JP4460188B2 - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
JP4460188B2
JP4460188B2 JP2001111687A JP2001111687A JP4460188B2 JP 4460188 B2 JP4460188 B2 JP 4460188B2 JP 2001111687 A JP2001111687 A JP 2001111687A JP 2001111687 A JP2001111687 A JP 2001111687A JP 4460188 B2 JP4460188 B2 JP 4460188B2
Authority
JP
Japan
Prior art keywords
coil
magnetic field
magneto
field generating
effect element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001111687A
Other languages
Japanese (ja)
Other versions
JP2002311115A (en
Inventor
一実 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2001111687A priority Critical patent/JP4460188B2/en
Publication of JP2002311115A publication Critical patent/JP2002311115A/en
Application granted granted Critical
Publication of JP4460188B2 publication Critical patent/JP4460188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は磁気インピーダンス効果素子を用いた磁界センサーに関するものである。
【0002】
【従来の技術】
アモルファス合金ワイヤとして、自発磁化の方向がワイヤ周方向に対し互いに逆方向の磁区が交互に磁壁で隔てられた構成の外殻部を有する、零磁歪乃至は負磁歪のアモルファス合金ワイヤが開発されている。
【0003】
かかる零磁歪乃至は負磁歪のアモルファス磁性ワイヤに高周波電流を通電したときに発生するワイヤ両端間出力電圧中のインダクタンス電圧分は、ワイヤの横断面内に生じる円周方向磁束によって上記の円周方向に易磁化性の外殻部が円周方向に磁化されることに起因して発生する。従って、周方向透磁率μθは同外殻部の円周方向の磁化に依存する。
而るに、この通電中のアモルファスワイヤに外部磁界を作用させると、上記通電による円周方向磁束と外部磁束との合成により、上記円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずれ、それだけ円周方向への磁化が生じ難くなり、上記周方向透磁率μθが変化する。すなわち、外部磁界が作用したときの前記磁束の周方向からのずれをφとすれば、周方向磁束がcosφ倍減少され、この回転磁化により前記μθが減少される。従って、このμθの減少により、上記インダクタンス電圧分が減少されるようになる。
【0004】
更に、上記通電電流の周波数がMHzオ−ダになると、高周波表皮効果が大きく現れ、表皮深さδ=(2ρ/wμθ)1/2(μθは前記した通り、円周方向透磁率、ρは電気抵抗率、wは角周波数)がμθにより変化し、このμθが前記した通り、外部磁界によって変化するので、ワイヤ両端間出力電圧中の抵抗電圧分も外部磁界で変動するようになる。
【0005】
そこで、外部磁界による上記インダクタンス電圧分と抵抗電圧分の双方、すなわち、ワイヤ両端間出力電圧の変動(この外部磁界による出力電圧の変動は磁気インピーダンス効果と称されている)から外部磁界を検出することが提案されている(特開平7−181239号)。
上記磁気インピーダンス効果素子自体の特性は、対称性で、かつ非直線性である。
【0006】
上記磁気インピーダンス効果素子を用いた磁界検出装置は、図5に示すように、基本的には、磁気インピーダンス効果素子1’、磁気インピーダンス効果素子1’に高周波電流またはパルス電流を通電するための発振回路部A、磁気インピーダンス効果素子1’に加わる外部磁界Hexによる磁気インピーダンス効果素子1’の両端間のインピ−ダンス変化に基づく変調波を復調して外部磁界を検波する検波部B及び測定部Cとから構成されており、負帰還磁界発生用コイル21’により負帰還をかけ、検出出力Eoを直線性にして外部磁界Hexに比例させ、また、バイアス磁界発生用コイル22’により直流バイアス磁界を加えて極性に無関係に外部磁界を検出できるようにしている。
【0007】
【発明が解決しようとする課題】
ところで、従来の磁気センサーでは、負帰還磁界発生用コイルとバイアス磁界発生用コイルとの二個の別々のコイルを磁気インピーダンス効果素子の近傍に配設しており、占有スペースが大きく、小型化に適していない。
【0008】
本発明の目的は、磁気インピーダンス効果素子を用いた磁気センサーにおいて、二重コイルの一方のコイルを負帰還磁界発生用コイルとし、他方のコイルをバイアス磁界発生用コイルとして良好に使用可能とすることにより負帰還磁界発生用コイル及びバイアス磁界発生用コイル付の磁気インピーダンス効果素子の小型化を図ることにある。。
【0009】
【課題を解決するための手段】
本発明に係る磁気センサーは、磁気インピーダンス効果素子または磁気インピーダンス効果素子取付け基板の周りに二重コイルを設け、該二重コイルの内側コイルを負帰還磁界発生用コイルとし、外側コイルをバイアス磁界発生用コイルとしたことを特徴とする構成である。
【0010】
本発明に係る前記とは別の磁気センサーは、磁気インピーダンス効果素子を基板に取付け、該磁気インピーダンス効果素子取付け基板をボビンまたはチューブに挿入し、該ボビンまたはチューブに二重にコイルを巻き付け、内側コイルを負帰還磁界発生用コイルとし、外側コイルをバイアス磁界発生用コイルとしたことを特徴とする構成である。
【0011】
本発明に係る前記とは別の磁気センサーは、磁気インピーダンス効果素子を基板に取付け、該磁気インピーダンス効果素子を保護カバーで覆い、保護カバー及び基板の周りに二重にコイルを巻き付け、内側コイルを負帰還磁界発生用コイルとし、外側コイルをバイアス磁界発生用コイルとしたことを特徴とする構成である。
【0012】
本発明に係る前記とは別の磁気センサーは、磁気インピーダンス効果素子を基板の片面にに取付け、該基板の他面に二重コイルを取付け、内側コイルを負帰還磁界発生用コイルとし、外側コイルをバイアス磁界発生用コイルとしたことを特徴とする構成であり、二重コイルには、C形コアにコイルを二重に巻き付けてなるコイルを用いることができる。
【0013】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は請求項1記載の磁気センサーを示し、この図1により本発明に係る磁気センサーの基本的構成を説明する。
図1において、1は磁気インピーダンス効果素子であり、通常、零磁歪乃至は負磁歪のアモルファスワイヤ、アモルファスリボン等が使用される。2は磁気インピーダンス効果素子1の周りに配設した二重コイルであり、内側コイル21を負帰還磁界発生用コイルとし、外側コイル22をバイアス磁界発生用コイルとしてある。
前記磁気インピーダンス効果素子に代え、磁気インピーダンス効果素子を取り付けた基板を使用してもよい。
【0014】
前記負帰還磁界発生用コイル21及びバイアス磁界発生用コイル22と磁気インピーダンス効果素子1との電気的な結合状態は、図5を用いて説明した通りである。
前記負帰還磁界発生用コイルとしての内側コイル21のインピーダンスZは、同コイルのインダクタンスをL、抵抗をRdcとすれば、
【数1】
Z=(Rdc+Lw1/2 (1)
で与えられ、負帰還電流Ifは、検出出力をEoとすれば、
【数2】
If=Eo/(Rdc+Lw1/2 (2)
で与えられ、負帰還磁界Hfは、内側コイルの断面積をSとすれば、
【数3】
Hf=IfL/S (3)
で与えられる。
上記内側コイルのインダクタンスLは、内側コイルの巻数をn、長岡係数をλ、内側コイルの内半径をa、内側コイルの長さをl、空間の透磁率をμoとすれば、
【数4】
L=λμoSn/l=λμoπa/l (4)
で与えられる。
而して、式(3)、(4)から、
【数5】
Hf=Ifλμon/l (5)
が成立する。
【0015】
本発明に係る磁気センサーにおいては、二重コイル2の内側コイル21を負帰還磁界発生用コイルとしており、この内側コイル21の内半径aが外側コイル22の内半径よりも小さく、式(4)から明らかな通り、それだけインダクタンスLが小さくされるために、式(2)から明らかな通り負帰還電流Ifが大きくされる結果、式(5)から明らかな通り、負帰還磁界Hfがそれだけ強くされる。従って、周波数(角周波数w)が高くなっても、負帰還磁界を確実にかけることができ、検出出力の確実・安定な直線化を保証できる。
他方、バイアス磁界発生用コイルにおいては、バイアス磁界が直流磁界であり、直流電源Vcc〔図5参照〕や調整抵抗〔図5におけるRx〕により設定されから、二重コイル2の外側コイル22をバイアス磁界発生用コイルとして使用することには、何ら問題がない。
従って、出力特性の直線性及び無極性を保証しつつ負帰還磁界発生用コイル及びバイアス磁界発生用コイルを共通の二重コイルで構成できる。
【0016】
図2の(イ)は、請求項2、3の磁気センサーの一実施例を示す縦断面図、図2の(ロ)は図2の(1)におけるロ−ロ断面図である。
図2において、31は絶縁基板であり、例えばセラミックス基板、ガラスエポキシ基板、紙フェノール基板等を使用できる。32,32は絶縁基板の片面に設けた電極であり、素子接続用突部321を備えている。この電極は導電ペースト、例えば、銀ペーストの印刷・焼付けにより設けることができる。1は電極32,32の突部321,321間にはんだ付けや溶接により接続した磁気インピーダンス効果素子であり、通常、零磁歪乃至は負磁歪のアモルファスワイヤ、アモルファスリボン、スパッタ膜等が使用される。33は各電極32にはんだ付けや溶接により取り付けた導体ピンである。
4はホビンであり、前記の磁気インピーダンス効果素子取付け基板を挿入してある。このホビンに代えチューブを使用することもできる。これらのボビンやチューブの材質としては、非磁性材料を使用することが好ましく、セラミックス、プラスチック、金属等を使用できる。
2はホビン4上に絶縁線を巻き付け設けた二重コイルであり、内側コイル21を負帰還磁界発生用コイルとし、外側コイル22をバイアス磁界発生用コイルとしてある。
なお、上記ボビン4内やチューブ内は樹脂で封止することもできる。
【0017】
図3の(イ)は請求項2、4の磁気センサーの一実施例を示す平面図、図3の(ロ)は同じく正面図、図3の(ハ)は図3の(ロ)におけるハ−ハ断面図である。
図3において、11は絶縁基板であり、例えばセラミックス基板、ガラスエポキシ基板、紙フェノ−ル基板等を使用できる。32,32は基板31の片面に形成した一対の電極であり、例えば、導電ぺ−ストの印刷・焼き付けにより形成できる。1は電極32,32の突部321,321間にはんだ付け、溶接等で接続した磁気インピーダンス効果素子であり、零磁歪乃至は負磁歪のアモルファス磁性ワイヤ、リボン、スパッタ膜等を使用できる。30は保護板であり、非磁性材料を使用することが好ましく、例えばセラミックス基板、ガラスエポキシ基板、紙フェノ−ル基板等を使用できる。33,33はピン導体であり、磁気インピーダンス効果素子1と保護板30との接触を防止し得る高さとしてある。2は基板31と保護板30との周りに絶縁線の巻回して設けた二重コイルであり、内側コイル21を負帰還磁界発生用コイルとし、外側コイル22をバイアス磁界発生用コイルとしてある。
なお、上記基板31と保護板30との間の空間を樹脂で封止することもできる。
【0018】
図4の(イ)は請求項5、6の磁気センサーの一実施例を示す側面図、図4の(ロ)は同じく底面図、図4の(ハ)は図4の(ロ)におけるハ−ハ断面図である。
図4において、31は絶縁基板である。32,32は絶縁基板の片面に設けた電極である。この電極は導電ペースト、例えば、銀ペーストる。1は電極32,32の突部321,321間にはんだ付けや溶接により接続した磁気インピーダンス効果素子であり、通常、零磁歪乃至は負磁歪のアモルファスワイヤ、アモルファスリボン、スパッタ膜等が使用される。33は各電極32にはんだ付けや溶接により取り付けたピン導体である。2はC形コア20に絶縁線を二重に巻き付けたコイルであり、C形コア20の両端を基板31の他面に接着剤等で固定し、内側コイル21を負帰還磁界発生用コイルとし、外側コイル22をバイアス磁界発生用コイルとしてある。
前記のC形コア30を脚部と水平部とに分割し、脚部を基板31の他面に固着しておき、C形コア水平部にコイルを二重に巻き付けた二重コイルの水平部両端を前記脚部に接着するすることもできる。
【0019】
本発明において、二重コイルとは、両端子を有する一層または多層の内側コイル上に、両端子を有する一層または多層の外側コイルを有するものであり、図示(例えば、図2)の内側一層−外側一層のみに限定されないことは言うまでもない。
【0020】
【発明の効果】
本発明においては、磁気インピーダンス効果素子に負帰還磁界発生用コイル及びバイアス磁界発生用コイルを付設する磁気センサーにおいて、二重コイルの内側コイルと外側コイルとのうち、インダクタンスの低い内側コイルを負帰還磁界発生用コイルとしているから、高い周波数帯域でも負帰還電流を充分に大きくして負帰還磁界をそれだけ強くできる結果、充分に負帰還をかけて検出特性の確実・安定な直線化を保証できる。また、二重コイルの外側コイルをバイアス磁界発生用コイルとしているが、直流電源電圧や抵抗調整により所望のバイアス磁界を印加できる。
従って、出力特性の直線性及び無極性を保証しつつ負帰還磁界発生用コイル及びバイアス磁界発生用コイルを共通の二重コイルで構成でき、コイルの小型化により磁気センサー全体の小型化を図ることができる。
【0021】
特に、請求項2〜6の磁気センサーにおいては、磁気インピーダンス効果素子を基板で補強でき、磁気インピーダンス効果素子が機械的に脆弱であるにもかかわらず、磁気センサーの円滑な製造を保証できる。
【0022】
特に、請求項5、6の磁気センサーにおいては、磁気センサーの外郭を基板の外郭にとどめることができるから、平面寸法を極めて小さくでき、より一層の小型化を図ることができる。さらに、磁気インピーダンス効果素子面を被検出体に近接させることができ、検出感度上も有利である。
【図面の簡単な説明】
【図1】請求項1の磁界センサーを示す図面である。
【図2】請求項2の磁界センサーの一実施例を示す図面である。
【図3】請求項3の磁界センサーの一実施例を示す図面である。
【図4】請求項4の磁界センサーの一実施例を示す図面である。
【図5】磁気インピーダンス効果素子を用いた磁界検出装置を示す回路図である。
【符号の説明】
1 磁気インピーダンス効果素子
2 二重コイル
20 C形コア
21 内側コイル
22 外側コイル
31 基板
30 保護カバー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic field sensor using a magnetoimpedance effect element.
[0002]
[Prior art]
As an amorphous alloy wire, an amorphous alloy wire having zero magnetostriction or negative magnetostriction has been developed, which has an outer shell portion in which magnetic domains whose spontaneous magnetization directions are opposite to each other in the circumferential direction of the wire are separated by a domain wall. Yes.
[0003]
The inductance voltage component in the output voltage between both ends of the wire generated when a high-frequency current is applied to an amorphous magnetic wire having zero magnetostriction or negative magnetostriction is generated by the circumferential magnetic flux generated in the cross section of the wire. This occurs because the easily magnetizable outer shell is magnetized in the circumferential direction. Accordingly, the circumferential magnetic permeability μθ depends on the circumferential magnetization of the outer shell.
Therefore, when an external magnetic field is applied to the energized amorphous wire, the magnetic flux acting on the outer shell portion having the easily magnetizable property in the circumferential direction is obtained by synthesizing the circumferential magnetic flux and the external magnetic flux by the energization. Is deviated from the circumferential direction and magnetization in the circumferential direction is less likely to occur, and the circumferential magnetic permeability μθ changes. In other words, if the deviation of the magnetic flux from the circumferential direction when an external magnetic field is applied is φ, the circumferential magnetic flux is reduced by cos φ, and the μθ is reduced by this rotational magnetization. Therefore, the inductance voltage is reduced by the decrease in μθ.
[0004]
Further, when the frequency of the energizing current is in the order of MHz, a high-frequency skin effect appears greatly, and the skin depth δ = (2ρ / wμθ) 1/2 (μθ is the circumferential permeability, as described above, ρ is The electrical resistivity, w is an angular frequency) changes with μθ, and this μθ changes with the external magnetic field as described above. Therefore, the resistance voltage component in the output voltage between both ends of the wire also changes with the external magnetic field.
[0005]
Therefore, the external magnetic field is detected from both the inductance voltage and the resistance voltage due to the external magnetic field, that is, the fluctuation of the output voltage between both ends of the wire (the fluctuation of the output voltage due to the external magnetic field is referred to as the magneto-impedance effect). Has been proposed (Japanese Patent Laid-Open No. 7-181239).
The characteristics of the magneto-impedance effect element itself are symmetric and non-linear.
[0006]
As shown in FIG. 5, the magnetic field detection device using the magneto-impedance effect element basically oscillates for supplying a high-frequency current or a pulse current to the magneto-impedance effect element 1 ′ and the magneto-impedance effect element 1 ′. A circuit unit A, a detection unit B for detecting an external magnetic field by demodulating a modulation wave based on an impedance change between both ends of the magneto-impedance effect device 1 ′ due to the external magnetic field Hex applied to the magneto-impedance effect device 1 ′, and a measurement unit C The negative feedback magnetic field generating coil 21 'applies negative feedback to make the detection output Eo linear and proportional to the external magnetic field Hex, and the bias magnetic field generating coil 22' applies a DC bias magnetic field. In addition, an external magnetic field can be detected regardless of the polarity.
[0007]
[Problems to be solved by the invention]
By the way, in the conventional magnetic sensor, two separate coils, a negative feedback magnetic field generating coil and a bias magnetic field generating coil, are disposed in the vicinity of the magneto-impedance effect element, which occupies a large space and is miniaturized. Not suitable.
[0008]
An object of the present invention is to make it possible to satisfactorily use one of the double coils as a negative feedback magnetic field generating coil and the other coil as a bias magnetic field generating coil in a magnetic sensor using a magneto-impedance effect element. Thus, it is intended to reduce the size of the magneto-impedance effect element with the negative feedback magnetic field generating coil and the bias magnetic field generating coil. .
[0009]
[Means for Solving the Problems]
The magnetic sensor according to the present invention is provided with a double coil around a magneto-impedance effect element or a magneto-impedance effect element mounting substrate, the inner coil of the double coil is used as a negative feedback magnetic field generating coil, and the outer coil generates a bias magnetic field. It is the structure characterized by setting it as the coil for operation.
[0010]
The magnetic sensor different from the above according to the present invention has a magneto-impedance effect element attached to a substrate, the magneto-impedance effect element attachment substrate is inserted into a bobbin or a tube, and a coil is wound around the bobbin or the tube twice. The coil is a negative feedback magnetic field generating coil, and the outer coil is a bias magnetic field generating coil.
[0011]
A magnetic sensor different from the above according to the present invention includes a magneto-impedance effect element mounted on a substrate, the magneto-impedance effect element covered with a protective cover, and a coil wound twice around the protective cover and the substrate. The negative feedback magnetic field generating coil is used, and the outer coil is a bias magnetic field generating coil.
[0012]
A magnetic sensor different from the above according to the present invention has a magneto-impedance effect element mounted on one surface of a substrate, a double coil mounted on the other surface of the substrate, an inner coil serving as a negative feedback magnetic field generating coil, and an outer coil. Is a coil for generating a bias magnetic field, and the double coil can be a coil formed by winding a coil around a C-shaped core.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a magnetic sensor according to claim 1, and the basic configuration of the magnetic sensor according to the present invention will be described with reference to FIG. 1.
In FIG. 1, reference numeral 1 denotes a magneto-impedance effect element, and normally an amorphous wire or amorphous ribbon having zero magnetostriction or negative magnetostriction is used. Reference numeral 2 denotes a double coil disposed around the magneto-impedance effect element 1, wherein the inner coil 21 is a negative feedback magnetic field generating coil and the outer coil 22 is a bias magnetic field generating coil.
Instead of the magneto-impedance effect element, a substrate on which the magneto-impedance effect element is attached may be used.
[0014]
The electrical coupling state of the negative feedback magnetic field generating coil 21 and bias magnetic field generating coil 22 and the magneto-impedance effect element 1 is as described with reference to FIG.
The impedance Z of the inner coil 21 as the negative feedback magnetic field generating coil is such that the inductance of the coil is L and the resistance is Rdc.
[Expression 1]
Z = (Rdc 2 + Lw 2 ) 1/2 (1)
If the detection output is Eo, the negative feedback current If is given by
[Expression 2]
If = Eo / (Rdc 2 + Lw 2 ) 1/2 (2)
If the cross-sectional area of the inner coil is S, the negative feedback magnetic field Hf is given by
[Equation 3]
Hf = IfL / S (3)
Given in.
The inductance L of the inner coil is as follows: n is the number of turns of the inner coil, λ is the Nagaoka coefficient, a is the inner radius of the inner coil, l is the length of the inner coil, and μo is the magnetic permeability of the space.
[Expression 4]
L = λμoSn 2 / l = λμoπa 2 n 2 / l (4)
Given in.
Thus, from equations (3) and (4),
[Equation 5]
Hf = Ifλμon 2 / l (5)
Is established.
[0015]
In the magnetic sensor according to the present invention, the inner coil 21 of the double coil 2 is used as a negative feedback magnetic field generating coil. The inner radius a of the inner coil 21 is smaller than the inner radius of the outer coil 22, and the equation (4) As can be seen from FIG. 5, since the inductance L is reduced accordingly, the negative feedback current If is increased as apparent from the equation (2). As a result, as shown in the equation (5), the negative feedback magnetic field Hf is increased accordingly. The Therefore, even if the frequency (angular frequency w) increases, a negative feedback magnetic field can be applied reliably, and a reliable and stable linearization of the detection output can be guaranteed.
On the other hand, in the bias magnetic field generating coil, the bias magnetic field is a DC magnetic field, and is set by the DC power source Vcc [see FIG. 5] or the adjusting resistor [Rx in FIG. 5], so that the outer coil 22 of the double coil 2 is biased. There is no problem in using it as a magnetic field generating coil.
Therefore, the negative feedback magnetic field generating coil and the bias magnetic field generating coil can be constituted by a common double coil while guaranteeing the linearity and nonpolarity of the output characteristics.
[0016]
2 (a) is a longitudinal sectional view showing an embodiment of the magnetic sensor of claims 2 and 3, and FIG. 2 (b) is a roll sectional view in FIG. 2 (1).
In FIG. 2, 31 is an insulating substrate, and for example, a ceramic substrate, a glass epoxy substrate, a paper phenol substrate or the like can be used. Reference numerals 32 and 32 are electrodes provided on one side of the insulating substrate, and are provided with an element connecting projection 321. This electrode can be provided by printing and baking a conductive paste, for example, a silver paste. A magneto-impedance effect element 1 is connected between the protrusions 321 and 321 of the electrodes 32 and 32 by soldering or welding. Usually, zero magnetostrictive or negative magnetostrictive amorphous wire, amorphous ribbon, sputtered film, or the like is used. . Reference numeral 33 denotes a conductor pin attached to each electrode 32 by soldering or welding.
4 is a hobbin into which the magneto-impedance effect element mounting substrate is inserted. A tube can be used instead of this hobbin. As the material of these bobbins and tubes, nonmagnetic materials are preferably used, and ceramics, plastics, metals, and the like can be used.
Reference numeral 2 denotes a double coil in which an insulating wire is wound around the hobbin 4. The inner coil 21 is a negative feedback magnetic field generating coil and the outer coil 22 is a bias magnetic field generating coil.
The inside of the bobbin 4 or the tube can be sealed with resin.
[0017]
3A is a plan view showing an embodiment of the magnetic sensor of claims 2 and 4, FIG. 3B is a front view, and FIG. 3C is a front view of FIG. -It is C sectional drawing.
In FIG. 3, reference numeral 11 denotes an insulating substrate. For example, a ceramic substrate, a glass epoxy substrate, a paper phenol substrate, or the like can be used. 32 and 32 are a pair of electrodes formed on one side of the substrate 31, and can be formed, for example, by printing and baking a conductive paste. Reference numeral 1 denotes a magneto-impedance effect element connected by soldering, welding or the like between the protrusions 321 and 321 of the electrodes 32 and 32, and an amorphous magnetic wire, ribbon, sputtered film or the like having zero or negative magnetostriction can be used. Reference numeral 30 denotes a protective plate, and it is preferable to use a nonmagnetic material. For example, a ceramic substrate, a glass epoxy substrate, a paper phenol substrate, or the like can be used. Reference numerals 33 and 33 denote pin conductors having a height capable of preventing contact between the magneto-impedance effect element 1 and the protection plate 30. Reference numeral 2 denotes a double coil provided by winding an insulating wire around the substrate 31 and the protective plate 30. The inner coil 21 is a negative feedback magnetic field generating coil and the outer coil 22 is a bias magnetic field generating coil.
The space between the substrate 31 and the protective plate 30 can be sealed with resin.
[0018]
4 (a) is a side view showing an embodiment of the magnetic sensor of claims 5 and 6, FIG. 4 (b) is a bottom view, and FIG. 4 (c) is a diagram in FIG. -It is C sectional drawing.
In FIG. 4, 31 is an insulating substrate. 32 and 32 are electrodes provided on one side of the insulating substrate. This electrode is a conductive paste, for example, a silver paste. A magneto-impedance effect element 1 is connected between the protrusions 321 and 321 of the electrodes 32 and 32 by soldering or welding. Usually, zero magnetostrictive or negative magnetostrictive amorphous wire, amorphous ribbon, sputtered film, or the like is used. . Reference numeral 33 denotes a pin conductor attached to each electrode 32 by soldering or welding. Reference numeral 2 denotes a coil in which an insulation wire is wound around the C-shaped core 20. Both ends of the C-shaped core 20 are fixed to the other surface of the substrate 31 with an adhesive or the like, and the inner coil 21 is used as a negative feedback magnetic field generating coil. The outer coil 22 is used as a bias magnetic field generating coil.
The C-shaped core 30 is divided into a leg part and a horizontal part, the leg part is fixed to the other surface of the substrate 31, and a horizontal part of a double coil in which the coil is wound around the C-shaped core horizontal part. Both ends can be bonded to the leg.
[0019]
In the present invention, the double coil means a single-layer or multi-layer outer coil having both terminals on a single-layer or multi-layer inner coil having both terminals. It goes without saying that it is not limited to only the outer layer.
[0020]
【The invention's effect】
In the present invention, in a magnetic sensor in which a negative feedback magnetic field generating coil and a bias magnetic field generating coil are attached to a magneto-impedance effect element, an inner coil having a low inductance is negatively fed back from an inner coil and an outer coil of a double coil. Since the magnetic field generating coil is used, the negative feedback current can be sufficiently increased even in a high frequency band to increase the negative feedback magnetic field. As a result, the negative feedback can be sufficiently applied to guarantee a reliable and stable linearization of the detection characteristics. Further, although the outer coil of the double coil is used as a bias magnetic field generating coil, a desired bias magnetic field can be applied by adjusting the DC power supply voltage or resistance.
Therefore, the negative feedback magnetic field generating coil and the bias magnetic field generating coil can be configured with a common double coil while guaranteeing the linearity and non-polarity of the output characteristics, and the entire magnetic sensor can be downsized by reducing the size of the coil. Can do.
[0021]
In particular, in the magnetic sensor of claims 2 to 6, the magneto-impedance effect element can be reinforced with the substrate, and the smooth production of the magnetic sensor can be ensured even though the magneto-impedance effect element is mechanically fragile.
[0022]
In particular, in the magnetic sensor according to the fifth and sixth aspects, since the outline of the magnetic sensor can be limited to the outline of the substrate, the planar dimension can be made extremely small, and further miniaturization can be achieved. Furthermore, the magneto-impedance effect element surface can be brought close to the detection object, which is advantageous in terms of detection sensitivity.
[Brief description of the drawings]
FIG. 1 is a view showing a magnetic field sensor according to claim 1;
FIG. 2 is a drawing showing an embodiment of a magnetic field sensor according to claim 2;
FIG. 3 is a view showing an embodiment of a magnetic field sensor according to claim 3;
FIG. 4 is a view showing an embodiment of a magnetic field sensor according to claim 4;
FIG. 5 is a circuit diagram showing a magnetic field detection device using a magneto-impedance effect element.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Magneto-impedance effect element 2 Double coil 20 C-shaped core 21 Inner coil 22 Outer coil 31 Substrate 30 Protective cover

Claims (6)

磁気インピーダンス効果素子の周りに二重コイルを設け、該二重コイルの内側コイルを負帰還磁界発生用コイルとし、外側コイルをバイアス磁界発生用コイルとしたことを特徴とする磁気センサー。A magnetic sensor comprising a double coil around a magneto-impedance effect element, an inner coil of the double coil serving as a negative feedback magnetic field generating coil, and an outer coil serving as a bias magnetic field generating coil. 磁気インピーダンス効果素子を基板に取付け、該磁気インピーダンス効果素子取付け基板の周りに二重コイルを設け、該二重コイルの内側コイルを負帰還磁界発生用コイルとし、外側コイルをバイアス磁界発生用コイルとしたことを特徴とする磁気センサー。A magneto-impedance effect element is attached to a substrate, a double coil is provided around the magneto-impedance effect element attachment substrate, an inner coil of the double coil is a negative feedback magnetic field generating coil, and an outer coil is a bias magnetic field generating coil Magnetic sensor characterized by that. 磁気インピーダンス効果素子を基板に取付け、該磁気インピーダンス効果素子取付け基板をボビンまたはチューブに挿入し、該ボビンまたはチューブに二重にコイルを巻き付け、内側コイルを負帰還磁界発生用コイルとし、外側コイルをバイアス磁界発生用コイルとしたことを特徴とする磁気センサー。A magneto-impedance effect element is attached to a substrate, the magneto-impedance effect element attachment substrate is inserted into a bobbin or tube, a coil is wound twice around the bobbin or tube, an inner coil is used as a negative feedback magnetic field generating coil, and an outer coil is A magnetic sensor characterized by being a bias magnetic field generating coil. 磁気インピーダンス効果素子を基板に取付け、該磁気インピーダンス効果素子を保護カバーで覆い、保護カバー及び基板の周りに二重にコイルを巻き付け、内側コイルを負帰還磁界発生用コイルとし、外側コイルをバイアス磁界発生用コイルとしたことを特徴とする磁気センサー。A magneto-impedance effect element is attached to the substrate, the magneto-impedance effect element is covered with a protective cover, a coil is wound around the protective cover and the substrate, the inner coil is used as a negative feedback magnetic field generating coil, and the outer coil is a bias magnetic field. A magnetic sensor characterized by being a generating coil. 磁気インピーダンス効果素子を基板の片面にに取付け、該基板の他面に二重コイルを取付け、内側コイルを負帰還磁界発生用コイルとし、外側コイルをバイアス磁界発生用コイルとしたことを特徴とする磁気センサー。The magneto-impedance effect element is attached to one side of the substrate, the double coil is attached to the other side of the substrate, the inner coil is a negative feedback magnetic field generating coil, and the outer coil is a bias magnetic field generating coil. Magnetic sensor. 二重コイルに、C形コアにコイルを二重に巻き付けたコイルを使用した請求項5記載の磁気センサー。6. The magnetic sensor according to claim 5, wherein the double coil is a coil in which a coil is wound around a C-shaped core.
JP2001111687A 2001-04-10 2001-04-10 Magnetic sensor Expired - Fee Related JP4460188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001111687A JP4460188B2 (en) 2001-04-10 2001-04-10 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001111687A JP4460188B2 (en) 2001-04-10 2001-04-10 Magnetic sensor

Publications (2)

Publication Number Publication Date
JP2002311115A JP2002311115A (en) 2002-10-23
JP4460188B2 true JP4460188B2 (en) 2010-05-12

Family

ID=18963245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001111687A Expired - Fee Related JP4460188B2 (en) 2001-04-10 2001-04-10 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP4460188B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195446A (en) * 2004-01-07 2005-07-21 Fuji Electric Holdings Co Ltd Watt hour meter
JP4808411B2 (en) * 2005-01-27 2011-11-02 双日マシナリー株式会社 Magnetic field detection circuit
JP4808410B2 (en) * 2005-01-27 2011-11-02 双日マシナリー株式会社 Magnetic field detection circuit

Also Published As

Publication number Publication date
JP2002311115A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
US20060226826A1 (en) Magnetic field sensor and electrical current sensor therewith
TWI259284B (en) Magnet, impedance and sensor device having electromagnetic coil
KR20010096553A (en) Magnetic field detection device
JP4247821B2 (en) Current sensor
JP2007303860A (en) Magnetic device
JP4307695B2 (en) Magnetic detection device and magnetic field detection method
JP2009180608A (en) Ic chip type current sensor
JP4460188B2 (en) Magnetic sensor
JP3634281B2 (en) Magneto-impedance effect sensor
JP2005055326A (en) Conductor current measurement method and magnetic field sensor for measuring conductor current
JP4878903B2 (en) Magnetic sensor for pillar transformer diagnosis
JP2002286822A (en) Magnetic sensor
US20040027120A1 (en) Printed circuit fluxgate sensor
EP1057136B1 (en) Induction sensor
JP2001343438A (en) Magnetic sensor
JP2001228228A (en) Magnetic detecting element and device
JP6451362B2 (en) Magnetoresistive device
JPH1090381A (en) Magnetism detecting element
JPS6041474B2 (en) signal transmission element
US6057683A (en) Induction sensor having conductive concentrator with measuring gap
JPH01240867A (en) Current detector
JP2006112813A (en) Current sensor and current detection unit using it
JPS58148978A (en) Magnetic detecting element
JPH06221936A (en) Dynamic value sensor
US4136370A (en) Magnetic film sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100212

R150 Certificate of patent or registration of utility model

Ref document number: 4460188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees