JP2022074306A - Current sensor and electricity meter - Google Patents

Current sensor and electricity meter Download PDF

Info

Publication number
JP2022074306A
JP2022074306A JP2020184245A JP2020184245A JP2022074306A JP 2022074306 A JP2022074306 A JP 2022074306A JP 2020184245 A JP2020184245 A JP 2020184245A JP 2020184245 A JP2020184245 A JP 2020184245A JP 2022074306 A JP2022074306 A JP 2022074306A
Authority
JP
Japan
Prior art keywords
current sensor
current
printed circuit
circuit board
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020184245A
Other languages
Japanese (ja)
Inventor
晋 栗原
Susumu Kurihara
芳准 山内
Yoshinori Yamauchi
滋章 原山
Shigeaki Harayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Meter Co Ltd
Original Assignee
Fuji Electric Meter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Meter Co Ltd filed Critical Fuji Electric Meter Co Ltd
Priority to JP2020184245A priority Critical patent/JP2022074306A/en
Publication of JP2022074306A publication Critical patent/JP2022074306A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a current sensor and an electricity meter that are capable of measuring a current with high accuracy by reducing the influence of an external magnetic field, capable of being downsized, and capable of reducing cost.SOLUTION: A current sensor comprises: a conductor 21 through which a current to be measured flows; a pair of magnetism collection cores 11a, 11b that are arranged to face each other across an air gap g, and that collect magnetic fluxes generated by the current to be measured; coil patterns 13a, 13b that are arranged in the air gap g, and that act as magnetism detection means in which an induction voltage is generated due to interlinkage of magnetic fluxes; and calculation means for calculating the current to be measured on the basis of the induction voltage. The coil patterns 13a, 13b are arranged at a substantially equal distance from opposed surfaces of the pair of magnetism collection cores 11a, 11b forming the air gap g. Electric energy is measured using a current and a voltage respectively detected by the current sensor and a voltage sensor.SELECTED DRAWING: Figure 1

Description

本発明は、導体に流れる電流を磁気的に測定する電流センサ、及び、この電流センサを備えた電力量計に関する。 The present invention relates to a current sensor that magnetically measures the current flowing through a conductor, and a watt-hour meter provided with the current sensor.

従来、この種の電流センサとしては、変流器(CT)や、集磁コアの空隙部(ギャップ部)にホール素子等の磁電変換素子またはコイルを配置したもの、同じく集磁コアの空隙部にプリント基板上のコイルパターンを配置したもの等が知られている。
これらの電流センサは被測定電流が流れる一次側回路とは電気的に分離されているため、一次側回路に悪影響を与えることなく高精度に電流を測定可能である。
Conventionally, as this type of current sensor, a current transformer (CT), a magnetic / electric conversion element such as a Hall element or a coil arranged in a gap portion (gap portion) of the magnetic collection core, and a gap portion of the magnetic collection core are also used. It is known that a coil pattern on a printed circuit board is arranged on the printed circuit board.
Since these current sensors are electrically separated from the primary side circuit through which the measured current flows, the current can be measured with high accuracy without adversely affecting the primary side circuit.

上述した電流センサのうち、特に、集磁コアの空隙部に磁気検出手段としてプリント基板上のコイルパターンを配置した電流センサは、直線性及び温度特性に優れ、部品点数が少なく製造が容易である等の特徴があり、例えば特許文献1に記載されている。
図10は、この特許文献1に記載された電流センサの概略構成図である。この電流センサは、ほぼコ字型の一対の集磁コア51a,51bの端面を、空隙部を介して突き合わせることにより全体を環状に形成し、その中央開口部に、被測定電流が流れるバー状の導体61を貫通させると共に、上記空隙部には、プリント基板52上で互いに直列接続されたコイルパターン53a,53bが配置されている。
Among the above-mentioned current sensors, in particular, a current sensor in which a coil pattern on a printed circuit board is arranged as a magnetic detection means in a gap of a magnetic collecting core is excellent in linearity and temperature characteristics, has a small number of parts, and is easy to manufacture. For example, it is described in Patent Document 1.
FIG. 10 is a schematic configuration diagram of the current sensor described in Patent Document 1. This current sensor forms an entire ring by abutting the end faces of a pair of substantially U-shaped magnetic collecting cores 51a and 51b through a gap portion, and a bar through which a current to be measured flows flows through the central opening thereof. The coil patterns 53a and 53b connected in series to each other on the printed circuit board 52 are arranged in the gap portion while penetrating the conductor 61 in the shape of the shape.

上記構成において、導体61に被測定電流が流れると、導体61の周辺には被測定電流の大きさに比例した磁束F1が発生し、この磁束F1は集磁コア51a,51bにより集磁される。被測定電流が周期的に変化すると磁束F1も周期的に変化し、コイルパターン53a,53bには被測定電流の大きさ及び周波数に応じた同極性の誘導電圧が発生する。この誘導電圧を積分回路71にて積分することにより、被測定電流に相当する電圧信号を得ることができる。 In the above configuration, when the measured current flows through the conductor 61, a magnetic flux F1 proportional to the magnitude of the measured current is generated around the conductor 61, and this magnetic flux F1 is magnetized by the magnetic collecting cores 51a and 51b. .. When the measured current changes periodically, the magnetic flux F1 also changes periodically, and an induced voltage having the same polarity according to the magnitude and frequency of the measured current is generated in the coil patterns 53a and 53b. By integrating this induced voltage with the integrator circuit 71, a voltage signal corresponding to the measured current can be obtained.

なお、図10において、F2は外部磁場により発生してプリント基板52に直交する磁束であり、この磁束F2によってコイルパターン53a,53bに発生する誘導電圧は、互いに逆極性であるため相殺される。従って、積分回路71は、磁束F1により発生した誘導電圧のみに基づいて、導体61に流れる電流を高精度に測定することが可能である。 In FIG. 10, F2 is a magnetic flux generated by an external magnetic field and orthogonal to the printed circuit board 52, and the induced voltages generated in the coil patterns 53a and 53b by this magnetic flux F2 are canceled out because they have opposite polarities. Therefore, the integrating circuit 71 can measure the current flowing through the conductor 61 with high accuracy based only on the induced voltage generated by the magnetic flux F1.

特開2009-210406号公報([0018]~[0021]、図3等)Japanese Unexamined Patent Publication No. 2009-210406 ([0018]-[0021], FIG. 3, etc.)

図10の電流センサでは、コイルパターン53a,53bが空隙部の上下方向中央位置からずれて何れかの集磁コア51a,51bの端面寄りに配置されていると、プリント基板52に平行な方向の外部磁場が存在する場合にコイルパターン53a,53bの誘導電圧が外部磁場の影響を受けるため、導体61に流れる電流を正確に測定できなくなる。
上記外部磁場の影響を低減させるには、導体61を集磁コア51a,51bの中央開口部の中心に配置し、かつ、空隙部の上下方向中央位置にコイルパターン53a,53bが位置するようにプリント基板52を配置することが望ましいが、そのような配置は導体61とプリント基板52とが干渉することになって物理的に不可能である。
In the current sensor of FIG. 10, when the coil patterns 53a and 53b are displaced from the vertical center position of the gap portion and are arranged near the end surface of any of the magnetic collecting cores 51a and 51b, the direction parallel to the printed substrate 52 is obtained. When the external magnetic field is present, the induced voltages of the coil patterns 53a and 53b are affected by the external magnetic field, so that the current flowing through the conductor 61 cannot be accurately measured.
In order to reduce the influence of the external magnetic field, the conductor 61 is arranged at the center of the central opening of the magnetic collecting cores 51a and 51b, and the coil patterns 53a and 53b are located at the center position in the vertical direction of the gap portion. It is desirable to arrange the printed circuit board 52, but such an arrangement is physically impossible because the conductor 61 and the printed circuit board 52 interfere with each other.

更に、図10の構造では、プリント基板52の上方に導体61が配置されているので、集磁コア51a,51bの中央開口部の大きさを、少なくともプリント基板52の厚さと導体61の直径とを加えた長さ以下にすることができず、これが集磁コア51a,51bの小型化、ひいては電流センサの小型化や低コスト化を困難にしていた。 Further, in the structure of FIG. 10, since the conductor 61 is arranged above the printed circuit board 52, the size of the central opening of the magnetic collecting cores 51a and 51b is at least the thickness of the printed circuit board 52 and the diameter of the conductor 61. This made it difficult to reduce the size of the magnetic collecting cores 51a and 51b, and eventually to the size and cost of the current sensor.

そこで、本発明の解決課題は、外部磁場の影響を低減して高精度に電流を測定することができると共に、コストの低減及び小型化を可能にした電流センサを提供することにあり、また、この電流センサを用いた電力量計を提供することにある。 Therefore, the solution to the present invention is to provide a current sensor capable of reducing the influence of an external magnetic field to measure a current with high accuracy, reducing the cost, and reducing the size. It is an object of the present invention to provide an electric energy meter using this current sensor.

上記課題を解決するため、請求項1に係る電流センサは、
被測定電流が流れる導体と、
空隙部を形成する一対の対向面を有し、かつ、前記被測定電流により発生する磁束を集める集磁コアと、
前記空隙部に配置され、かつ、前記磁束が鎖交して誘導電圧を発生する磁気検出手段と、
前記誘導電圧に基づいて前記被測定電流を算出する演算手段と、
を備えた電流センサにおいて、
前記一対の対向面からほぼ等距離の位置に前記磁気検出手段を配置したことを特徴とする。
In order to solve the above problem, the current sensor according to claim 1 is
The conductor through which the measured current flows and
A magnetic collecting core having a pair of facing surfaces forming a gap and collecting magnetic flux generated by the measured current,
A magnetic detection means that is arranged in the gap and that the magnetic flux interlinks to generate an induced voltage.
An arithmetic means for calculating the measured current based on the induced voltage, and
In a current sensor equipped with
The magnetic detection means is arranged at positions substantially equidistant from the pair of facing surfaces.

請求項2に係る電流センサは、
被測定電流が流れる導体と、
空隙部を形成する一対の対向面を有し、かつ、前記被測定電流により発生する磁束を集める集磁コアと、
前記空隙部に配置され、かつ、前記磁束が鎖交して誘導電圧を発生する磁気検出手段と、
前記誘導電圧に基づいて前記被測定電流を算出する演算手段と、
を備えた電流センサにおいて、
前記一対の対向面からほぼ等距離の位置に、前記磁気検出手段を備えたプリント基板の板厚の中心線が位置するように前記プリント基板を配置したことを特徴とする。
The current sensor according to claim 2 is
The conductor through which the measured current flows and
A magnetic collecting core having a pair of facing surfaces forming a gap and collecting magnetic flux generated by the measured current,
A magnetic detection means that is arranged in the gap and that the magnetic flux interlinks to generate an induced voltage.
An arithmetic means for calculating the measured current based on the induced voltage, and
In a current sensor equipped with
It is characterized in that the printed circuit board is arranged so that the center line of the plate thickness of the printed circuit board provided with the magnetic detection means is located at positions substantially equidistant from the pair of facing surfaces.

請求項3に係る電流センサは、請求項1または2に記載した電流センサにおいて、
前記磁気検出手段がプリント基板上のコイルパターンにより形成されていることを特徴とする。
The current sensor according to claim 3 is the current sensor according to claim 1 or 2.
The magnetic detection means is formed by a coil pattern on a printed circuit board.

請求項4に係る電流センサは、請求項3に記載した電流センサにおいて、
第1の集磁コアと第2の集磁コアとを対向させて形成した前記空隙部内に、複数の前記コイルパターンを配置して各コイルパターンを直列に接続したことを特徴とする。
The current sensor according to claim 4 is the current sensor according to claim 3.
It is characterized in that a plurality of the coil patterns are arranged in the gap portion formed by facing the first magnetic collecting core and the second magnetic collecting core, and the coil patterns are connected in series.

請求項5に係る電流センサは、請求項2~4の何れか1項に記載した電流センサにおいて、
前記プリント基板の板厚のほぼ中心線上に前記導体が配置されていることを特徴とする。
The current sensor according to claim 5 is the current sensor according to any one of claims 2 to 4.
It is characterized in that the conductor is arranged substantially on the center line of the plate thickness of the printed circuit board.

請求項6に係る電流センサは、請求項3~5の何れか1項に記載した電流センサにおいて、
複数の前記コイルパターンが、単一の前記プリント基板上に形成されていることを特徴とする。
The current sensor according to claim 6 is the current sensor according to any one of claims 3 to 5.
A plurality of the coil patterns are formed on a single printed circuit board.

請求項7に係る電流センサは、請求項3~5の何れか1項に記載した電流センサにおいて、
複数の前記コイルパターンが、個別の前記プリント基板上にそれぞれ形成されていることを特徴とする。
The current sensor according to claim 7 is the current sensor according to any one of claims 3 to 5.
It is characterized in that a plurality of the coil patterns are each formed on the individual printed circuit boards.

請求項8に係る電流センサは、請求項2~7の何れか1項に記載した電流センサにおいて、
前記プリント基板に形成した切欠き部に前記導体を配置したことを特徴とする。
The current sensor according to claim 8 is the current sensor according to any one of claims 2 to 7.
The conductor is arranged in a notch formed in the printed circuit board.

請求項9に係る電流センサは、請求項2~7の何れか1項に記載した電流センサにおいて、
前記導体に形成した貫通孔に前記プリント基板を貫通させたことを特徴とする。
The current sensor according to claim 9 is the current sensor according to any one of claims 2 to 7.
It is characterized in that the printed circuit board is passed through the through hole formed in the conductor.

請求項10に係る電流センサは、請求項3~9の何れか1項に記載した電流センサにおいて、
前記プリント基板が複数の単位基板を積層して構成され、前記単位基板の表面または裏面に前記コイルパターンが形成されていることを特徴とする。
The current sensor according to claim 10 is the current sensor according to any one of claims 3 to 9.
The printed circuit board is configured by laminating a plurality of unit substrates, and the coil pattern is formed on the front surface or the back surface of the unit substrate.

請求項11に係る電力量計は、請求項1~10の何れか1項に記載した電流センサと、前記導体を含む複数の導体間の電圧を測定する電圧センサと、前記電流センサによる電流検出値及び前記電圧センサによる電圧検出値を用いて電力量を算出する電力量算出部と、を備えたことを特徴とする。 The electric energy meter according to claim 11 includes the current sensor according to any one of claims 1 to 10, a voltage sensor that measures a voltage between a plurality of conductors including the conductor, and current detection by the current sensor. It is characterized by including a power amount calculation unit for calculating a power amount using a value and a voltage detection value by the voltage sensor.

本発明に係る電流センサによれば、空隙部を形成する集磁コアの対向面からほぼ等距離の位置に、コイルパターン等の磁気検出手段を配置し、または、上記磁気検出手段を備えたプリント基板の板厚の中心線が位置するようにプリント基板を配置することにより、外部磁場の影響を低減して高精度に電流を測定することができる。また、プリント基板と導体との相対的な位置を改良することで、電流センサ及びこの電流センサを用いた電力量計の小型化ひいてはコストの低減が可能になる。 According to the current sensor according to the present invention, a magnetic detecting means such as a coil pattern is arranged at a position substantially equal to the facing surface of the magnetic collecting core forming the gap portion, or a print provided with the magnetic detecting means. By arranging the printed circuit board so that the center line of the plate thickness of the substrate is located, the influence of the external magnetic field can be reduced and the current can be measured with high accuracy. Further, by improving the relative position between the printed circuit board and the conductor, it is possible to reduce the size and cost of the current sensor and the watt-hour meter using the current sensor.

本発明に係る電流センサの第1実施例を示す正面図(図1(a))及び斜視図(図1(b))、並びに主要部の拡大正面図(図1(c))である。1 is a front view (FIG. 1 (a)) and a perspective view (FIG. 1 (b)) showing a first embodiment of the current sensor according to the present invention, and an enlarged front view (FIG. 1 (c)) of a main part. 図1におけるプリント基板及びコイルパターンの平面図である。It is a top view of the printed circuit board and the coil pattern in FIG. 本発明に係る電流センサの第2実施例を示す正面図(図3(a))及び斜視図(図3(b))である。2 is a front view (FIG. 3 (a)) and a perspective view (FIG. 3 (b)) showing a second embodiment of the current sensor according to the present invention. 図3に示した電流センサの作用を説明するための正面図(図4(a))及び特性図(図4(b))である。It is a front view (FIG. 4 (a)) and a characteristic diagram (FIG. 4 (b)) for demonstrating the operation of the current sensor shown in FIG. 本発明に係る電流センサの第3実施例を示す正面図(図5(a))及び斜視図(図5(b))である。It is a front view (FIG. 5 (a)) and a perspective view (FIG. 5 (b)) which show the 3rd Embodiment of the current sensor which concerns on this invention. 本発明に係る電流センサの第4実施例を示す正面図(図6(a))及び斜視図(図6(b))である。It is a front view (FIG. 6 (a)) and a perspective view (FIG. 6 (b)) which show 4th Embodiment of the current sensor which concerns on this invention. 本発明に係る電流センサの第5実施例を示す正面図(図7(a))及び斜視図(図7(b))である。It is a front view (FIG. 7A) and the perspective view (FIG. 7B) which show 5th Embodiment of the current sensor which concerns on this invention. 本発明に係る電流センサの第6実施例を示す正面図(図8(a))及び第7実施例を示す正面図(図8(b))である。It is a front view (FIG. 8 (a)) which shows the 6th Embodiment of the current sensor which concerns on this invention, and is the front view (FIG. 8 (b)) which shows the 7th Embodiment. 本発明に係る電力量計の構成図である。It is a block diagram of the electric energy meter which concerns on this invention. 特許文献1に記載された電流センサの概略構成図である。It is a schematic block diagram of the current sensor described in Patent Document 1.

以下、図に沿って本発明の実施形態を説明する。
図1は、この実施形態に係る電流センサの第1実施例であり、図1(a)は正面図、図1(b)は斜視図、図1(c)は主要部の拡大正面図である。
図1(a),(b)において、ほぼコ字型の集磁コア11a,11bが空隙部gを介して突き合わされ、その中央開口部30の中心には、被測定電流が流れるバー状の導体21が紙面に直交する方向に貫通している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1A and 1B are a first embodiment of a current sensor according to this embodiment, FIG. 1A is a front view, FIG. 1B is a perspective view, and FIG. 1C is an enlarged front view of a main part. be.
In FIGS. 1A and 1B, substantially U-shaped magnetic collecting cores 11a and 11b are butted with each other through the gap g, and a bar-shaped current to be measured flows in the center of the central opening 30. The conductor 21 penetrates in the direction orthogonal to the paper surface.

上記の空隙部gには、平板状のプリント基板12a,12bがそれぞれ配置され、これらの表面には、被測定電流により発生して集磁コア11a,11bを通過する磁束に鎖交するように磁気検出手段としてのコイルパターン13a,13bがそれぞれ形成されている。コイルパターン13a,13b同士は直列に接続されており、その直列回路の出力電圧は例えば前述した図10のように被測定電流を算出する演算手段としての積分回路に入力され、コイルパターン13a,13bに発生した誘起電圧に比例する電圧(言い換えれば被測定電流の大きさ)が算出されるようになっている。
なお、図2はプリント基板12a,12b上のコイルパターン13a,13bの一例を示す平面図である。これらのプリント基板12a,12bやコイルパターン13a,13bの形状は、図2に示す例に限定されないことは言うまでもない。
Plate-shaped printed circuit boards 12a and 12b are arranged in the gaps g, respectively, and on their surfaces, the magnetic flux generated by the current to be measured and passing through the magnetic collecting cores 11a and 11b is interlinked. Coil patterns 13a and 13b as magnetic detection means are formed, respectively. The coil patterns 13a and 13b are connected in series, and the output voltage of the series circuit is input to an integrating circuit as an arithmetic means for calculating the measured current as shown in FIG. 10 described above, and the coil patterns 13a and 13b are input to the coil patterns 13a and 13b. The voltage proportional to the induced voltage generated in (in other words, the magnitude of the measured current) is calculated.
Note that FIG. 2 is a plan view showing an example of the coil patterns 13a and 13b on the printed circuit boards 12a and 12b. Needless to say, the shapes of the printed circuit boards 12a and 12b and the coil patterns 13a and 13b are not limited to the example shown in FIG.

図1に戻って、(c)は空隙部g近傍の拡大正面図である。
プリント基板12a上のコイルパターン13aは、集磁コア11a,11bの各端面(プリント基板12aとの対向面)11a’,11b’からほぼ等しい距離Lに配置されている。この図1(c)では、一方のプリント基板12a上のコイルパターン13aのみが示されているが、他方のプリント基板12b上のコイルパターン13bについても、集磁コア11a,11bの各端面(プリント基板12bとの対向面)からほぼ等しい距離Lに配置されている。
ここで、図1(c)に示すように、プリント基板12a,12bの板厚の中心線c上に導体21を配置すれば、図10の従来構造と比べて中央開口部30の面積を小さくすることができ、これによって集磁コア11a,11bの小型化、ひいては電流センサ全体の小型化が可能になる。
Returning to FIG. 1, (c) is an enlarged front view of the vicinity of the gap portion g.
The coil pattern 13a on the printed circuit board 12a is arranged at a distance Lg substantially equal to the end faces (opposing surfaces facing the printed circuit board 12a) 11a'and 11b' of the magnetic collecting cores 11a and 11b. Although only the coil pattern 13a on one printed circuit board 12a is shown in FIG. 1 (c), the end faces (printed) of the magnetic collecting cores 11a and 11b are also shown for the coil pattern 13b on the other printed circuit board 12b. It is arranged at an approximately equal distance Lg from the surface facing the substrate 12b).
Here, as shown in FIG. 1 (c), if the conductor 21 is arranged on the center line c of the plate thickness of the printed circuit boards 12a and 12b, the area of the central opening 30 is smaller than that of the conventional structure of FIG. This makes it possible to reduce the size of the magnetic collecting cores 11a and 11b, and thus the overall size of the current sensor.

次に、図3は電流センサの第2実施例であり、図3(a)は正面図、図3(b)は斜視図である。
この第2実施例では、第1実施例におけるほぼコ字型の集磁コア11a,11bの代わりに直線状の集磁コア11c,11dを用いている。本実施例においても、プリント基板12a,12b上のコイルパターン13a,13bは、集磁コア11c,11dの内面(プリント基板12a,12bとの対向面)からほぼ等しい距離Lに配置されている。
Next, FIG. 3 is a second embodiment of the current sensor, FIG. 3A is a front view, and FIG. 3B is a perspective view.
In this second embodiment, linear magnetic collecting cores 11c and 11d are used instead of the substantially U-shaped magnetic collecting cores 11a and 11b in the first embodiment. Also in this embodiment, the coil patterns 13a and 13b on the printed circuit boards 12a and 12b are arranged at substantially the same distance Lg from the inner surface of the magnetic collecting cores 11c and 11d (the surface facing the printed circuit boards 12a and 12b). ..

図4は、上述した第2実施例を対象として、プリント基板12a,12bに平行な方向の外部磁場が作用した場合の、コイルパターン13a,13bの上下方向位置(図3(a)における距離L方向の位置)と、上記外部磁場によるコイルパターン13a,13bの誘導電圧の誤差との関係を示している。なお、図4(b)では、コイルパターン13a,13bが集磁コア11c,11dの対向面からほぼ等しい距離Lにある時の上下方向位置を0[mm]とし、その場合の誤差を0[%]としている。 FIG. 4 shows the vertical positions of the coil patterns 13a and 13b (distance L in FIG. 3A) when an external magnetic field in a direction parallel to the printed substrates 12a and 12b acts on the second embodiment described above. The relationship between the position in the g direction) and the error of the induced voltage of the coil patterns 13a and 13b due to the external magnetic field is shown. In FIG. 4B, the vertical position when the coil patterns 13a and 13b are at a distance Lg substantially equal to the facing surfaces of the magnetic collecting cores 11c and 11d is set to 0 [mm], and the error in that case is 0. It is set to [%].

図4(b)から明らかなように、上下方向位置と誘導電圧の誤差とはほぼ比例関係にある。このため、コイルパターン13a,13bを集磁コア11c,11dの対向面からほぼ等しい距離Lに配置すれば、コイルパターン13a,13bによる誘導電圧は外部磁場に影響されることなく誤差が最も小さくなり、導体21に流れる被測定電流を正確に測定することが可能になる。
このことは、図1に示した第1実施例についても同様であり、コイルパターン13a,13bを集磁コア11a,11bの対向面からほぼ等しい距離Lに配置することにより、コイルパターン13a,13bの誘導電圧の誤差は最も小さくなる。
As is clear from FIG. 4B, the vertical position and the error of the induced voltage are almost proportional to each other. Therefore, if the coil patterns 13a and 13b are arranged at approximately the same distance Lg from the facing surfaces of the magnetic collecting cores 11c and 11d, the induced voltage due to the coil patterns 13a and 13b is not affected by the external magnetic field and the error is the smallest. Therefore, it becomes possible to accurately measure the measured current flowing through the conductor 21.
This also applies to the first embodiment shown in FIG. 1. By arranging the coil patterns 13a and 13b at substantially the same distance Lg from the facing surfaces of the magnetic collecting cores 11a and 11b, the coil patterns 13a, The error of the induced voltage of 13b is the smallest.

次に、図5は電流センサの第3実施例を示す正面図(図5(a))及び斜視図(図5(b))である。
この第3実施例は、切欠き部12eを有するほぼコ字型の単一のプリント基板12cの両端部上面にコイルパターン13a,13bを形成し、これらのコイルパターン13a,13bを、空隙部gにおいて集磁コア11a,11bの対向面からほぼ等しい距離Lに配置したものである。この場合、被測定電流が流れる導体22は、上記切欠き部12eにおいて直角方向に屈曲するようにほぼL字型に形成されている。
Next, FIG. 5 is a front view (FIG. 5 (a)) and a perspective view (FIG. 5 (b)) showing a third embodiment of the current sensor.
In this third embodiment, coil patterns 13a and 13b are formed on the upper surfaces of both ends of a single substantially U-shaped printed circuit board 12c having a notch portion 12e, and these coil patterns 13a and 13b are formed in the gap portion g. The magnetic collecting cores 11a and 11b are arranged at approximately the same distance Lg from the facing surfaces thereof. In this case, the conductor 22 through which the measured current flows is formed in a substantially L-shape so as to bend in the perpendicular direction at the notch portion 12e.

本実施例においても、コイルパターン13a,13bを集磁コア11a,11bの対向面からほぼ等しい距離Lに配置することにより、コイルパターン13a,13bの誘導電圧は外部磁場に影響されることなくその誤差は小さくなる。
上述したプリント基板12c及び導体22の構造は、図3に示した直線状の集磁コア11c,11dと組み合わせて用いることも可能である。
Also in this embodiment, by arranging the coil patterns 13a and 13b at approximately the same distance Lg from the facing surfaces of the magnetic collecting cores 11a and 11b, the induced voltage of the coil patterns 13a and 13b is not affected by the external magnetic field. The error becomes smaller.
The structure of the printed circuit board 12c and the conductor 22 described above can also be used in combination with the linear magnetic collecting cores 11c and 11d shown in FIG.

次いで、図6は電流センサの第4実施例を示す正面図(図6(a))及び斜視図(図6(b))である。
この第4実施例は、導体23の一部に貫通孔23aを形成し、この貫通孔23aに貫通させた単一のプリント基板12dの両端部上面に形成したコイルパターン13a,13bを直線状の集磁コア11c,11dの対向面からほぼ等しい距離Lに配置したものである。
Next, FIG. 6 is a front view (FIG. 6 (a)) and a perspective view (FIG. 6 (b)) showing a fourth embodiment of the current sensor.
In the fourth embodiment, the through holes 23a are formed in a part of the conductor 23, and the coil patterns 13a and 13b formed on the upper surfaces of both ends of the single printed circuit board 12d penetrated through the through holes 23a are linear. The magnetic collecting cores 11c and 11d are arranged at approximately the same distance Lg from the facing surfaces.

本実施例においても、コイルパターン13a,13bを集磁コア11c,11dの対向面からほぼ等しい距離Lに配置することにより、コイルパターン13a,13bの誘導電圧の誤差を小さくすることができる。
上述したプリント基板12d及び導体23の構造は、図1や図5に示したほぼコ字型の集磁コア11a,11bと組み合わせて用いることも可能である。
Also in this embodiment, the error of the induced voltage of the coil patterns 13a and 13b can be reduced by arranging the coil patterns 13a and 13b at a distance Lg substantially equal to the facing surfaces of the magnetic collecting cores 11c and 11d.
The structures of the printed circuit board 12d and the conductor 23 described above can also be used in combination with the substantially U-shaped magnetic collecting cores 11a and 11b shown in FIGS. 1 and 5.

上述した第1~第4実施例のごとく、プリント基板の板厚が導体の厚さに吸収される配置構造(図1(c)に示したように、プリント基板12a,12bの板厚の中心線c上に導体21が配置される構造)とすれば、集磁コアの中央開口部の面積や集磁コア相互の間隔を小さくすることができ、電流センサの小型化、薄型化が可能になる。 As in the first to fourth embodiments described above, the arrangement structure in which the plate thickness of the printed circuit board is absorbed by the thickness of the conductor (as shown in FIG. 1C, the center of the plate thickness of the printed circuit boards 12a and 12b). If the conductor 21 is arranged on the wire c), the area of the central opening of the magnetic collecting core and the distance between the magnetic collecting cores can be reduced, and the current sensor can be made smaller and thinner. Become.

更に、図7は電流センサの第5実施例を示す正面図(図7(a))及び斜視図(図7(b))である。
この第5実施例は、直線状の集磁コア11c,11dの間にプリント基板12dを配置すると共に、プリント基板12dと一方の集磁コア11dとの間に導体21を配置し、プリント基板12dの両端部上面に形成したコイルパターン13a,13bを集磁コア11c,11dの対向面からほぼ等しい距離Lに配置したものである。
Further, FIG. 7 is a front view (FIG. 7 (a)) and a perspective view (FIG. 7 (b)) showing a fifth embodiment of the current sensor.
In the fifth embodiment, the printed circuit board 12d is arranged between the linear magnetic collecting cores 11c and 11d, and the conductor 21 is arranged between the printed circuit board 12d and one of the magnetic collecting cores 11d, and the printed circuit board 12d is arranged. The coil patterns 13a and 13b formed on the upper surfaces of both ends thereof are arranged at a distance Lg substantially equal to the facing surfaces of the magnetic collecting cores 11c and 11d.

本実施例では、プリント基板12dと導体21との位置関係が前述した図10とほぼ同様になるが、集磁コア11c,11dを直線状に形成することで電流センサ全体を薄型化することができる。また、第1~第4実施形態と同様に、コイルパターン13a,13bと集磁コア11c,11dの対向面との距離Lをほぼ等しくすることで、コイルパターン13a,13bによる誘導電圧は外部磁場に影響されることなく誤差が小さくなる。 In this embodiment, the positional relationship between the printed circuit board 12d and the conductor 21 is almost the same as in FIG. 10, but the current sensor as a whole can be made thinner by forming the magnetic collecting cores 11c and 11d in a straight line. can. Further, as in the first to fourth embodiments, by making the distance Lg between the coil patterns 13a and 13b and the facing surfaces of the magnetic collecting cores 11c and 11d substantially equal, the induced voltage due to the coil patterns 13a and 13b is external. The error is small without being affected by the magnetic field.

第1~第5実施例ではプリント基板12a,12b,12c,12dの表面のみにコイルパターン13a,13bが形成されているが、各プリント基板の裏面にもコイルパターンを形成し、表面及び裏面のコイルパターン同士をスルーホール等により直列に接続しても良い。つまり、プリント基板12a,12b,12c,12dの表裏両面にコイルパターンを形成しても良い。 In the first to fifth embodiments, the coil patterns 13a and 13b are formed only on the front surfaces of the printed circuit boards 12a, 12b, 12c and 12d, but the coil patterns are also formed on the back surface of each printed circuit board and the front surface and the back surface are formed. The coil patterns may be connected in series by a through hole or the like. That is, coil patterns may be formed on both the front and back surfaces of the printed circuit boards 12a, 12b, 12c, and 12d.

次に、図8(a)は電流センサの第6実施例を示す正面図、図8(b)は同じく第7実施例を示す正面図である。
前述した第1~第5実施例では、単一の基板からなるプリント基板の表面にコイルパターンを形成しているが、以下に説明するように、複数の基板(以下、単位基板という)を積層して1枚のプリント基板を形成し、各単位基板の表面または裏面にコイルパターンを形成すると共に、プリント基板の板厚の中心線が集磁コアの対向面からほぼ等しい距離に位置するようにプリント基板を配置しても良い。
Next, FIG. 8A is a front view showing a sixth embodiment of the current sensor, and FIG. 8B is a front view showing the seventh embodiment as well.
In the first to fifth embodiments described above, a coil pattern is formed on the surface of a printed circuit board composed of a single substrate, but as described below, a plurality of substrates (hereinafter referred to as unit substrates) are laminated. A single printed circuit board is formed, a coil pattern is formed on the front or back surface of each unit board, and the center line of the thickness of the printed circuit board is located at approximately the same distance from the facing surface of the magnetic collecting core. A printed circuit board may be arranged.

すなわち、図8(a)の第6実施例は、例えば各4枚の単位基板12e’,12f’をそれぞれ積層してプリント基板12e,12fを形成し、各単位基板12e’,12f’の表面または裏面にコイルパターン13a,13bを形成した例であり、図8(b)の第7実施例は、各2枚の単位基板12g’,12h’をそれぞれ積層してプリント基板12g,12hを形成し、各単位基板12g’,12h’の表面または裏面にコイルパターン13a,13bを形成した例である。ここで、各プリント基板を構成する単位基板の積層数は上記の例に限定されず、任意である。
このように複数の単位基板を積層して1枚のプリント基板を形成し、各単位基板の表面または裏面にコイルパターンを形成する着想は、第2~第5実施例に示した集磁コアの形状、構造や集磁コアとプリント基板との位置関係に対しても適用可能である。
That is, in the sixth embodiment of FIG. 8A, for example, four unit substrates 12e'and 12f' are laminated to form printed circuit boards 12e and 12f, respectively, and the surfaces of the unit substrates 12e'and 12f' are formed. Alternatively, it is an example in which the coil patterns 13a and 13b are formed on the back surface, and in the seventh embodiment of FIG. 8B, two unit substrates 12g'and 12h' are laminated to form a printed circuit board 12g and 12h, respectively. This is an example in which coil patterns 13a and 13b are formed on the front surface or the back surface of each unit substrate 12g'and 12h'. Here, the number of laminated unit substrates constituting each printed circuit board is not limited to the above example, and is arbitrary.
In this way, the idea of stacking a plurality of unit substrates to form one printed circuit board and forming a coil pattern on the front surface or the back surface of each unit substrate is based on the magnetic collecting cores shown in the second to fifth embodiments. It can also be applied to the shape, structure, and positional relationship between the magnetic collecting core and the printed circuit board.

図8(a)におけるプリント基板12e内の複数のコイルパターン13aはスルーホール等により直列に接続されて第1の直列コイルが形成されると共に、他方のプリント基板12f内の複数のコイルパターン13bも直列に接続されて第2の直列コイルが形成され、これら第1及び第2の直列コイルが直列に接続されている。上記構成は、図8(b)におけるプリント基板12g,12h内の複数のコイルパターン13a,13bに関しても同様である。 The plurality of coil patterns 13a in the printed circuit board 12e in FIG. 8A are connected in series by a through hole or the like to form a first series coil, and the plurality of coil patterns 13b in the other printed circuit board 12f are also formed. A second series coil is formed by being connected in series, and these first and second series coils are connected in series. The above configuration is the same for the plurality of coil patterns 13a and 13b in the printed circuit boards 12g and 12h in FIG. 8B.

また、図8(a)では、プリント基板12e,12fの板厚の中心線と集磁コア11a,11bの対向面との間の距離L’が等しく保たれ、図8(b)では、プリント基板12g,12hの板厚の中心線と集磁コア11a,11bの対向面との間の距離L’が等しく保たれている。このような構成では、複数のコイルパターン13a,13bがそれぞれ一つのコイルパターンに集約されてそのコイルパターンが集磁コア11a,11bの対向面から等距離に配置されていると考えることができ、第1~第5実施例におけるコイルパターン13a,13bの配置と等価になる。
従って、プリント基板12e,12f,12g,12hに平行な方向の外部磁場によるコイルパターン13a,13bの誘導電圧の誤差を低減して、導体21に流れる電流を正確に測定することができる。
Further, in FIG. 8 (a), the distance L g'between the center line of the plate thickness of the printed circuit boards 12e and 12f and the facing surfaces of the magnetic collecting cores 11a and 11b is kept equal, and in FIG. 8 (b), the distance L g'is kept equal. The distance Lg'between the center line of the thickness of the printed circuit boards 12g and 12h and the facing surfaces of the magnetic collecting cores 11a and 11b is kept equal. In such a configuration, it can be considered that a plurality of coil patterns 13a and 13b are integrated into one coil pattern, and the coil patterns are arranged equidistantly from the facing surfaces of the magnetic collecting cores 11a and 11b. This is equivalent to the arrangement of the coil patterns 13a and 13b in the first to fifth embodiments.
Therefore, the error of the induced voltage of the coil patterns 13a and 13b due to the external magnetic field in the direction parallel to the printed circuit boards 12e, 12f, 12g and 12h can be reduced, and the current flowing through the conductor 21 can be accurately measured.

以上説明した第1~第7実施例では、図1,図5,図8のような正面ほぼコ字型の集磁コア、または、図3,図6,図7のような直線状の集磁コアをそれぞれ2個用い、各一対の集磁コアを対向させて空隙部を保有させているが、電流センサの構成はこれらに限定されない。
すなわち、電流センサの変形例としては、ほぼC字型やU字型の単一の集磁コア(図示せず)を用いてその端部の対向面により空隙部を形成し、この空隙部内に配置されるプリント基板上のコイルパターンと上記対向面との間の距離がほぼ等しくなるように構成しても良く、あるいは、コイルパターンが形成された一または複数の単位基板からなるプリント基板の板厚の中心線と上記対向面との間の距離がほぼ等しくなるようにプリント基板を配置しても良い。
In the first to seventh embodiments described above, the frontal substantially U-shaped magnetic collecting core as shown in FIGS. 1, 5, and 8, or the linear collecting core as shown in FIGS. 3, 6, and 7. Two magnetic cores are used each, and each pair of magnetic collecting cores face each other to have a gap portion, but the configuration of the current sensor is not limited to these.
That is, as a modification of the current sensor, a gap portion is formed by the facing surfaces of the end portions of a single magnetic collecting core (not shown) having a substantially C-shape or a U-shape, and the gap portion is formed in the gap portion. The distance between the coil pattern on the arranged printed circuit board and the facing surface may be substantially equal, or a printed circuit board board composed of one or more unit boards on which the coil pattern is formed. The printed circuit board may be arranged so that the distance between the thick center line and the facing surface is substantially equal.

次に、図9は、本発明の実施形態に係る電力量計の構成図であり、第1~第7実施例のうち何れかの電流センサを、例えば本出願人による特開2020-60504号公報に記載された電力量計に適用した場合のものである。 Next, FIG. 9 is a configuration diagram of a watt-hour meter according to an embodiment of the present invention, and a current sensor according to any one of the first to seventh embodiments can be used, for example, Japanese Patent Application Laid-Open No. 2020-60504 by the present applicant. This is the case when applied to the watt-hour meter described in the publication.

図9において、三相の交流電源SP(R,S,Tは各相の出力端子、Nは中性点)に接続された各相の電源線101R,101S,101Tと三相の負荷LDとの間に、本発明に係る電力量計200が接続されている。
この電力量計200は、電源線101R,101T(何れも前述した導体21~23に相当)にそれぞれ接続されてR相電流I,T相電流Iを測定する本発明に係る電流センサ100a,100bと、電源線101R,101Sの間に接続されてR相-S相間の電圧を測定する電圧センサ201aと、電源線101S,101Tの間に接続されてS相-T相間の電圧を測定する電圧センサ201bと、電流センサ100a,100b及び電圧センサ201a,201bによる電流・電圧検出値を演算処理して電力量を算出する電力量算出部202と、算出した電力量を表示出力または外部に伝送出力する出力部203と、によって構成されている。
In FIG. 9, the power lines 101R, 101S, 101T of each phase connected to the three-phase AC power supply SP (R, S, T are the output terminals of each phase, N is the neutral point) and the three-phase load LD. The electric energy meter 200 according to the present invention is connected between the two.
The power meter 200 is connected to the power supply lines 101R and 101T (both corresponding to the conductors 21 to 23 described above), respectively, and measures the R -phase current IR and the T -phase current IT, respectively, according to the present invention. , 100b, a voltage sensor 201a connected between the power supply lines 101R and 101S to measure the voltage between the R phase and the S phase, and connected between the power supply lines 101S and 101T to measure the voltage between the S phase and the T phase. The voltage sensor 201b, the current / voltage detection values of the current sensors 100a and 100b and the voltage sensors 201a and 201b are calculated and processed to calculate the power amount, and the calculated power amount is displayed or output to the outside. It is composed of an output unit 203 for transmission and output.

この電力量計200によれば、本発明に係る電流センサ100a,100bにより高精度に測定した電流と電圧センサ201a,201bが測定した電圧とに基づいて、電力量を正確に測定することが可能である。
更に、電流センサ100a,100bの小型化によって電力量計200自体の小型化が可能になる等の利点がある。
According to this watt-hour meter 200, it is possible to accurately measure the amount of power based on the current measured with high accuracy by the current sensors 100a and 100b according to the present invention and the voltage measured by the voltage sensors 201a and 201b. Is.
Further, the miniaturization of the current sensors 100a and 100b has an advantage that the watt-hour meter 200 itself can be miniaturized.

11a,11b,11c,11d:集磁コア
11a’,11b’:端面(対向面)
12a,12b,12c,12d,12e,12f,12g,12h: プリント基板
12e’,12f’,12g’,12h’:単位基板
12e:切欠き部
13a,13b:コイルパターン
21,22,23:導体
23a:貫通孔
30:中央開口部
100a,100b:電流センサ
101R,101S,101T:電源線
200:電力量計
201a,201b:電圧センサ
202:電力量算出部
203:出力部
g:空隙部
SP:交流電源
R,S,T:出力端子
N:中性点
LD:負荷
11a, 11b, 11c, 11d: Magnetic collecting core 11a', 11b': End face (opposing surface)
12a, 12b, 12c, 12d, 12e, 12f, 12g, 12h: Printed circuit board 12e', 12f', 12g', 12h': Unit substrate 12e: Notch 13a, 13b: Coil pattern 21, 22, 23: Conductor 23a: Through hole 30: Central opening 100a, 100b: Current sensor 101R, 101S, 101T: Power supply line 200: Electric energy meter 201a, 201b: Voltage sensor 202: Electric energy calculation unit 203: Output unit g: Air gap SP: AC power supply R, S, T: Output terminal N: Neutral point LD: Load

Claims (11)

被測定電流が流れる導体と、
空隙部を形成する一対の対向面を有し、かつ、前記被測定電流により発生する磁束を集める集磁コアと、
前記空隙部に配置され、かつ、前記磁束が鎖交して誘導電圧を発生する磁気検出手段と、
前記誘導電圧に基づいて前記被測定電流を算出する演算手段と、
を備えた電流センサにおいて、
前記一対の対向面からほぼ等距離の位置に前記磁気検出手段を配置したことを特徴とする電流センサ。
The conductor through which the measured current flows and
A magnetic collecting core having a pair of facing surfaces forming a gap and collecting magnetic flux generated by the measured current,
A magnetic detection means that is arranged in the gap and that the magnetic flux interlinks to generate an induced voltage.
An arithmetic means for calculating the measured current based on the induced voltage, and
In a current sensor equipped with
A current sensor characterized in that the magnetic detection means is arranged at positions substantially equidistant from the pair of facing surfaces.
被測定電流が流れる導体と、
空隙部を形成する一対の対向面を有し、かつ、前記被測定電流により発生する磁束を集める集磁コアと、
前記空隙部に配置され、かつ、前記磁束が鎖交して誘導電圧を発生する磁気検出手段と、
前記誘導電圧に基づいて前記被測定電流を算出する演算手段と、
を備えた電流センサにおいて、
前記一対の対向面からほぼ等距離の位置に、前記磁気検出手段を備えたプリント基板の板厚の中心線が位置するように前記プリント基板を配置したことを特徴とする電流センサ。
The conductor through which the measured current flows and
A magnetic collecting core having a pair of facing surfaces forming a gap and collecting magnetic flux generated by the measured current,
A magnetic detection means that is arranged in the gap and that the magnetic flux interlinks to generate an induced voltage.
An arithmetic means for calculating the measured current based on the induced voltage, and
In a current sensor equipped with
A current sensor characterized in that the printed circuit board is arranged so that the center line of the plate thickness of the printed circuit board provided with the magnetic detection means is located at positions substantially equidistant from the pair of facing surfaces.
請求項1または2に記載した電流センサにおいて、
前記磁気検出手段がプリント基板上のコイルパターンにより形成されていることを特徴とする電流センサ。
In the current sensor according to claim 1 or 2.
A current sensor characterized in that the magnetic detection means is formed by a coil pattern on a printed circuit board.
請求項3に記載した電流センサにおいて、
第1の集磁コアと第2の集磁コアとを対向させて形成した前記空隙部内に、複数の前記コイルパターンを配置して各コイルパターンを直列に接続したことを特徴とする電流センサ。
In the current sensor according to claim 3,
A current sensor characterized in that a plurality of the coil patterns are arranged in the gap portion formed by facing the first magnetic collecting core and the second magnetic collecting core, and the coil patterns are connected in series.
請求項2~4の何れか1項に記載した電流センサにおいて、
前記プリント基板の板厚のほぼ中心線上に前記導体が配置されていることを特徴とする電流センサ。
In the current sensor according to any one of claims 2 to 4.
A current sensor characterized in that the conductor is arranged substantially on a center line of the plate thickness of the printed circuit board.
請求項3~5の何れか1項に記載した電流センサにおいて、
複数の前記コイルパターンが、単一の前記プリント基板上に形成されていることを特徴とする電流センサ。
In the current sensor according to any one of claims 3 to 5.
A current sensor, characterized in that a plurality of the coil patterns are formed on a single printed circuit board.
請求項3~5の何れか1項に記載した電流センサにおいて、
複数の前記コイルパターンが、個別の前記プリント基板上にそれぞれ形成されていることを特徴とする電流センサ。
In the current sensor according to any one of claims 3 to 5.
A current sensor, characterized in that a plurality of the coil patterns are each formed on the individual printed circuit boards.
請求項2~7の何れか1項に記載した電流センサにおいて、
前記プリント基板に形成した切欠き部に前記導体を配置したことを特徴とする電流センサ。
In the current sensor according to any one of claims 2 to 7.
A current sensor characterized in that the conductor is arranged in a notch formed in the printed circuit board.
請求項2~7の何れか1項に記載した電流センサにおいて、
前記導体に形成した貫通孔に前記プリント基板を貫通させたことを特徴とする電流センサ。
In the current sensor according to any one of claims 2 to 7.
A current sensor characterized in that the printed circuit board is passed through a through hole formed in the conductor.
請求項3~9の何れか1項に記載した電流センサにおいて、
前記プリント基板が複数の単位基板を積層して構成され、前記単位基板の表面または裏面に前記コイルパターンが形成されていることを特徴とする電流センサ。
In the current sensor according to any one of claims 3 to 9.
A current sensor characterized in that the printed circuit board is configured by laminating a plurality of unit boards, and the coil pattern is formed on the front surface or the back surface of the unit board.
請求項1~10の何れか1項に記載した電流センサと、前記導体を含む複数の導体間の電圧を測定する電圧センサと、前記電流センサによる電流検出値及び前記電圧センサによる電圧検出値を用いて電力量を算出する電力量演算部と、を備えたことを特徴とする電力量計。 The current sensor according to any one of claims 1 to 10, a voltage sensor that measures a voltage between a plurality of conductors including the conductor, a current detection value by the current sensor, and a voltage detection value by the voltage sensor. A power meter characterized by being equipped with a power amount calculation unit that calculates the amount of power using the power amount.
JP2020184245A 2020-11-04 2020-11-04 Current sensor and electricity meter Pending JP2022074306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020184245A JP2022074306A (en) 2020-11-04 2020-11-04 Current sensor and electricity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020184245A JP2022074306A (en) 2020-11-04 2020-11-04 Current sensor and electricity meter

Publications (1)

Publication Number Publication Date
JP2022074306A true JP2022074306A (en) 2022-05-18

Family

ID=81605471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020184245A Pending JP2022074306A (en) 2020-11-04 2020-11-04 Current sensor and electricity meter

Country Status (1)

Country Link
JP (1) JP2022074306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085258A1 (en) * 2022-10-21 2024-04-25 甲神電機株式会社 Current sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024085258A1 (en) * 2022-10-21 2024-04-25 甲神電機株式会社 Current sensor

Similar Documents

Publication Publication Date Title
JP5366418B2 (en) Current detector and watt-hour meter using the same
JP2023049304A (en) Electric current sensor, and watthour meter
US7626376B2 (en) Electric current detector having magnetic detector
US8493059B2 (en) Shunt sensor and shunt sensor assembly
JP7314732B2 (en) current sensor
JP2002243766A (en) Electric current sensor
KR100846078B1 (en) Azimuth meter
JP2013238580A (en) Current sensor
JPH11223505A (en) Induction type position measurement device
JP2007183221A (en) Electric current sensor
JP2009210406A (en) Current sensor and watthour meter
JP3559225B2 (en) Dielectric type position detector
CN110431428B (en) Current transducer with magnetic field gradient sensor
JP2005321206A (en) Current detection device
JP5820164B2 (en) Current detection device and watt-hour meter using the same
JP2008216230A (en) Current sensor
JPWO2014203862A1 (en) Current sensor
JP2022074306A (en) Current sensor and electricity meter
JP2009204415A (en) Current sensor and watt-hour meter
JP2011220952A (en) Current detection device and watt-hour meter using the same
JP2018146388A (en) Current sensor and electricity meter
JP2013053914A (en) Current measuring device
JP2019152558A (en) Current sensor and voltmeter
JP6134964B2 (en) Inductive displacement detector
JP2008101914A (en) Current sensor and electronic watthour meter

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220927

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221006

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20231016