JP2019152558A - Current sensor and voltmeter - Google Patents

Current sensor and voltmeter Download PDF

Info

Publication number
JP2019152558A
JP2019152558A JP2018038551A JP2018038551A JP2019152558A JP 2019152558 A JP2019152558 A JP 2019152558A JP 2018038551 A JP2018038551 A JP 2018038551A JP 2018038551 A JP2018038551 A JP 2018038551A JP 2019152558 A JP2019152558 A JP 2019152558A
Authority
JP
Japan
Prior art keywords
current
bar
collecting core
magnetic flux
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018038551A
Other languages
Japanese (ja)
Inventor
晋 栗原
Susumu Kurihara
晋 栗原
芳准 山内
Yoshinori Yamauchi
芳准 山内
工藤 高裕
Takahiro Kudo
高裕 工藤
滋章 原山
Shigeaki Harayama
滋章 原山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Meter Co Ltd
Original Assignee
Fuji Electric Meter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Meter Co Ltd filed Critical Fuji Electric Meter Co Ltd
Priority to JP2018038551A priority Critical patent/JP2019152558A/en
Publication of JP2019152558A publication Critical patent/JP2019152558A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a current sensor and a voltmeter which can measure an accurate current in a wide current measurement range at low cost even when the current sensor is arranged in a small space.SOLUTION: A current sensor 1 includes: a current bar 5 in which a current to be detected flows; a magnetism collecting core 2 penetrating the current bar 5, the magnetism collecting core having a void 3; and a substrate 4 having a magnetism detecting element in the void 3, and the current sensor detects a current flowing in the current bar 5 on the basis of the result of magnetism detection by the magnetism detection element. The current bar 5 is formed by sequentially connecting three partial current bars 6, 7, and 8, and the partial current bars 6, 7, and 8 surround the void 3 from three directions.SELECTED DRAWING: Figure 1

Description

本発明は、電流センサが配置されるスペースが狭い場合であっても、低コストかつ広い電流測定範囲で電流計測を精度高く行うことができる電流センサ及び電力量計に関する。   The present invention relates to a current sensor and a watt hour meter capable of performing current measurement with high accuracy in a low current and wide current measurement range even when the space where the current sensor is disposed is narrow.

従来、用いられている電流センサとしては、変流器(カレントトランス:CT)や、集磁コアのギャップ部にホール素子などの磁電変換素子を配置した構成や、集磁コアのギャップ部に、巻線コイルや誘電体基板上にコイルパターンを形成した素子をもつ構成などがある。特に、集磁コアのギャップ部に、基板上にホール素子などの磁電変換素子やコイルパターンを形成した素子を配置する方法は、測定対象である一次電流が流れる回路とは電気的に分離されているため、一次電流側の回路に影響を与えることなく、精度よく電流を計測可能な点で優れている。さらにコイルパターンを形成した素子を配置する方法は、直線性および温度特性に優れ、部品点数が少なく製造が容易となる特徴を有する(特許文献1参照)。   Conventionally, current sensors that have been used include current transformers (current transformers: CT), configurations in which magnetoelectric transducers such as Hall elements are arranged in the gap portion of the magnetic flux collecting core, and in the gap portion of the magnetic flux collecting core, There are configurations having an element in which a coil pattern is formed on a wound coil or a dielectric substrate. In particular, the method of arranging a magnetoelectric conversion element such as a hall element or a coil pattern on the substrate in the gap portion of the magnetic flux collecting core is electrically separated from the circuit through which the primary current that is the measurement target flows. Therefore, it is excellent in that the current can be accurately measured without affecting the circuit on the primary current side. Furthermore, the method of arranging the elements in which the coil pattern is formed has the characteristics that the linearity and temperature characteristics are excellent, the number of parts is small, and the manufacturing is easy (see Patent Document 1).

特許文献1に記載された電流センサは、環状の集磁コアの中央開口部に電流バーを通し、集磁コアのギャップ部にコイルパターンが施された基板を配置するものである。電流バーに電流が流れると、電流路の周辺には、電流バーに流れる電流の大きさに比例する磁束が発生する。発生した磁束は、集磁コアによって集磁される。電流が周期的電流である場合、その周期に応じて発生する磁束も周期的に変化する。これにより、コイルパターンをもつ検出コイルには、電流の大きさ及び周波数に応じた誘導電圧が発生し、この誘導電圧を電流バーに流れる電流の検出信号として用いている。   In the current sensor described in Patent Document 1, a current bar is passed through a central opening of an annular magnetic collecting core, and a substrate on which a coil pattern is applied is arranged in a gap portion of the magnetic collecting core. When a current flows through the current bar, a magnetic flux proportional to the magnitude of the current flowing through the current bar is generated around the current path. The generated magnetic flux is collected by the magnetic flux collecting core. When the current is a periodic current, the magnetic flux generated according to the cycle also changes periodically. As a result, an induced voltage corresponding to the magnitude and frequency of the current is generated in the detection coil having the coil pattern, and this induced voltage is used as a detection signal for the current flowing through the current bar.

特開2010−48755号公報JP 2010-48755 A

ところで、集磁コアのギャップ部に磁電変換素子を配置する電流センサでは、ギャップ部に発生する磁束が、集磁コアの磁気特性とギャップ部の形状とにより決定される。この電流センサでは、数mmのギャップ幅とすることで比較的直線性を良くすることができるものの、集磁コアで用いられている磁性体の磁界に対する非線形性により直線性が悪くなる場合がある。具体的には、電流バーに大電流が流れた場合は、集磁コアで用いられている磁性体の磁気飽和により透磁率が低下し、それに伴いギャップ部に発生する磁束も低下するために測定電流に対して発生する磁束が理想的な比例関係ではなくなり、直線性が悪化する。なお、一般的に磁性体の透磁率は材質に応じて所定の磁界で透磁率が最も大きくなり、初透磁率は最大透磁率に対して小さくなる。したがって、電流バーに小さな電流が流れた場合も透磁率が低いことが原因で発生する磁束が低下し、測定電流に対して発生する磁束が理想的な比例関係ではなくなり、直線性が悪化する。   By the way, in the current sensor in which the magnetoelectric conversion element is disposed in the gap portion of the magnetic flux collecting core, the magnetic flux generated in the gap portion is determined by the magnetic characteristics of the magnetic flux collecting core and the shape of the gap portion. In this current sensor, although the linearity can be improved relatively by setting the gap width to several mm, the linearity may be deteriorated due to the non-linearity with respect to the magnetic field of the magnetic material used in the magnetic collecting core. . Specifically, when a large current flows through the current bar, the magnetic permeability of the magnetic material used in the magnetic collecting core decreases due to magnetic saturation, and the magnetic flux generated in the gap portion also decreases accordingly. The magnetic flux generated with respect to the current is not ideally proportional, and the linearity deteriorates. In general, the magnetic permeability of the magnetic material is the largest in a predetermined magnetic field depending on the material, and the initial permeability is smaller than the maximum permeability. Therefore, even when a small current flows through the current bar, the magnetic flux generated due to the low permeability is lowered, the magnetic flux generated with respect to the measurement current is not in an ideal proportional relationship, and the linearity is deteriorated.

ここで、上記の電流センサでは、電流センサが配置されるスペースの制約から、電流バーを曲げて配置する場合もあり、電流バーで囲われた集磁コアの一部分で磁気飽和が起こり易くなり、直線性が悪化してしまう場合があった。   Here, in the above current sensor, due to the limitation of the space where the current sensor is arranged, the current bar may be bent, and magnetic saturation is likely to occur in a part of the magnetic flux collecting core surrounded by the current bar. The linearity sometimes deteriorated.

そこで、上記の磁気飽和を抑えるために、飽和磁束密度が大きい材質の集磁コアを用いることが考えられるが、飽和磁束密度が小さい材質に比べて飽和磁束密度が大きい材質は、コストが高いという問題がある。   Therefore, in order to suppress the above-described magnetic saturation, it is conceivable to use a magnetic flux collecting core made of a material having a high saturation magnetic flux density. However, a material having a high saturation magnetic flux density is more expensive than a material having a low saturation magnetic flux density. There's a problem.

本発明は、上記に鑑みてなされたものであって、電流センサが配置されるスペースが狭い場合であっても、低コストかつ広い電流測定範囲で電流計測を精度高く行うことができる電流センサ及び電力計を提供することを目的とする。   The present invention has been made in view of the above, and a current sensor capable of accurately performing current measurement at a low cost and in a wide current measurement range even when a space where the current sensor is disposed is narrow, and The purpose is to provide a power meter.

上述した課題を解決し、目的を達成するために、本発明にかかる電流センサは、検知すべき電流が流れる電流バーと、前記電流バーが貫通するとともに1以上の空隙が設けられた集磁コアと、前記1以上の空隙に設けられた1以上の磁気検出素子を有する基板とを有し、前記1以上の磁気検出素子が検出した磁気検出結果によって前記電流バーを流れる電流を検出する電流センサであって、前記電流バーは、前記1以上の空隙のうちの1つの前記空隙を3方向から囲むように配置されることを特徴とする。   In order to solve the above-described problems and achieve the object, a current sensor according to the present invention includes a current bar through which a current to be detected flows, and a magnetic flux collecting core in which the current bar penetrates and at least one air gap is provided. And a substrate having one or more magnetic detection elements provided in the one or more gaps, and detecting a current flowing through the current bar based on a magnetic detection result detected by the one or more magnetic detection elements The current bar is arranged so as to surround one of the one or more gaps from three directions.

また、本発明にかかる電流センサは、上記の発明において、前記電流バーは、3つの部分電流バーが順次結合された一連の部分電流バーであり、各部分電流バーは、前記1以上の空隙のうちの1つの前記空隙を3方向から囲むように配置されることを特徴とする。   In the current sensor according to the present invention, in the above invention, the current bar is a series of partial current bars in which three partial current bars are sequentially coupled, and each partial current bar has the one or more gaps. It arrange | positions so that the said one said space | gap may be enclosed from three directions.

また、本発明にかかる電流センサは、上記の発明において、前記集磁コアを貫通する電流バーは、前記集磁コアに垂直に貫通し、貫通部分は直線形状であることを特徴とする。   The current sensor according to the present invention is characterized in that, in the above invention, the current bar that penetrates the magnetic flux collecting core penetrates perpendicularly to the magnetic flux collecting core, and the penetrating portion has a linear shape.

また、本発明にかかる電流センサは、上記の発明において、前記集磁コアを貫通する電流バーは、前記集磁コアの中心を貫通することを特徴とする。   The current sensor according to the present invention is characterized in that, in the above-described invention, the current bar that penetrates the magnetism collecting core penetrates the center of the magnetism collecting core.

また、本発明にかかる電流センサは、上記の発明において、前記空隙を3方向から囲む電流バーの軸に囲まれる平面は前記空隙を通過するように配置されることを特徴とする。   The current sensor according to the present invention is characterized in that, in the above invention, a plane surrounded by an axis of a current bar surrounding the gap from three directions is arranged to pass through the gap.

また、本発明にかかる電流センサは、上記の発明において、前記磁気検出素子は、前記基板に形成された1以上のコイルパターンであることを特徴とする。   The current sensor according to the present invention is characterized in that, in the above invention, the magnetic detection element is one or more coil patterns formed on the substrate.

また、本発明にかかる電力量計は、上記の発明のいずれか一つに記載した電流センサが検出した電流信号と電圧センサが検出した電圧信号とをもとに前記電流バーを流れる電力量を算出することを特徴とする。   In addition, the watt hour meter according to the present invention is configured to calculate the amount of power flowing through the current bar based on the current signal detected by the current sensor described in any one of the above inventions and the voltage signal detected by the voltage sensor. It is characterized by calculating.

本発明によれば、3つの部分電流バーが順次結合された一連の部分電流バーの各部分電流バーが、集磁コアに形成された1以上の空隙のうちの1つの前記空隙を3方向から囲むように配置しているので、集磁コアを貫通する部分電流バー以外の部分電流バーによって生じる磁束密度の高い部分が透磁率の低い前記空隙の部分となり、集磁コアが磁気飽和しにくくなる。この結果、本願発明では、電流センサが配置されるスペースが狭い場合であっても、低コストかつ広い電流測定範囲で電流計測を精度高く行うことができる。   According to the present invention, each partial current bar of a series of partial current bars in which three partial current bars are sequentially coupled has one said one of the one or more gaps formed in the magnetic flux collecting core from three directions. Since it is arranged so as to surround, the portion with high magnetic flux density generated by the partial current bar other than the partial current bar that penetrates the magnetic collecting core becomes the portion of the gap with low magnetic permeability, and the magnetic collecting core is less likely to be magnetically saturated. . As a result, in the present invention, even when the space where the current sensor is arranged is narrow, current measurement can be performed with high accuracy in a low current and wide current measurement range.

図1は、本発明の実施の形態である電流センサの構成を示す斜視図である。FIG. 1 is a perspective view showing a configuration of a current sensor according to an embodiment of the present invention. 図2は、図1に示した電流センサをX方向からみた側面図である。2 is a side view of the current sensor shown in FIG. 1 as viewed from the X direction. 図3は、空隙に配置される磁気検出素子の一例を示す図である。FIG. 3 is a diagram illustrating an example of the magnetic detection element disposed in the gap. 図4は、平行配置される部分電流バーに流れる電流によって生成される磁束の状態を示す図である。FIG. 4 is a diagram showing a state of magnetic flux generated by the current flowing through the partial current bars arranged in parallel. 図5は、電流バーに流れる電流に対する磁気検出素子が検出する検出電流の関係を示す図である。FIG. 5 is a diagram showing the relationship between the detection current detected by the magnetic detection element and the current flowing through the current bar. 図6は、電流バーの配置が異なる電流センサの一例を示す斜視図である。FIG. 6 is a perspective view showing an example of a current sensor having a different arrangement of current bars. 図7は、電流バーの配置が異なる電流センサの他の一例をX方向からみた図である。FIG. 7 is a view of another example of the current sensor having a different arrangement of current bars as viewed from the X direction. 図8は、空隙及び空隙に配置される磁気検出素子がそれぞれ2つ設けた場合における電流バーの配置の一例を示す斜視図である。FIG. 8 is a perspective view showing an example of the arrangement of current bars when two air gaps and two magnetic detection elements arranged in the air gap are provided. 図9は、図8に示した電流センサをX方向からみた図である。FIG. 9 is a view of the current sensor shown in FIG. 8 as viewed from the X direction. 図10は、電流バーの太さが空隙の幅を超える場合における電流バーの配置の一例を示す図である。FIG. 10 is a diagram illustrating an example of the arrangement of current bars when the thickness of the current bar exceeds the width of the gap. 図11は、図1に示した電流センサを用いた電力量計の一例を示すブロック図である。FIG. 11 is a block diagram showing an example of a watt hour meter using the current sensor shown in FIG. 図12は、三相電流及び三相電圧間のベクトル図である。FIG. 12 is a vector diagram between a three-phase current and a three-phase voltage.

以下、添付図面を参照してこの発明を実施するための形態について説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the accompanying drawings.

図1は、本発明の実施の形態である電流センサ1の構成を示す斜視図である。また、図2は、図1に示した電流センサ1をX方向からみた側面図である。さらに、図3は、図1に示した空隙3に介在する基板4の一例を示す平面図である。図1〜図3に示すように、電流センサ1は、電流を流す電流バー5を囲むように形成された集磁コア2と、集磁コア2の空隙3に介在して磁気検出を行う磁気検出素子10が設けられ、電流バー5に流れる電流信号を検出する基板4とを有する。   FIG. 1 is a perspective view showing a configuration of a current sensor 1 according to an embodiment of the present invention. FIG. 2 is a side view of the current sensor 1 shown in FIG. 1 as viewed from the X direction. FIG. 3 is a plan view showing an example of the substrate 4 interposed in the gap 3 shown in FIG. As shown in FIGS. 1 to 3, the current sensor 1 includes a magnetism collecting core 2 formed so as to surround a current bar 5 through which an electric current flows, and a magnetism that performs magnetic detection via a gap 3 in the magnetism collecting core 2. A detection element 10 is provided and has a substrate 4 that detects a current signal flowing in the current bar 5.

電流バー5は、3つの部分電流バー6,7,8が順次結合された一連の部分電流バーであり、各部分電流バー6,7,8は、空隙3を、X方向、Y方向、−X方向の3方向から囲むように配置される。電流バー5は、集磁コア2の+Y方向に配置され、集磁コア2の−Y方向には配置されないため、電流センサ1の配置スペースを小さくすることができる。   The current bar 5 is a series of partial current bars in which three partial current bars 6, 7, and 8 are sequentially coupled, and each partial current bar 6, 7, and 8 passes through the gap 3 in the X direction, the Y direction, − It arrange | positions so that it may surround from three directions of X direction. Since the current bar 5 is arranged in the + Y direction of the magnetic flux collecting core 2 and is not arranged in the −Y direction of the magnetic flux collecting core 2, the arrangement space of the current sensor 1 can be reduced.

集磁コア2の中央開口2aを貫通する部分電流バー7は、集磁コア2に垂直にX方向に貫通し、貫通部分の部分電流バー7は直線形状である。また、集磁コア2の中央開口2aを貫通する部分電流バー7の軸C2は、集磁コア2の中心軸Cを貫通する。これにより、部分電流バー7を流れる電流によって生成される磁束は、効率的に集磁コア2内に形成される。また、各部分電流バー6,7,8の軸C1,C2,C3に囲まれる平面Sは、空隙3の空隙空間E3を通過するように配置される。   The partial current bar 7 penetrating through the central opening 2a of the magnetic flux collecting core 2 penetrates in the X direction perpendicular to the magnetic flux collecting core 2, and the partial current bar 7 at the penetrating portion has a linear shape. Further, the axis C <b> 2 of the partial current bar 7 that passes through the central opening 2 a of the magnetic flux collecting core 2 passes through the central axis C of the magnetic flux collecting core 2. Thereby, the magnetic flux generated by the current flowing through the partial current bar 7 is efficiently formed in the magnetic flux collecting core 2. The plane S surrounded by the axes C1, C2, C3 of the partial current bars 6, 7, 8 is arranged so as to pass through the gap space E3 of the gap 3.

図3に示すように、基板4上には磁気検出素子10が設けられ、基板4は空隙3内に配置される。磁気検出素子10は、基板4上に形成されたコイルパターン21である。コイルパターン21は、空隙3の空隙空間E3内に配置される。コイルパターン21は、空隙3内の磁束変化を誘導電圧として検出する。図3では、コイルパターン21は、図上、右巻きで同一方向に巻かれ、上下に配置された2つのコイルパターンで形成されている。上部に配置された1つのコイルパターンと、下部に配置され、基板4の内部に形成された他の1つのコイルパターンとは、ビア22aで接続される。コイルパターン21は、インダクタンスを高くすると磁気検出感度が増すため、コイルパターン数は多い方が好ましい。コイルパターン21の端子22b,22cは、空隙3に覆われない領域に形成された端子22d,22eにそれぞれ接続線23a,23bを介して接続される。端子22b,22c,22d,22eは、ビアであり、接続線23a,23bは基板4の内部に形成される。   As shown in FIG. 3, the magnetic detection element 10 is provided on the substrate 4, and the substrate 4 is disposed in the gap 3. The magnetic detection element 10 is a coil pattern 21 formed on the substrate 4. The coil pattern 21 is disposed in the gap space E3 of the gap 3. The coil pattern 21 detects a magnetic flux change in the air gap 3 as an induced voltage. In FIG. 3, the coil pattern 21 is formed by two coil patterns that are wound in the same direction by right-hand winding in the drawing and are arranged vertically. One coil pattern arranged in the upper part and another one coil pattern arranged in the lower part and formed inside the substrate 4 are connected by a via 22a. The coil pattern 21 preferably has a larger number of coil patterns because the magnetic detection sensitivity increases when the inductance is increased. The terminals 22b and 22c of the coil pattern 21 are connected to terminals 22d and 22e formed in regions not covered by the gap 3 via connection lines 23a and 23b, respectively. The terminals 22b, 22c, 22d, and 22e are vias, and the connection lines 23a and 23b are formed inside the substrate 4.

なお、基板4内には、図示しない信号処理回路を設けてもよい。信号処理回路は、基板4の空隙3外で端子22d,22eを介して磁気検出素子10に接続される。信号処理回路は、例えば、図示しないフィルタ回路、増幅回路、及び出力回路を有する。フィルタ回路は、ローパスフィルタであり、磁気検出素子10から出力される電流信号から高周波成分を除去し、電流バー5を流れる50Hzや60Hzの商用周波数成分を透過させる。増幅回路は、フィルタ回路で透過した電流信号を増幅する。出力回路は、増幅回路で増幅された電流信号を外部出力する。   A signal processing circuit (not shown) may be provided in the substrate 4. The signal processing circuit is connected to the magnetic detection element 10 via the terminals 22 d and 22 e outside the gap 3 of the substrate 4. The signal processing circuit includes, for example, a filter circuit, an amplifier circuit, and an output circuit (not shown). The filter circuit is a low-pass filter, removes high frequency components from the current signal output from the magnetic detection element 10, and transmits commercial frequency components of 50 Hz and 60 Hz flowing through the current bar 5. The amplifier circuit amplifies the current signal transmitted through the filter circuit. The output circuit outputs the current signal amplified by the amplifier circuit to the outside.

図4は、平行配置される部分電流バー6,8に流れる電流によって生成される磁束の状態を示す図である。図4に示すように、互いに異なる方向の電流が流れる平行線間では、各部分電流バー6,8が生成する磁束が合成され、部分電流バー6,8間では磁束密度の高い領域Eが形成される。この実施の形態では、この領域Eが空隙空間E3となるように、部分電流バー6,7,8の各軸C1,C2,C3が囲む平面Sが空隙空間E3を通るように、部分電流バー6,7,8が配置される。   FIG. 4 is a diagram showing a state of magnetic flux generated by currents flowing through the partial current bars 6 and 8 arranged in parallel. As shown in FIG. 4, the magnetic fluxes generated by the partial current bars 6 and 8 are combined between parallel lines through which currents in different directions flow, and a region E having a high magnetic flux density is formed between the partial current bars 6 and 8. Is done. In this embodiment, the partial current bar is such that the plane S surrounded by the axes C1, C2, and C3 of the partial current bars 6, 7, and 8 passes through the gap space E3 so that the region E becomes the gap space E3. 6, 7, 8 are arranged.

領域Eが集磁コア2の空隙3以外のコア部分となると、このコア部分が磁気飽和してしまうが、本実施の形態では、領域Eが空隙空間E3となり、空隙空間E3を形成する空気の透磁率は低いため、磁気飽和しにくくなる。   When the region E becomes a core portion other than the air gap 3 of the magnetic flux collecting core 2, the core portion is magnetically saturated. In the present embodiment, the region E becomes the air gap space E3, and the air forming the air gap space E3 Since the magnetic permeability is low, magnetic saturation is difficult.

図5は、電流バー5に流れる電流Iに対する磁気検出素子10が検出する検出電流iの関係を示す図である。図5に示すように、検出電流iは、集磁コア2が磁気飽和する、電流バー5に流れる電流Isを超えると、検出電流iも検出電流isで飽和し、電流計測範囲が狭くなる。しかし、本実施の形態では、電流バー5によって形成される磁束密度の高い領域Eが空隙空間E3となるため、集磁コア2の磁気飽和の影響を抑え、電流バー5に流れる電流Iに対する検出電流iの直線性の高い計測範囲を広げた状態で維持することができる。   FIG. 5 is a diagram showing the relationship of the detection current i detected by the magnetic detection element 10 with respect to the current I flowing through the current bar 5. As shown in FIG. 5, when the detected current i exceeds the current Is flowing through the current bar 5 where the magnetic collecting core 2 is magnetically saturated, the detected current i is also saturated with the detected current is, and the current measurement range is narrowed. However, in the present embodiment, since the region E having a high magnetic flux density formed by the current bar 5 becomes the gap space E3, the influence of magnetic saturation of the magnetic flux collecting core 2 is suppressed, and detection of the current I flowing through the current bar 5 is detected. The measurement range with high linearity of the current i can be maintained in an expanded state.

なお、図1では、部分電流バー7が集磁コア2の中央開口2aを貫通するようにしていたが、これに限らず、図6に示すように、部分電流バー6が集磁コア2の中央開口2aを貫通する電流センサ1aとしてもよい。これにより、集磁コア2に対する電流バー5の配置を柔軟に行うことができる。なお、部分電流バー8を集磁コア2の中央開口2aを貫通するようにしてもよい。この場合、電流バー5は、集磁コア2に対してX方向に配置されることになる。   In FIG. 1, the partial current bar 7 passes through the central opening 2 a of the magnetic collecting core 2. However, the present invention is not limited to this, and the partial current bar 6 is connected to the magnetic collecting core 2 as shown in FIG. 6. It is good also as the current sensor 1a which penetrates the center opening 2a. Thereby, arrangement | positioning of the electric current bar 5 with respect to the magnetic collection core 2 can be performed flexibly. The partial current bar 8 may pass through the central opening 2 a of the magnetic flux collecting core 2. In this case, the current bar 5 is arranged in the X direction with respect to the magnetic core 2.

また、図7に示す電流センサ1bのように、空隙3が図1に示した電流センサ1の空隙3に比して−Z方向に偏って配置される場合、部分電流バー6,7,8の各軸C1,C2,C3によって囲まれる平面Sを−Z方向に傾かせ空隙空間E3を通るように部分電流バー6,8を配置する。   Further, as in the current sensor 1 b shown in FIG. 7, when the gap 3 is arranged in the −Z direction as compared with the gap 3 of the current sensor 1 shown in FIG. 1, the partial current bars 6, 7, 8 are arranged. The partial current bars 6 and 8 are arranged so that the plane S surrounded by the axes C1, C2 and C3 is inclined in the −Z direction and passes through the gap space E3.

さらに、図1に示した電流センサ1は、集磁コア2に1つの空隙3を設け、この空隙3に1つの基板4を配置していたが、集磁コア2に2以上の空隙3を設け、各空隙3にそれぞれ基板4を配置して電流計測してもよい。例えば、図8及び図9に示すように、集磁コア2に2つの空隙3a,3bを設け、各空隙3a,3bにそれぞれ基板4a,4bを設けて電流計測してもよい。この場合、電流バー5の部分電流バー6,7,8は、いずれか一方の空隙空間E3、例えば空隙3bの空隙空間E3を3方向から囲むように配置される。   Further, in the current sensor 1 shown in FIG. 1, one air gap 3 is provided in the magnetic flux collecting core 2, and one substrate 4 is disposed in the air gap 3, but two or more air gaps 3 are provided in the magnetic flux collecting core 2. The current may be measured by providing the substrate 4 in each gap 3. For example, as shown in FIG. 8 and FIG. 9, two current gaps 3a and 3b may be provided in the magnetic flux collecting core 2, and substrates 4a and 4b may be provided in the air gaps 3a and 3b, respectively, to measure current. In this case, the partial current bars 6, 7, and 8 of the current bar 5 are arranged so as to surround any one of the gap spaces E3, for example, the gap space E3 of the gap 3b from three directions.

また、図10に示すように、電流バー5(部分電流バー6,7,8)の太さW2は、空隙3の幅W1を超えてもよい。この場合、部分電流バー6,7,8は、部分電流バー6,7,8の各軸C1,C2,C3が囲む平面Sが空隙空間E3を通過するように配置される。これは、磁束が集中する領域Eを空隙空間E3とすることにより、集磁コア2の磁気飽和が抑えられるからである。   Further, as shown in FIG. 10, the thickness W <b> 2 of the current bar 5 (partial current bars 6, 7, 8) may exceed the width W <b> 1 of the gap 3. In this case, the partial current bars 6, 7, and 8 are arranged so that the plane S surrounded by the axes C1, C2, and C3 of the partial current bars 6, 7, and 8 passes through the gap space E3. This is because the magnetic saturation of the magnetic flux collecting core 2 can be suppressed by setting the region E where the magnetic flux is concentrated as the gap space E3.

なお、上記の実施の形態では、各部分電流バー6,7,8が直線形状であったが、直線部分は、集磁コア2の中央開口2aを通過する部分のみであってもよい。例えば、図1に示した部分電流バー6,7の結合部分や部分電流バー7,8の結合部分は、円弧形状などで湾曲していてもよく、多段階で屈曲していてもよい。さらに、図6に示した部分電流バー7は、X方向に凸となるU字形状の電流バー5としてもよい。   In the above embodiment, each of the partial current bars 6, 7, 8 has a linear shape, but the linear portion may be only a portion that passes through the central opening 2 a of the magnetic flux collecting core 2. For example, the coupling portions of the partial current bars 6 and 7 and the coupling portions of the partial current bars 7 and 8 shown in FIG. 1 may be curved in an arc shape or may be bent in multiple stages. Furthermore, the partial current bar 7 shown in FIG. 6 may be a U-shaped current bar 5 that is convex in the X direction.

また、磁気検出素子10は、磁電変換素子の一例であり、例えば、コイル素子やコイルパターン以外にホール素子などであってもよい。   The magnetic detection element 10 is an example of a magnetoelectric conversion element, and may be, for example, a Hall element in addition to a coil element or a coil pattern.

本実施の形態では、3つの部分電流バー6,7,8が順次結合された一連の部分電流バーの各部分電流バー6,7,8が、集磁コア2に形成された1以上の空隙3,3a,3bのうちの1つの空隙3,3a,3bを3方向から囲むように配置しているので、集磁コア2を貫通する部分電流バー以外の部分電流バーによって生じる磁束密度の高い部分が透磁率の低い空隙3,3a,3bの部分となり、集磁コア2が磁気飽和しにくくなる。この結果、実施の形態では、電流センサ1,1a,1b,1c,1dが配置されるスペースが狭い場合であっても、低コストかつ広い電流測定範囲で電流計測を精度高く行うことができる。   In the present embodiment, each partial current bar 6, 7, 8 of a series of partial current bars in which the three partial current bars 6, 7, 8 are sequentially coupled has one or more gaps formed in the magnetic core 2. Since one gap 3, 3 a, 3 b of 3, 3 a, 3 b is arranged so as to surround from three directions, the magnetic flux density generated by the partial current bar other than the partial current bar penetrating the magnetic flux collecting core 2 is high. The part becomes the part of the gaps 3, 3a, 3b having a low magnetic permeability, and the magnetic flux collecting core 2 is hardly magnetically saturated. As a result, in the embodiment, even if the space where the current sensors 1, 1a, 1b, 1c, and 1d are arranged is narrow, current measurement can be performed with high accuracy in a low current and wide current measurement range.

なお、上記の電流バー5は、1つの部分電流バーが集磁コア2の中央開口2aを貫通し、先端側が屈曲し、あるいは湾曲して戻るように形成されているが、この電流バー5は、集磁コア2の空隙3から容易に挿入できるため、電流センサ1,1a〜1dの製造も容易に行うことができる。   The current bar 5 is formed such that one partial current bar passes through the central opening 2a of the magnetism collecting core 2 and the tip side is bent or bent back. The current sensors 1 and 1a to 1d can be easily manufactured because they can be easily inserted from the gap 3 of the magnetic flux collecting core 2.

(応用例:電力量計)
図11は、上記の実施の形態で示した電流センサを用いた電力量計200の一例を示すブロック図である。この電力量計200は、電源SPと負荷LDとの間の三相電力量を計測するものであり、2電力計法により求めている。なお、図12は、三相電流IR,IS,IT及び三相電圧VR,VS,VT間のベクトル図を示している。
(Application example: electricity meter)
FIG. 11 is a block diagram showing an example of a watt-hour meter 200 using the current sensor shown in the above embodiment. This watt-hour meter 200 measures the three-phase power amount between the power source SP and the load LD, and is obtained by the two-watt meter method. FIG. 12 shows a vector diagram between the three-phase currents IR, IS, IT and the three-phase voltages VR, VS, VT.

図11に示すように、電力量計200は、実施の形態で示した電流センサに対応する電流センサ100a,100b、電圧センサ201a,201b、電力量算出部202、出力部203を有する。電流センサ100aは、R相の電流信号を検出する。電流センサ100bは、T相の電流信号を検出する。また、電圧センサ201aは、R相とS相との間の電圧信号を検出する。電圧センサ201bは、T相とS相との間の電圧信号を検出する。   As illustrated in FIG. 11, the watt-hour meter 200 includes current sensors 100 a and 100 b, voltage sensors 201 a and 201 b, a power amount calculation unit 202, and an output unit 203 corresponding to the current sensors described in the embodiment. The current sensor 100a detects an R-phase current signal. The current sensor 100b detects a T-phase current signal. The voltage sensor 201a detects a voltage signal between the R phase and the S phase. The voltage sensor 201b detects a voltage signal between the T phase and the S phase.

電力量算出部202は、電流センサ100aの電流信号と電圧センサ201aの電圧信号とを乗算して瞬時電力信号を生成し、これをローパスフィルタで平滑した有効電力を求めるとともに、電流センサ100bの電流信号と電圧センサ201bの電圧信号とを乗算して瞬時電力信号を生成し、これをローパスフィルタで平滑した有効電力を求め、各有効電力を加算した有効電力を電力量として算出する。出力部203は、この算出された電力量を表示出力あるいは外部出力する。   The power amount calculation unit 202 generates an instantaneous power signal by multiplying the current signal of the current sensor 100a and the voltage signal of the voltage sensor 201a, obtains effective power obtained by smoothing the instantaneous power signal with a low-pass filter, and current of the current sensor 100b. The signal is multiplied by the voltage signal of the voltage sensor 201b to generate an instantaneous power signal, and the effective power obtained by smoothing the instantaneous power signal is obtained, and the effective power obtained by adding the effective powers is calculated as the amount of power. The output unit 203 displays or outputs the calculated power amount.

なお、2電力計法で求める三相電力Pは、
P=VRS・IR+VTS・IT
=(VR−VS)・IR+(VT−VS)・IT
=VR・IR+VS・(−IR−IT)+VT・IT
=VR・IR+VS・IS+VT・IT
となり、各相の電力を合計した電力を求めたことと同じになる。
Note that the three-phase power P obtained by the two-wattmeter method is
P = VRS ・ IR + VTS ・ IT
= (VR-VS) * IR + (VT-VS) * IT
= VR ・ IR + VS ・ (−IR−IT) + VT ・ IT
= VR ・ IR + VS ・ IS + VT ・ IT
This is the same as obtaining the total power of each phase.

また、上記の実施の形態及び応用例で図示した各構成は機能概略的なものであり、必ずしも物理的に図示の構成をされていることを要しない。すなわち、各装置及び構成要素の分散・統合の形態は図示のものに限られず、その全部又は一部を各種の使用状況などに応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。   In addition, each configuration illustrated in the above-described embodiment and application examples is functionally schematic and does not necessarily need to be physically configured as illustrated. That is, the form of distribution / integration of each device and component is not limited to the one shown in the figure, and all or a part thereof is functionally / physically distributed / integrated in arbitrary units according to various usage conditions. Can be configured.

1,1a,1b,100a,100b 電流センサ
2 集磁コア
2a 中央開口
3,3a,3b 空隙
4,4a,4b 基板
5 電流バー
6,7,8 部分電流バー
10 磁気検出素子
21 コイルパターン
22a ビア
22b,22c,22d,22e 端子
23a,23b 接続線
200 電力量計
201a,201b 電圧センサ
202 電力量算出部
203 出力部
C 中心軸
C1,C2,C3 軸
E 領域
E3 空隙空間
i 検出電流
I 電流
S 平面
W1 幅
W2 太さ
1, 1a, 1b, 100a, 100b Current sensor 2 Magnetic flux collecting core 2a Center opening 3, 3a, 3b Air gap 4, 4a, 4b Substrate 5 Current bar 6, 7, 8 Partial current bar 10 Magnetic detection element 21 Coil pattern 22a Via 22b, 22c, 22d, 22e Terminals 23a, 23b Connection line 200 Energy meter 201a, 201b Voltage sensor 202 Electric energy calculation unit 203 Output unit C Central axis C1, C2, C3 axis E region E3 Gap space i Detected current I Current S Plane W1 Width W2 Thickness

Claims (7)

検知すべき電流が流れる電流バーと、前記電流バーが貫通するとともに1以上の空隙が設けられた集磁コアと、前記1以上の空隙に設けられた1以上の磁気検出素子を有する基板とを有し、前記1以上の磁気検出素子が検出した磁気検出結果によって前記電流バーを流れる電流を検出する電流センサであって、
前記電流バーは、前記1以上の空隙のうちの1つの前記空隙を3方向から囲むように配置されることを特徴とする電流センサ。
A current bar through which a current to be detected flows, a magnetic flux collecting core that penetrates the current bar and is provided with one or more air gaps, and a substrate having one or more magnetic detection elements provided in the one or more air gaps. A current sensor for detecting a current flowing through the current bar according to a magnetic detection result detected by the one or more magnetic detection elements,
The current bar is disposed so as to surround one of the one or more gaps from three directions.
前記電流バーは、3つの部分電流バーが順次結合された一連の部分電流バーであり、各部分電流バーは、前記1以上の空隙のうちの1つの前記空隙を3方向から囲むように配置されることを特徴とする請求項1に記載の電流センサ。   The current bar is a series of partial current bars in which three partial current bars are sequentially coupled, and each partial current bar is disposed so as to surround one of the one or more gaps from three directions. The current sensor according to claim 1. 前記集磁コアを貫通する電流バーは、前記集磁コアに垂直に貫通し、貫通部分は直線形状であることを特徴とする請求項1または2に記載の電流センサ。   3. The current sensor according to claim 1, wherein the current bar penetrating the magnetism collecting core penetrates perpendicularly to the magnetism collecting core, and the penetrating portion has a linear shape. 前記集磁コアを貫通する電流バーは、前記集磁コアの中心を貫通することを特徴とする請求項1〜3のいずれか一つに記載の電流センサ。   The current sensor according to any one of claims 1 to 3, wherein a current bar passing through the magnetic flux collecting core passes through a center of the magnetic flux collecting core. 前記空隙を3方向から囲む電流バーの軸に囲まれる平面は前記空隙を通過するように配置されることを特徴とする請求項1〜4のいずれか一つに記載の電流センサ。   5. The current sensor according to claim 1, wherein a plane surrounded by an axis of a current bar surrounding the gap from three directions is arranged to pass through the gap. 前記磁気検出素子は、前記基板に形成された1以上のコイルパターンであることを特徴とする請求項1〜5のいずれか一つに記載の電流センサ。   The current sensor according to claim 1, wherein the magnetic detection element is one or more coil patterns formed on the substrate. 請求項1〜6のいずれか一つに記載した電流センサが検出した電流信号と電圧センサが検出した電圧信号とをもとに前記電流バーを流れる電力量を算出することを特徴とする電力量計。   The amount of power flowing through the current bar is calculated based on the current signal detected by the current sensor according to any one of claims 1 to 6 and the voltage signal detected by the voltage sensor. Total.
JP2018038551A 2018-03-05 2018-03-05 Current sensor and voltmeter Pending JP2019152558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018038551A JP2019152558A (en) 2018-03-05 2018-03-05 Current sensor and voltmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018038551A JP2019152558A (en) 2018-03-05 2018-03-05 Current sensor and voltmeter

Publications (1)

Publication Number Publication Date
JP2019152558A true JP2019152558A (en) 2019-09-12

Family

ID=67948870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018038551A Pending JP2019152558A (en) 2018-03-05 2018-03-05 Current sensor and voltmeter

Country Status (1)

Country Link
JP (1) JP2019152558A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023223428A1 (en) * 2022-05-17 2023-11-23 三菱電機株式会社 Electric current sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536376U (en) * 1991-10-22 1993-05-18 株式会社トーキン Current detector
JPH06130087A (en) * 1992-10-21 1994-05-13 Tokin Corp Current detector
JP2000338141A (en) * 1999-03-25 2000-12-08 Tokyo Electric Power Co Inc:The Apparatus and method for measuring voltage and apparatus and method for measuring electric energy
JP2001066328A (en) * 1999-08-27 2001-03-16 Yazaki Corp Current sensor and electric circuit using same
JP2004077184A (en) * 2002-08-12 2004-03-11 Furukawa Electric Co Ltd:The Current detecting sensor
JP2010048755A (en) * 2008-08-25 2010-03-04 Fuji Electric Systems Co Ltd Current sensor and voltmeter
JP2013250257A (en) * 2012-05-01 2013-12-12 Mitsumi Electric Co Ltd Current sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536376U (en) * 1991-10-22 1993-05-18 株式会社トーキン Current detector
JPH06130087A (en) * 1992-10-21 1994-05-13 Tokin Corp Current detector
JP2000338141A (en) * 1999-03-25 2000-12-08 Tokyo Electric Power Co Inc:The Apparatus and method for measuring voltage and apparatus and method for measuring electric energy
JP2001066328A (en) * 1999-08-27 2001-03-16 Yazaki Corp Current sensor and electric circuit using same
JP2004077184A (en) * 2002-08-12 2004-03-11 Furukawa Electric Co Ltd:The Current detecting sensor
JP2010048755A (en) * 2008-08-25 2010-03-04 Fuji Electric Systems Co Ltd Current sensor and voltmeter
JP2013250257A (en) * 2012-05-01 2013-12-12 Mitsumi Electric Co Ltd Current sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023223428A1 (en) * 2022-05-17 2023-11-23 三菱電機株式会社 Electric current sensor

Similar Documents

Publication Publication Date Title
JP2023049304A (en) Electric current sensor, and watthour meter
US8217643B2 (en) Current detector and wattmeter using the same
CA2380934C (en) Current sensor
US7157898B2 (en) Magnetic flux concentrator anti-differential current sensing topology
JP2008002876A (en) Current sensor and electronic watthour meter
WO2016080470A1 (en) Magnetic sensor, manufacturing method thereof, and the current detector using same
US8493059B2 (en) Shunt sensor and shunt sensor assembly
JP2009210406A (en) Current sensor and watthour meter
JPH02165062A (en) Current sensor
CN110546519A (en) Current measuring method and current measuring device
JP5162376B2 (en) Current sensor, watt-hour meter
JP2020510214A (en) Current converter with magnetic field gradient sensor
JP2010536011A (en) Arrangement of current measurement through a conductor
JP2010256141A (en) Current detection apparatus and watt-hour meter using the same
JP2013200253A (en) Power measurement device
JP5498136B2 (en) Current sensor
US10048298B2 (en) Thin-film sensor type electrical power measurement device
JP2019152558A (en) Current sensor and voltmeter
JP7149701B2 (en) Current sensor and electricity meter
JP2020180797A (en) Current sensor and watt-hour meter
KR100724101B1 (en) AC current sensor using air core
JP2020204524A (en) Current sensor and measuring device
JP2013053914A (en) Current measuring device
JP2008101914A (en) Current sensor and electronic watthour meter
JP7222652B2 (en) Current sensor and electricity meter

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20210215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221101

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221101

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221110

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221115

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230106

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20230117