JP2002311115A - Magnetic sensor - Google Patents

Magnetic sensor

Info

Publication number
JP2002311115A
JP2002311115A JP2001111687A JP2001111687A JP2002311115A JP 2002311115 A JP2002311115 A JP 2002311115A JP 2001111687 A JP2001111687 A JP 2001111687A JP 2001111687 A JP2001111687 A JP 2001111687A JP 2002311115 A JP2002311115 A JP 2002311115A
Authority
JP
Japan
Prior art keywords
coil
magnetic field
generating
effect element
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001111687A
Other languages
Japanese (ja)
Other versions
JP4460188B2 (en
Inventor
Kazumi Toyoda
一実 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2001111687A priority Critical patent/JP4460188B2/en
Publication of JP2002311115A publication Critical patent/JP2002311115A/en
Application granted granted Critical
Publication of JP4460188B2 publication Critical patent/JP4460188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To satisfactorily use a double coil one of which is used for a feedback magnetic field generating coil and the other of which is used for a bias magnetic field generating coil, thereby reducing the size of a magnetic impedance effect element having a feedback magnetic field generating coil and a bias magnetic field generating coil. SOLUTION: A double coil 2 is provided around a magnetic impedance effect element 1 and an inside and outside coils 21, 22 of the double coil 2 are used as a feedback magnetic field generating coil and a bias magnetic field generating coil, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気インピーダンス
効果素子を用いた磁界センサーに関するものである。
The present invention relates to a magnetic field sensor using a magneto-impedance effect element.

【0002】[0002]

【従来の技術】アモルファス合金ワイヤとして、自発磁
化の方向がワイヤ周方向に対し互いに逆方向の磁区が交
互に磁壁で隔てられた構成の外殻部を有する、零磁歪乃
至は負磁歪のアモルファス合金ワイヤが開発されてい
る。
2. Description of the Related Art As an amorphous alloy wire, a zero magnetostrictive or negative magnetostrictive amorphous alloy having an outer shell portion in which magnetic domains whose spontaneous magnetization directions are opposite to each other in the circumferential direction of the wire are alternately separated by domain walls. Wire is being developed.

【0003】かかる零磁歪乃至は負磁歪のアモルファス
磁性ワイヤに高周波電流を通電したときに発生するワイ
ヤ両端間出力電圧中のインダクタンス電圧分は、ワイヤ
の横断面内に生じる円周方向磁束によって上記の円周方
向に易磁化性の外殻部が円周方向に磁化されることに起
因して発生する。従って、周方向透磁率μθは同外殻部
の円周方向の磁化に依存する。而るに、この通電中のア
モルファスワイヤに外部磁界を作用させると、上記通電
による円周方向磁束と外部磁束との合成により、上記円
周方向に易磁化性を有する外殻部に作用する磁束の方向
が円周方向からずれ、それだけ円周方向への磁化が生じ
難くなり、上記周方向透磁率μθが変化する。すなわ
ち、外部磁界が作用したときの前記磁束の周方向からの
ずれをφとすれば、周方向磁束がcosφ倍減少され、こ
の回転磁化により前記μθが減少される。従って、この
μθの減少により、上記インダクタンス電圧分が減少さ
れるようになる。
[0003] The inductance voltage component in the output voltage across the wire generated when a high-frequency current is applied to the zero-magnetostriction or negative-magnetostriction amorphous magnetic wire is determined by the circumferential magnetic flux generated in the cross section of the wire. This occurs due to the circumferentially magnetizable outer shell being magnetized in the circumferential direction. Therefore, the circumferential magnetic permeability μθ depends on the circumferential magnetization of the outer shell. When an external magnetic field is applied to the energized amorphous wire, the magnetic flux acting on the outer shell portion having the magnetizability in the circumferential direction is obtained by combining the circumferential magnetic flux and the external magnetic flux by the energization. Is deviated from the circumferential direction, so that magnetization in the circumferential direction becomes less likely to occur, and the circumferential magnetic permeability μθ changes. That is, if the deviation of the magnetic flux from the circumferential direction when an external magnetic field acts is φ, the circumferential magnetic flux is reduced by a factor of cosφ, and the rotational magnetization reduces μθ. Accordingly, the decrease in μθ reduces the inductance voltage.

【0004】更に、上記通電電流の周波数がMHzオ−ダ
になると、高周波表皮効果が大きく現れ、表皮深さδ=
(2ρ/wμθ)1/2(μθは前記した通り、円周方
向透磁率、ρは電気抵抗率、wは角周波数)がμθにより
変化し、このμθが前記した通り、外部磁界によって変
化するので、ワイヤ両端間出力電圧中の抵抗電圧分も外
部磁界で変動するようになる。
[0004] Further, when the frequency of the energizing current is on the order of MHz, a high-frequency skin effect appears greatly, and the skin depth δ =
(2ρ / wμθ) 1/2 (as Myushita is mentioned above, circumferential permeability, [rho is the electrical resistivity, w is the angular frequency) is changed by Myushita, as this Myushita has said, it varies with an external magnetic field Therefore, the resistance voltage in the output voltage across the wire also fluctuates due to the external magnetic field.

【0005】そこで、外部磁界による上記インダクタン
ス電圧分と抵抗電圧分の双方、すなわち、ワイヤ両端間
出力電圧の変動(この外部磁界による出力電圧の変動は
磁気インピーダンス効果と称されている)から外部磁界
を検出することが提案されている(特開平7−1812
39号)。上記磁気インピーダンス効果素子自体の特性
は、対称性で、かつ非直線性である。
Therefore, both the inductance voltage and the resistance voltage due to the external magnetic field, that is, the fluctuation of the output voltage between both ends of the wire (the fluctuation of the output voltage due to the external magnetic field is called a magneto-impedance effect). (Japanese Patent Laid-Open No. 7-1812)
No. 39). The characteristics of the magneto-impedance effect element itself are symmetric and non-linear.

【0006】上記磁気インピーダンス効果素子を用いた
磁界検出装置は、図5に示すように、基本的には、磁気
インピーダンス効果素子1’、磁気インピーダンス効果
素子1’に高周波電流またはパルス電流を通電するため
の発振回路部A、磁気インピーダンス効果素子1’に加
わる外部磁界Hexによる磁気インピーダンス効果素子
1’の両端間のインピ−ダンス変化に基づく変調波を復
調して外部磁界を検波する検波部B及び測定部Cとから
構成されており、負帰還磁界発生用コイル21’により
負帰還をかけ、検出出力Eoを直線性にして外部磁界He
xに比例させ、また、バイアス磁界発生用コイル22’
により直流バイアス磁界を加えて極性に無関係に外部磁
界を検出できるようにしている。
As shown in FIG. 5, the magnetic field detecting device using the above-described magneto-impedance effect element basically supplies a high-frequency current or a pulse current to the magneto-impedance effect element 1 'and the magneto-impedance effect element 1'. Circuit section A, a detecting section B for demodulating a modulated wave based on a change in impedance between both ends of the magneto-impedance effect element 1 'due to an external magnetic field Hex applied to the magneto-impedance element 1', and detecting an external magnetic field; And a negative feedback magnetic field generating coil 21 ′ to make the detection output Eo linear and to provide an external magnetic field He.
x, and a bias magnetic field generating coil 22 ′
Thus, an external magnetic field can be detected regardless of the polarity by applying a DC bias magnetic field.

【0007】[0007]

【発明が解決しようとする課題】ところで、従来の磁気
センサーでは、負帰還磁界発生用コイルとバイアス磁界
発生用コイルとの二個の別々のコイルを磁気インピーダ
ンス効果素子の近傍に配設しており、占有スペースが大
きく、小型化に適していない。
By the way, in the conventional magnetic sensor, two separate coils, a negative feedback magnetic field generating coil and a bias magnetic field generating coil, are arranged near the magneto-impedance effect element. Occupies a large space and is not suitable for miniaturization.

【0008】本発明の目的は、磁気インピーダンス効果
素子を用いた磁気センサーにおいて、二重コイルの一方
のコイルを負帰還磁界発生用コイルとし、他方のコイル
をバイアス磁界発生用コイルとして良好に使用可能とす
ることにより負帰還磁界発生用コイル及びバイアス磁界
発生用コイル付の磁気インピーダンス効果素子の小型化
を図ることにある。。
An object of the present invention is to provide a magnetic sensor using a magneto-impedance effect element, in which one of the double coils can be used favorably as a coil for generating a negative feedback magnetic field and the other coil as a coil for generating a bias magnetic field. Accordingly, the size of the magneto-impedance element with the negative feedback magnetic field generating coil and the bias magnetic field generating coil can be reduced. .

【0009】[0009]

【課題を解決するための手段】本発明に係る磁気センサ
ーは、磁気インピーダンス効果素子または磁気インピー
ダンス効果素子取付け基板の周りに二重コイルを設け、
該二重コイルの内側コイルを負帰還磁界発生用コイルと
し、外側コイルをバイアス磁界発生用コイルとしたこと
を特徴とする構成である。
According to the magnetic sensor of the present invention, a double coil is provided around a magneto-impedance element or a magneto-impedance element mounting substrate.
The inner coil of the double coil is a coil for generating a negative feedback magnetic field, and the outer coil is a coil for generating a bias magnetic field.

【0010】本発明に係る前記とは別の磁気センサー
は、磁気インピーダンス効果素子を基板に取付け、該磁
気インピーダンス効果素子取付け基板をボビンまたはチ
ューブに挿入し、該ボビンまたはチューブに二重にコイ
ルを巻き付け、内側コイルを負帰還磁界発生用コイルと
し、外側コイルをバイアス磁界発生用コイルとしたこと
を特徴とする構成である。
In another magnetic sensor according to the present invention, a magnetic impedance effect element is mounted on a substrate, the substrate on which the magnetic impedance effect element is mounted is inserted into a bobbin or tube, and a double coil is mounted on the bobbin or tube. The wound and inner coil is a coil for generating a negative feedback magnetic field, and the outer coil is a coil for generating a bias magnetic field.

【0011】本発明に係る前記とは別の磁気センサー
は、磁気インピーダンス効果素子を基板に取付け、該磁
気インピーダンス効果素子を保護カバーで覆い、保護カ
バー及び基板の周りに二重にコイルを巻き付け、内側コ
イルを負帰還磁界発生用コイルとし、外側コイルをバイ
アス磁界発生用コイルとしたことを特徴とする構成であ
る。
In another magnetic sensor according to the present invention, a magnetic impedance effect element is mounted on a substrate, the magnetic impedance effect element is covered with a protective cover, and a coil is wound twice around the protective cover and the substrate. The inner coil is a coil for generating a negative feedback magnetic field, and the outer coil is a coil for generating a bias magnetic field.

【0012】本発明に係る前記とは別の磁気センサー
は、磁気インピーダンス効果素子を基板の片面にに取付
け、該基板の他面に二重コイルを取付け、内側コイルを
負帰還磁界発生用コイルとし、外側コイルをバイアス磁
界発生用コイルとしたことを特徴とする構成であり、二
重コイルには、C形コアにコイルを二重に巻き付けてな
るコイルを用いることができる。
In another magnetic sensor according to the present invention, a magneto-impedance effect element is mounted on one surface of a substrate, a double coil is mounted on the other surface of the substrate, and the inner coil is a coil for generating a negative feedback magnetic field. And the outer coil is a coil for generating a bias magnetic field. The double coil may be a coil formed by winding a coil around a C-shaped core.

【0013】[0013]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態について説明する。図1は請求項1記載の磁
気センサーを示し、この図1により本発明に係る磁気セ
ンサーの基本的構成を説明する。図1において、1は磁
気インピーダンス効果素子であり、通常、零磁歪乃至は
負磁歪のアモルファスワイヤ、アモルファスリボン等が
使用される。2は磁気インピーダンス効果素子1の周り
に配設した二重コイルであり、内側コイル21を負帰還
磁界発生用コイルとし、外側コイル22をバイアス磁界
発生用コイルとしてある。前記磁気インピーダンス効果
素子に代え、磁気インピーダンス効果素子を取り付けた
基板を使用してもよい。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a magnetic sensor according to the first aspect, and the basic configuration of the magnetic sensor according to the present invention will be described with reference to FIG. In FIG. 1, reference numeral 1 denotes a magneto-impedance effect element, which is usually made of zero magnetostriction or negative magnetostriction amorphous wire, amorphous ribbon, or the like. Reference numeral 2 denotes a double coil disposed around the magneto-impedance effect element 1, wherein the inner coil 21 is a coil for generating a negative feedback magnetic field, and the outer coil 22 is a coil for generating a bias magnetic field. Instead of the magneto-impedance effect element, a substrate to which the magneto-impedance effect element is attached may be used.

【0014】前記負帰還磁界発生用コイル21及びバイ
アス磁界発生用コイル22と磁気インピーダンス効果素
子1との電気的な結合状態は、図5を用いて説明した通
りである。前記負帰還磁界発生用コイルとしての内側コ
イル21のインピーダンスZは、同コイルのインダクタ
ンスをL、抵抗をRdcとすれば、
The electrical coupling between the negative feedback magnetic field generating coil 21 and the bias magnetic field generating coil 22 and the magneto-impedance effect element 1 is as described with reference to FIG. The impedance Z of the inner coil 21 as the negative feedback magnetic field generating coil is as follows, where L is the inductance of the coil and Rdc is the resistance.

【数1】 Z=(Rdc+Lw1/2 (1) で与えられ、負帰還電流Ifは、検出出力をEoとすれ
ば、
[Number 1] is given by Z = (Rdc 2 + Lw 2 ) 1/2 (1), the negative feedback current If, when the detection output Eo,

【数2】 If=Eo/(Rdc+Lw1/2 (2) で与えられ、負帰還磁界Hfは、内側コイルの断面積を
Sとすれば、
[Number 2] is given by If = Eo / (Rdc 2 + Lw 2) 1/2 (2), the negative feedback magnetic field Hf, if the cross-sectional area of the inner coil and S,

【数3】 Hf=IfL/S (3) で与えられる。上記内側コイルのインダクタンスLは、
内側コイルの巻数をn、長岡係数をλ、内側コイルの内
半径をa、内側コイルの長さをl、空間の透磁率をμo
とすれば、
Hf = IfL / S (3) The inductance L of the inner coil is
The number of turns of the inner coil is n, the Nagaoka coefficient is λ, the inner radius of the inner coil is a, the length of the inner coil is 1, and the permeability of the space is μo.
given that,

【数4】 L=λμoSn/l=λμoπa/l (4) で与えられる。而して、式(3)、(4)から、Equation 4] is given by L = λμoSn 2 / l = λμoπa 2 n 2 / l (4). Thus, from equations (3) and (4),

【数5】 Hf=Ifλμon/l (5) が成立する。Hf = Ifλμon 2 / l (5)

【0015】本発明に係る磁気センサーにおいては、二
重コイル2の内側コイル21を負帰還磁界発生用コイル
としており、この内側コイル21の内半径aが外側コイ
ル22の内半径よりも小さく、式(4)から明らかな通
り、それだけインダクタンスLが小さくされるために、
式(2)から明らかな通り負帰還電流Ifが大きくされ
る結果、式(5)から明らかな通り、負帰還磁界Hfが
それだけ強くされる。従って、周波数(角周波数w)が
高くなっても、負帰還磁界を確実にかけることができ、
検出出力の確実・安定な直線化を保証できる。他方、バ
イアス磁界発生用コイルにおいては、バイアス磁界が直
流磁界であり、直流電源Vcc〔図5参照〕や調整抵抗
〔図5におけるRx〕により設定されから、二重コイル
2の外側コイル22をバイアス磁界発生用コイルとして
使用することには、何ら問題がない。従って、出力特性
の直線性及び無極性を保証しつつ負帰還磁界発生用コイ
ル及びバイアス磁界発生用コイルを共通の二重コイルで
構成できる。
In the magnetic sensor according to the present invention, the inner coil 21 of the double coil 2 is a coil for generating a negative feedback magnetic field, and the inner radius a of the inner coil 21 is smaller than the inner radius of the outer coil 22. As is apparent from (4), since the inductance L is reduced accordingly,
As is apparent from the equation (2), the negative feedback current If is increased. As a result, as is apparent from the equation (5), the negative feedback magnetic field Hf is increased accordingly. Therefore, even if the frequency (angular frequency w) increases, a negative feedback magnetic field can be reliably applied,
Stable and stable linearization of the detection output can be guaranteed. On the other hand, in the bias magnetic field generating coil, the bias magnetic field is a DC magnetic field, and is set by the DC power supply Vcc (see FIG. 5) and the adjusting resistor (Rx in FIG. 5). There is no problem in using it as a magnetic field generating coil. Therefore, the coil for generating the negative feedback magnetic field and the coil for generating the bias magnetic field can be constituted by a common double coil while ensuring the linearity and non-polarity of the output characteristics.

【0016】図2の(イ)は、請求項2、3の磁気セン
サーの一実施例を示す縦断面図、図2の(ロ)は図2の
(1)におけるロ−ロ断面図である。図2において、3
1は絶縁基板であり、例えばセラミックス基板、ガラス
エポキシ基板、紙フェノール基板等を使用できる。3
2,32は絶縁基板の片面に設けた電極であり、素子接
続用突部321を備えている。この電極は導電ペース
ト、例えば、銀ペーストの印刷・焼付けにより設けるこ
とができる。1は電極32,32の突部321,321
間にはんだ付けや溶接により接続した磁気インピーダン
ス効果素子であり、通常、零磁歪乃至は負磁歪のアモル
ファスワイヤ、アモルファスリボン、スパッタ膜等が使
用される。33は各電極32にはんだ付けや溶接により
取り付けた導体ピンである。4はホビンであり、前記の
磁気インピーダンス効果素子取付け基板を挿入してあ
る。このホビンに代えチューブを使用することもでき
る。これらのボビンやチューブの材質としては、非磁性
材料を使用することが好ましく、セラミックス、プラス
チック、金属等を使用できる。2はホビン4上に絶縁線
を巻き付け設けた二重コイルであり、内側コイル21を
負帰還磁界発生用コイルとし、外側コイル22をバイア
ス磁界発生用コイルとしてある。なお、上記ボビン4内
やチューブ内は樹脂で封止することもできる。
FIG. 2A is a longitudinal sectional view showing an embodiment of the magnetic sensor according to the second and third aspects, and FIG. 2B is a sectional view taken along the line I-I of FIG. . In FIG. 2, 3
Reference numeral 1 denotes an insulating substrate, for example, a ceramic substrate, a glass epoxy substrate, a paper phenol substrate, or the like can be used. 3
Reference numerals 2 and 32 denote electrodes provided on one surface of the insulating substrate, and are provided with an element connection projection 321. This electrode can be provided by printing and baking a conductive paste, for example, a silver paste. Reference numeral 1 denotes the protruding portions 321 and 321 of the electrodes 32 and 32.
These are magneto-impedance effect elements connected between them by soldering or welding. Usually, zero magnetostrictive or negative magnetostrictive amorphous wires, amorphous ribbons, sputtered films and the like are used. Reference numeral 33 denotes a conductor pin attached to each electrode 32 by soldering or welding. Reference numeral 4 denotes a hobbin into which the above-mentioned magneto-impedance element mounting board is inserted. A tube can be used instead of the hobbin. As the material of these bobbins and tubes, it is preferable to use non-magnetic materials, and ceramics, plastics, metals and the like can be used. Reference numeral 2 denotes a double coil in which an insulating wire is wound around the hobbin 4, and the inner coil 21 is a coil for generating a negative feedback magnetic field, and the outer coil 22 is a coil for generating a bias magnetic field. The inside of the bobbin 4 and the inside of the tube can be sealed with resin.

【0017】図3の(イ)は請求項2、4の磁気センサ
ーの一実施例を示す平面図、図3の(ロ)は同じく正面
図、図3の(ハ)は図3の(ロ)におけるハ−ハ断面図
である。図3において、11は絶縁基板であり、例えば
セラミックス基板、ガラスエポキシ基板、紙フェノ−ル
基板等を使用できる。32,32は基板31の片面に形
成した一対の電極であり、例えば、導電ぺ−ストの印刷
・焼き付けにより形成できる。1は電極32,32の突
部321,321間にはんだ付け、溶接等で接続した磁
気インピーダンス効果素子であり、零磁歪乃至は負磁歪
のアモルファス磁性ワイヤ、リボン、スパッタ膜等を使
用できる。30は保護板であり、非磁性材料を使用する
ことが好ましく、例えばセラミックス基板、ガラスエポ
キシ基板、紙フェノ−ル基板等を使用できる。33,3
3はピン導体であり、磁気インピーダンス効果素子1と
保護板30との接触を防止し得る高さとしてある。2は
基板31と保護板30との周りに絶縁線の巻回して設け
た二重コイルであり、内側コイル21を負帰還磁界発生
用コイルとし、外側コイル22をバイアス磁界発生用コ
イルとしてある。なお、上記基板31と保護板30との
間の空間を樹脂で封止することもできる。
FIG. 3A is a plan view showing an embodiment of the magnetic sensor according to claims 2 and 4, FIG. 3B is a front view thereof, and FIG. 3C is FIG. FIG. In FIG. 3, reference numeral 11 denotes an insulating substrate, for example, a ceramic substrate, a glass epoxy substrate, a paper phenol substrate, or the like can be used. Reference numerals 32, 32 denote a pair of electrodes formed on one surface of the substrate 31, which can be formed, for example, by printing and baking a conductive paste. Reference numeral 1 denotes a magneto-impedance effect element connected between the projections 321 and 321 of the electrodes 32 and 32 by soldering, welding, or the like, and may use a zero magnetostrictive or negative magnetostrictive amorphous magnetic wire, a ribbon, a sputtered film, or the like. Reference numeral 30 denotes a protective plate, which is preferably made of a non-magnetic material. For example, a ceramic substrate, a glass epoxy substrate, a paper phenol substrate, or the like can be used. 33,3
Reference numeral 3 denotes a pin conductor having a height capable of preventing contact between the magneto-impedance effect element 1 and the protection plate 30. Reference numeral 2 denotes a double coil provided by winding an insulated wire around a substrate 31 and a protection plate 30. The inner coil 21 is a coil for generating a negative feedback magnetic field, and the outer coil 22 is a coil for generating a bias magnetic field. The space between the substrate 31 and the protection plate 30 can be sealed with a resin.

【0018】図4の(イ)は請求項5、6の磁気センサ
ーの一実施例を示す側面図、図4の(ロ)は同じく底面
図、図4の(ハ)は図4の(ロ)におけるハ−ハ断面図
である。図4において、31は絶縁基板である。32,
32は絶縁基板の片面に設けた電極である。この電極は
導電ペースト、例えば、銀ペーストる。1は電極32,
32の突部321,321間にはんだ付けや溶接により
接続した磁気インピーダンス効果素子であり、通常、零
磁歪乃至は負磁歪のアモルファスワイヤ、アモルファス
リボン、スパッタ膜等が使用される。33は各電極32
にはんだ付けや溶接により取り付けたピン導体である。
2はC形コア20に絶縁線を二重に巻き付けたコイルで
あり、C形コア20の両端を基板31の他面に接着剤等
で固定し、内側コイル21を負帰還磁界発生用コイルと
し、外側コイル22をバイアス磁界発生用コイルとして
ある。前記のC形コア30を脚部と水平部とに分割し、
脚部を基板31の他面に固着しておき、C形コア水平部
にコイルを二重に巻き付けた二重コイルの水平部両端を
前記脚部に接着するすることもできる。
FIG. 4A is a side view showing an embodiment of the magnetic sensor according to claims 5 and 6, FIG. 4B is a bottom view thereof, and FIG. 4C is FIG. FIG. In FIG. 4, reference numeral 31 denotes an insulating substrate. 32,
32 is an electrode provided on one surface of the insulating substrate. This electrode is a conductive paste, for example, a silver paste. 1 is an electrode 32,
A magneto-impedance effect element connected between the 32 projections 321 and 321 by soldering or welding. Usually, a zero magnetostrictive or negative magnetostrictive amorphous wire, an amorphous ribbon, a sputtered film, or the like is used. 33 is each electrode 32
It is a pin conductor that is attached to the terminal by soldering or welding.
Reference numeral 2 denotes a coil in which an insulated wire is wound twice around the C-shaped core 20. Both ends of the C-shaped core 20 are fixed to the other surface of the substrate 31 with an adhesive or the like, and the inner coil 21 is used as a coil for generating a negative feedback magnetic field. The outer coil 22 is a bias magnetic field generating coil. The C-shaped core 30 is divided into a leg portion and a horizontal portion,
The legs may be fixed to the other surface of the substrate 31 and both ends of the horizontal portion of the double coil in which the coil is wound twice around the horizontal portion of the C-shaped core may be bonded to the legs.

【0019】本発明において、二重コイルとは、両端子
を有する一層または多層の内側コイル上に、両端子を有
する一層または多層の外側コイルを有するものであり、
図示(例えば、図2)の内側一層−外側一層のみに限定
されないことは言うまでもない。
In the present invention, the double coil has a single or multilayer outer coil having both terminals on a single or multilayer inner coil having both terminals,
It is needless to say that the present invention is not limited to the inner layer and the outer layer shown in FIG. 2 (for example, FIG. 2).

【0020】[0020]

【発明の効果】本発明においては、磁気インピーダンス
効果素子に負帰還磁界発生用コイル及びバイアス磁界発
生用コイルを付設する磁気センサーにおいて、二重コイ
ルの内側コイルと外側コイルとのうち、インダクタンス
の低い内側コイルを負帰還磁界発生用コイルとしている
から、高い周波数帯域でも負帰還電流を充分に大きくし
て負帰還磁界をそれだけ強くできる結果、充分に負帰還
をかけて検出特性の確実・安定な直線化を保証できる。
また、二重コイルの外側コイルをバイアス磁界発生用コ
イルとしているが、直流電源電圧や抵抗調整により所望
のバイアス磁界を印加できる。従って、出力特性の直線
性及び無極性を保証しつつ負帰還磁界発生用コイル及び
バイアス磁界発生用コイルを共通の二重コイルで構成で
き、コイルの小型化により磁気センサー全体の小型化を
図ることができる。
According to the present invention, there is provided a magnetic sensor in which a negative feedback magnetic field generating coil and a bias magnetic field generating coil are attached to a magneto-impedance effect element. Since the inner coil is a coil for generating a negative feedback magnetic field, the negative feedback current can be increased sufficiently even in a high frequency band and the negative feedback magnetic field can be increased accordingly. Can be guaranteed.
Although the outer coil of the double coil is used as the bias magnetic field generating coil, a desired bias magnetic field can be applied by adjusting the DC power supply voltage and the resistance. Therefore, the coil for generating the negative feedback magnetic field and the coil for generating the bias magnetic field can be composed of a common double coil while ensuring the linearity and non-polarity of the output characteristics, and the overall size of the magnetic sensor can be reduced by reducing the size of the coil. Can be.

【0021】特に、請求項2〜6の磁気センサーにおい
ては、磁気インピーダンス効果素子を基板で補強でき、
磁気インピーダンス効果素子が機械的に脆弱であるにも
かかわらず、磁気センサーの円滑な製造を保証できる。
In particular, in the magnetic sensor of the second to sixth aspects, the magneto-impedance effect element can be reinforced by the substrate,
Despite the mechanical weakness of the magneto-impedance effect element, a smooth production of the magnetic sensor can be guaranteed.

【0022】特に、請求項5、6の磁気センサーにおい
ては、磁気センサーの外郭を基板の外郭にとどめること
ができるから、平面寸法を極めて小さくでき、より一層
の小型化を図ることができる。さらに、磁気インピーダ
ンス効果素子面を被検出体に近接させることができ、検
出感度上も有利である。
In particular, in the magnetic sensor according to the fifth and sixth aspects, since the outer periphery of the magnetic sensor can be limited to the outer periphery of the substrate, the planar dimensions can be extremely reduced, and the size can be further reduced. Further, the surface of the magneto-impedance effect element can be brought close to the object to be detected, which is advantageous in detection sensitivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1の磁界センサーを示す図面である。FIG. 1 is a view showing a magnetic field sensor according to claim 1;

【図2】請求項2の磁界センサーの一実施例を示す図面
である。
FIG. 2 is a view showing an embodiment of a magnetic field sensor according to claim 2;

【図3】請求項3の磁界センサーの一実施例を示す図面
である。
FIG. 3 is a view showing an embodiment of a magnetic field sensor according to claim 3;

【図4】請求項4の磁界センサーの一実施例を示す図面
である。
FIG. 4 is a view showing an embodiment of a magnetic field sensor according to claim 4;

【図5】磁気インピーダンス効果素子を用いた磁界検出
装置を示す回路図である。
FIG. 5 is a circuit diagram showing a magnetic field detection device using a magneto-impedance effect element.

【符号の説明】[Explanation of symbols]

1 磁気インピーダンス効果素子 2 二重コイル 20 C形コア 21 内側コイル 22 外側コイル 31 基板 30 保護カバー DESCRIPTION OF SYMBOLS 1 Magneto-impedance effect element 2 Double coil 20 C-shaped core 21 Inner coil 22 Outer coil 31 Substrate 30 Protective cover

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】磁気インピーダンス効果素子の周りに二重
コイルを設け、該二重コイルの内側コイルを負帰還磁界
発生用コイルとし、外側コイルをバイアス磁界発生用コ
イルとしたことを特徴とする磁気センサー。
A double coil is provided around a magneto-impedance effect element, an inner coil of the double coil is a coil for generating a negative feedback magnetic field, and an outer coil is a coil for generating a bias magnetic field. sensor.
【請求項2】磁気インピーダンス効果素子を基板に取付
け、該磁気インピーダンス効果素子取付け基板の周りに
二重コイルを設け、該二重コイルの内側コイルを負帰還
磁界発生用コイルとし、外側コイルをバイアス磁界発生
用コイルとしたことを特徴とする磁気センサー。
2. A magnetic impedance effect element is mounted on a substrate, a double coil is provided around the magnetic impedance effect element mounting substrate, an inner coil of the double coil is used as a negative feedback magnetic field generating coil, and an outer coil is biased. A magnetic sensor comprising a magnetic field generating coil.
【請求項3】磁気インピーダンス効果素子を基板に取付
け、該磁気インピーダンス効果素子取付け基板をボビン
またはチューブに挿入し、該ボビンまたはチューブに二
重にコイルを巻き付け、内側コイルを負帰還磁界発生用
コイルとし、外側コイルをバイアス磁界発生用コイルと
したことを特徴とする磁気センサー。
3. A magneto-impedance effect element is mounted on a substrate, the magneto-impedance effect element mounting substrate is inserted into a bobbin or tube, a double coil is wound around the bobbin or tube, and the inner coil is a negative feedback magnetic field generating coil. A magnetic sensor, wherein the outer coil is a coil for generating a bias magnetic field.
【請求項4】磁気インピーダンス効果素子を基板に取付
け、該磁気インピーダンス効果素子を保護カバーで覆
い、保護カバー及び基板の周りに二重にコイルを巻き付
け、内側コイルを負帰還磁界発生用コイルとし、外側コ
イルをバイアス磁界発生用コイルとしたことを特徴とす
る磁気センサー。
4. A method for mounting a magneto-impedance effect element on a substrate, covering the magneto-impedance effect element with a protective cover, wrapping a double coil around the protective cover and the substrate, and using the inner coil as a negative feedback magnetic field generating coil. A magnetic sensor, wherein the outer coil is a coil for generating a bias magnetic field.
【請求項5】磁気インピーダンス効果素子を基板の片面
にに取付け、該基板の他面に二重コイルを取付け、内側
コイルを負帰還磁界発生用コイルとし、外側コイルをバ
イアス磁界発生用コイルとしたことを特徴とする磁気セ
ンサー。
5. A magneto-impedance effect element is mounted on one surface of a substrate, a double coil is mounted on the other surface of the substrate, the inner coil is a coil for generating a negative feedback magnetic field, and the outer coil is a coil for generating a bias magnetic field. A magnetic sensor, characterized in that:
【請求項6】二重コイルに、C形コアにコイルを二重に
巻き付けたコイルを使用した請求項5記載の磁気センサ
ー。
6. The magnetic sensor according to claim 5, wherein a coil in which a coil is wound twice around a C-shaped core is used as the double coil.
JP2001111687A 2001-04-10 2001-04-10 Magnetic sensor Expired - Fee Related JP4460188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001111687A JP4460188B2 (en) 2001-04-10 2001-04-10 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001111687A JP4460188B2 (en) 2001-04-10 2001-04-10 Magnetic sensor

Publications (2)

Publication Number Publication Date
JP2002311115A true JP2002311115A (en) 2002-10-23
JP4460188B2 JP4460188B2 (en) 2010-05-12

Family

ID=18963245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001111687A Expired - Fee Related JP4460188B2 (en) 2001-04-10 2001-04-10 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP4460188B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195446A (en) * 2004-01-07 2005-07-21 Fuji Electric Holdings Co Ltd Watt hour meter
JP2006208147A (en) * 2005-01-27 2006-08-10 Uchihashi Estec Co Ltd Magnetic field detecting circuit
JP2006208146A (en) * 2005-01-27 2006-08-10 Uchihashi Estec Co Ltd Magnetic field detecting circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195446A (en) * 2004-01-07 2005-07-21 Fuji Electric Holdings Co Ltd Watt hour meter
JP2006208147A (en) * 2005-01-27 2006-08-10 Uchihashi Estec Co Ltd Magnetic field detecting circuit
JP2006208146A (en) * 2005-01-27 2006-08-10 Uchihashi Estec Co Ltd Magnetic field detecting circuit

Also Published As

Publication number Publication date
JP4460188B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
TWI259284B (en) Magnet, impedance and sensor device having electromagnetic coil
USRE31613E (en) Measuring transformer
US4309655A (en) Measuring transformer
KR970000027B1 (en) Dynamic value sensor
KR20010096553A (en) Magnetic field detection device
JPS5937846B2 (en) instrument transformer
JP4460188B2 (en) Magnetic sensor
JPH11273949A (en) Inductor element
JP3634281B2 (en) Magneto-impedance effect sensor
JP2005227297A (en) Magneto-impedance sensor element with electromagnet coil
JPH08288143A (en) Variable inductor
WO1999006848A1 (en) Magnetic impedance effect device
EP1018653B1 (en) Magnetic sensor having soft magnetic metallic element formed in zigzag shape
US20040027120A1 (en) Printed circuit fluxgate sensor
JP2000098012A (en) Magnetic field sensor
JP3831584B2 (en) Magneto-impedance effect element
EP1057136B1 (en) Induction sensor
JPS6041474B2 (en) signal transmission element
JP2001027664A (en) Magnetic sensor
JP2001228228A (en) Magnetic detecting element and device
JP2004184232A (en) Magnetic sensing element, its manufacturing method and magnetic sensing device and azimuth sensor using the magnetic sensing element
JPH06221936A (en) Dynamic value sensor
JPH01240867A (en) Current detector
JPH1090381A (en) Magnetism detecting element
JPS58148978A (en) Magnetic detecting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100212

R150 Certificate of patent or registration of utility model

Ref document number: 4460188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees