JP2002243766A - Electric current sensor - Google Patents

Electric current sensor

Info

Publication number
JP2002243766A
JP2002243766A JP2001040262A JP2001040262A JP2002243766A JP 2002243766 A JP2002243766 A JP 2002243766A JP 2001040262 A JP2001040262 A JP 2001040262A JP 2001040262 A JP2001040262 A JP 2001040262A JP 2002243766 A JP2002243766 A JP 2002243766A
Authority
JP
Japan
Prior art keywords
magnetic
current
sensor
outputs
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001040262A
Other languages
Japanese (ja)
Inventor
Takahiro Kudo
高裕 工藤
Kimitada Ishikawa
公忠 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001040262A priority Critical patent/JP2002243766A/en
Publication of JP2002243766A publication Critical patent/JP2002243766A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric current sensor having a wide current detection range and an excellent noise resisting property. SOLUTION: When magnetic flux H generated by a current flowing through a wire 2 is detected by using magnetometric sensors each having a magnetic impedance effect, two magnetometric sensors 1a and 1b are disposed on a substrate 3 so that the absolute values of their outputs in response to a detected current are equal to each other and the polarities of the outputs are reverse to each other. The difference between the two is detected by a detection circuit 5, thereby canceling extraneous noises.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、磁気インピーダ
ンス効果を利用した磁気検出素子からなる電流センサ、
特に受配電機器用の電流センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current sensor comprising a magnetic detecting element utilizing a magnetic impedance effect,
In particular, the present invention relates to a current sensor for power receiving and distribution equipment.

【0002】[0002]

【従来の技術】従来、受配電機器用の電流センサとして
は、例えば図8の斜視図で示されるようなカレントトラ
ンス(CTとも略記する)が広く用いられている。な
お、図8の符号15aは1次巻線、15bは2次巻線、
15cは鉄心、15dはボビンを示す。
2. Description of the Related Art Conventionally, a current transformer (also abbreviated as CT) as shown in a perspective view of FIG. In FIG. 8, reference numeral 15a denotes a primary winding, 15b denotes a secondary winding,
15c indicates an iron core, and 15d indicates a bobbin.

【0003】[0003]

【発明が解決しようとする課題】しかし、図8に示すよ
うなCTは、渦電流損を低減するために積層鉄心15c
が必要であり、また、磁気飽和が発生するため電流検知
範囲を広く取れないという問題がある。この場合、高感
度な磁気検出センサである巨大磁気抵抗素子、または磁
気インピーダンス素子を電流センサとして用いれば、電
流検知範囲を拡大することが可能である。ただし、受配
電機器用として用いる場合は、外部ノイズや他相の不平
衡電流の影響が大きく、また高感度な磁気センサを用い
ると逆にノイズの影響を大きく受けるので、受配電機器
用への適用が難しいという問題が生じる。したがって、
この発明の課題は、低コストでノイズの影響を受け難
く、しかも測定レンジの広い電流センサを提供すること
にある。
However, the CT as shown in FIG. 8 uses a laminated core 15c to reduce eddy current loss.
In addition, there is a problem that the current detection range cannot be widened because magnetic saturation occurs. In this case, if a giant magnetoresistive element or a magnetic impedance element, which is a highly sensitive magnetic detection sensor, is used as the current sensor, the current detection range can be expanded. However, when used for power receiving and distribution equipment, the effects of external noise and unbalanced current of other phases are large, and when a high-sensitivity magnetic sensor is used, it is greatly affected by noise. The problem that application is difficult arises. Therefore,
SUMMARY OF THE INVENTION An object of the present invention is to provide a current sensor that is low in cost, is not easily affected by noise, and has a wide measurement range.

【0004】[0004]

【課題を解決するための手段】かかる課題を解決するた
め、請求項1の発明では、電流により生じる磁束を、磁
気インピーダンス効果を有する磁気センサで検出する電
流センサにおいて、前記電流により生じる磁束に対し、
前記磁気センサ出力の絶対値が等しく、かつ前記磁気セ
ンサ出力の極性が逆となるような位置に2つの磁気セン
サを配置し、この2つの磁気センサの出力の差を検出す
ることを特徴とする。
According to a first aspect of the present invention, there is provided a current sensor for detecting a magnetic flux generated by a current by a magnetic sensor having a magnetic impedance effect. ,
Two magnetic sensors are arranged at positions where the absolute values of the magnetic sensor outputs are equal and the polarities of the magnetic sensor outputs are opposite, and the difference between the outputs of the two magnetic sensors is detected. .

【0005】請求項2の発明では、電流により生じる磁
束を、磁気インピーダンス効果を有する磁気センサで検
出する電流センサにおいて、前記電流により生じる磁束
に対し、前記磁気センサ出力の絶対値が等しく、かつ前
記磁気センサ出力の極性が同じになるような位置に2つ
の磁気センサを配置し、この2つの磁気センサの出力の
和を検出することを特徴とする。
According to a second aspect of the present invention, in a current sensor for detecting a magnetic flux generated by a current with a magnetic sensor having a magnetic impedance effect, an absolute value of the magnetic sensor output is equal to the magnetic flux generated by the current, and Two magnetic sensors are arranged at positions where the polarities of the magnetic sensor outputs become the same, and the sum of the outputs of the two magnetic sensors is detected.

【0006】上記請求項1または2の発明においては、
前記電流を導く配線と、前記2つの磁気センサについ
て、外部磁界を遮断するためのシールドを設けることが
できる(請求項3の発明)。上記請求項1ないし3の発
明においては、前記2つの磁気センサを同一基板上に配
置することができる(請求項4の発明)。
In the invention of claim 1 or 2,
A shield for blocking an external magnetic field can be provided for the wiring for leading the current and the two magnetic sensors (the invention according to claim 3). In the first to third aspects of the present invention, the two magnetic sensors can be arranged on the same substrate (the fourth aspect of the invention).

【0007】[0007]

【発明の実施の形態】図1はこの発明の第1の実施の形
態を示す構成図で、1a,1bは磁気検出素子としての
磁気インピーダンス素子(MI素子ともいう)、2は電
流を導くための配線、3は配線2およびMI素子1a,
1bを固定する基板、5は検出回路を示す。MI素子1
a,1bは例えば特開平6−281712号公報に開示
されているアモルファスワイヤによるものや、特開平8
−330645号公報に開示されている薄膜状のものの
いずれをも用いることができる。
FIG. 1 is a block diagram showing a first embodiment of the present invention. In FIG. 1, reference numerals 1a and 1b denote a magnetic impedance element (also referred to as an MI element) as a magnetic detecting element, and 2 denotes an electric current guide. , Wiring 3 and the MI element 1a,
The substrate on which 1b is fixed, and 5 indicates a detection circuit. MI element 1
Reference numerals a and 1b denote an amorphous wire disclosed in, for example, JP-A-6-281712 and an amorphous wire disclosed in JP-A-6-281712.
Any of the thin film types disclosed in JP-A-330645 can be used.

【0008】図2に、その原理を示す。図2で電流I1
により磁束φ1が生じる場合、この磁束φ1によりMI
素子1aに現れる出力をS1とすると、MI素子1bに
現れる出力はS1に対して大きさが等しく、符号が逆の
−S1という出力が現れるので、1a,1bの差を取る
ことにより、2S1という電流に比例する出力が得られ
る。すなわち、素子1a,1bに一様な磁界がノイズと
して加わった場合は、2つの素子1a,1bには大きさ
および符号の等しい出力が現れるので、これをN1とし
て2つのMI素子の出力の差をとった後の差動出力は、 差動出力=1aの出力−1bの出力=S1+N1−(−S1+N1)=2S1 …(1) となるので、一様な外部磁界の影響を受けずに電流の検
知が可能となる。
FIG. 2 shows the principle. In FIG. 2, the current I1
When the magnetic flux φ1 is generated by the
Assuming that the output appearing at the element 1a is S1, the output appearing at the MI element 1b is equal in magnitude to S1 and an output of -S1 having the opposite sign appears. An output proportional to the current is obtained. That is, when a uniform magnetic field is applied as noise to the elements 1a and 1b, an output having the same magnitude and sign appears in the two elements 1a and 1b. The differential output after taking the following is: differential output = 1a output-1b output = S1 + N1-(-S1 + N1) = 2S1 (1), so that the current is not affected by a uniform external magnetic field. Can be detected.

【0009】図3に、電流I1と隣接する位置に、別の
電流I2が流れている場合の例を示す。同図において、
電流I1,I2により生じる磁束をそれぞれφ1,φ2
とし、これらφ1,φ2により2つのMI素子1a,1
bに現れる出力の大きさをそれぞれS1,N2とする
と、2つのMI素子1a,1bの差の出力は、 差動出力=1aの出力−1bの出力=S1+N2−(−S1−N2)=2S1 +2N2 …(2) となり、隣接配線電流の影響を受けてしまう。以上よ
り、第1の例では、一様な外部磁界の影響はキャンセル
できるが、隣接配線電流の影響を受けるという問題があ
る。
FIG. 3 shows an example in which another current I2 flows at a position adjacent to the current I1. In the figure,
The magnetic fluxes generated by the currents I1 and I2 are φ1 and φ2, respectively.
The two MI elements 1a, 1a are defined by φ1 and φ2.
Assuming that the magnitudes of the outputs appearing at b are S1 and N2, respectively, the output of the difference between the two MI elements 1a and 1b is: differential output = 1a output-1b output = S1 + N2-(-S1-N2) = 2S1 + 2N2 (2), which is affected by the adjacent wiring current. As described above, in the first example, the effect of the uniform external magnetic field can be canceled, but there is a problem that the first example is affected by the adjacent wiring current.

【0010】図4はこの発明の第2の実施の形態を示す
構成図、図5はその原理説明図である。図4からも明ら
かなように、これは図1に示すものに対しMI素子1
a,1bを並設した点が特徴である。その作用につい
て、図5も参照して説明する。図5は電流I1と隣接す
る位置に別の電流I2が流れている場合を示し、この場
合の電流I1,I2により生じる磁束をそれぞれφ1,
φ2とし、これらの磁束φ1,φ2により2つのMI素
子1a,1bに現れる出力の大きさをそれぞれS2,N
3とすると、2つのMI素子1a,1bの差の出力は、 差動出力=1aの出力−1bの出力=S2+N3−(−S2+N3)=2S2 …(3) となり、隣接配線電流I2の影響を受けずに、電流I1
の検知が可能となる。また、一様な外部磁界がノイズと
して加わった場合も、2つのMI素子1a,1bに大き
さおよび符号の等しい出力が現れるので、2つのMI素
子の出力の差をとることにより、隣接配線の場合と同様
に、外部磁界ノイズの影響をキャンセルすることができ
る。
FIG. 4 is a block diagram showing a second embodiment of the present invention, and FIG. 5 is a diagram for explaining the principle thereof. As is clear from FIG. 4, this is the MI element 1 shown in FIG.
The feature is that a and 1b are juxtaposed. The operation will be described with reference to FIG. FIG. 5 shows a case where another current I2 flows at a position adjacent to the current I1, and the magnetic fluxes generated by the currents I1 and I2 are φ1,
φ2, and the magnitudes of the outputs appearing in the two MI elements 1a and 1b by these magnetic fluxes φ1 and φ2 are S2 and N, respectively.
Assuming that 3, the output of the difference between the two MI elements 1a and 1b is as follows: differential output = 1a output-1b output = S2 + N3-(-S2 + N3) = 2S2 (3) Without receiving the current I1
Can be detected. In addition, even when a uniform external magnetic field is applied as noise, outputs having the same magnitude and sign appear in the two MI elements 1a and 1b. As in the case, the effect of the external magnetic field noise can be canceled.

【0011】図6にこの発明の第3の実施の形態を示
す。同(a)は、図1に示すものにパーマロイ等による
磁気シールド6を施したもので、このシールドにより隣
接配線の影響を除去するものである。同(b)は、図4
に示すものにパーマロイ等による磁気シールド7を施し
たものである。図4に示すものは理論上は隣接配線電流
による影響をキャンセルできるが、2つのMI素子感度
のばらつき、位置ずれの影響等により外部磁界ノイズを
完全にはキャンセルできないので、磁気シールド7によ
りこれらの影響を低減するものである。この例で、例え
ば隣接する配線に主電流の2倍の電流が流れたときの測
定ずれは実測値で1.2%程度であり、外乱ノイズの影
響を低減できることを確認している。
FIG. 6 shows a third embodiment of the present invention. FIG. 1A shows a structure in which a magnetic shield 6 made of permalloy or the like is applied to the structure shown in FIG. 1, and the influence of adjacent wiring is removed by this shield. FIG. 4B shows FIG.
Are provided with a magnetic shield 7 made of permalloy or the like. 4 can theoretically cancel the influence of the adjacent wiring current, but cannot completely cancel the external magnetic field noise due to the variation of the sensitivity of the two MI elements, the influence of the displacement, and the like. It is to reduce the effect. In this example, for example, the measurement deviation when a current twice as large as the main current flows in the adjacent wiring is about 1.2% as an actually measured value, confirming that the influence of disturbance noise can be reduced.

【0012】図7に検出回路の1例を示す。この検出回
路5は、発振回路51と分圧抵抗R1,R2により、M
I素子1a,1bに高周波電流を印加し、MI素子1
a,1bの磁界によるインピーダンスの変化を検波回路
52a,52bで電圧の変化として検出し、差動回路5
3でMI素子1a,1bの差に比例した出力を発生さ
せ、増幅回路54で増幅して取り出すようにしたもので
ある。上記差動回路53を加算回路に変更し、MI素子
1a,1bの差に比例した出力の代わりに、1a,1b
の和に比例した出力を発生させることもできる。
FIG. 7 shows an example of the detection circuit. The detection circuit 5 includes an oscillation circuit 51 and voltage-dividing resistors R1 and R2.
A high frequency current is applied to the I elements 1a and 1b,
A change in impedance due to the magnetic field of a, 1b is detected as a change in voltage by the detection circuits 52a, 52b, and the differential circuit 5
3, an output proportional to the difference between the MI elements 1a and 1b is generated, and the output is amplified by the amplifier circuit 54 and taken out. The differential circuit 53 is changed to an adder circuit, and instead of an output proportional to the difference between the MI elements 1a and 1b, 1a, 1b
Can be generated in proportion to the sum of

【0013】なお、以上では2つのMI素子の磁界検知
方向を同じにしたが、磁界検知方向を逆にして2つのM
I素子の出力の和をとることで、上記と同様に外乱ノイ
ズの影響を受けずに電流の検知が可能となることは言う
までもない。また、上記いずれの場合も2つのMI素子
は同一チップ(基板)上に配置されており、これにより
1チップ化が可能となり低コストにすることが可能とな
る。
In the above description, the magnetic field detection directions of the two MI elements are the same.
Obviously, by taking the sum of the outputs of the I elements, the current can be detected without being affected by disturbance noise as in the above case. Also, in each case, the two MI elements are arranged on the same chip (substrate), thereby making it possible to make one chip and reduce the cost.

【0014】[0014]

【発明の効果】この発明によれば、電流により生じる磁
束を、磁気インピーダンス効果を有する磁気センサで検
出するようにしたので、現在広く用いられているカレン
トトランスの問題である鉄心による磁気飽和が発生せ
ず、電流検知範囲の広い(ワイドレンジな)電流センサ
を提供できる。この発明の電流センサは、電流により生
じる磁束に対して、磁気センサ出力の絶対値が等しく、
かつ磁気センサ出力の極性が逆となるような位置に2つ
配置しセンサ出力の差を検出するので、外部磁界および
隣接配線電流による磁界の影響を受けずに、電流の検知
が可能となる。従って、ノイズの影響を受けにくい、耐
環境性に優れた電流センサを提供できる。
According to the present invention, the magnetic flux generated by the current is detected by the magnetic sensor having the magneto-impedance effect. Therefore, magnetic saturation due to the iron core, which is a problem of current transformers widely used at present, occurs. Therefore, a current sensor having a wide current detection range (wide range) can be provided. In the current sensor of the present invention, the absolute value of the magnetic sensor output is equal to the magnetic flux generated by the current,
In addition, since two magnetic sensors are arranged at positions where the polarities of the magnetic sensor outputs are opposite to each other and the difference between the sensor outputs is detected, the current can be detected without being affected by the external magnetic field and the magnetic field due to the adjacent wiring current. Therefore, it is possible to provide a current sensor that is not easily affected by noise and has excellent environmental resistance.

【0015】また、この発明の電流センサは、外部磁界
を遮断するための磁気シールドを施すことにより、磁気
センサの感度ばらつき、位置ずれの影響等があっても、
ノイズの影響を受けにくい、耐環境性に優れた電流セン
サを提供できる。また、この発明の電流センサは、2つ
の磁気センサを同一チップ(基板)上に配置すること
で、1チップ化が可能となり低コストな電流センサを提
供することができる。
Further, the current sensor of the present invention is provided with a magnetic shield for shutting off an external magnetic field, so that the magnetic sensor is not affected by sensitivity variations, displacements, and the like of the magnetic sensor.
A current sensor that is not easily affected by noise and has excellent environmental resistance can be provided. Also, by arranging two magnetic sensors on the same chip (substrate), the current sensor of the present invention can be made into one chip, and a low-cost current sensor can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施の形態を示す構成図であ
る。
FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】第1の実施の形態の原理を説明するための説明
図である。
FIG. 2 is an explanatory diagram for explaining the principle of the first embodiment.

【図3】第1の実施の形態における隣接配線電流の影響
を説明する説明図である。
FIG. 3 is an explanatory diagram for explaining an influence of an adjacent wiring current in the first embodiment.

【図4】この発明の第2の実施の形態を示す構成図であ
る。
FIG. 4 is a configuration diagram showing a second embodiment of the present invention.

【図5】第2の実施の形態の原理を説明するための説明
図である。
FIG. 5 is an explanatory diagram for explaining the principle of the second embodiment.

【図6】この発明の第3の実施の形態を示す構成図であ
る。
FIG. 6 is a configuration diagram showing a third embodiment of the present invention.

【図7】検出回路の1例を示すブロック図である。FIG. 7 is a block diagram illustrating an example of a detection circuit.

【図8】カレントトランス(CT)の従来例を示す斜視
図である。
FIG. 8 is a perspective view showing a conventional example of a current transformer (CT).

【符号の説明】[Explanation of symbols]

1a,1b…磁気検出素子(MI素子)、2,4…配
線、3…基板、5…検出回路、6,7…シールド板、5
1…発振回路、52a,52b…検波回路、53…差動
回路、54…増幅回路、R1,R2…抵抗。
1a, 1b: Magnetic detection element (MI element), 2, 4: Wiring, 3: Substrate, 5: Detection circuit, 6, 7: Shield plate, 5
1. Oscillation circuit, 52a, 52b ... detection circuit, 53 ... differential circuit, 54 ... amplification circuit, R1, R2 ... resistance.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電流により生じる磁束を、磁気インピー
ダンス効果を有する磁気センサで検出する電流センサに
おいて、 前記電流により生じる磁束に対し、前記磁気センサ出力
の絶対値が等しく、かつ前記磁気センサ出力の極性が逆
となるような位置に2つの磁気センサを配置し、この2
つの磁気センサの出力の差を検出することを特徴とする
電流センサ。
1. A current sensor for detecting a magnetic flux generated by a current by a magnetic sensor having a magnetic impedance effect, wherein an absolute value of the magnetic sensor output is equal to a magnetic flux generated by the current, and a polarity of the magnetic sensor output. The two magnetic sensors are arranged at positions where
A current sensor for detecting a difference between outputs of two magnetic sensors.
【請求項2】 電流により生じる磁束を、磁気インピー
ダンス効果を有する磁気センサで検出する電流センサに
おいて、 前記電流により生じる磁束に対し、前記磁気センサ出力
の絶対値が等しく、かつ前記磁気センサ出力の極性が同
じになるような位置に2つの磁気センサを配置し、この
2つの磁気センサの出力の和を検出することを特徴とす
る電流センサ。
2. A current sensor for detecting a magnetic flux generated by a current by a magnetic sensor having a magnetic impedance effect, wherein an absolute value of the magnetic sensor output is equal to a magnetic flux generated by the current, and a polarity of the magnetic sensor output. A current sensor, wherein two magnetic sensors are arranged at positions where the values are the same, and the sum of the outputs of the two magnetic sensors is detected.
【請求項3】 前記電流を導く配線と、前記2つの磁気
センサについて、外部磁界を遮断するためのシールドを
設けることを特徴とする請求項1または2に記載の電流
センサ。
3. The current sensor according to claim 1, wherein a wiring for guiding the current and a shield for blocking an external magnetic field are provided for the two magnetic sensors.
【請求項4】 前記2つの磁気センサを同一基板上に配
置することを特徴とする請求項1ないし3のいずれかに
記載の電流センサ。
4. The current sensor according to claim 1, wherein said two magnetic sensors are arranged on a same substrate.
JP2001040262A 2001-02-16 2001-02-16 Electric current sensor Pending JP2002243766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001040262A JP2002243766A (en) 2001-02-16 2001-02-16 Electric current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001040262A JP2002243766A (en) 2001-02-16 2001-02-16 Electric current sensor

Publications (1)

Publication Number Publication Date
JP2002243766A true JP2002243766A (en) 2002-08-28

Family

ID=18902904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001040262A Pending JP2002243766A (en) 2001-02-16 2001-02-16 Electric current sensor

Country Status (1)

Country Link
JP (1) JP2002243766A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006250922A (en) * 2005-02-10 2006-09-21 Uchihashi Estec Co Ltd Electric current sensor
JP2006250921A (en) * 2005-02-10 2006-09-21 Uchihashi Estec Co Ltd Electric current sensor and electric current detection method
JP2008145352A (en) * 2006-12-12 2008-06-26 Jeco Co Ltd Current sensor and current detecting method
JP2008249369A (en) * 2007-03-29 2008-10-16 Canon Electronics Inc Magnetic material detection sensor and magnetic material detector
JP2008249370A (en) * 2007-03-29 2008-10-16 Canon Electronics Inc Magnetic material detection sensor and magnetic material detector
JP2008249371A (en) * 2007-03-29 2008-10-16 Canon Electronics Inc Magnetic material detection sensor and magnetic material detector
JP2009257873A (en) * 2008-04-15 2009-11-05 Canon Inc Substance detector and substance detecting method using it
JP2010204026A (en) * 2009-03-05 2010-09-16 Honda Motor Co Ltd Electric current detector
JP2010223722A (en) * 2009-03-23 2010-10-07 Honda Motor Co Ltd Current detection device
JP2010266290A (en) * 2009-05-13 2010-11-25 Honda Motor Co Ltd Current detector
US7898240B2 (en) 2005-02-23 2011-03-01 Asahi Kasei Emd Corporation Current measuring apparatus
CN102313831A (en) * 2010-07-07 2012-01-11 阿尔卑斯绿色器件株式会社 Current sensor
WO2012053296A1 (en) * 2010-10-20 2012-04-26 アルプス・グリーンデバイス株式会社 Current sensor
CN102608384A (en) * 2011-01-24 2012-07-25 英飞凌科技股份有限公司 Current difference sensors, systems and methods
CN102866279A (en) * 2011-07-04 2013-01-09 新科实业有限公司 Current sensor device
WO2013011859A1 (en) * 2011-07-21 2013-01-24 アルプス・グリーンデバイス株式会社 Current sensor
JP2013068577A (en) * 2011-09-26 2013-04-18 Yazaki Corp Current sensor
JP2013234990A (en) * 2012-04-13 2013-11-21 Canon Electronics Inc Measurement module, electronic apparatus, power source tap, power source unit, and build-in measurement module
CN104101366A (en) * 2014-07-21 2014-10-15 浙江巨磁智能技术有限公司 External magnetic interference resisting method and magnetic sensor chip utilizing same
US8952687B2 (en) 2010-08-31 2015-02-10 Alps Green Devices Co., Ltd. Current sensor
JP2015038464A (en) * 2013-07-16 2015-02-26 横河電機株式会社 Current sensor
WO2016098511A1 (en) * 2014-12-15 2016-06-23 株式会社村田製作所 Current sensor
US9651583B2 (en) 2012-03-16 2017-05-16 Canon Denshi Kabushiki Kaisha Measurement module, electronic apparatus, power supply tap, power supply unit, and built-in measurement module
JP2017532574A (en) * 2014-10-29 2017-11-02 イートン インダストリーズ (ネザーランズ) ベスローテン フェノーツハップEaton Industries (Netherlands) B.V. Sensor for measuring current in a conductor
JP2019060646A (en) * 2017-09-25 2019-04-18 矢崎総業株式会社 Current sensor
EP3605114A1 (en) 2018-07-31 2020-02-05 Yazaki Corporation Current sensor
DE102019214726A1 (en) 2018-10-30 2020-04-30 Yazaki Corporation ELECTRICITY DETECTION METHOD AND ELECTRICITY DETECTION STRUCTURE
JP2021041026A (en) * 2019-09-12 2021-03-18 株式会社日立製作所 Biomedical measurement apparatus
CN113533825A (en) * 2021-07-14 2021-10-22 郑州信工智能化系统有限公司 Current measurement method capable of eliminating common-mode interference based on magnetoresistive sensor
DE112022002049T5 (en) 2021-04-09 2024-02-29 Denso Corporation CURRENT DETECTION DEVICE, CURRENT SENSOR AND POWER CONVERSION DEVICE
DE112022002767T5 (en) 2021-05-27 2024-03-07 Denso Corporation ELECTRICAL POWER CONVERTER

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4630401B2 (en) * 2005-02-10 2011-02-09 東北電力株式会社 Current sensor and current detection method
JP2006250921A (en) * 2005-02-10 2006-09-21 Uchihashi Estec Co Ltd Electric current sensor and electric current detection method
JP2006250922A (en) * 2005-02-10 2006-09-21 Uchihashi Estec Co Ltd Electric current sensor
JP4722717B2 (en) * 2005-02-10 2011-07-13 東北電力株式会社 Current sensor
US7898240B2 (en) 2005-02-23 2011-03-01 Asahi Kasei Emd Corporation Current measuring apparatus
JP2008145352A (en) * 2006-12-12 2008-06-26 Jeco Co Ltd Current sensor and current detecting method
JP2008249369A (en) * 2007-03-29 2008-10-16 Canon Electronics Inc Magnetic material detection sensor and magnetic material detector
JP2008249370A (en) * 2007-03-29 2008-10-16 Canon Electronics Inc Magnetic material detection sensor and magnetic material detector
JP2008249371A (en) * 2007-03-29 2008-10-16 Canon Electronics Inc Magnetic material detection sensor and magnetic material detector
JP2009257873A (en) * 2008-04-15 2009-11-05 Canon Inc Substance detector and substance detecting method using it
JP2010204026A (en) * 2009-03-05 2010-09-16 Honda Motor Co Ltd Electric current detector
JP2010223722A (en) * 2009-03-23 2010-10-07 Honda Motor Co Ltd Current detection device
JP2010266290A (en) * 2009-05-13 2010-11-25 Honda Motor Co Ltd Current detector
CN102313831A (en) * 2010-07-07 2012-01-11 阿尔卑斯绿色器件株式会社 Current sensor
US8952687B2 (en) 2010-08-31 2015-02-10 Alps Green Devices Co., Ltd. Current sensor
WO2012053296A1 (en) * 2010-10-20 2012-04-26 アルプス・グリーンデバイス株式会社 Current sensor
CN102608384A (en) * 2011-01-24 2012-07-25 英飞凌科技股份有限公司 Current difference sensors, systems and methods
US9678172B2 (en) 2011-01-24 2017-06-13 Infineon Technologies Ag Current difference sensors, systems and methods
US10488445B2 (en) 2011-01-24 2019-11-26 Infineon Technologies Ag Current difference sensors, systems and methods
US8975889B2 (en) 2011-01-24 2015-03-10 Infineon Technologies Ag Current difference sensors, systems and methods
CN102866279A (en) * 2011-07-04 2013-01-09 新科实业有限公司 Current sensor device
JPWO2013011859A1 (en) * 2011-07-21 2015-02-23 アルプス・グリーンデバイス株式会社 Current sensor
WO2013011859A1 (en) * 2011-07-21 2013-01-24 アルプス・グリーンデバイス株式会社 Current sensor
JP2013068577A (en) * 2011-09-26 2013-04-18 Yazaki Corp Current sensor
US9651583B2 (en) 2012-03-16 2017-05-16 Canon Denshi Kabushiki Kaisha Measurement module, electronic apparatus, power supply tap, power supply unit, and built-in measurement module
JP2013234990A (en) * 2012-04-13 2013-11-21 Canon Electronics Inc Measurement module, electronic apparatus, power source tap, power source unit, and build-in measurement module
JP2015038464A (en) * 2013-07-16 2015-02-26 横河電機株式会社 Current sensor
CN104101366A (en) * 2014-07-21 2014-10-15 浙江巨磁智能技术有限公司 External magnetic interference resisting method and magnetic sensor chip utilizing same
JP2017532574A (en) * 2014-10-29 2017-11-02 イートン インダストリーズ (ネザーランズ) ベスローテン フェノーツハップEaton Industries (Netherlands) B.V. Sensor for measuring current in a conductor
WO2016098511A1 (en) * 2014-12-15 2016-06-23 株式会社村田製作所 Current sensor
US10161971B2 (en) 2014-12-15 2018-12-25 Murata Manufacturing Co., Ltd. Current sensor that detects a magnetic field produced by a current
JPWO2016098511A1 (en) * 2014-12-15 2017-04-27 株式会社村田製作所 Current sensor
US10634703B2 (en) 2017-09-25 2020-04-28 Yazaki Corporation Current sensor
JP2019060646A (en) * 2017-09-25 2019-04-18 矢崎総業株式会社 Current sensor
EP3605114A1 (en) 2018-07-31 2020-02-05 Yazaki Corporation Current sensor
DE102019214726A1 (en) 2018-10-30 2020-04-30 Yazaki Corporation ELECTRICITY DETECTION METHOD AND ELECTRICITY DETECTION STRUCTURE
JP2021041026A (en) * 2019-09-12 2021-03-18 株式会社日立製作所 Biomedical measurement apparatus
JP7250648B2 (en) 2019-09-12 2023-04-03 株式会社日立製作所 Biometric method
US11872028B2 (en) 2019-09-12 2024-01-16 Hitachi, Ltd Biological measurement method
DE112022002049T5 (en) 2021-04-09 2024-02-29 Denso Corporation CURRENT DETECTION DEVICE, CURRENT SENSOR AND POWER CONVERSION DEVICE
DE112022002767T5 (en) 2021-05-27 2024-03-07 Denso Corporation ELECTRICAL POWER CONVERTER
CN113533825A (en) * 2021-07-14 2021-10-22 郑州信工智能化系统有限公司 Current measurement method capable of eliminating common-mode interference based on magnetoresistive sensor

Similar Documents

Publication Publication Date Title
JP2002243766A (en) Electric current sensor
KR101965977B1 (en) Apparatus for measuring current
JP5531215B2 (en) Current sensor
CA2733431C (en) Multi-axis fluxgate magnetic sensor
JP2001013231A (en) Magnetic sensor formed on semiconductor substrate
JP2014016346A (en) Magnetic converter and current converter for measuring electric current
JP2002318250A (en) Current detector and overload current protective device using the same
JP2009210406A (en) Current sensor and watthour meter
CN108732404B (en) Current sensor and multi-flux balance control circuit thereof
JP2021124289A (en) Current sensor, magnetic sensor, and circuit
JP2003270307A (en) Magnetic field detecting element integrated on printed circuit board and manufacturing method therefor
JP2007052018A (en) Magnetometer for torque sensor
JP2001264360A (en) Dc current detector
JP3764834B2 (en) Current sensor and current detection device
CN108469594B (en) High-precision closed-loop gradient magnetic resistance sensor
JP2609383B2 (en) Current detector
JP2007033222A (en) Current sensor
WO2016035606A1 (en) Current sensor
JP6185298B2 (en) Magnetic sensor
JP2019219294A (en) Magnetic sensor
JP3460375B2 (en) Watt meter
JPH07209336A (en) Current sensor
JP2022074306A (en) Current sensor and electricity meter
JPH03239965A (en) Current detector
JP2011158337A (en) Current sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080904