JP4219731B2 - Magnetic field detection method - Google Patents

Magnetic field detection method Download PDF

Info

Publication number
JP4219731B2
JP4219731B2 JP2003126564A JP2003126564A JP4219731B2 JP 4219731 B2 JP4219731 B2 JP 4219731B2 JP 2003126564 A JP2003126564 A JP 2003126564A JP 2003126564 A JP2003126564 A JP 2003126564A JP 4219731 B2 JP4219731 B2 JP 4219731B2
Authority
JP
Japan
Prior art keywords
magnetic field
wave
potential
output
effect element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003126564A
Other languages
Japanese (ja)
Other versions
JP2004333207A (en
Inventor
一実 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2003126564A priority Critical patent/JP4219731B2/en
Publication of JP2004333207A publication Critical patent/JP2004333207A/en
Application granted granted Critical
Publication of JP4219731B2 publication Critical patent/JP4219731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は磁気インピ−ダンス効果素子乃至は磁気インダクタンス効果素子を用いて磁界を検出する方法に関するものである。
【0002】
【従来の技術】
アモルファス合金ワイヤとして、自発磁化の方向がワイヤ周方向に対し互いに逆方向の磁区が交互に磁壁で隔てられた構成の外殻部を有する、零磁歪乃至は負磁歪のアモルファス合金ワイヤが開発されている。
かかる零磁歪乃至は負磁歪のアモルファス磁性ワイヤに高周波電流したときに発生するワイヤ両端間出力電圧中のインダクタンス電圧分は、ワイヤの横断面内に生じる円周方向磁束によって上記の円周方向に易磁化性の外殻部が円周方向に磁化されることに起因して発生する。従って、周方向透磁率μθは同外殻部の円周方向の磁化に依存する。
而るに、この通電中のアモルファスワイヤに外部磁界を作用させると、上記通電による円周方向磁束と外部磁束との合成により、上記円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずれ、それだけ円周方向への磁化が生じ難くなり、上記周方向透磁率μθが変化し、上記インダクタンス電圧分が変動することになる。
而して、この変動現象が磁気インダクタンス効果と称され、この効果を奏するアモルファスワイヤ等が磁気インダクタンス効果素子と称されている。
【0003】
更に、上記通電電流の周波数がMHzオ−ダになると、高周波表皮効果が大きく現れ、表皮深さδ=(2ρ/wμθ1/2(μθは前記した通り、円周方向透磁率、ρは電気抵抗率、wは角周波数をそれぞれ示す)がμθにより変化し、このμθが前記した通り、外部磁界によって変化するので、ワイヤ両端間出力電圧中の抵抗電圧分も外部磁界で変動するようになる。
而して、この変動現象が磁気インピーダンス効果と称され、この効果を奏するアモルファスワイヤ等が磁気インピーダンス効果素子と称されている。
【0004】
そこで、この磁気インピーダンス効果素子を利用した外部磁界検出法(例えば、特許文献1参照)及び磁気インダクタンス効果を使用した外部磁界検出方法(例えば、特許文献2参照)が提案されている。
【0005】
【特許文献1】
特開平7−181239号公報
【特許文献2】
特開平6−283344号公報
【0006】
上記において、外部磁界の正負により上記磁界の周方向ずれφにも正負が生じるが、周方向の磁界の減少倍率cos(±φ)は変わらず、従ってμθの減少度は外部磁界の方向の正負によっては変化されない。従って、外部磁界−出力特性は磁界をx軸に、出力をy軸にとると、y軸に対してほぼ左右対称となる。また、非線形になることも知られている。
【0007】
この磁気インピーダンス効果素子を使用した磁界検出回路は、基本的には、図8の(イ)に示すように(1)磁気インピーダンス効果素子1’に高周波励磁電流を加えるための高周波電源2’と、(2)磁気インピーダンス効果素子1’と、(3)磁気インピーダンス効果素子に加わる外部磁界で前記高周波励磁電流(搬送波)を変調させた変調波を復調部3’と、(4)復調波を増幅する増幅器4’と、(5)出力表示部等から構成されている。
図8の(ロ)は被検出磁界を、図8の(ハ)は搬送波を、図8の(ニ)は変調波を、図8の(ホ)は復調波を、図8の(ヘ)は出力をそれぞれ示し、被検出磁界の振幅と出力の振幅との関係を図示すると前記の左右対称性及び非線形性から図4の(イ)のように表わすことができる。
そこで、図8の(イ)において、51’で示す負帰還用コイルで負帰還をかけて図4の(ロ)に示すように特性を直線化することが公知である。図4の(ロ)において、Δwは、負帰還無しのときの利得Aが非常に大きく帰還率βのみにより利得が定まる範囲である。
更に、図8の(イ)において、6’で示すようにバイアス用コイルでバイアス磁界をかけ、図8の(ハ)に示すように極性判別可能な直線特性にすることも公知である。すなわち、図8の(ロ)の特性を、バイアス磁界により矢印方向に移動させ、被検出磁界の最大範囲−Hmax〜+Hmaxを一斜線領域Δw'の範囲内に納めることも公知である。
【0008】
【発明が解決しようとする課題】
磁気インピーダンス効果素子は磁気抵抗素子に較べ高感度であり、フラックスゲートセンサに較べて小型化できる。
しかしながら、従来では図8の(イ)に示すように増幅器の電源に+Vccと−Vccとを使用しており、通常2本の乾電池を必要とし、磁気インピーダンス効果素子が小型であるにもかかわらず前記の複乾電池のために全体的の小型化が阻まれている。
【0009】
本発明の目的は、磁気インピーダンス効果素子を使用して磁界を検出する方法において、磁界検出装置の電源として単一電池の使用を可能にして磁界検出装置全体の小型化を図ることにある。
【0010】
【課題を解決するための手段】
請求項1に係る磁界検出方法は、 磁気インピーダンス効果素子に励磁電流を流し、磁気インピーダンス効果素子に作用する被検出磁界により前記励磁電流が変調された変調波を磁気インピーダンス効果素子端に出力させ、この出力を検出回路に送入し、この検出回路で前記変調波から被検出磁界量を取り出し、これを中間処理部で増幅若しくは減衰し、磁気インピーダンス効果素子近傍に配設した負帰還用コイルに前記中間処理部の増幅器の出力を負帰還させて出力−被検出磁界特性の直線化のもとで磁界を検出する方法において、前記検出回路を、励磁電流が被検出磁界により変調された変調波を半波整流する演算増幅回路と半波整流波を包絡波に成形する回路とから構成することを特徴とする。
【0011】
請求項2に係る磁界検出方法は、磁気インピーダンス効果素子に励磁電流を流し、磁気インピーダンス効果素子に作用する被検出磁界により前記励磁電流が変調された変調波を磁気インピーダンス効果素子端に出力させ、この出力を検出回路に送入し、この検出回路で前記変調波から被検出磁界量を取り出し、これをこれを中間処理部で増幅若しくは減衰し、増幅器の出力を GND 電位に対し電位V x だけシフトさせ、磁気インピーダンス効果素子近傍に配設した負帰還用コイルの GND 側基準電位を前記電位V x に設定し、前記中間処理部の増幅器の出力を負帰還させて出力−被検出磁界特性の直線化のもとで磁界を検出する方法において、前記検出回路を、励磁電流が被検出磁界により変調された変調波を半波整流する演算増幅回路と半波整流波を包絡波に成形する回路とから構成することを特徴とする。
【0012】
請求項3に係る磁界検出方法は、請求項2記載の磁界検出方法において、磁気インピーダンス効果素子と、磁気インピーダンス効果素子に励磁電流を印加する電源と、磁気インピーダンス効果素子に作用する被検出磁界により前記励磁電流が変調された変調波から被検出磁界に相当する被検出量を取り出す検出回路と、前記被検出量を増幅若しくは減衰する中間処理部と、磁気インピーダンス効果素子の近傍に配設され前記中間処理部の増幅器の出力が負帰還される負帰還用コイルとを有し、増幅器を単一電源V cc で動作させ、増幅器出力の中心値をV cc と零電位との間の電位Vxに設定するための電位調整手段を増幅器入力端に付設し、前記負帰還用コイルの GND 側基準電位を前記の電位Vxに設定するための電位調整手段を付設し、前記検出回路を励磁電流が被検出磁界により変調された変調波を半波整流する演算増幅回路と半波整流波を包絡波に成形する回路とから構成した磁界検出装置を使用することを特徴とする。
【0013】
請求項4に係る磁界検出方法は、磁気インピーダンス効果素子に励磁電流を流し、磁気インピーダンス効果素子にバイアス磁界をかけ、磁気インピーダンス効果素子に作用する被検出磁界により前記励磁電流が変調された変調波を磁気インピーダンス効果素子端に出力させ、この出力を検出回路に送入し、この検出回路で前記変調波から被検出磁界量を取り出し、これをこれを中間処理部で増幅若しくは減衰し、増幅器の出力を GND 電位に対し電位V x だけシフトさせ、磁気インピーダンス効果素子近傍に配設した負帰還用コイルの GND 側基準電位を前記電位V x に設定し、前記中間処理部の増幅器の出力を負帰還させて出力−被検出磁界特性を直線化すると共に極性判別可能にして磁界を検出する方法において 、前記検出回路を、励磁電流が被検出磁界により変調された変調波を半波整流する演算増幅回路と半波整流波を包絡波に成形する回路とから構成することを特徴とする。
【0014】
請求項5に係る磁界検出方法は、請求項4記載の磁界検出方法において、磁気インピーダンス効果素子と、磁気インピーダンス効果素子に励磁電流を印加する電源と、磁気インピーダンス効果素子に作用する被検出磁界により前記励磁電流が変調された変調波から被検出磁界に相当する被検出量を取り出す検出回路と、前記被検出量を増幅若しくは減衰する中間処理部と、磁気インピーダンス効果素子の近傍に配設され増幅器出力が負帰還される負帰還用コイルと、磁気インピーダンス効果素子の近傍に配設されたバイアス磁界用コイルとを有し、増幅器を単一電源V cc で動作させ、増幅器出力の中心値をV cc と零電位との間の電位Vxに設定するための電位調整手段を増幅器入力端に付設し、前記負帰還用コイルの GND 側基準電位を前記の電位Vxに設定するための電位調整手段を付設し、前記検出回路を励磁電流が被検出磁界により変調された変調波を半波整流する演算増幅回路と半波整流波を包絡波に成形する回路とから構成した磁界検出装置を使用することを特徴とする。
【0015】
請求項6に係る磁界検出方法は、請求項4または5記載の磁界検出方法において、増幅器出力のGND電位に対するシフト電位Vxを増幅器入力端子の電位調整手段による調整により設定することを特徴とする。
【0016】
請求項7に係る磁界検出方法は、請求項4または5記載の磁界検出方法において、増幅器出力のGND電位に対するシフト電位Vxをバイアス磁界の調整により設定することを特徴とする。
【0017】
請求項8に係る磁界検出方法は、請求項4または5記載の磁界検出方法において、増幅器出力のGND電位に対するシフト電位Vxをバイアス磁界の調整と増幅器入力端子の電位調整手段による調整とにより設定することを特徴とする。
【0018】
請求項9に係る磁界検出方法は、請求項2〜8何れか記載の磁界検出方法において、演算増幅器を備えた差動増幅回路を演算増幅回路として用い、演算増幅器の両入力端子の一方の入力端子側を変調波入力端側とし、他方の入力端子側をシフト用電圧印加端側とし、変調波の振幅中心を電位Vamに設定するための回路を付設してあり、シフト用電源電位をVccとし、演算増幅器の変調波入力端から演算増幅器の出力端をみた利得をAとし、演算増幅器のシフト用電圧印加端から演算増幅器の出力端をみた利得をA'とし、変調波の最小振幅値をHminとすると、
【数1】
|Vam+Vcc・A'/A|≦Hmin
の関係を付与することを特徴とする。
【0019】
請求項10に係る磁界検出方法は、請求項9記載の磁界検出方法において、演算増幅器を備えた差動増幅回路を演算増幅回路として用い、演算増幅器の両入力端子の一方の入力端子側を変調波入力端側とし、他方の入力端子側をシフト用電圧印加端側とし、変調波の振幅中心を電位Vamに設定するための回路を付設してあり、シフト用電源電位をVccとし、変調波入力端から演算増幅器の出力端をみた利得をAとし、シフト用電圧印加端から演算増幅器の出力端をみた利得をA'とし、変調波の最小振幅値をHminとすると、
【数2】
−Hmin≦Vam+Vcc・A'/A≦0
の関係を付与することを特徴とする。
【0020】
請求項11に係る磁界検出方法は、請求項10記載の磁界検出方法において、シフト用電圧印加端を抵抗Rを経て演算増幅器の反転入力端子に接続し、演算増幅器の出力端子を反転入力端子に抵抗Rを経て負帰還接続し、変調波入力端と演算増幅器の非反転入力端子との間を抵抗Rを経てシフト用電圧印加端に接続すると共に抵抗Rを経てGND電位に接続して、変調波の振幅中心電位VamをVcc・R/(R+R)で与え、利得Aを1+(R/R)で与え、利得A'を−(R/R)で与えることを特徴とする。
【0021】
請求項12に係る磁界検出方法は、請求項1〜11何れか記載の磁界検出方法において、磁気インピーダンス効果素子に代え磁気インダクタンス効果素子を使用することを特徴とする。
【0022】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明に係る磁界検出方法において使用する磁界検出装置の一例を示している。
図2は図1の各部位a〜eにおける電圧波形を示している。
図1において、1は磁気インピーダンス効果素子である。2は磁気インピーダンス効果素子1に高周波励磁電流を加えるための高周波電源である。Cは直流分を遮断するためのコンデンサである。3は復調部であり、図3に示す従来例のダイオード31とピークホールドRC回路32とからなるものに対し、ダイオードを図6に示すように演算増幅器に置換したものを使用することができる。Cは直流分を遮断するためのコンデンサである。
更に、図1において、40は復調波を増幅若しくは減衰する中間処理部、50は出力端を示している。
この中間処理部におけるある位置での出力を磁気インピーダンス効果素子側に戻して帰還をかける場合、磁気インピーダンス効果素子側を入力端とし位置を出力端とする回路の利得をA、帰還率をβとすれば、帰還をかけたときの出力Eiと入力Eoとの関係は、よく知られている通り、Eo=EiA/(1−Aβ)の関係にあり、Aβが1より大きい場合に負帰還となり、Aを極めて大きくすることによりEo=−Ei/βとなってAの温度変化等による影響を排除して直線化できる。
4は出力端が位置に臨む増幅器であり、電源に単一電池Vccを使用し、出力の振幅中心値Vxを調整するために+入力端子にVccの抵抗分圧電位を加え、−入力端子にVccの可変分圧電位Vxを加えている。5は負帰還回路であり、磁気インピーダンス効果素子1に負帰還をかけるための負帰還用コイル51の一端を増幅器4の出力端に接続し、同コイル51の他端を前記増幅器出力の振幅中心電位Vxに等しい電位を加えてGNDに接続してある。
図1において、Vccを複数箇で示しているが、これらは共通の単一物である。
【0023】
図1において、Hexを被検出磁界とすると、磁気インピーダンス効果素子の出力端bでの波形が図2の(b)で示すように、励磁用電源の高周波を搬送波として被検出磁界Hexで変調した変調波となる。更に、図3に示すように復調部3の抵抗端b’での電圧波形がダイオード31の整流分を抵抗Rで出力した半波整流波となり、コンデンサCの出力端b”での波形が半波整流波の包絡波となり、コンデンサCで直流分がカットされた波形が図2の(c)で示す復調波となる。この復調波が中間処理部40に入力され、増幅若しくは減衰して増幅器4の入力端に達する。
【0024】
図2の(e)は増幅器4の出力波形を示し、復調波が実質上歪まされること無く増幅減衰された波形である。この場合、増幅器4を単一電源Vccで動作させているから、増幅器の出力の振幅をカットすることなく出力させるためにその振幅を範囲内に納めるよう増幅器の−入力端子側の+Vcc可変抵抗分圧値を調整している。而して、増幅器4の出力が図2の(e)における電位Vxを振幅中心値として振動し、その電位基準がVxとなる。
本発明では、負帰還用コイルのGRN側基準電位を+Vccの可変抵抗分圧調整により前記のVxに設定しているから、上記増幅器出力で良好に負帰還をかけることができ、従って、磁界−出力特性をリニア化できる。
【0025】
上記増幅器の−入力端子での+Vccの可変抵抗分圧調整及び負帰還用コイルのGRN側での+Vccの可変抵抗分圧調整は次のようにして行うことができる。
すなわち、増幅器の+入力端子から出力端子をみた利得をA、増幅器の−入力端子から出力端子をみた利得を−A’、、増幅器の−入力端子での+Vccの可変抵抗分圧比をXとすると、増幅器出力の振幅中心電位Vxは
【数5】
Vx=〔AVcc/(R+R)〕−A’XVcc
で与えられる。
而るに、増幅器出力の振幅を0〜+Vccの範囲に納めるには、増幅器の+入力端子への最大振幅をEmaxとして
【数6】
〔AVcc/(R+R)〕−A’XVcc+AEmax<Vcc
〔AVcc/(R+R)〕−A’XVcc−AEmax>0
を満たさせなければならない。
この場合、
【数7】
〔AVcc/(R+R)〕−A’XVcc+AEmax=0.9Vcc
〔AVcc/(R+R)〕−A’XVcc−AEmax=0.1Vcc
とすることが好ましい。
これらの式を満たすXを求め、増幅器の−入力端子での+Vccの可変抵抗分圧比をXに設定すればよい。
また、上記のVxを求め、負帰還用コイルのGRN側電位をVxに設定すればよい。
【0026】
図2の(e)における出力Eoの振幅範囲は、負帰還により磁界−出力特性がリニア化されている範囲内にあり、その磁界−出力特性は図4の(ロ)に示す通りである。図4の(イ)は負帰還をかけないときの磁界−出力特性を示している。
【0027】
図5は本発明に係る磁界検出方法に使用する磁界検出装置の一例を示し、図1に示した磁界検出装置の磁気インピーダンス効果素子1の近傍にバイアス磁界用コイル6を付設してある。
この磁界検出装置を用いて本発明により磁界を検出する場合、バイアス磁界をHbとすれば、図4の(ロ)において直線特性が−Hbだけシフトされて図4の(ハ)に示す通りの特性となる。
【0028】
図4の(ハ)において、Hex=0のときの出力基準値Vxがバイアス磁界の大きさHbと前記増幅器入力端の抵抗分圧比Xとで与えられるから、その出力基準値はバイアス磁界Hbまたは抵抗分圧比Xにより調整することができる。
尤も、バイアス磁界Hbは被検出磁界の振幅範囲に対し出力特性を屈折の無い単一斜線とするように設定しなければならず、バイアス磁界HbのみでHex=0のときの出力基準値を設定できない場合があり、この場合はバイアス磁界Hbと抵抗分圧比Xの双方の調整でHex=0のときの出力基準値を設定しなければならない。
【0029】
上記の復調部として、図6に示す単一電源Vccで駆動される演算増幅回路とピークホールドRC回路とから復調部を使用することができる。
図6において、10は演算増幅器opの出力端子を、20は非反転入力端子を、30は反転入力端子をそれぞれ示している。
図6において、シフト用電圧印加端30'を抵抗Rを経て演算増幅器の反転入力端子30に接続し、演算増幅器の出力端子10を反転入力端子30に抵抗Rを経て負帰還接続し、復調波入力端20'と演算増幅器の非反転入力端子20との間をシフト用電圧印加端30'に抵抗Rを経て接続すると共に抵抗Rを経て接地し、シフト用電圧にVccを使用している。R及びCはピークホールドRC回路を構成する抵抗及びコンデンサである。C、Cは直流分カット用コンデンサである。
【0030】
図7の(イ)〜(ハ)は図6の各部位イ〜ハにおける電圧波形を示している。
図6の差動増幅回路において、演算増幅器opの変調波入力端20'から演算増幅器opの出力端子10をみた利得をAとし、シフト用電圧印加端30'から演算増幅器opの出力端子10をみた利得をA'とし、変調波の振幅中心電位をVamとすると、演算増幅器opのシフト用電源印加端30'の印加電圧値をVccとしているから、出力端子10に出力される復調波出力の仮想振幅(演算増幅器opの出力範囲は、電源電圧をVccとするとほぼ0〜ほぼVccであり、ほぼ零電位以下がカットされるが、カットされないと仮定したときの振幅波の振幅中心)の中心値V0は、
【数8】
V0=AVam+A'Vcc (1)
で与えられ、また、変調波入力Amの最小振幅値をHminとすると、復調波出力の仮想振幅の最小振幅値がAHminで与えられる。
而るに、実際は、演算増幅器opの出力範囲がほぼ0〜ほぼVccであり、出力の零電位以下がカットされるから、前記復調波出力の仮想振幅の中心値V0を前記復調波出力の仮想振幅の最小振幅値AHminに対し、|V0|≦AHminに、すなわち式(1)から
【数9】
|Vam+(A'/A)Vcc|≦Hmin (2)
に設定すれば、復調波出力の包絡線半波整流波を包絡線をカットすることなく、従って、歪の無い包絡線の半波整流波を出力させることができる。
【0031】
このようにして、復調波入力を演算増幅回路により半波整流したのちは、RC並列回路からなるピークホールド回路により半波整流波の包絡線出力を得、これをコンデンサCに通して復調波を得る。
【0032】
上記の実施形態では、差動増幅回路の演算増幅器の非反転入力端子側を復調波入力端側にし、反転入力端子側をシフト用電圧印加端側にしているが、これらを逆にして差動増幅回路の演算増幅器の反転入力端子側を復調波入力端側にし、非反転入力端子側をシフト用電圧印加端側にすることもできる。
【0033】
上記において、復調波出力の振幅中心値AVam+A'Vccを−minに近づけるほど、出力波の電力を小にして消費電力を低減できるから、消費電力の低減上、
【数10】
−Hmin≦Vam+(A'/A)Vcc≦0 (3)
とすることが望ましい。
【0034】
搬送波をIc=Eccoswt、信号波Vsが単一波であってVs=Escosptとすると、最小振幅は(Ec−Es)で与えられ、変調度Es/Ic=mとすれば、最小振幅がIc(1−m)で与えられる。
而るに、外部磁界信号は多重波であり、変調度mが0〜100%内の相当の帯域にまたがるが、その帯域の変調度が小さいほど前記の最小振幅Hminが大きくなるから、この場合、上記式(3)の要件を充足させて、消費電力の低減を図ることが望ましい。
【0035】
而して、復調波の振幅中心電位Vamは
【数11】
Vam=Vcc・R/(R+R) (4)
で与えられ、変調波入力端20'から演算増幅器の出力端子10をみた利得Aは
【数12】
A=1+(R/R) (5)
で与えられ、シフト用電圧印加端30'から演算増幅器の出力端子10をみた利得A'は
【数13】
A'=−R/R (6)
で与えられる。
従って、上記の式(2)の条件は
【数14】
|Vcc{〔R/(R+R)〕−〔R/(R+R)〕}|≦Hmin (7)
で与えられ、上記の式(3)の条件は
【数15】
−Hmin≦Vcc{〔R/(R+R)〕−〔R/(R+R)〕}≦0 (8)
で与えられる。
【0036】
前記のピークホールド回路に代え、R−Cローパスフィルターを使用することもできる。これらのピークホールド回路やR−Cローパスフィルターのコンデンサを温度補償用コンデンサとして使用することにより、温度特性の変更が可能である。
【0037】
上記磁気インピーダンス効果素子には、零磁歪乃至は負磁歪のアモルファスワイヤ、アモルファスリボン、アモルファススパッタ膜等を使用できる。搬送波としての高周波励磁電流の周波数はMHzオ−ダである。
これよりも低い周波数の搬送波の場合でも、前記した磁気インダクタンス効果により搬送波を外部磁界で振幅変調させることが可能であり、本発明は磁気インダクタンス効果素子を用いて実施することもできる。
【0038】
上記高周波搬送波としては、連続正弦波、パルス波、三角波等の通常の高周波を使用でき、例えば、ハートレー発振回路、コルピッツ発振回路、コレクタ同調発振回路、ベース同調発振回路のような通常の発振回路の外、水晶発振器の矩形波出力を直流分カットコンデンサを経て積分回路で積分し、この積分出力の三角波を増幅回路で増幅する三角波発生器、CMOS−ICを発振部として使用した三角波発生器を用いることができる。
また、消費電力の軽減のために正弦波、パルス波、三角波のバースト波を使用することも可能である。
【0039】
上記実施例では、励磁電流を搬送波とし、この搬送波を被検出磁界で振幅変調し、この変調波を復調して被検出量を取り出す検出回路を使用しているしているが、磁気インピーダンス効果素子に作用する被検出磁界による磁界検出信号から被検出磁界に相当する被検出量を取り出し得るものであれば適宜の回路を使用できる。
【0040】
【発明の効果】
本発明に係る磁界検出方法では、磁界検出装置の電源に単一電池電源を使用でき、小型の磁気検出装置で磁界を検出できる。
また、磁界−出力特性の磁界零での出力基準値をバイアス磁界によっても調整でき、出力基準値の設定が容易である。
また、復調部にダイオードを排除して演算増幅器を使用しているから、演算増幅器の高性能のために、外部磁界信号を温度依存性の出力ドリフトをカットして高精度の復調を行い得る。
また、演算増幅器出力を低減でき、消費電力を小さくできる。
【図面の簡単な説明】
【図1】 本発明の磁界検出方法に使用する磁界検出回路を示す図面である。
【図2】 図1の各部位における電圧波形を示す図面である。
【図3】 磁界検出回路の復調部の従来例を示す図面である。
【図4】 本発明に係る磁界検出方法における磁界−出力特性を説明するために使用した図面である。
【図5】 本発明の磁界検出方法に使用する磁界検出回路を示す図面である。
【図6】 本発明において使用する磁界検出回路における復調部の一例を示す図面である。
【図7】 図6の復調部の各部位における電圧波形を示す図面である。
【図8】 従来例を示す図面である。
【符号の説明】
1 磁気インピーダンス効果素子
2 励磁用高周波電源
3 復調器
40 中間処理回路
4 増幅器
51 負帰還用コイル
6 バイアス磁界用コイル
op 差動演算増幅器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting a magnetic field using a magnetic impedance effect element or a magnetic inductance effect element.
[0002]
[Prior art]
As an amorphous alloy wire, an amorphous alloy wire having zero magnetostriction or negative magnetostriction has been developed, which has an outer shell portion in which magnetic domains whose spontaneous magnetization directions are opposite to each other in the circumferential direction of the wire are separated by a domain wall. Yes.
The inductance voltage component in the output voltage between both ends of the wire generated when a high frequency current is applied to the zero magnetostrictive or negative magnetostrictive amorphous magnetic wire is easily increased in the circumferential direction by the circumferential magnetic flux generated in the cross section of the wire. It occurs due to the magnetized outer shell being magnetized in the circumferential direction. Therefore, the circumferential magnetic permeability mu theta depends on the circumferential direction of magnetization of Dosotokara portion.
Therefore, when an external magnetic field is applied to the energized amorphous wire, the magnetic flux acting on the outer shell portion having the easily magnetizable property in the circumferential direction is obtained by synthesizing the circumferential magnetic flux and the external magnetic flux by the energization. direction deviates from the circumferential direction, correspondingly hardly occur magnetization in the circumferential direction, the circumferential permeability mu theta changes, the inductance voltage content will vary.
Thus, this fluctuation phenomenon is called a magnetic inductance effect, and an amorphous wire or the like that exhibits this effect is called a magnetic inductance effect element.
[0003]
Further, when the frequency of the energization current is in the order of MHz, a high-frequency skin effect appears greatly, and the skin depth δ = (2ρ / wμ θ ) 1/2θ is the circumferential permeability, as described above, ρ is electrical resistivity, w is shows the angular frequency, respectively) is changed by mu theta, as the mu theta is the so changed by an external magnetic field, the resistance voltage of the in wire ends between the output voltage under the external magnetic field It will fluctuate.
Thus, this fluctuation phenomenon is called a magnetoimpedance effect, and an amorphous wire or the like that exhibits this effect is called a magnetoimpedance effect element.
[0004]
Therefore, an external magnetic field detection method using the magneto-impedance effect element (see, for example, Patent Document 1) and an external magnetic field detection method using the magnetic inductance effect (see, for example, Patent Document 2) have been proposed.
[0005]
[Patent Document 1]
JP-A-7-181239 [Patent Document 2]
JP-A-6-283344 [0006]
In the above, although negative in the circumferential direction displacement of the magnetic field by the positive and negative external magnetic field phi occurs, the circumferential direction of the magnetic field reduction ratio cos (± φ) is unchanged, the degree of reduction in thus mu theta is the direction of the external magnetic field It is not changed by positive or negative. Accordingly, the external magnetic field-output characteristics are almost symmetrical with respect to the y axis when the magnetic field is on the x axis and the output is on the y axis. It is also known to be non-linear.
[0007]
A magnetic field detection circuit using this magneto-impedance effect element basically has (1) a high-frequency power source 2 ′ for applying a high-frequency excitation current to the magneto-impedance effect element 1 ′, as shown in FIG. (2) the magneto-impedance effect element 1 ′, (3) the demodulating unit 3 ′ that modulates the high-frequency excitation current (carrier wave) with an external magnetic field applied to the magneto-impedance effect element, and (4) the demodulated wave It comprises an amplifier 4 'for amplifying, and (5) an output display section.
8 (b) shows the detected magnetic field, FIG. 8 (c) shows the carrier wave, FIG. 8 (d) shows the modulated wave, FIG. 8 (e) shows the demodulated wave, and FIG. 8 (f). Indicates the output, and the relationship between the amplitude of the detected magnetic field and the output amplitude can be expressed as shown in FIG.
Therefore, in FIG. 8 (a), it is known to apply a negative feedback with a negative feedback coil 51 'to linearize the characteristics as shown in FIG. 4 (b). In FIG. 4B, Δw is a range in which the gain A without negative feedback is very large and the gain is determined only by the feedback rate β.
Furthermore, in FIG. 8 (a), it is also known to apply a bias magnetic field with a bias coil as indicated by 6 'to obtain a linear characteristic capable of discriminating polarity as shown in FIG. 8 (c). That is, it is also known that the characteristic (b) in FIG. 8 is moved in the direction of the arrow by the bias magnetic field so that the maximum range −Hmax to + Hmax of the detected magnetic field falls within the range of the hatched area Δw ′.
[0008]
[Problems to be solved by the invention]
The magneto-impedance effect element is more sensitive than the magneto-resistive element and can be reduced in size as compared with the fluxgate sensor.
However, conventionally, as shown in FIG. 8 (a), + V cc and -V cc are used for the power source of the amplifier, and normally two dry batteries are required, and the magneto-impedance effect element is small. Regardless, the above-described double dry battery prevents the overall miniaturization.
[0009]
An object of the present invention is to reduce the size of the entire magnetic field detection device by enabling the use of a single battery as a power source of the magnetic field detection device in a method of detecting a magnetic field using a magneto-impedance effect element.
[0010]
[Means for Solving the Problems]
In the magnetic field detection method according to claim 1, an excitation current is passed through the magneto-impedance effect element, and a modulated wave in which the excitation current is modulated by the detected magnetic field acting on the magneto-impedance effect element is output to the magneto-impedance effect element end. This output is sent to a detection circuit, and this detection circuit extracts the amount of magnetic field to be detected from the modulated wave, amplifies or attenuates this in an intermediate processing unit, and a negative feedback coil disposed near the magneto-impedance effect element. In the method of negatively feeding back the output of the amplifier of the intermediate processing unit and detecting the magnetic field based on the linearization of the output-detected magnetic field characteristic, the detection circuit includes a modulated wave in which the excitation current is modulated by the detected magnetic field. It is characterized by comprising an operational amplifier circuit for half-wave rectification and a circuit for shaping the half-wave rectified wave into an envelope wave.
[0011]
In the magnetic field detection method according to claim 2, an exciting current is caused to flow through the magneto-impedance effect element, and a modulated wave in which the exciting current is modulated by the detected magnetic field acting on the magneto-impedance effect element is output to the end of the magneto-impedance effect element. forced in the output to the detection circuit fetches the detected magnetic field amount from the modulated wave at the detection circuit, which amplifies or attenuates it in intermediate processing unit, the output of the amplifier to the GND potential by the potential V x The ground- side reference potential of the negative feedback coil disposed in the vicinity of the magneto-impedance effect element is set to the potential V x, and the output of the amplifier of the intermediate processing unit is negatively fed back so that the output-detected magnetic field characteristics In the method of detecting a magnetic field under linearization, the detection circuit includes an operational amplifier circuit that half-wave rectifies a modulated wave whose excitation current is modulated by a detected magnetic field, and a half-wave rectified wave. And a circuit for forming an envelope wave .
[0012]
The magnetic field detection method according to claim 3 is the magnetic field detection method according to claim 2, wherein the magnetic impedance effect element, a power source that applies an excitation current to the magnetoimpedance effect element, and a detected magnetic field that acts on the magnetoimpedance effect element. A detection circuit that extracts a detected amount corresponding to a detected magnetic field from the modulated wave in which the excitation current is modulated, an intermediate processing unit that amplifies or attenuates the detected amount, and a magneto-impedance effect element that is disposed in the vicinity. A negative feedback coil to which the output of the amplifier of the intermediate processing unit is negatively fed back, the amplifier is operated with a single power source Vcc , and the center value of the amplifier output is set to a potential Vx between Vcc and zero potential. the potential adjusting means for setting annexed to the amplifier input terminal, a GND reference potential of the negative feedback coil annexed potential adjusting means for setting the potential Vx, the test Characterized by using a magnetic field detecting device configured operational amplifier circuit and the half-wave rectified wave to half-wave rectification of the modulated wave circuit excitation current is modulated by the detected magnetic field and a circuit for shaping the envelope wave.
[0013]
According to a fourth aspect of the present invention, there is provided a magnetic field detection method in which an excitation current is passed through a magneto-impedance effect element, a bias magnetic field is applied to the magneto-impedance effect element, and the excitation current is modulated by a detected magnetic field acting on the magneto-impedance effect element. Is output to the end of the magneto-impedance effect element, and this output is sent to the detection circuit. The detection circuit extracts the amount of the detected magnetic field from the modulated wave, which is amplified or attenuated by the intermediate processing unit. output is shifted by the potential V x to GND potential, setting the GND reference potential of the negative feedback coil which is arranged in the vicinity of the magneto-impedance effect element to the electric potential V x, the negative output of the amplifier of the intermediate processing unit In the method of detecting the magnetic field by making the output-detected magnetic field characteristic linear and making the polarity discriminable by feeding back, the detection circuit detects the excitation current. It is characterized by comprising an operational amplifier circuit for half-wave rectifying the modulated wave modulated by the outgoing magnetic field and a circuit for shaping the half-wave rectified wave into an envelope wave .
[0014]
A magnetic field detection method according to a fifth aspect is the magnetic field detection method according to the fourth aspect, in which a magneto-impedance effect element, a power source that applies an excitation current to the magneto-impedance effect element, and a detected magnetic field that acts on the magneto-impedance effect element. A detection circuit for extracting a detected amount corresponding to a detected magnetic field from the modulated wave in which the excitation current is modulated, an intermediate processing unit for amplifying or attenuating the detected amount, and an amplifier disposed in the vicinity of the magneto-impedance effect element A negative feedback coil whose output is negatively fed back, and a bias magnetic field coil disposed in the vicinity of the magneto-impedance effect element, the amplifier is operated with a single power source V cc , and the center value of the amplifier output is V the potential adjusting means for setting the potential Vx between the cc and the zero potential is attached to the amplifier input terminal, photoelectrically GND reference potential of the negative feedback coil of the A potential adjusting means for setting to Vx, an operational amplifier circuit for half-wave rectifying the modulated wave whose excitation current is modulated by the detected magnetic field, and a circuit for shaping the half-wave rectified wave into an envelope wave It is characterized by using the magnetic field detection apparatus comprised from these.
[0015]
A magnetic field detection method according to a sixth aspect is characterized in that, in the magnetic field detection method according to the fourth or fifth aspect, the shift potential Vx with respect to the GND potential of the amplifier output is set by adjustment by the potential adjustment means of the amplifier input terminal.
[0016]
A magnetic field detection method according to a seventh aspect is the magnetic field detection method according to the fourth or fifth aspect, wherein the shift potential Vx with respect to the GND potential of the amplifier output is set by adjusting a bias magnetic field.
[0017]
A magnetic field detection method according to an eighth aspect is the magnetic field detection method according to the fourth or fifth aspect, wherein the shift potential Vx with respect to the GND potential of the amplifier output is set by adjustment of the bias magnetic field and adjustment by the potential adjustment means of the amplifier input terminal. It is characterized by that.
[0018]
A magnetic field detection method according to claim 9 is the magnetic field detection method according to any one of claims 2 to 8, wherein a differential amplifier circuit including an operational amplifier is used as an operational amplifier circuit, and one input of both input terminals of the operational amplifier is used. The terminal side is the modulation wave input end side, the other input terminal side is the shift voltage application end side, and a circuit for setting the amplitude center of the modulation wave to the potential Vam is attached. A is the gain of the operational amplifier from the modulation wave input end to the output end of the operational amplifier, and A is the gain from the operational amplifier shift voltage application end to the operational amplifier output end to A ′. Is Hmin,
[Expression 1]
| Vam + Vcc · A '/ A | ≦ Hmin
It is characterized by giving the relationship.
[0019]
A magnetic field detection method according to a tenth aspect is the magnetic field detection method according to the ninth aspect, wherein a differential amplifier circuit including an operational amplifier is used as an operational amplifier circuit, and one input terminal side of both input terminals of the operational amplifier is modulated. A wave input end side, the other input terminal side is a shift voltage application end side, a circuit for setting the amplitude center of the modulation wave to the potential Vam is provided, the shift power supply potential is Vcc, and the modulation wave When the gain when the output terminal of the operational amplifier is viewed from the input terminal is A, the gain when the output terminal of the operational amplifier is viewed from the voltage application terminal for shifting is A ′, and the minimum amplitude value of the modulated wave is Hmin.
[Expression 2]
-Hmin ≦ Vam + Vcc · A ′ / A ≦ 0
It is characterized by giving the relationship.
[0020]
Magnetic field detection method according to claim 11 is the magnetic field detection method of claim 10, the shift voltage application terminal through a resistor R g is connected to the inverting input terminal of the operational amplifier, the inverting input terminal the output terminal of the operational amplifier via a resistor R f negative feedback connected, connected to the GND potential via the resistor R 2 as well as connected to a non-inverting shift voltage application terminal through a resistor R 1 and between the input terminal of the modulation wave input operational amplifier Then, the amplitude center potential Vam of the modulation wave is given by Vcc · R 2 / (R 1 + R 2 ), the gain A is given by 1+ (R f / R g ), and the gain A ′ is − (R f / R g ).
[0021]
A magnetic field detection method according to a twelfth aspect is the magnetic field detection method according to any one of the first to eleventh aspects, wherein a magnetic inductance effect element is used instead of the magnetic impedance effect element.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a magnetic field detection apparatus used in the magnetic field detection method according to the present invention .
FIG. 2 shows voltage waveforms at the portions a to e in FIG.
In FIG. 1, 1 is a magneto-impedance effect element. Reference numeral 2 denotes a high-frequency power source for applying a high-frequency excitation current to the magneto-impedance effect element 1. C 1 is a capacitor for cutting off the direct current component. Reference numeral 3 denotes a demodulator, which can be constructed by replacing the conventional diode 31 and peak hold RC circuit 32 shown in FIG. 3 with an operational amplifier as shown in FIG. C 2 is a capacitor for blocking a DC component.
Further, in FIG. 1, reference numeral 40 denotes an intermediate processing unit that amplifies or attenuates the demodulated wave, and 50 denotes an output end.
When the feedback at the position e in the intermediate processing unit is returned to the magneto-impedance effect element side for feedback, the gain of the circuit having the magneto-impedance effect element side as the input terminal and the position e as the output terminal is A, and the feedback rate is If β is set, the relationship between output Ei and input Eo when feedback is applied is Eo = EiA / (1−Aβ), as is well known, and negative when Aβ is greater than 1. It becomes feedback, and by making A very large, Eo = −Ei / β is obtained, and the influence due to the temperature change of A can be eliminated and linearized.
Reference numeral 4 denotes an amplifier whose output end faces position e. A single battery Vcc is used as a power source, and a resistance divided potential of Vcc is applied to the + input terminal in order to adjust the output amplitude center value Vx. A variable divided potential Vx of Vcc is applied to the input terminal. Reference numeral 5 denotes a negative feedback circuit. One end of a negative feedback coil 51 for applying negative feedback to the magneto-impedance effect element 1 is connected to the output end of the amplifier 4, and the other end of the coil 51 is connected to the amplitude center of the amplifier output. A potential equal to the potential Vx is applied and connected to GND.
In Figure 1, there is shown a V cc in multiple箇, which are common single entity.
[0023]
In FIG. 1, when Hex is a detected magnetic field, the waveform at the output terminal b of the magneto-impedance effect element is modulated by the detected magnetic field Hex using the high frequency of the excitation power supply as a carrier wave as shown in FIG. It becomes a modulated wave. Furthermore, it is half-wave rectified wave output rectifier component with resistance R 3 of the voltage waveform diode 31 at the resistor end b 'of the demodulator 3, as shown in FIG. 3, the waveform at the output end b "on the capacitor C 3 2 becomes the demodulated wave shown in (c) of Fig. 2. The demodulated wave is input to the intermediate processing unit 40 to be amplified or attenuated. Thus, the input end of the amplifier 4 is reached.
[0024]
FIG. 2E shows the output waveform of the amplifier 4, which is a waveform that is amplified and attenuated without substantially distorting the demodulated wave. In this case, since by operating the amplifier 4 by a single power supply V cc, the amplifier to pay its amplitude in order to output without cutting the amplitude of the output of the amplifier in the range - input terminal side + V cc variable The resistance partial pressure value is adjusted. Thus, the output of the amplifier 4 oscillates with the potential Vx in FIG. 2E as the amplitude center value, and the potential reference becomes Vx.
In the present invention, the GRN side reference potential of the negative feedback coil is set to the Vx by adjusting the variable resistance voltage of + V cc . Therefore, the negative feedback can be satisfactorily applied by the amplifier output, and therefore the magnetic field -The output characteristics can be linearized.
[0025]
The variable resistance voltage adjustment of + V cc at the negative input terminal of the amplifier and the variable resistance voltage adjustment of + V cc on the GRN side of the negative feedback coil can be performed as follows.
That is, the gain when viewing the output terminal from the + input terminal of the amplifier is A, the gain when viewing the output terminal from the −input terminal of the amplifier is −A ′, and the variable resistance voltage division ratio of + V cc at the −input terminal of the amplifier is X Then, the amplitude center potential Vx of the amplifier output is
Vx = [AV cc R 2 / (R 1 + R 2 )] − A′XV cc
Given in.
Therefore, in order to keep the amplitude of the amplifier output in the range of 0 to + V cc , the maximum amplitude to the + input terminal of the amplifier is set to Emax.
[AV cc R 2 / (R 1 + R 2 )] − A′XV cc + AEmax <V cc
[AV cc R 2 / (R 1 + R 2) ] - A'XV cc -AEmax> 0
Must be satisfied.
in this case,
[Expression 7]
[AV cc R 2 / (R 1 + R 2 )] − A′XV cc + AEmax = 0.9 V cc
[AV cc R 2 / (R 1 + R 2 )] − A′XV cc −AEmax = 0.1 V cc
It is preferable that
X satisfying these equations is obtained, and the variable resistance voltage dividing ratio of + V cc at the negative input terminal of the amplifier may be set to X.
Further, the above Vx may be obtained and the GRN side potential of the negative feedback coil may be set to Vx.
[0026]
The amplitude range of the output Eo in (e) of FIG. 2 is in the range where the magnetic field-output characteristics are linearized by negative feedback, and the magnetic field-output characteristics are as shown in (b) of FIG. FIG. 4A shows the magnetic field-output characteristics when no negative feedback is applied.
[0027]
FIG. 5 shows an example of a magnetic field detection device used in the magnetic field detection method according to the present invention , and a bias magnetic field coil 6 is attached in the vicinity of the magneto-impedance effect element 1 of the magnetic field detection device shown in FIG.
When a magnetic field is detected according to the present invention using this magnetic field detection device, if the bias magnetic field is Hb, the linear characteristic is shifted by -Hb in FIG. 4B, as shown in FIG. It becomes a characteristic.
[0028]
In FIG. 4C, the output reference value Vx when Hex = 0 is given by the magnitude of the bias magnetic field Hb and the resistance voltage division ratio X at the amplifier input end, so that the output reference value is the bias magnetic field Hb or It can be adjusted by the resistance voltage division ratio X.
However, the bias magnetic field Hb must be set so that the output characteristic is a single oblique line without refraction with respect to the amplitude range of the detected magnetic field, and the output reference value is set when Hex = 0 with only the bias magnetic field Hb. In this case, it is necessary to set an output reference value when Hex = 0 by adjusting both the bias magnetic field Hb and the resistance voltage dividing ratio X.
[0029]
As the demodulator, a demodulator can be used from an operational amplifier circuit and a peak hold RC circuit driven by a single power source Vcc shown in FIG.
In FIG. 6, 10 indicates an output terminal of the operational amplifier op, 20 indicates a non-inverting input terminal, and 30 indicates an inverting input terminal.
6, the shift voltage application terminal 30 'via a resistor R g is connected to the inverting input terminal 30 of the operational amplifier, via a resistor R f output terminal 10 of the operational amplifier to the inverting input terminal 30 and the negative feedback connection, grounded via a resistor R 2 together with the connecting via a resistor R 1 to the 'shift voltage application terminal 30 between the non-inverting input terminal 20 of the operational amplifier' demodulated wave input 20, the shift voltage V cc I use it. R 3 and C 3 are resistors and capacitors constituting the peak hold RC circuit. C 4 and C 5 are DC cut capacitors.
[0030]
(A) to (c) in FIG. 7 show voltage waveforms at the respective parts a to c in FIG.
In the differential amplifier circuit of FIG. 6, the gain when the output terminal 10 of the operational amplifier op is viewed from the modulation wave input terminal 20 ′ of the operational amplifier op is A, and the output terminal 10 of the operational amplifier op is connected from the shift voltage application terminal 30 ′. Assuming that the gain obtained is A ′ and the amplitude center potential of the modulated wave is Vam, the applied voltage value at the power supply application terminal 30 ′ for shifting of the operational amplifier op is V cc. (The output range of the operational amplifier op is approximately 0 to approximately V cc when the power supply voltage is V cc, and the amplitude center of the amplitude wave when it is assumed that it is not cut, although approximately zero potential or less is cut. ) Center value V0 is
[Equation 8]
V0 = AVam + A'Vcc (1)
Given, also, when the minimum amplitude value of the modulation wave input Am and H min, the minimum amplitude value of the virtual amplitude of the demodulated wave output is provided by AH min.
Thus, in practice, the output range of the operational amplifier op is approximately 0 to approximately Vcc , and the output below the zero potential is cut off. Therefore, the center value V0 of the virtual amplitude of the demodulated wave output is set to the demodulated wave output. With respect to the minimum amplitude value AH min of the virtual amplitude, | V0 | ≦ AH min , that is, from Equation (1)
| Vam + (A ′ / A) Vcc | ≦ H min (2)
If it is set to, the envelope half-wave rectified wave of the demodulated wave output can be output without cutting the envelope, and thus the envelope-free half-wave rectified wave without distortion can be output.
[0031]
In this way, the After half-wave rectified by the operational amplifier circuit demodulating wave input, obtain an envelope output of the half-wave rectification wave by the peak-hold circuit composed of RC parallel circuit, demodulation waves through this to capacitor C 5 Get.
[0032]
In the above embodiment, the non-inverting input terminal side of the operational amplifier of the differential amplifier circuit is set to the demodulated wave input end side, and the inverting input terminal side is set to the shift voltage applying end side. The inverting input terminal side of the operational amplifier of the amplifier circuit can be the demodulated wave input end side, and the non-inverting input terminal side can be the shifting voltage application end side.
[0033]
In the above, the amplitude center value AVam + A'V cc of the demodulated wave output - the closer to the A H min, because the power of the output wave can reduce power consumption to a small, on the reduction of power consumption,
[Expression 10]
-H min ≦ Vam + (A ' / A) V cc ≦ 0 (3)
Is desirable.
[0034]
If the carrier wave is Ic = Eccoswt, the signal wave Vs is a single wave and Vs = Escospt, the minimum amplitude is given by (Ec−Es), and if the modulation degree Es / Ic = m, the minimum amplitude is Ic ( 1-m).
Thus, the external magnetic field signal is a multiple wave, and the modulation degree m extends over a considerable band within the range of 0 to 100%, but the minimum amplitude H min increases as the modulation degree in the band decreases. In this case, it is desirable to reduce the power consumption by satisfying the requirement of the above formula (3).
[0035]
Thus, the amplitude center potential Vam of the demodulated wave is given by
Vam = Vcc · R 2 / (R 1 + R 2 ) (4)
And gain A when the output terminal 10 of the operational amplifier is viewed from the modulation wave input terminal 20 ′ is given by
A = 1 + (R f / R g ) (5)
The gain A ′ when the output terminal 10 of the operational amplifier is viewed from the shift voltage application terminal 30 ′ is given by
A ′ = − R f / R g (6)
Given in.
Therefore, the condition of the above equation (2) is:
| V cc {[R 2 / (R 1 + R 2 )]-[R f / (R f + R g )]} | ≦ H min (7)
And the condition of equation (3) above is
−H minVcc {[R 2 / (R 1 + R 2 )] − [R f / (R f + R g )]} ≦ 0 (8)
Given in.
[0036]
Instead of the peak hold circuit, an RC low-pass filter can be used. The temperature characteristics can be changed by using a capacitor of these peak hold circuit or RC low-pass filter as a temperature compensation capacitor.
[0037]
For the magneto-impedance effect element, zero magnetostrictive or negative magnetostrictive amorphous wire, amorphous ribbon, amorphous sputtered film or the like can be used. The frequency of the high frequency excitation current as a carrier wave is on the order of MHz.
Even in the case of a carrier wave having a frequency lower than this, the carrier wave can be amplitude-modulated by an external magnetic field due to the above-described magnetic inductance effect, and the present invention can also be implemented using a magnetic inductance effect element.
[0038]
As the high-frequency carrier wave, a normal high-frequency wave such as a continuous sine wave, a pulse wave, or a triangular wave can be used. For example, a normal oscillation circuit such as a Hartley oscillation circuit, a Colpitts oscillation circuit, a collector-tuned oscillation circuit, or a base-tuned oscillation circuit can be used. In addition, a triangular wave generator that integrates a square wave output of a crystal oscillator through an integration circuit through a DC component cut capacitor and amplifies the triangular wave of the integrated output by an amplifier circuit, and a triangular wave generator that uses a CMOS-IC as an oscillation unit are used. be able to.
It is also possible to use a sine wave, a pulse wave, or a triangular burst wave to reduce power consumption.
[0039]
In the above embodiment, an excitation current is used as a carrier wave, the carrier wave is amplitude-modulated with a magnetic field to be detected, and a detection circuit that demodulates the modulated wave and extracts a detected amount is used. Any circuit can be used as long as it can extract the detected amount corresponding to the detected magnetic field from the magnetic field detection signal by the detected magnetic field acting on the.
[0040]
【The invention's effect】
In the magnetic field detection method according to the present invention, a single battery power source can be used as the power source of the magnetic field detection device, and the magnetic field can be detected by a small magnetic detection device.
Further, the output reference value at the magnetic field zero of the magnetic field-output characteristic can be adjusted by the bias magnetic field, and the setting of the output reference value is easy.
In addition, since the operational amplifier is used without the diode in the demodulator , the external magnetic field signal can be demodulated with high accuracy by cutting the temperature-dependent output drift for the high performance of the operational amplifier.
Further, the operational amplifier output can be reduced , and the power consumption can be reduced.
[Brief description of the drawings]
FIG. 1 shows a magnetic field detection circuit used in a magnetic field detection method of the present invention .
FIG. 2 is a diagram showing voltage waveforms at various parts in FIG. 1;
FIG. 3 is a diagram illustrating a conventional example of a demodulation unit of a magnetic field detection circuit.
FIG. 4 is a drawing used to explain magnetic field-output characteristics in a magnetic field detection method according to the present invention.
FIG. 5 is a diagram showing a magnetic field detection circuit used in the magnetic field detection method of the present invention .
FIG. 6 is a diagram illustrating an example of a demodulation unit in a magnetic field detection circuit used in the present invention.
7 is a diagram showing voltage waveforms at various parts of the demodulator in FIG. 6;
FIG. 8 is a diagram showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Magneto-impedance effect element 2 High frequency power supply for excitation 3 Demodulator 40 Intermediate processing circuit 4 Amplifier 51 Negative feedback coil 6 Bias magnetic field coil op Differential operational amplifier

Claims (12)

磁気インピーダンス効果素子に励磁電流を流し、磁気インピーダンス効果素子に作用する被検出磁界により前記励磁電流が変調された変調波を磁気インピーダンス効果素子端に出力させ、この出力を検出回路に送入し、この検出回路で前記変調波から被検出磁界量を取り出し、これを中間処理部で増幅若しくは減衰し、磁気インピーダンス効果素子近傍に配設した負帰還用コイルに前記中間処理部の増幅器の出力を負帰還させて出力−被検出磁界特性の直線化のもとで磁界を検出する方法において、前記検出回路を、励磁電流が被検出磁界により変調された変調波を半波整流する演算増幅回路と半波整流波を包絡波に成形する回路とから構成することを特徴とする磁界検出方法。 An exciting current is passed through the magneto-impedance effect element, and a modulated wave in which the exciting current is modulated by the detected magnetic field acting on the magneto-impedance effect element is output to the magneto-impedance effect element end, and this output is sent to the detection circuit, The detection circuit extracts the amount of magnetic field to be detected from the modulated wave, amplifies or attenuates it in the intermediate processing unit, and negatively outputs the output of the amplifier in the intermediate processing unit to the negative feedback coil disposed near the magneto-impedance effect element. In the method of detecting the magnetic field based on the linearization of the output-detected magnetic field characteristics by feedback, the detection circuit includes a half-wave rectification of a modulation wave whose excitation current is modulated by the detected magnetic field and a half A magnetic field detection method comprising: a circuit for shaping a wave rectified wave into an envelope wave . 磁気インピーダンス効果素子に励磁電流を流し、磁気インピーダンス効果素子に作用する被検出磁界により前記励磁電流が変調された変調波を磁気インピーダンス効果素子端に出力させ、この出力を検出回路に送入し、この検出回路で前記変調波から被検出磁界量を取り出し、これをこれを中間処理部で増幅若しくは減衰し、増幅器の出力を GND 電位に対し電位V x だけシフトさせ、磁気インピーダンス効果素子近傍に配設した負帰還用コイルの GND 側基準電位を前記電位V x に設定し、前記中間処理部の増幅器の出力を負帰還させて出力−被検出磁界特性の直線化のもとで磁界を検出する方法において、前記検出回路を、励磁電流が被検出磁界により変調された変調波を半波整流する演算増幅回路と半波整流波を包絡波に成形する回路とから構成することを特徴とする磁界検出方法。 An exciting current is passed through the magneto-impedance effect element, and a modulated wave in which the exciting current is modulated by the detected magnetic field acting on the magneto-impedance effect element is output to the magneto-impedance effect element end, and this output is sent to the detection circuit, the detection circuit is taken out the detected magnetic field amount from the modulated wave which was amplified or attenuated this in intermediate processing unit, with respect to the GND potential output of the amplifier is shifted by the potential V x, distribution in the vicinity of the magneto-impedance effect element set the GND reference potential of the negative feedback coils set to the potential V x, the output of the intermediate processing of the amplifier by a negative feedback output - to detect the magnetic field under the linearization of the detected magnetic field characteristics In the method, the detection circuit includes an operational amplification circuit that half-wave rectifies a modulated wave whose excitation current is modulated by a detected magnetic field, and a circuit that shapes the half-wave rectified wave into an envelope wave. A magnetic field detection method comprising: 磁気インピーダンス効果素子と、磁気インピーダンス効果素子に励磁電流を印加する電源と、磁気インピーダンス効果素子に作用する被検出磁界により前記励磁電流が変調された変調波から被検出磁界に相当する被検出量を取り出す検出回路と、前記被検出量を増幅若しくは減衰する中間処理部と、磁気インピーダンス効果素子の近傍に配設され前記中間処理部の増幅器の出力が負帰還される負帰還用コイルとを有し、増幅器を単一電源V cc で動作させ、増幅器出力の中心値をV cc と零電位との間の電位Vxに設定するための電位調整手段を増幅器入力端に付設し、前記負帰還用コイルの GND 側基準電位を前記の電位Vxに設定するための電位調整手段を付設し、前記検出回路を励磁電流が被検出磁界により変調された変調波を半波整流する演算増幅回路と半波整流波を包絡波に成形する回路とから構成した磁界検出装置を使用することを特徴とする請求項2記載の磁界検出方法。 A magnetic impedance effect element, a power source for applying an excitation current to the magnetoimpedance effect element, and a detected amount corresponding to the detected magnetic field from a modulated wave in which the excitation current is modulated by the detected magnetic field acting on the magnetoimpedance effect element. A detection circuit to be extracted; an intermediate processing unit that amplifies or attenuates the detected amount; and a negative feedback coil that is disposed in the vicinity of the magneto-impedance effect element and that negatively feeds back the output of the amplifier of the intermediate processing unit. The negative feedback coil is provided with a potential adjusting means for operating the amplifier with a single power source V cc and setting the center value of the amplifier output to a potential Vx between V cc and zero potential at the amplifier input end. Starring that of a GND reference potential annexed potential adjusting means for setting the potential Vx, the detection circuit excitation current to half-wave rectification of the modulated wave modulated by the detected magnetic field Magnetic field detection method according to claim 2, wherein the use of a magnetic field detecting device configured an amplifier circuit and a half-wave rectification wave and a circuit for shaping the envelope wave. 磁気インピーダンス効果素子に励磁電流を流し、磁気インピーダンス効果素子にバイアス磁界をかけ、磁気インピーダンス効果素子に作用する被検出磁界により前記励磁電流が変調された変調波を磁気インピーダンス効果素子端に出力させ、この出力を検出回路に送入し、この検出回路で前記変調波から被検出磁界量を取り出し、これをこれを中間処理部で増幅若しくは減衰し、増幅器の出力を GND 電位に対し電位V x だけシフトさせ、磁気インピーダンス効果素子近傍に配設した負帰還用コイルの GND 側基準電位を前記電位V x に設定し、前記中間処理部の増幅器の出力を負帰還させて出力−被検出磁界特性を直線化すると共に極性判別可能にして磁界を検出する方法において、前記検出回路を、励磁電流が被検出磁界により変調された変調波を半波整流する演算増幅回路と半波整流波を包絡波に成形する回路とから構成することを特徴とする磁界検出方法。 An excitation current is passed through the magneto-impedance effect element, a bias magnetic field is applied to the magneto-impedance effect element, and a modulated wave in which the excitation current is modulated by the detected magnetic field acting on the magneto-impedance effect element is output to the end of the magneto-impedance effect element. forced in the output to the detection circuit fetches the detected magnetic field amount from the modulated wave at the detection circuit, which amplifies or attenuates it in intermediate processing unit, the output of the amplifier to the GND potential by the potential V x The ground- side reference potential of the negative feedback coil disposed near the magneto-impedance effect element is set to the potential V x, and the output of the amplifier of the intermediate processing unit is negatively fed back to obtain the output-detected magnetic field characteristics. In the method of detecting a magnetic field by making the polarity linear and discriminating the polarity, the detection circuit is connected to a modulated wave whose excitation current is modulated by a detected magnetic field. A magnetic field detection method comprising an operational amplifier circuit for half-wave rectification and a circuit for shaping a half-wave rectified wave into an envelope wave . 磁気インピーダンス効果素子と、磁気インピーダンス効果素子に励磁電流を印加する電源と、磁気インピーダンス効果素子に作用する被検出磁界により前記励磁電流が変調された変調波から被検出磁界に相当する被検出量を取り出す検出回路と、前記被検出量を増幅若しくは減衰する中間処理部と、磁気インピーダンス効果素子の近傍に配設され増幅器出力が負帰還される負帰還用コイルと、磁気インピーダンス効果素子の近傍に配設されたバイアス磁界用コイルとを有し、増幅器を単一電源V cc で動作させ、増幅器出力の中心値をV cc と零電位との間の電位Vxに設定するための電位調整手段を増幅器入力端に付設し、前記負帰還用コイルの GND 側基準電位を前記の電位Vxに設定するための電 位調整手段を付設し、前記検出回路を励磁電流が被検出磁界により変調された変調波を半波整流する演算増幅回路と半波整流波を包絡波に成形する回路とから構成した磁界検出装置を使用することを特徴とする請求項4記載の磁界検出方法。 A magnetic impedance effect element, a power source for applying an excitation current to the magnetoimpedance effect element, and a detected amount corresponding to the detected magnetic field from a modulated wave in which the excitation current is modulated by the detected magnetic field acting on the magnetoimpedance effect element. A detection circuit to be taken out, an intermediate processing unit for amplifying or attenuating the detected amount, a negative feedback coil disposed in the vicinity of the magneto-impedance effect element to which the amplifier output is negatively fed back, and in the vicinity of the magneto-impedance effect element. And a bias adjusting coil for operating the amplifier with a single power source V cc and setting the center value of the amplifier output to a potential Vx between V cc and zero potential. annexed to the input terminal, a GND reference potential of the negative feedback coil annexed electrodeposition position adjusting means for setting the potential Vx, the detection circuit excitation current Field according to claim 4, characterized by using a magnetic field detecting apparatus composed of a circuit for forming an operational amplifier circuit and the half-wave rectified wave to half-wave rectification of the modulated wave modulated by the detected magnetic field to the envelope wave Detection method. 増幅器出力のGND電位に対するシフト電位Vxを増幅器入力端子の電位調整手段による調整により設定することを特徴とする請求項4または5記載の磁界検出方法。6. The magnetic field detection method according to claim 4, wherein the shift potential Vx with respect to the GND potential of the amplifier output is set by adjustment by the potential adjustment means of the amplifier input terminal. 増幅器出力のGND電位に対するシフト電位Vxをバイアス磁界の調整により設定することを特徴とする請求項4または5記載の磁界検出方法。6. The magnetic field detection method according to claim 4, wherein the shift potential Vx with respect to the GND potential of the amplifier output is set by adjusting a bias magnetic field. 増幅器出力のGND電位に対するシフト電位Vxをバイアス磁界の調整と増幅器入力端子の電位調整手段による調整とにより設定することを特徴とする請求項4または5記載の磁界検出方法。6. The magnetic field detection method according to claim 4, wherein the shift potential Vx with respect to the GND potential of the amplifier output is set by adjusting the bias magnetic field and adjusting the potential of the amplifier input terminal by the potential adjusting means. 演算増幅器を備えた差動増幅回路を演算増幅回路として用い、演算増幅器の両入力端子の一方の入力端子側を変調波入力端側とし、他方の入力端子側をシフト用電圧印加端側とし、変調波の振幅中心を電位Vamに設定するための回路を付設してあり、シフト用電源電位をVccとし、演算増幅器の変調波入力端から演算増幅器の出力端をみた利得をAとし、演算増幅器のシフト用電圧印加端から演算増幅器の出力端をみた利得をA'とし、変調波の最小振幅値をHminとすると、
Figure 0004219731
の関係を付与することを特徴とする請求項2〜8何れか記載の磁界検出方法。
Using a differential amplifier circuit having an operational amplifier as an operational amplifier circuit, one input terminal side of both input terminals of the operational amplifier is a modulation wave input end side, and the other input terminal side is a shift voltage application end side, A circuit for setting the amplitude center of the modulation wave to the potential Vam is attached, the power supply potential for shift is Vcc, the gain when the output end of the operational amplifier is viewed from the modulation wave input end of the operational amplifier is A, and the operational amplifier When the gain when viewing the output terminal of the operational amplifier from the shift voltage application terminal is A ′ and the minimum amplitude value of the modulated wave is Hmin,
Figure 0004219731
The magnetic field detection method according to claim 2, wherein the relationship is given.
演算増幅器を備えた差動増幅回路を演算増幅回路として用い、演算増幅器の両入力端子の一方の入力端子側を変調波入力端側とし、他方の入力端子側をシフト用電圧印加端側とし、変調波の振幅中心を電位Vamに設定するための回路を付設してあり、シフト用電源電位をVccとし、変調波入力端から演算増幅器の出力端をみた利得をAとし、シフト用電圧印加端から演算増幅器の出力端をみた利得をA'とし、変調波の最小振幅値をHminとすると、
Figure 0004219731
の関係を付与することを特徴とする請求項9記載の磁界検出方法。
Using a differential amplifier circuit having an operational amplifier as an operational amplifier circuit, one input terminal side of both input terminals of the operational amplifier is a modulation wave input end side, and the other input terminal side is a shift voltage application end side, A circuit for setting the amplitude center of the modulation wave to the potential Vam is attached, the power supply potential for shift is Vcc, the gain of the output end of the operational amplifier from the modulation wave input end is A, and the shift voltage application end A ′ is the gain of the operational amplifier viewed from the output terminal, and A ′ is the minimum amplitude value of the modulated wave.
Figure 0004219731
The magnetic field detection method according to claim 9, wherein the relationship is given.
シフト用電圧印加端を抵抗Rを経て演算増幅器の反転入力端子に接続し、演算増幅器の出力端子を反転入力端子に抵抗Rを経て負帰還接続し、変調波入力端と演算増幅器の非反転入力端子との間を抵抗Rを経てシフト用電圧印加端に接続すると共に抵抗Rを経てGND電位に接続して、変調波の振幅中心電位VamをVcc・R/(R+R)で与え、利得Aを1+(R/R)で与え、利得A'を−(R/R)で与えることを特徴とする請求項10記載の磁界検出方法。The shift voltage application terminal through a resistor R g is connected to the inverting input terminal of the operational amplifier, via a resistor R f the output terminal of the operational amplifier to the inverting input terminal and the negative feedback connection, non of the modulation wave input operational amplifier The inverting input terminal is connected to the shift voltage application terminal via the resistor R 1 and connected to the GND potential via the resistor R 2, and the amplitude center potential Vam of the modulation wave is set to Vcc · R 2 / (R 1 + R given by 2), the gain a given by 1+ (R f / R g) , the gain a '- (R f / R g) magnetic field detection method according to claim 10, wherein providing at. 磁気インピーダンス効果素子に代え磁気インダクタンス効果素子を使用することを特徴とする請求項1〜11何れか記載の磁界検出方法。The magnetic field detection method according to claim 1, wherein a magnetic inductance effect element is used instead of the magnetoimpedance effect element.
JP2003126564A 2003-05-01 2003-05-01 Magnetic field detection method Expired - Fee Related JP4219731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003126564A JP4219731B2 (en) 2003-05-01 2003-05-01 Magnetic field detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003126564A JP4219731B2 (en) 2003-05-01 2003-05-01 Magnetic field detection method

Publications (2)

Publication Number Publication Date
JP2004333207A JP2004333207A (en) 2004-11-25
JP4219731B2 true JP4219731B2 (en) 2009-02-04

Family

ID=33503454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003126564A Expired - Fee Related JP4219731B2 (en) 2003-05-01 2003-05-01 Magnetic field detection method

Country Status (1)

Country Link
JP (1) JP4219731B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523838B2 (en) * 2004-12-27 2010-08-11 株式会社リコー Magnetic sensor circuit and semiconductor device

Also Published As

Publication number Publication date
JP2004333207A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
US9791522B2 (en) Magnetic field detection sensor
JP4495635B2 (en) Magneto-impedance effect sensor and method of using magneto-impedance effect sensor
US6456068B1 (en) Magnetic impedance element having a highly linear magnetic field detection range
JP4307695B2 (en) Magnetic detection device and magnetic field detection method
JP4219731B2 (en) Magnetic field detection method
JP4219730B2 (en) Magnetic field detection method
JP4808411B2 (en) Magnetic field detection circuit
JP2005055326A (en) Conductor current measurement method and magnetic field sensor for measuring conductor current
JP4938740B2 (en) Magnetic field detector
JP4878903B2 (en) Magnetic sensor for pillar transformer diagnosis
JP2007322125A (en) Magnetic impedance effect sensor and method for detecting external magnetic field
JP2005061980A (en) Conductor current measuring method
JP4656480B2 (en) Magnetic field detection circuit
JP4267135B2 (en) Magnetic field detection method
JP4808410B2 (en) Magnetic field detection circuit
JP4252170B2 (en) Magnetic field detector
JP4722717B2 (en) Current sensor
JP4476746B2 (en) Corrosion / thinning inspection method for the back of steel walls
KR102656037B1 (en) Magnetic-field detecting apparatus
JP5085274B2 (en) Magnetic field sensor
JP4630401B2 (en) Current sensor and current detection method
JP3607447B2 (en) Magnetic field sensor
JP2003075520A (en) Magnetic field detecting circuit
JP2005043254A (en) Method for measuring conductor current
JP4739097B2 (en) Diagnosis method of pole transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees