁界Hが作用するときの出力にほぼ一致し、かかる磁気インピーダンス効果エレメントの図2の(ニ)に示すような極性判別可能の直線出力特性を予め求めておくことにより、その出力を容易に検出することができ、前記円周cの半径をrとすれば、
In FIG. 3-1, 9 is a straight conductor inserted through the conductor insertion hole 82 of the substrate 81 through the notch 821, and the direction of the magnetic field H generated by the conductor current is as described above according to the polarity of the conductor current. Matches the counterclockwise or clockwise direction of the circumference.
Accordingly, in FIGS. 3A and 3B, the directions of all the magneto-impedance effect element pieces 11 to 14 are made to coincide with one direction of the circumference c, and these magneto-impedance effect element pieces are connected in series. As is apparent from FIG. 3-2 in which the conductor current magnetic field H in FIG. 3A is entered, the conductor current generating magnetic field H acts on the magneto-impedance effect element pieces 11 to 14 in the same direction. The output of all the magneto-impedance effect element pieces connected in series with respect to the magnetic field H is substantially proportional to the total length of the magneto-impedance effect element pieces. The output can be easily detected by obtaining in advance the linear output characteristics of the magneto-impedance effect element that can be discriminated in polarity as shown in FIG. If the radius of the circumference c is r,

I=2πrH   I = 2πrH

から、導体電流Iを測定できる。
この場合、図3−1において、磁気インピーダンス効果エレメント片11〜14が配設された円周cの周回路の相当部分が導磁率の高いアモルファス磁性体で占められているので、その周回路の導磁性が充分に高く、導体9の位置ずれにより磁界分布が変化しても、高導磁性周回路を通る磁束が元のままに保持されようとし、その結果導体の位置ずれによる出力の変度をよく抑えることができるから、導体の位置ずれによる導体電流の測定誤差を充分に軽減でき、導体電流を充分に高精度で測定できる。
From this, the conductor current I can be measured.
In this case, in FIG. 3A, since a substantial portion of the circumference circuit of the circumference c where the magneto-impedance effect element pieces 11 to 14 are disposed is occupied by an amorphous magnetic material having a high magnetic conductivity, Even if the magnetic conductivity is sufficiently high and the magnetic field distribution is changed due to the displacement of the conductor 9, the magnetic flux passing through the highly conductive peripheral circuit tends to be maintained as it is, and as a result, the output variation due to the displacement of the conductor. Therefore, the measurement error of the conductor current due to the displacement of the conductor can be sufficiently reduced, and the conductor current can be measured with sufficiently high accuracy.

また、図3−1に示すように、ノイズ磁界H’に対し、円周中心を挾む対の磁気インピーダンス効果エレメント片11,13(12,14)の軸心を通るノイズ磁界成分H’,H’(H’,H’)が磁気インピーダンス効果エレメント片11,13(12,14)の軸方向に対し逆方向であり、しかも磁気インピーダンス効果エレメント片11,13(12,14)の軸心のノイズ磁界H’に対する角度が等しいために、H’とH’(H’とH’)とは大きさが等しい逆符号の被検出磁界となり〔±H13(±H24)となり〕、その出力は図2の(ニ)において、±E’13(±E’24)となり極性判別可能な出力特性のために、その出力が互いに打ち消されてしまい、出力されない。従って、ノイズ磁界の影響を排除して導体電流を充分に高い精度で測定できる。 Further, as shown in FIG. 3A, the noise magnetic field component H 1 ′ passing through the axial center of the pair of magneto-impedance effect element pieces 11 and 13 (12, 14) sandwiching the circumference center with respect to the noise magnetic field H ′. , H 3 ′ (H 2 ′, H 4 ′) are opposite to the axial direction of the magneto-impedance effect element pieces 11, 13 (12, 14), and the magneto-impedance effect element pieces 11, 13 (12, 14). ) Is equal to the noise magnetic field H ′ at the axis, and H 1 ′ and H 3 ′ (H 2 ′ and H 4 ′) are detected magnetic fields of opposite signs having the same magnitude [± H 13 ( ± H 24) next], in (d) of the output 2, for ± E '13 (± E' 24) next to the polarity discrimination can output characteristics, will be canceled and the output thereof to one another, not output . Accordingly, it is possible to measure the conductor current with sufficiently high accuracy by eliminating the influence of the noise magnetic field.

本発明において、磁気インピーダンス効果エレメント片の箇数は(円周中心を挾む対)×n、すなわち偶数箇とすることが望ましい。
奇数箇の場合、すなわ〔(円周中心を挾む対)×n+1〕箇の場合、〔(円周中心を挾む対)×n+1〕箇中の1箇分の磁気インピーダンス効果エレメント片の軸方向に作用するノイズ磁界成分に対する出力が現れるだけであり、奇数箇の場合でも、nが大きいときは充分に有効である。
In the present invention, it is desirable that the number of magneto-impedance effect element pieces is (a pair with the circumference center) × n, that is, an even number.
In the case of an odd number, the number of magnetoimpedance effect element pieces corresponding to one of [(a pair that rubs the center of the circumference) × n + 1] in the case of [(a pair that holds the center of the circumference) × n + 1] Only an output for a noise magnetic field component acting in the axial direction appears, and even in the case of an odd number, it is sufficiently effective when n is large.

本発明において、円周上への磁気インピーダンス効果エレメント片の配設間隔は、前記した導磁環芯による磁界の安定保持のために等間隔とすること、または及び可及的に狭い間隔とすることが有効である。
本発明において、磁気インピーダンス効果エレメント片の直列接続とは、これら磁気インピーダンス効果エレメント片の出力の和を得るように接続するものであればよく、例えばこれら磁気インピーダンス効果エレメント片の出力を検出インピーダンスに集め、検出インピーダンス電圧を取出すための検出端を設ける構成とすることもできる。
In the present invention, the arrangement intervals of the magneto-impedance effect element pieces on the circumference are set to be equal intervals or to be as narrow as possible in order to stably maintain the magnetic field by the above-described magnetic conducting core. It is effective.
In the present invention, the serial connection of the magneto-impedance effect element pieces may be any connection so long as the sum of the outputs of the magneto-impedance effect element pieces is obtained. For example, the output of the magneto-impedance effect element pieces is used as the detection impedance. It is also possible to provide a detection end for collecting and taking out the detected impedance voltage.

本発明においては、磁気インピーダンス効果エレメント片と負帰還用コイル片とバイアス磁界用コイル片とをユニット化し、センサ本体部の小型化を図ることが好ましい。
図4の(イ)は本発明において使用される磁気インピーダンス効果ユニットの一例を示す側面図、図4の(ロ)は同じく底面図、図4の(ハ)は図4の(ロ)におけるハ−ハ断面図である。
図4において、100は基板片であり、例えばセラミックス板を使用できる。101は基板片100の片面に設けた電極であり、エレメント片接続用突部102を備えている。この電極は導電ペースト、例えば、銀ペーストの印刷・焼付けにより設けることができる。1xは電極101、101の突部102,102間にはんだ付けや溶接により接続した磁気インピーダンス効果エレメント片であり、前記した零磁歪乃至は負磁歪のアモルファスワイヤ、アモルファスリボン、スパッタ膜等を使用できる。103はC形鉄芯、6xはC形鉄芯103に巻装した負帰還磁界発生用コイル片、7xは同じくバイアス磁界用コイル片(何れにも、通常、銅線に絶縁塗料を塗り付けてなるマグネットワイヤが使用される)であり、磁気インピーダンス効果エレメント片1xとC形鉄芯103とでループ磁気回路を構成するように、C形鉄芯103の両端を基板片100の他面に接着剤等で固定してある。
記鉄芯材料としては、残留磁束密度の小さい磁性体であればよく、例えば、パーマロイ、フェライト、鉄、アモルファス磁性合金の他、磁性体粉末混合プラスチック等を挙げることができる。
In the present invention, it is preferable to unitize the magneto-impedance effect element piece, the negative feedback coil piece, and the bias magnetic field coil piece to reduce the size of the sensor body.
4A is a side view showing an example of the magneto-impedance effect unit used in the present invention, FIG. 4B is a bottom view, and FIG. 4C is a side view in FIG. -It is C sectional drawing.
In FIG. 4, reference numeral 100 denotes a substrate piece, for example, a ceramic plate can be used. Reference numeral 101 denotes an electrode provided on one surface of the substrate piece 100 and includes an element piece connecting projection 102. This electrode can be provided by printing and baking a conductive paste, for example, a silver paste. 1x is a magneto-impedance effect element piece connected between the protrusions 102 and 102 of the electrodes 101 and 101 by soldering or welding, and the above-described zero magnetostriction or negative magnetostriction amorphous wire, amorphous ribbon, sputtered film, etc. can be used. . 103 is a C-shaped iron core, 6x is a negative feedback magnetic field generating coil piece wound around the C-shaped iron core 103, 7x is also a bias magnetic field coil piece (both are usually coated with an insulating paint on a copper wire) And the both ends of the C-shaped iron core 103 are bonded to the other surface of the substrate piece 100 so that the magneto-impedance effect element piece 1x and the C-shaped iron core 103 constitute a loop magnetic circuit. It is fixed with agents.
The iron core material may be a magnetic material having a small residual magnetic flux density, and examples thereof include permalloy, ferrite, iron, amorphous magnetic alloy, magnetic powder mixed plastic, and the like.

上記において、C形鉄芯の長さをl、断面積をS、透磁率をμとすれば、C形鉄芯の磁気抵抗RIn the above, if the length of the C-shaped iron core is l a , the cross-sectional area is S a , and the magnetic permeability is μ a , the magnetic resistance R a of the C-shaped iron core is

=l/(SμR a = l a / (S a μ a )

で与えられ、また、磁気回路の構成部分となる磁気インピーダンス効果エレメント片部分の長さをl、断面積をS、透磁率をμとすれば、磁気インピーダンス効果エレメント片部分の磁気抵抗RIn addition, if the length of the magneto-impedance effect element piece portion constituting the magnetic circuit is 1 b , the cross-sectional area is S b , and the magnetic permeability is μ b , the magnetoresistance of the magneto-impedance effect element piece portion R b is

=l/(SμR b = l b / (S b μ b )

で与えられ、更に、C形鉄芯両端と磁気インピーダンス効果エレメント片との間の磁気抵抗をRとすると、磁気回路の磁気抵抗RFurther, if the magnetic resistance between the both ends of the C-shaped iron core and the magneto-impedance effect element piece is R c , the magnetic resistance R m of the magnetic circuit is

=R+R+R R m = R a + R b + R c

で与えられ、従って、負帰還磁界発生用コイルの自己インダクタンスLは、そのコイル巻数をNとして Therefore, the self-inductance L 1 of the negative feedback magnetic field generating coil is represented by N 1 as the number of turns of the coil.

=N /R L 1 = N 1 2 / R m

で与えられ、バイアス磁界用コイル片の自己インダクタンスLは、そのコイル巻数をNとして And the self-inductance L 2 of the bias magnetic field coil piece is N 2.

=N /R L 2 = N 2 2 / R m

で与えられる。
而るに、前記基板片100の厚みが薄くRを小さくでき、また、C形鉄芯の脚部の高さを巻線の直径よりやや高くする程度にとどめてC形鉄芯の長さを短くできるから、前記磁気回路の磁気抵抗Rを充分に低くでき、それだけ各コイルの巻数Nを少なくできる結果、コイル自体も小型化できる。
この磁気インピーダンス効果ユニットを用いて請求項4に係る導体電流測定用磁界センサを構成するには、図5に示すように上記の磁気インピーダンス効果ユニットU〜Uが導体挿通用孔82を有する基板81の82孔を囲む円周上に複数箇、円周中心を挾む対の磁気インピーダンス効果エレメント片の感磁方向を同一方向として搭載され、前記磁気インピーダンス効果ユニットU〜Uの磁気インピーダンス効果エレメント片及び負帰還用コイル片がそれぞれ直列に接続され、直列接続の磁気インピーダンス効果エレメント片に対する励磁電流源回路2が搭載され、磁界検出信号から被検出磁界に相当する被検出量を取り出すための復調回路3や増幅回路4が搭載され、前記と同様にして直列接続の負帰還用コイル片を経て負帰還がかけられ、バイアス磁界用コイルによりバイアス磁界がかけられ、図2の(ニ)に示すような極性判別可能な直線出力が得られるように調整される。
この磁気インピーダンス効果ユニットの基板への搭載にあたっては、磁気インピーダンス効果エレメント片の機械的保護のために、ユニットの磁気インピーダンス効果エレメント片側を基板に向け、ユニット基板片を基板に接着剤で固定することが望ましい。
図5における、導体電流磁界Hに対する磁気インピーダンス効果ユニットの磁気抵抗Rwは、C形鉄芯の磁気抵抗をR、磁気インピーダンス効果エレメント片部分の磁気抵抗をRとして
Given in.
The而Ru, the can reduce the thickness is thin R c of the substrate piece 100, The length of C Katachitetsushin Suffice the height of the legs of the C Katachitetsushin enough to slightly higher than the diameter of the winding since the possible short, a magnetic resistance R m of the magnetic circuit be sufficiently low, the results can be correspondingly reduced number of turns N of the coils, the coils themselves can be miniaturized.
In order to configure a magnetic current sensor for measuring a conductor current according to claim 4 using this magnetoimpedance effect unit, the above-described magnetoimpedance effect units U 1 to U 4 have conductor insertion holes 82 as shown in FIG. A plurality of pairs of magneto-impedance effect element pieces sandwiching the center of the circumference are mounted on the circumference surrounding the hole 82 of the substrate 81 as the same direction, and the magnetism of the magneto-impedance effect units U 1 to U 4 is mounted. The impedance effect element piece and the negative feedback coil piece are connected in series, and the excitation current source circuit 2 for the series-connected magnetoimpedance effect element pieces is mounted to extract the detected amount corresponding to the detected magnetic field from the magnetic field detection signal. The demodulating circuit 3 and the amplifying circuit 4 are mounted, and in the same manner as described above, a negative feedback coil piece is connected through a series-connected negative feedback coil piece. Is applied, the bias magnetic field is applied by the bias magnetic field coil, the polarity discrimination can linear output shown in FIG. 2 (d) is adjusted so as to obtain.
When mounting this magneto-impedance effect unit on a substrate, in order to mechanically protect the magneto-impedance effect element piece, the unit's magneto-impedance effect element side is directed to the substrate, and the unit substrate piece is fixed to the substrate with an adhesive. Is desirable.
In FIG. 5, the magnetoresistance Rw of the magneto-impedance effect unit with respect to the conductor current magnetic field H is represented by R a as the magnetoresistance of the C-shaped iron core, and R b as the magnetoresistance of the magneto-impedance effect element piece portion.

Rw=R/(R+RRw = R a R b / (R a + R b )

で与えられ、磁気インピーダンス効果エレメント片単体の磁気抵抗Rに較べて低できるから、周回路cの導磁性を更に高くでき、被検出磁界Hの分布状態の一層の安定化による導体電流の測定精度のアップを図ることができる。 Since the magnetic resistance Rb can be made lower than the magnetoresistive element Rb of the single element of the magneto-impedance effect element, the magnetic conductivity of the peripheral circuit c can be further increased, and the conductor current can be measured by further stabilizing the distribution state of the detected magnetic field H. The accuracy can be improved.

磁気インピーダンス効果ユニットの他の例としては、絶縁基礎板片の片面に磁気インピーダンス効果エレメント片を配設し、絶縁基礎板片の他面に負帰還用コイル片及びバイアス磁界用コイル片を印刷により設けたものを挙げることができる。   As another example of the magneto-impedance effect unit, a magneto-impedance effect element piece is arranged on one side of an insulating base plate piece, and a negative feedback coil piece and a bias magnetic field coil piece are printed on the other side of the insulating base plate piece. What was provided can be mentioned.

本発明において、高周波励磁電流としては例えば連続正弦波、パスル波、三角波等の通常の高周波を使用でき、高周波励磁電流源としては、例えばハートレー発振回路、コルピッツ発振回路、コレクタ同調発振回路、ベース同調発振回路のような通常の発振回路の外、水晶発振器の矩形波出力を直流分カットコンデンサを経て積分回路で積分しこの積分出力の三角波を増幅回路で増幅する三角波発生器、CMOS−ICを発振部として使用した三角波発生器等を使用できる。   In the present invention, a normal high frequency such as a continuous sine wave, a pulse wave, or a triangular wave can be used as the high frequency excitation current. Examples of the high frequency excitation current source include a Hartley oscillation circuit, a Colpitts oscillation circuit, a collector tuning oscillation circuit, and a base tuning oscillation. In addition to a normal oscillation circuit such as an oscillation circuit, a rectangular wave generator that integrates the square wave output of a crystal oscillator through an integration circuit via a DC cut capacitor and amplifies the triangular wave of this integration output by an amplification circuit, and oscillates a CMOS-IC The triangular wave generator etc. which were used as a part can be used.

本発明において、復調回路としては例えば被変調波を演算増幅回路で半波整流しこの半波整流波を並列RC回路またはRCローパスフィルターで処理して半波整流波の包絡線出力を得る構成、被変調波をダイオードで半波整流しこの半波整流波を並列RC回路またはRCローパスフィルターで処理して半波整流波の包絡線出力を得る構成等を使用できる。
上記の実施例では、被変調波の復調によって被検出量を取り出しているが、これに限定されず、磁気インピーダンス効果エレメントに作用する被検出磁界による磁界検出信号から被検出磁界に相当する被検出量を取り出し得るもので適宜の回路構成を使用できる。
In the present invention, for example, the demodulating circuit has a configuration in which a modulated wave is half-wave rectified by an operational amplifier circuit and the half-wave rectified wave is processed by a parallel RC circuit or an RC low-pass filter to obtain an envelope output of the half-wave rectified wave, A configuration in which the modulated wave is half-wave rectified with a diode and the half-wave rectified wave is processed with a parallel RC circuit or an RC low-pass filter to obtain an envelope output of the half-wave rectified wave can be used.
In the above embodiment, the detected amount is extracted by demodulating the modulated wave. However, the present invention is not limited to this, and the detected amount corresponding to the detected magnetic field is detected from the magnetic field detection signal by the detected magnetic field acting on the magneto-impedance effect element. Any suitable circuit configuration can be used.

上記の実施例では、負帰還用コイルとバイアス磁界用コイルとを別体としているが、各磁気インピーダンス効果エレメント片の近傍に単一のコイル片を配設し、図6に示すように、磁気インピーダンス効果エレメント片11〜14を直列に接続し、前記した各単一のコイル片671〜674を直列に接続し、直流バイアス信号と負帰還信号の重畳信号を演算回路Qにより直列接続のコイル671〜674に送入して、前記した図2の(ニ)に示すような極性判別可能な直線出力特性を得ることもできる。
図6の例では、出力より反転入力端子に負帰還をかけた演算増幅器(負帰還路挿入インピーダンスZ、入力側挿入インピーダンスZ)を使用しており、直列接続コイルに挿入した抵抗をR、直列接続コイルの巻数をN、長さをL、復調増幅部Bの利得をA、被検出磁界をHex、出力をEoutとすると、
In the above embodiment, the negative feedback coil and the bias magnetic field coil are separated, but a single coil piece is disposed in the vicinity of each magneto-impedance effect element piece, as shown in FIG. The impedance effect element pieces 11 to 14 are connected in series, the single coil pieces 671 to 674 described above are connected in series, and the superimposed signal of the DC bias signal and the negative feedback signal is connected in series by the arithmetic circuit Q to the coil 671. To 674 to obtain a linear output characteristic capable of discriminating the polarity as shown in FIG.
In the example of FIG. 6, an operational amplifier (negative feedback path insertion impedance Z 2 , input side insertion impedance Z 1 ) in which negative feedback is applied to the inverting input terminal from the output is used, and the resistance inserted in the series connection coil is R When the number of turns of the series connection coil is N, the length is L, the gain of the demodulation amplification unit B is A, the detected magnetic field is Hex, and the output is Eout,

A≫ZRL/(ZN) A >> Z 1 RL / (Z 2 N)

のもとで Under

Eout=RLZHex/(NZ)+VccZR/〔Z(Z+R)〕 Eout = RLZ 1 Hex / (NZ 2 ) + VccZ 1 R / [Z 2 (Z 2 + R)]

が成立し、この出力特性は緒定数(Z,Z,抵抗R,コイル巻数N等)の調整によりx軸の±方向にシフトさせることができ、その調整により極性判別可能な斜め直線部を最大被検出磁界の範囲±Hmax内に位置させることが可能となり、更にy軸方向の0点調整により図に示すような極性判別可能な直線性の出力特性を得ることができる。 This output characteristic can be shifted in the ± direction of the x-axis by adjusting the constants (Z 1 , Z 2 , resistance R, coil turns N, etc.), and the diagonal straight line portion whose polarity can be discriminated by the adjustment Can be positioned within the range of the maximum detected magnetic field ± Hmax, and the linearity output characteristics capable of discriminating the polarity as shown in the figure can be obtained by adjusting the zero point in the y-axis direction.

磁気インピーダンス効果エレメントの磁界検出感度が高いから微弱磁界の高感度検出による微弱電流の高精度測定が可能となる。   Since the magnetic impedance detection element has a high magnetic field detection sensitivity, it is possible to measure a weak current with high accuracy by high sensitivity detection of a weak magnetic field.

本発明において使用する磁界測定法を示すための回路図である。It is a circuit diagram for showing the magnetic field measuring method used in the present invention. 本発明において使用する磁界測定法の出力特性を示す図面である。It is drawing which shows the output characteristic of the magnetic field measuring method used in this invention. 請求項2に係る導体電流測定用磁界センサの実施例を示す図面である。It is drawing which shows the Example of the magnetic field sensor for conductor current measurement which concerns on Claim 2. 図3-1の導体電流測定用磁界センサの回路図である。FIG. 3 is a circuit diagram of the magnetic field sensor for measuring a conductor current of FIG. 3-1. 請求項3に係る導体電流測定用磁界センサに使用する磁気インピーダンス効果ユニットの一例を示す図面である。It is drawing which shows an example of the magneto-impedance effect unit used for the magnetic field sensor for conductor current measurement concerning Claim 3. 請求項3に係る導体電流測定用磁界センサの実施例を示す図面である。It is drawing which shows the Example of the magnetic field sensor for conductor current measurement which concerns on Claim 3. 請求項5に係る導体電流測定用磁界センサの実施例の回路図を示す図面である。It is drawing which shows the circuit diagram of the Example of the magnetic field sensor for conductor current measurement which concerns on Claim 5.

符号の説明Explanation of symbols

11〜14 磁気インピダンス効果エレメント片
2 高周波励磁電流源
3 復調回路
4 増幅回路
61〜64 負帰還用コイル片
71〜74 バイアス磁界用コイル片
81 基板
82 導体挿通用孔
9 導体
11-14 Magnetic impedance effect element piece 2 High frequency excitation current source 3 Demodulation circuit 4 Amplification circuit 61-64 Negative feedback coil pieces 71-74 Bias magnetic field coil piece 81 Substrate 82 Conductor insertion hole 9 Conductor

Claims (8)

磁気インピーダンス効果エレメントをバイアス磁界をかけながら励磁電流により励起し、磁気インピーダンス効果エレメントに作用する被検出磁界による磁界検出信号から被検出磁界に相当する被検出量を取り出し、磁気インピーダンス効果エレメント近傍に配設した負帰還用コイルに前記被検出量に基づく負帰還信号を負帰還させて出力−被検出磁界特性を直線化すると共に前記バイアス磁界により極性判別可能にする磁界検出方法により導体周囲の導体電流に基づく磁界を検出してその導体電流を測定する電流測定法であり、前記導体を囲む円周上に磁気インピーダンス効果エレメント片を円周中心を挾む対の磁気インピーダンス効果エレメント片の感磁方向を同一方向とするように複数箇配設し、これらの磁気インピーダンス効果エレメント片の直列接続により前記の磁気インピーダンス効果エレメントを構成し、各磁気インピーダンス効果エレメント片の近傍に配設した負帰還用コイル片の直列接続により前記の負帰還用コイルを構成することを特徴とする導体電流測定方法。 The magneto-impedance effect element is excited by an excitation current while applying a bias magnetic field, and the detected amount corresponding to the detected magnetic field is extracted from the magnetic field detection signal generated by the detected magnetic field acting on the magneto-impedance effect element and arranged near the magneto-impedance effect element. A negative feedback signal based on the detected amount is negatively fed back to a negative feedback coil provided to linearize the output-detected magnetic field characteristics and to determine the polarity by the bias magnetic field. Is a current measurement method for detecting a magnetic field based on a magnetic field and measuring a conductor current of the magnetic impedance effect element piece on a circumference surrounding the conductor, and a magnetosensitive effect direction of a pair of magnetoimpedance effect element pieces sandwiching the circumference center Are arranged in the same direction, and these magneto-impedance effect elements are arranged. The magneto-impedance effect element is configured by serial connection of the magnetic feedback effect elements, and the negative feedback coil is configured by serial connection of the negative feedback coil pieces disposed in the vicinity of the magneto-impedance effect element pieces. Conductor current measurement method. 請求項1記載の導体電流測定方法において使用する磁界検出センサであり、導体挿通用孔を有する基板のその孔を囲む円周上に複数箇の磁気インピーダンス効果エレメント片が円周中心を挾む対の磁気インピーダンス効果エレメント片の感磁方向を同一方向として搭載され、各磁気インピーダンス効果エレメント片の近傍に負帰還用コイル片が配設され、各磁気インピーダンス効果エレメント片の近傍にバイアス磁界用コイル片が配設され、前記の磁気インピーダンス効果エレメント片及び負帰還用コイル片がそれぞれ直列に接続され、直列接続の磁気インピーダンス効果エレメント片に対する励磁電流源回路が搭載され、磁界検出信号から被検出磁界に相当する被検出量を取り出すための検出回路が搭載されていることを特徴とする導体電流測定用磁界センサ。 2. A magnetic field detection sensor used in the conductor current measuring method according to claim 1, wherein a plurality of magneto-impedance effect element pieces sandwich the center of the circumference on a circumference of the board having a conductor insertion hole. The magneto-impedance effect element pieces are mounted in the same direction, a negative feedback coil piece is disposed in the vicinity of each magneto-impedance effect element piece, and a bias magnetic field coil piece in the vicinity of each magneto-impedance effect element piece The magneto-impedance effect element piece and the negative feedback coil piece are connected in series, and an excitation current source circuit for the series-connected magneto-impedance effect element piece is mounted to convert the magnetic field detection signal into the detected magnetic field. A conductor circuit equipped with a detection circuit for extracting the corresponding detected amount Measurement for magnetic field sensor. 請求項1記載の導体電流測定方法において使用する磁界センサであり、磁気インピーダンス効果エレメント片が基板片の片面に配設され、基板片の他面にバイアス磁界用コイル片及負帰還用コイル片が配設されてなる磁気インピーダンス効果ユニットが導体挿通用孔を有する基板の孔を囲む円周上に複数箇、円周中心を挾む対の磁気インピーダンス効果エレメント片の感磁方向を同一方向として搭載され、前記磁気インピーダンス効果ユニットの磁気インピーダンス効果エレメント片及び負帰還用コイル片がそれぞれ直列に接続され、直列接続の磁気インピーダンス効果エレメント片に対する励磁電流源回路が搭載され、磁界検出信号から被検出磁界に相当する被検出量を取り出すための検出回路が搭載されていることを特徴とする導体電流測定用磁界センサ。 A magnetic field sensor used in the conductor current measuring method according to claim 1, wherein the magneto-impedance effect element piece is disposed on one side of the substrate piece, and a bias magnetic field coil piece and a negative feedback coil piece are provided on the other side of the substrate piece. The installed magneto-impedance effect unit is mounted on the circumference surrounding the hole of the board having the conductor insertion hole, and the magneto-sensitive direction of the pair of magneto-impedance effect element pieces surrounding the circumference center is mounted in the same direction. The magneto-impedance effect element piece and the negative feedback coil piece of the magneto-impedance effect unit are connected in series, and an excitation current source circuit for the series-connected magneto-impedance effect element pieces is mounted, and the detected magnetic field is detected from the magnetic field detection signal. Conductor current, which is equipped with a detection circuit to extract the detected amount equivalent to Titration, the magnetic field sensor. 磁気インピーダンス効果エレメント片が基板片の片面に配設され、基板片の他面に前記磁気インピーダンス効果エレメント片とで磁気回路を構成するように鉄芯が配設され、該鉄芯にバイアス磁界用コイル片及負帰還用コイル片が巻装されてなる磁気インピーダンス効果ユニットが使用されていることを特徴とする請求項3記載の導体電流測定用磁界センサ。 A magneto-impedance effect element piece is disposed on one surface of the substrate piece, and an iron core is disposed on the other surface of the substrate piece so as to form a magnetic circuit with the magneto-impedance effect element piece. 4. A magnetic sensor for measuring a conductor current according to claim 3, wherein a magneto-impedance effect unit in which a coil piece and a negative feedback coil piece are wound is used. バイアス磁界用コイル片が直列に接続されていることを特徴とする請求項2〜4何れか記載の導体電流測定用磁界センサ。 5. The magnetic field sensor for measuring a conductor current according to claim 2, wherein the bias magnetic field coil pieces are connected in series. 請求項1記載の導体電流測定方法において使用する磁界センサであり、導体挿通用孔を有する基板のその孔を囲む円周上に複数箇の磁気インピーダンス効果エレメント片が円周中心を挾む対の磁気インピーダンス効果エレメント片の感磁方向を同一方向として搭載され、各磁気インピーダンス効果エレメント片の近傍にコイル片が配設され、前記の磁気インピーダンス効果エレメント片及びコイル片がそれぞれ直列に接続され、この直列接続コイル片に直流バイアス信号と負帰還信号の重畳信号を入力させるための演算回路が負帰還回路に設けられ、直列接続の磁気インピーダンス効果エレメント片に対する励磁電流源回路が搭載され、磁界検出信号から被検出磁界に相当する被検出量を取り出すための検出回路が搭載されていることを特徴とする導体電流測定用磁界センサ。 A magnetic field sensor used in the conductor current measuring method according to claim 1, wherein a plurality of magneto-impedance effect element pieces are sandwiched around the circumference of the circumference of the board having the conductor insertion hole. The magneto-impedance effect element pieces are mounted in the same direction. Coil pieces are disposed in the vicinity of the magneto-impedance effect element pieces, and the magneto-impedance effect element pieces and the coil pieces are connected in series. An arithmetic circuit for inputting a DC bias signal and a negative feedback signal superimposed signal to the series connection coil piece is provided in the negative feedback circuit, and an exciting current source circuit for the magneto-impedance effect element piece connected in series is mounted, and a magnetic field detection signal is provided. It is equipped with a detection circuit to extract the detected amount corresponding to the detected magnetic field from Conductor current measurement magnetic field sensor. 磁気インピーダンス効果エレメント片の箇数が3個以上とされていることを特徴とする請求項2〜6何れか記載の導体電流測定用磁界センサ。 The magnetic field sensor for measuring a conductor current according to any one of claims 2 to 6, wherein the number of magneto-impedance effect element pieces is three or more. 磁気インピーダンス効果エレメント片の箇数が4個以上の偶数とされていることを特徴とする請求項2〜6何れか記載の導体電流測定用磁界センサ。 The magnetic field sensor for measuring a conductor current according to any one of claims 2 to 6, wherein the number of magneto-impedance effect element pieces is an even number of 4 or more.
JP2003287105A 2003-08-05 2003-08-05 Conductor current measurement method and magnetic field sensor for measuring conductor current Pending JP2005055326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003287105A JP2005055326A (en) 2003-08-05 2003-08-05 Conductor current measurement method and magnetic field sensor for measuring conductor current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003287105A JP2005055326A (en) 2003-08-05 2003-08-05 Conductor current measurement method and magnetic field sensor for measuring conductor current

Publications (1)

Publication Number Publication Date
JP2005055326A true JP2005055326A (en) 2005-03-03

Family

ID=34366208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003287105A Pending JP2005055326A (en) 2003-08-05 2003-08-05 Conductor current measurement method and magnetic field sensor for measuring conductor current

Country Status (1)

Country Link
JP (1) JP2005055326A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292645A (en) * 2005-04-14 2006-10-26 Uchihashi Estec Co Ltd Magnetic impedance effect sensor
KR100748511B1 (en) 2006-05-12 2007-08-14 엘지전자 주식회사 Sensor module of coil type
KR100805284B1 (en) 2006-08-31 2008-02-20 한국전기연구원 Holder for measurement of bending strain effect on critical current in hts superconducting tapes and accelerated test apparatus adopting the holder
WO2012111362A1 (en) * 2011-02-15 2012-08-23 アルプス・グリーンデバイス株式会社 Helical-shaped current sensor
JP2015038464A (en) * 2013-07-16 2015-02-26 横河電機株式会社 Current sensor
JP2017062266A (en) * 2013-07-16 2017-03-30 横河電機株式会社 Current sensor
JPWO2015141234A1 (en) * 2014-03-20 2017-04-06 公立大学法人大阪市立大学 Clamp type ammeter
KR102173143B1 (en) * 2020-07-29 2020-11-02 보우제전(주) Current detecting device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292645A (en) * 2005-04-14 2006-10-26 Uchihashi Estec Co Ltd Magnetic impedance effect sensor
JP4495635B2 (en) * 2005-04-14 2010-07-07 内橋エステック株式会社 Magneto-impedance effect sensor and method of using magneto-impedance effect sensor
KR100748511B1 (en) 2006-05-12 2007-08-14 엘지전자 주식회사 Sensor module of coil type
KR100805284B1 (en) 2006-08-31 2008-02-20 한국전기연구원 Holder for measurement of bending strain effect on critical current in hts superconducting tapes and accelerated test apparatus adopting the holder
WO2012111362A1 (en) * 2011-02-15 2012-08-23 アルプス・グリーンデバイス株式会社 Helical-shaped current sensor
JPWO2012111362A1 (en) * 2011-02-15 2014-07-03 アルプス・グリーンデバイス株式会社 Spiral shape current sensor
JP2015038464A (en) * 2013-07-16 2015-02-26 横河電機株式会社 Current sensor
JP2017062266A (en) * 2013-07-16 2017-03-30 横河電機株式会社 Current sensor
JPWO2015141234A1 (en) * 2014-03-20 2017-04-06 公立大学法人大阪市立大学 Clamp type ammeter
US10126330B2 (en) 2014-03-20 2018-11-13 Osaka City University Clamp-type ammeter
KR102173143B1 (en) * 2020-07-29 2020-11-02 보우제전(주) Current detecting device

Similar Documents

Publication Publication Date Title
JP2004317166A (en) Current sensor and current detection unit using the same
JP4495635B2 (en) Magneto-impedance effect sensor and method of using magneto-impedance effect sensor
JP2003315376A (en) Current sensor
JP2005055326A (en) Conductor current measurement method and magnetic field sensor for measuring conductor current
JP2006322706A (en) Method of measuring conductor current
JP2002022705A (en) Magnetic sensor, magnetic field detection method, and its device
JP3764834B2 (en) Current sensor and current detection device
JP2002022706A (en) Magnetic sensor, magnetic leakage flux flaw detection method, and its device
JP2005061980A (en) Conductor current measuring method
JP4938740B2 (en) Magnetic field detector
JP4808411B2 (en) Magnetic field detection circuit
JP4878903B2 (en) Magnetic sensor for pillar transformer diagnosis
JP2005043254A (en) Method for measuring conductor current
JP4630401B2 (en) Current sensor and current detection method
JP4722717B2 (en) Current sensor
JP2001343438A (en) Magnetic sensor
JP4476746B2 (en) Corrosion / thinning inspection method for the back of steel walls
JP4698958B2 (en) Sensor for detecting conductor defects in electric wires
JP2007322125A (en) Magnetic impedance effect sensor and method for detecting external magnetic field
JP3607447B2 (en) Magnetic field sensor
JP4520188B2 (en) Method for detecting conductor defects in electric wires
JP4808410B2 (en) Magnetic field detection circuit
JP2006337040A (en) Defect-detecting method of metal body, and scanning type magnetic detector
JP4286686B2 (en) Sensor for detecting conductor defects in electric wires
JP2006064462A (en) Electric current sensor, electric current detection method, and electric current measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081209