JP4771902B2 - 画像処理装置及び画像処理方法 - Google Patents

画像処理装置及び画像処理方法 Download PDF

Info

Publication number
JP4771902B2
JP4771902B2 JP2006253596A JP2006253596A JP4771902B2 JP 4771902 B2 JP4771902 B2 JP 4771902B2 JP 2006253596 A JP2006253596 A JP 2006253596A JP 2006253596 A JP2006253596 A JP 2006253596A JP 4771902 B2 JP4771902 B2 JP 4771902B2
Authority
JP
Japan
Prior art keywords
threshold
image
halftone
edge
line number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006253596A
Other languages
English (en)
Other versions
JP2008078830A (ja
Inventor
弘幸 芝木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2006253596A priority Critical patent/JP4771902B2/ja
Publication of JP2008078830A publication Critical patent/JP2008078830A/ja
Application granted granted Critical
Publication of JP4771902B2 publication Critical patent/JP4771902B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)
  • Image Processing (AREA)

Description

本発明は、原稿を読み取るスキャナ等や外部機器から入力された画像に対して、画像データを処理し、画像を複写、あるいはファイルを転送するMF複写機(マルチファンクション複写機)、ファクシミリ、スキャナ、プリンタなどの画像処理装置に関し、特に、像域分離手段とディザ基調の中間調処理手段を備えるもので、網点部での干渉モアレの発生を低減することを目的とした画像処理装置に関するものである。
従来技術として特許文献1には、画像信号を入力して記録媒体上に画像を形成する画像形成装置であって、画像信号に含まれるRGB毎のパワースペクトラムを算出し、そのスペクトラムの空間周波数と角度を求め、これにより、プリンタ部におけるYMCそれぞれのスクリーンパターンが決定され、それらスクリーンパターンによりパルス幅変調した像形成信号が生成されて画像が形成される画像形成方法について開示されている。
また特許文献2には、入力された画像信号に対し、鮮鋭性を強調/非強調する空間周波数処理を実行し、出力する画像処理装置において、入力された画像信号の網点構造を解析する網点構造解析手段と、網点構造解析手段による解析結果にしたがって空間周波数処理における2次元的方向特性を制御するフィルタ処理手段と、を備える画像処理装置について開示されている。
特開2001−45306公報 特開2002−344743公報
しかしながら特許文献1に開示されている従来技術は、網点画像のスクリーン角度およびスクリーン線数を検出し中間調処理を制御するものであり、像域分離を行なっていないため、網点との干渉モアレを抑制することにより、文字部での画像が劣化するといった問題がある。
また、特許文献2に開示されている従来技術は、網点画像のスクリーン角を検出し、フィルタ処理の2次元方向特性を変えるものであり、フィルタの特性によりモアレ抑制の効果が低減する虞がある。
本発明は、かかる課題に鑑みてなされたものであり、適応フィルタによる網点起伏の残り具合は網点線数に起因するものであるので、線数情報を保持し、線数情報に基づいて干渉モアレが発生しにくい中間調処理パラメータを適用することで、原稿のもつ網点構造と中間調処理による干渉モアレを抑制することができる画像処理装置を提供することを目的とする。
本発明はかかる課題を解決するために、請求項1は、カラー画像を読み取るカラー画像入力手段と、前記カラー画像入力手段から読み取られた画像信号の領域毎の画像属性を判定し、少なくとも網点領域における網点線数を検出する線数検出手段を有する像域分離手段と、前記像域分離手段の分離結果に応じて空間周波数特性を補正するフィルタ処理手段と、該フィルタ処理手段により処理された処理画像に対してエッジ検出を行うエッジ検出手段と、該エッジ検出手段の検出結果と比較される第1の閾値セット及び第2の閾値セットがあり、前記線数検出手段により検出された網点線数情報によって前記第1の閾値セット及び第2の閾値セットの中から前記エッジ検出手段の検出結果と比較される閾値セットが選択され、前記エッジ検出手段の検出結果が前記第1の閾値セットより小さいときには非エッジ部と判定され振幅の大きなディザ閾値が選択され、前記第1の閾値セット以上で前記第2の閾値セットより小さいときには弱エッジ領域と判定され振幅の小さなディザ閾値が選択され、前記第2の閾値セット以上のときには強エッジ領域と判定され振幅をゼロにした閾値が選択される閾値選択手段を有する中間調処理手段と、を備え、前記中間調処理手段は、前記閾値選択手段により周期的あるいは非周期的ドットの生成を制御することを特徴とする。
請求項2は、前記閾値選択手段は、前記線数情報が所定の閾値よりも低い低線数網点領域においては、周期的構造の弱いドット生成となるように閾値を選択し、前記低線数網点領域以外の領域においては、周期的構造の強いドット生成となるように閾値を選択することを特徴とする。
請求項3は、前記フィルタ処理手段により補正された空間周波数特性に応じて前記閾値選択手段の閾値選択条件を変更することを特徴とする。
請求項4は、前記フィルタ処理手段により補正された空間周波数特性が、より高周波成分を強調する特性である場合には、前記閾値選択手段の閾値選択条件は、高線数であっても周期的構造の弱いドット生成となるように制御することを特徴とする。
請求項5は、文字画像を重視する第1の画像処理モードと、絵柄画像を重視する第2の画像処理モードとを有し、前記第1の画像処理モードにおいては前記第2の画像処理モードと比較して前記閾値選択手段による閾値選択条件を、高線数であっても周期的構造の弱いドット生成となるように制御することを特徴とする。
請求項6は、前記像域分離手段は、前記線数検出手段により検出された網点線数の代表的な線数情報を当該ページに対する線数情報として記憶し、前記線数情報に基づいて閾値選択条件を変更するように前記閾値選択手段を制御することを特徴とする。
請求項7は、前記像域分離手段は、前記線数検出手段により検出された網点線数のうち最も線数の低い網点情報を当該ページに対する線数情報として記憶し、前記線数情報に基づいて閾値選択条件を変更するように前記閾値選択手段を制御することを特徴とする。
請求項8は、カラー画像を読み取るカラー画像入力ステップと、前記カラー画像入力ステップから読み取られた画像信号の領域毎の画像属性を判定し、少なくとも網点領域における網点線数を検出する線数検出ステップを有する像域分離ステップと、前記像域分離ステップの分離結果に応じて空間周波数特性を補正するフィルタ処理ステップと、該フィルタ処理ステップにより処理された処理画像に対してエッジ検出を行うエッジ検出ステップと、該エッジ検出ステップの検出結果と比較される第1の閾値セット及び第2の閾値セットがあり、前記線数検出ステップにより検出された網点線数情報によって前記第1の閾値セット及び第2の閾値セットの中から前記エッジ検出ステップの検出結果と比較される閾値セットが選択され、前記エッジ検出ステップの検出結果が前記第1の閾値セットより小さいときには非エッジ部と判定され振幅の大きなディザ閾値が選択され、前記第1の閾値セット以上で前記第2の閾値セットより小さいときには弱エッジ領域と判定され振幅の小さなディザ閾値が選択され、前記第2の閾値セット以上のときには強エッジ領域と判定され振幅をゼロにした閾値が選択される閾値選択ステップを有する中間調処理ステップと、を備え、前記中間調処理ステップは、前記閾値選択ステップにより周期的あるいは非周期的ドットの生成を制御することを特徴とする。

本発明によれば、カラー画像を読み取るカラー画像入力手段と、カラー画像入力手段から読み取られた画像信号の領域毎の画像属性を判定し、少なくとも網点領域における網点線数を検出する線数検出手段を有する像域分離手段と、像域分離手段の分離結果に応じて空間周波数特性を補正するフィルタ処理手段と、フィルタ処理手段により処理された処理画像に対してエッジ検出を行うエッジ検出手段と、エッジ検出手段の検出結果及び線数検出手段により検出された網点線数情報に応じて閾値を選択する閾値選択手段を有する中間調処理手段と、を備え、中間調処理手段は、閾値選択手段により周期的あるいは非周期的ドットの生成を制御するので、線数情報を保持し、線数情報に基づいて干渉モアレが発生しにくい中間調処理パラメータを適用することができ、結果、原稿のもつ網点構造と中間調処理による干渉モアレを抑制することができる。
以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。
図1は本発明の実施形態に係る画像処理装置のブロック図である。この画像処理装置100は、スキャナ等の画像入力手段101によって光学的に読み取られた原稿は、rgb各8bitのデジタル画像信号に変換され出力される。出力された画像信号はスキャナγ補正手段102に入力され、LUT(ルックアップテーブル)等により反射率リニアなrgb信号は、濃度リニアなRGB信号へと変換される。同時に、rgb信号は像域分離手段103に入力され、入力画像は画素単位で画像属性の判定が行われ、像域分離結果として出力される。さらに、g信号は第1のエッジ量算出手段104に入力され、入力画像のエッジの度合いをエッジ量e1として算出し出力する。フィルタ処理手段105では、像域分離手段103による判定結果s1と第1のエッジ量算出手段104によるエッジ量e1に基づいて、適応的にエッジ強調処理あるいは平滑化処理が施される。
フィルタ処理後の画像信号は圧縮手段106に入力され画像圧縮され、さらに蓄積手段107に蓄積される。一旦蓄積された圧縮画像信号は再び伸張手段109によって伸張処理され、後段の画像処理が開始される。図示しない操作部などによってユーザから複数枚のコピー要求があった場合は、蓄積手段107に蓄積された圧縮画像信号をコピー枚数分複数回読み出し、後段の画像処理を施し出力するものである。また、先述の像域分離手段103からの像域分離信号s1は分離信号蓄積手段108へ蓄積される。
また、伸張手段109によって伸張された画像信号は、色補正手段110へと出力される。色変換手段106ではマスキング演算等によりRGB信号をプリンタ系の色材に適したCMY信号に変換する。さらに下色除去・墨生成手段111によりC’M’Y’K’信号に変換され、プリンタγ補正手段112および第2のエッジ量算出手段113に出力される。第2のエッジ量算出手段113ではCMYK版毎に所定のエッジ量算出フィルタによりエッジ量e2〜e5の算出が行われ、中間調処理手段114に出力される。中間調処理手段114では、文字画像の鮮鋭性と網点画像、連続調画像の粒状性や階調性を両立させるようエッジ量e2〜e5と分離信号蓄積手段108からの分離信号s2に応じて適応的にディザを制御する。中間調処理手段114によって処理された出力画像信号は、レーザープリンタ等の画像出力手段115に出力され、図示しない記録紙等の記憶媒体に印写される。
以下、本発明にかかる画像処理装置を構成する核ブロックの動作をより具体的に説明する。まず、像域分離手段103について説明する。
図2は像域分離手段103の構成図である。図2に示すように、像域分離手段103は入力画像信号を解析し、s1信号とs2信号の2つの信号を出力する。s1信号は2bitの画像属性を示す信号であり、黒文字領域、色文字領域、および絵柄領域(絵柄領域とは該黒文字領域、色文字領域以外の領域のことである)のいずれかを示すものであり、画素単位で求められる情報である。また、s2信号は網点画像領域における線数を示す信号であり、本実施例では2bit信号である。
s1信号は、エッジ検出手段1301、網点検出手段1307、色検出手段1304により画像の特徴を検出し、さらにこれら3つの検出手段による検出結果を総合判定する判定手段1311から求める。具体的な動作について以降説明する。
エッジ検出手段1301の一般的な動作を図2を用いて説明する。図2のように、エッジ検出手段1301はrgbデータのうちgデータを入力し、所定のサイズのマトリクスによりパターンマッチング1302を行い、文字・線画のエッジ部を検出するよう構成している。本実施例では3×3のマトリクスにより検出を行う例を示している。検出パターンは図3−1〜図3−4のように用意され、各方向のエッジを検出することができる。例えば、図3−1のように縦方向のエッジを検出する場合、○印の画素が白画素で、かつ●印の画素が黒画素である場合に、注目画素(*印)をエッジ候補とする。白画素、黒画素とは、入力された画像信号に対し、ある所定の2つの閾値によって閾値処理を行い、白画素、黒画素、グレー画素に3値化したものである。このように求められたエッジ候補画素に対して膨張処理1303を施し、得られた領域をエッジ部として判定手段1311へと出力する。
次に色画素検出手段1304の一般的な動作を同じく図2を用いて説明する。
色画素検出手段1304では、まず色差判定1305を行う。rgbデータを入力し、注目画素におけるrgb各色の値の差が、所定の閾値よりも大きい場合、これを色画素候補とする。さらに色画素候補と検出された画素に対して膨張処理1305を行い、得られた領域を有彩色領域として判定手段1311へと出力する。
次に網点検出手段及び線数検出手段1307の動作を同じく図2を用いて説明する。網点検出手段及び線数検出手段1307ではまず、rgbデータのうちgデータを入力し、所定のサイズのマトリクス(本実施例は3×3、図4参照)にて、中心画素がピーク画素であるかピーク検出1308を行っている。注目画素(*印)が、この周囲の画素全て(a〜h)よりも値が大きく、かつa〜hの平均値と注目画素値の差の絶対値が所定の閾値よりも大きいとき、注目画素を網点候補(山ピーク)とする。同様に、注目画素(*印)が、この周囲の画素全て(a〜h)よりも値が小さく、かつa〜hの平均値と注目画素値の差の絶対値が所定の閾値よりも大きいとき、注目画素を網点候補(谷ピーク)とする。これは網点画像を構成する網のピーク画素が、周囲の画素よりも十分に濃度が高いあるいは低い特徴を検出しているものである。得られたピーク画素に対して、密度判定1309にて所定領域内にピーク画素が何画素存在するかをカウントする。カウント値が所定の閾値以上であれば網点候補画素は網点画素であると判定し、後段の膨張処理1310によって領域膨張され、得られた領域を網点領域としている。
ところで、膨張処理1303、1306、1310はエッジ画素、色画素、網点画素として検出された画素に対しいて、領域を得るために塗りつぶしているものである。本実施例では、膨張処理1303、1306における膨張は3x3(周辺に1画素づつ膨張するもの)であり。網点検出における膨張処理1310では7x7(周辺に3画素づつ膨張するもの)であり、およそ120線(lpi)程度の網点画像を塗りつぶせるサイズである。
以上のようにして得られた各検出結果を、判定手段1311では図23に示した真理値表に基づき総合判定し、黒文字領域、色文字領域、絵柄領域の3つの画像領域に分離し、2bitのs1信号として出力する。
また、網点検出手段及び線数検出手段1307における密度判定1309によって求められた前述のカウント値は、4レベル化部1312にて4つのレベルに分類され、2bit信号としてAND回路1313に送られる。AND回路1313では膨張処理1310によって網点領域と判定された信号とAND処理が行われ、網点領域におけるピーク画素密度情報としてs2信号が生成され、出力される。このs2信号は網点線数を示す信号でありピーク画素の数が多ければ線数の高い網点領域であり、ピーク画素の数が少なければ線数の低い網点領域である特徴をもちいて判定しているものである。
図5は網点線数とピーク画素の個数との関係を示す図である。線数が高い程ピーク画素の個数が多いことが分かる。逆にピーク画素の個数で線数がある程度特定できることを示している。本実施例では密度判定1309では、20×9画素ブロック内の個数をカウントし、4レベル化部1312に出力し、1312では2つの閾値によって低線数網点(100lpi以下)、中程度の線数の網点(100lpiより高く、133lpi以下)、高線数網点(133lpiより高い)の3つの線数群に分類判定している。さらにAND処理によって、網点領域についての線数を出力する。つまり図6のように2ビットのs2信号は、00は低線数、01は中程度の線数、10は高線数、11は非網点として出力する。
尚、本実施例ではピーク画素の個数によって網点線数を判定しているが、特公平8−31952のような注目画素領域の自己相関関数を用いて網点線数検出を行っても良いし、あるいは特開平7−220072のようなフーリエ変換を行い空間周波数特性を演算することにより網点周期を判定し線数を検出する方法を用いてもかまわない。
次に第1のエッジ量算出手段104の動作を図7を用いて説明する。第1のエッジ量算出手段104は、画像入力手段101で読み取られたg信号を入力し、エッジ量の算出を行う。入力されたg信号は4つのエッジ量検出フィルタ1〜4(図7中の番号で181〜184に対応)に入力されエッジ量の検出が行われる。4つのエッジ量検出フィルタは、それぞれ図8の(a)〜(d)に示す7x7マトリクスサイズの1次微分フィルタであり、順に縦方向エッジ、横方向エッジ、左斜め方向エッジ、右斜め方向エッジを検出するためのものである。これらのエッジ量検出フィルタによって求められた算出結果は続く絶対値化回路185〜188に入力され絶対値化される。さらにこれら4つの絶対値のうち最大のものが最大値選択回路189によって選択され、エッジ量信号e1として出力される。
ここでは、1次微分フィルタによる例を示したが、2次微分フィルタによって実施しても構わない。2次微分フィルタは線の中央部分に高いエッジ量が算出されるので、エッジ強調処理にとって有利な場合がある。もちろん、目的に応じて1次微分と2次微分を組み合わせたり、マトリクスサイズを変更したりしても良い。
次にフィルタ処理手段105の動作を図9を用いて説明する。フィルタ処理手段105ではスキャナγ補正処理102後の画像信号を入力し、像域分離手段103による分離信号s1(文字/絵柄)と第1のエッジ量算出手段104によるエッジ量e1に基づいて空間周波数特性の変換を行う。ここでは、RGBのうちR信号について説明する。
図9における上側パスは文字領域に適用される処理であり、スルーバッファ1041の後のエッジ強調フィルタにより均一なエッジ強調処理1042が施されセレクタ1045へと出力される。エッジ強調フィルタのフィルタ係数は図11に示すようなものであり、文字の鮮鋭性を重視した設計となっている。下側パスは絵柄領域に適用される処理であり、平滑化処理手段1043により図12に示すようなフィルタによって一様に平滑化を施された後、適応エッジ強調処理1044が施され、先に算出したエッジ量e1に基づいた適応的なエッジ強調が行われる。
適応エッジ強調処理1044について図13を用いて詳細に説明する。第1のエッジ量算出手段104によって求められたエッジ量e1は、エッジ量変換テーブル1048に入力され、所定の変換テーブルによって補正後のエッジ量e1’に変換される。平滑化処理1043後の画像信号はラプラシアンフィルタ1046に入力され図10に示すフィルタ処理によりラプラシアン成分を抽出された後、前述の補正後エッジ量e1’と乗算器1049で乗算され、さらに元の画像信号と加算器1047により加算処理され出力される。
先ほどのエッジ量変換テーブル1048は例えば図14に示すようにエッジ量e1が小さいほど補正後エッジ量e1’が小さい特性が好ましく、網点写真領域や文字の背景の網点部分などのエッジ量e1が比較的小さい領域は、補正によってさらにe1’を小さくなるように修正し弱いエッジ強調が適用されるようにする。逆に網点画像中の文字など比較的エッジ量の大きい領域は、補正によりさらにe1’を大きくなるように修正し強いエッジ強調が適用されるようにする。
(図9に戻って)以上のように上下2つのパスで処理された画像信号は、像域分離手段103からの分離信号s1によって選択的に出力される。つまり、s1が色文字あるいは黒文字属性の画素に対しては上側のパスからの信号を選択して出力し、絵柄領域属性の画素に対しては下側のパスからの信号を選択して出力する。このようにすることにより、網点部を強調せず、網点上の文字に対してエッジ強調を行うことができ、絵柄部の粒状性と文字鮮鋭性を両立した処理が可能となる。
圧縮手段106ではフィルタ後の画像信号に対して画像圧縮を行うが、JPEGのような非可逆圧縮方式を用いても良いし、可逆圧縮方式を用いても良い。その後、HDD(ハードディスクドライブ)などの蓄積手段107に記憶し、再び伸張手段109にて圧縮処理されていない画像信号に復元される、色補正手段110に出力される。
次に、色補正手段110の動作について説明する。色補正処理は、さまざまな手法が考えられるが、ここでは以下のようなマスキング演算が行われるものとする。
[式1]
C=α11×R+α12×G+α13×B+β1
M=α21×R+α22×G+α23×B+β2
Y=α31×R+α32×G+α33×B+β3
但し、α11〜α33およびβ1〜β3は予め定められた色補正係数で、出力されるCMYも8bit(0〜255)の信号とする。上記係数は画像入力手段101(スキャナ)のデバイスに依存したRGB画像信号を、画像出力手段115の色材に適したCMY信号に変換するものである。
次に下色除去・墨生成手段111では、墨成分であるK信号が生成されると共にCMY信号から下色除去(UCR)が行われる。K信号の生成およびCMY信号からの下色除去は、下式のように行われる。
[式2]
K=Min(C、M、Y)×β4
C’=C−K×β5
M’=M−K×β5
Y’=Y−K×β5
但し、Min(C、M、Y)は、CMY信号のうち最小のものを表す。
但し、β4、β5は予め定められた係数で8bitの信号とする。
下色除去・墨生成手段111から出力されたC’M’Y’K’信号は、プリンタγ補正手段112および第2のエッジ量算出手段113に入力される。
第2のエッジ量算出手段113では、前述した第1のエッジ量算出手段104と同等と同等の方法で再度エッジ量の算出が行われる。先程はg信号に対してエッジ量算出を行っていたが、第2のエッジ量算出手段111では、C’、M’、Y’、K’夫々の画像信号に対して独立してエッジ量の算出を行うよう構成している。このようにして求められたエッジ量e2〜e5は中間調処理手段114に入力される。
中間調処理手段114では、求められたエッジ量に応じて特性および処理を連続的に制御し、高品位な画像再生が実現できるよう構成している。
また中間調処理の別の実施例としては、特開2001−128004「画像処理方法、画像処理装置及び記憶媒体」に開示されているものがある。特開2001−128004では、誤差拡散処理の量子化閾値をディザ形状とするとともに、エッジ量によってそのディザ振幅の大きさを制御するよう構成している。エッジ量の小さな絵柄部分には振幅の大きなディザ閾値を適用し、エッジ量の大きな文字の輪郭部分には振幅の小さなディザ閾値あるいは振幅をゼロにした閾値を適用することにより文字の鮮鋭性と絵柄部の粒状性を両立している。実施例中ではエッジ量に基づき求められた倍率を基本となるディザ振幅に乗算して振幅レベルを制御する方法が開示されている。第2のエッジ量算出手段113で求めたエッジ量e2〜e5を、前述したようなエッジ量に基づき連続的に制御される中間調処理手段114に入力し、中間調処理を施こすことによってデフェクトのない高品質な画像再生を行うことができる。
本発明の中間調処理手段は、このようなディザ形状の振幅を有する閾値により誤差拡散を行うような階調特性に優れたドット再現を行う画像領域と、フラットな形状を有する閾値により誤差拡散を行うような鮮鋭性に優れたドット再現を行う画像領域とを選択的に切り替えるような処理である。その中間調処理手段114のより詳細な説明を図15を用いて説明する。本実施形態における中間調処理手段はC’、M’、Y’、K’の4つの版に対してそれぞれ行われるものであり、図15ではそのうちシアン(C’)版に対する処理を例として示すが、その他の版についても同様である。
プリンタγ補正手段112からの画像信号C’は加算器1140に入力される。加算器1140では、後述する誤差拡散計算部1145からの信号と入力信号C’を加算しmiを求め、比較器1142へと出力する。比較器1142では、閾値選択部1141によって設定された閾値thmとmiを比較し、閾値thmに応じて量子化を行う。つまりthmより大きければout=1(ONドット)を出力し、小さければout=0(OFFドット)を出力する。量子化結果は同時に重み発生部1146へと送られ、重み発生部ではout=1の場合は255を、out=0の場合は0という重みを発生し、減算器1143へと出力する。減算器1143では、加算器1140からの進行miから重みwtを減算し、誤差値errを誤差拡散計算部1145へと出力する、誤差拡散計算部1145では所定の拡散マトリクス1144にもとづいて誤差値errを周辺画素に拡散し、加算器1140へのmer信号を出力する。以上の説明は誤差拡散の基本的な構成動作であり、入力画像に対して適切な濃度再現が可能な中間調処理を実現できる。
ここで、閾値選択部1141では網点線数を示す信号s2信号と、第2のエッジ量算出手段113からのe2信号に基づいて閾値セット1147から選択するよう動作する。閾値セット1147には、階調特性に優れたディザ形状をもつ閾値(ディザ強)と、鮮鋭性に優れたフラットな形状をもつ閾値(フラット)と、両者の中間的な形状をもつディザ閾値(ディザ弱)が格納されており、e2とs2によって最適な閾値が使用されるものである。より具体的には以下の通りである。
まず網点線数信号s2に基づいて、画素毎にエッジ判定閾値セットの選択が行われる。図16に示すように、網点線数に応じて異なる閾値セットが選択される。低線数網点である場合にはth1、th2とも比較的低い閾値が選択され、より高線数になるにつれて或いは非網点になるにつれて高い閾値が選択させるよう構成しておく。ここで、th1、th2はエッジ量e2に対する判定閾値であり、強エッジ領域、弱エッジ領域、および非エッジ領域の3つの領域に分類するための閾値である。選択されたエッジ判定閾値セットのth1、th2の値に応じて、図17に示すように3つの領域に分類し、th1より小さなエッジ量を有する領域は非エッジ領域と判定され、ディザ強の閾値が選択される。th1以上かつth2よりも小さなエッジ量を有する領域は弱エッジ領域と判定され、ディザ弱の閾値が選択される。さらにth2以上のエッジ量を有する領域は強エッジ領域と判定され、フラットな閾値が選択される。
このように、網点線数情報に応じてエッジの判定閾値を変更し、適用する閾値の振幅をコントロールすることによって、原稿の持つ網点の基調と干渉することのない、高品位な画像再生ができる画像処理装置を提供することができる。
ところで、先に説明した適応フィルタの性能は、線数の高い網点については十分な平滑効果を奏することができるが、線数の低い網点に関しては平滑が十分に行えず、もとの原稿が有する網点構造が残ってしまう特徴がある。さらに、エッジ量に基づく適応フィルタを理を行っているため、特定の銭数以上の網点は平滑効果が得られるが、特定の銭数以下の網点画像に対しては急激に平滑効果が悪くなる特性を持っている。図18を用いて実際のフィルタ効果を説明する。図18は、網点画像に対するフィルタ処理手段の処理効果を示す図である。実線は原稿の網点の起伏(ピークtoピーク)を示したものである。図18の例では30%面積率の網点画像におけるプロットである。また、点線はフィルタ処理手段後の網点画像信号の起伏(ピークtoピーク)を示したものである。横軸が線数である。もとの原稿も高線数になるほど起伏が小さくなるが、図18の例では133lpi以上では十分な平滑が行われているのが分かる。逆に133lpiよりも低線数の領域では平滑化が十分に行われていないことが分かる。これは、適応フィルタの本来の動作によって起こるものであり、文字などの強いエッジが存在する部分には平滑化を行わず、むしろ強調を行うことで網点上の文字の鮮鋭性を高く保つことを目的としているので、低線数の網点部に対して高いエッジがとれてしまうのは仕方のないことである。このように適応フィルタによる処理では十分に平滑が行える線数領域と、平滑が行えない線数領域が存在する。
このような網点起伏が残る領域に対してディザ振幅を有する中間調処理を施すと、原稿の網点と中間調処理によるディザ基調が干渉してモアレ状の異常画像となる。よって、前段の適応フィルタによってどの程度網点の起伏が残っているかの情報をもとに、ディザ振幅の強度を決定する方法が干渉モアレのない画像再生に有効であり、本発明はこれを実現するものである。
つまり像域分離手段における網点線数情報と、第2のエッジ量算出手段におけるエッジ量に基づいて、中間調処理手段のディザ閾値の振幅を選択的に適用することによって、干渉モアレの発生しない高品位な画像再生が可能となる。
以上述べた実施例においては、網点線数情報s2に応じてエッジ量e2に対する閾値を選択的に変更し、ディザ強、ディザ弱、フラットの各閾値が適用される領域を変更制御するものであったが、次のような実施例でも同様の効果を得ることができる。
図19に示すように、予め設定した所定の閾値(th1、th2)によってエッジ量e2を閾値処理し、非エッジ領域、弱エッジ領域、強エッジ領域に分類し、これら分類した3つの領域と線数情報s2との組合せによってディザ強、ディザ弱、フラットの各閾値を選択的に使用するものである。図19のように、高線数および非網点の領域では、非エッジ〜弱エッジ〜強エッジに変化するにつれて、ディザ強〜ディザ弱〜フラット閾値を適用するように構成し、中線数領域ではディザ強は用いずに、ディザ弱〜フラット閾値を適用し、さらに低線数領域ではフラット閾値のみを適用するように構成する。このように構成しても線数の低い網点領域に対してはフラット閾値として干渉モアレを低減する効果を得ることができる。
以上のように、高いエッジ量が検出される領域や線数の低い領域である場合に、フラットな閾値など周期構造の弱いドット生成となるような中間調処理を適用することによって、原稿の持つ網点との干渉モアレを抑制することができる。
先に述べたように、前段のフィルタ処理手段では網点の線数によって、網点の起伏が多く残ったり、十分に平滑されたりすることを説明した。これとは別に、同じ線数の網点に対しても、画質モードを変更すると網点の起伏の残り具合が変わってくる。例えば、文字の鮮鋭性を重視する文字モードでは、デフォルトの文字写真モードと比較して、よりエッジ強調を重視した画像設計とするのが一般的である。つまり、フィルタ処理手段では検出されたエッジ量に対して、より強調度を強める補正を行うものである。このように制御すると、網点起伏の残り具合が図20に示すように変わってくる。フィルタ処理後(文字写真モード)の短い点線に比べて、フィルタ処理後(文字モード)の長い点線のプロットが、より網点起伏が残っていることが分かる。また、これには傾向があり、それは、全体的に起伏が残るのではなく、中線数領域における起伏が残りやすくなると言うものである。図19のように、150lpi以上の網点領域では文字写真モードも文字モードも網点起伏の大きさはほとんど変わらない。133lpi程度の網点に対して文字写真モードでは十分な平滑が行えるのに対し、文字モードでは起伏が残る結果となる。この現象もエッジ量に基づき強調量をコントロールする適応フィルタに起因するものであり、十分にエッジ量の小さい領域(150lpi以上のような高線数領域)では文字写真モードと同じフィルタ設定とし、中程度は文字写真モードより強調度を強めるように制御するためである。このようなフィルタ処理手段の特性が変わったときには、後段における中間調処理部での閾値設定も変更することが望ましい。
その制御の様子を図21で説明する。図21は先に示した図16と同じ、網点線数s2に応じてエッジ量e2の閾値を設定するテーブルである。網点起伏が残るフィルタ処理モードの場合には、図16に比べて低線数〜中線数のth1およびth2を低めに設定するよう構成する。このように構成すると、より小さなエッジ量に対してもディザ振幅の小さなディザ弱、あるいはフラット閾値が適用されるようになり、文字写真モードでのディザ設定よりも、周期的構造の弱いドット生成が選択されやすくなり、原稿の持つ網点構造との干渉が起こりにくくでき、モアレのない高品位な画像再生がおこなえる。
以上説明した実施形態は、画素単位に網点線数情報を保持する構成であった。このような構成では、画像一面のどの領域が何lpiの線数の画像であるかという情報を保持するため、網点線数が混在したような画像に対してもエリア毎に最適な中間調処理パラメータを適用でき、高品位な画像が得られる。しかしながら、画素単位で情報を持つため、分離信号蓄積手段における情報蓄積メモリが大きく、コスト高となるデメリットも持っている。他の発明では、蓄積する情報を最低限とすることによりコストダウンを行える装置を提供するものである。
図22に他の実施形態を示す。図22は基本的に図1と同様であるが、像域分離手段103による網点線数結果s2を蓄積するのではなく、s2から最低線数判定116をおこなうものである。検出された線数のうち最低線数の値をテンポラリバッファに蓄積しておき、画像全面に対してs2の結果が得られた時点で最も低い線数の情報をs3として線数情報保持手段117に蓄積する。これは例えば、133lpiや175lpiといった唯一の値であり、ページに対して唯一保持されるものである。
中間調処理手段114では、最低線数情報s3に基づいてe2を閾値処理するためのエッジ判定閾値セットを選択し(図16と同様の動作)、得られたエッジ判定閾値th1、th2に基づいて非エッジ領域、弱エッジ領域、強エッジ領域に分類するように構成する。一般に、印刷原稿では網点線数が混在することはほとんどなく、唯一の線数情報を保持しているだけで十分なことが多い。また、仮に複数の線数の網点画像がページ内に混在していたとしても、最低の線数を判定し、最低の線数に対して干渉モアレが起こらない設定にしておけば、それよりも高い線数に対して干渉モアレが発生することはなく、モアレ発生の起こらない装置を提供することができる。
本発明の実施形態に係る画像処理装置のブロック図である。 像域分離手段103の構成図である。 検出パターンの図である。 所定のサイズのマトリクスの図である。 網点線数とピーク画素の個数との関係を示す図である。 s2と線数の関係を示す図である。 第1のエッジ量算出手段104の動作を示す図である。 7x7マトリクスサイズの1次微分フィルタを示す図である。 フィルタ処理手段105の動作を示す図である。 エッジ強調フィルタのフィルタ係数を示す図である。 エッジ強調フィルタのフィルタ係数を示す図である。 エッジ強調フィルタのフィルタ係数を示す図である。 適応エッジ強調処理1044について説明する図である。 エッジ量変換テーブルを示す図である。 中間調処理手段のブロック図である。 網点線数とエッジ判定閾値との関係を示す図である。 エッジ量を3分類した図である。 網点画像に対するフィルタ処理手段の処理効果を示す図である。 網点線数とエッジ量の関係を示す図である。 網点線数と網点起伏の関係を示す図である。 網点線数とエッジ判定閾値との関係を示す図である。 本発明の他の実施形態に係る画像処理装置のブロック図である。 真理値を表す図である。
符号の説明
100 画像処理装置、101 画像入力手段、102 スキャナγ補正手段、103 像域分離手段、104 第1のエッジ量算出手段、105 フィルタ処理手段、106 圧縮手段、107 蓄積手段、108 分離信号蓄積手段、109 伸張手段、110 色補正手段、111 下色除去・墨生成手段、112 プリンタγ補正手段、113 第2のエッジ量算出手段、114 中間調処理手段、115 画像出力手段

Claims (8)

  1. カラー画像を読み取るカラー画像入力手段と、前記カラー画像入力手段から読み取られた画像信号の領域毎の画像属性を判定し、少なくとも網点領域における網点線数を検出する線数検出手段を有する像域分離手段と、前記像域分離手段の分離結果に応じて空間周波数特性を補正するフィルタ処理手段と、該フィルタ処理手段により処理された処理画像に対してエッジ検出を行うエッジ検出手段と、該エッジ検出手段の検出結果と比較される第1の閾値セット及び第2の閾値セットがあり、前記線数検出手段により検出された網点線数情報によって前記第1の閾値セット及び第2の閾値セットの中から前記エッジ検出手段の検出結果と比較される閾値セットが選択され、前記エッジ検出手段の検出結果が前記第1の閾値セットより小さいときには非エッジ部と判定され振幅の大きなディザ閾値が選択され、前記第1の閾値セット以上で前記第2の閾値セットより小さいときには弱エッジ領域と判定され振幅の小さなディザ閾値が選択され、前記第2の閾値セット以上のときには強エッジ領域と判定され振幅をゼロにした閾値が選択される閾値選択手段を有する中間調処理手段と、を備え、前記中間調処理手段は、前記閾値選択手段により周期的あるいは非周期的ドットの生成を制御することを特徴とする画像処理装置。
  2. 前記閾値選択手段は、前記線数情報が所定の閾値よりも低い低線数網点領域においては、周期的構造の弱いドット生成となるように閾値を選択し、前記低線数網点領域以外の領域においては、周期的構造の強いドット生成となるように閾値を選択することを特徴とする請求項1に記載の画像処理装置。
  3. 前記フィルタ処理手段により補正された空間周波数特性に応じて前記閾値選択手段の閾値選択条件を変更することを特徴とする請求項1又は2に記載の画像処理装置。
  4. 前記フィルタ処理手段により補正された空間周波数特性が、より高周波成分を強調する特性である場合には、前記閾値選択手段の閾値選択条件は、高線数であっても周期的構造の弱いドット生成となるように制御することを特徴とする請求項3に記載の画像処理装置。
  5. 文字画像を重視する第1の画像処理モードと、絵柄画像を重視する第2の画像処理モードとを有し、前記第1の画像処理モードにおいては前記第2の画像処理モードと比較して前記閾値選択手段による閾値選択条件を、高線数であっても周期的構造の弱いドット生成となるように制御することを特徴とする請求項2に記載の画像処理装置。
  6. 前記像域分離手段は、前記線数検出手段により検出された網点線数の代表的な線数情報を当該ページに対する線数情報として記憶し、前記線数情報に基づいて閾値選択条件を変更するように前記閾値選択手段を制御することを特徴とする請求項1に記載の画像処理装置。
  7. 前記像域分離手段は、前記線数検出手段により検出された網点線数のうち最も線数の低い網点情報を当該ページに対する線数情報として記憶し、前記線数情報に基づいて閾値選択条件を変更するように前記閾値選択手段を制御することを特徴とする請求項6に記載の画像処理装置。
  8. カラー画像を読み取るカラー画像入力ステップと、前記カラー画像入力ステップから読み取られた画像信号の領域毎の画像属性を判定し、少なくとも網点領域における網点線数を検出する線数検出ステップを有する像域分離ステップと、前記像域分離ステップの分離結果に応じて空間周波数特性を補正するフィルタ処理ステップと、該フィルタ処理ステップにより処理された処理画像に対してエッジ検出を行うエッジ検出ステップと、該エッジ検出ステップの検出結果と比較される第1の閾値セット及び第2の閾値セットがあり、前記線数検出ステップにより検出された網点線数情報によって前記第1の閾値セット及び第2の閾値セットの中から前記エッジ検出ステップの検出結果と比較される閾値セットが選択され、前記エッジ検出ステップの検出結果が前記第1の閾値セットより小さいときには非エッジ部と判定され振幅の大きなディザ閾値が選択され、前記第1の閾値セット以上で前記第2の閾値セットより小さいときには弱エッジ領域と判定され振幅の小さなディザ閾値が選択され、前記第2の閾値セット以上のときには強エッジ領域と判定され振幅をゼロにした閾値が選択される閾値選択ステップを有する中間調処理ステップと、を備え、前記中間調処理ステップは、前記閾値選択ステップにより周期的あるいは非周期的ドットの生成を制御することを特徴とする画像処理方法。
JP2006253596A 2006-09-19 2006-09-19 画像処理装置及び画像処理方法 Expired - Fee Related JP4771902B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006253596A JP4771902B2 (ja) 2006-09-19 2006-09-19 画像処理装置及び画像処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006253596A JP4771902B2 (ja) 2006-09-19 2006-09-19 画像処理装置及び画像処理方法

Publications (2)

Publication Number Publication Date
JP2008078830A JP2008078830A (ja) 2008-04-03
JP4771902B2 true JP4771902B2 (ja) 2011-09-14

Family

ID=39350459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006253596A Expired - Fee Related JP4771902B2 (ja) 2006-09-19 2006-09-19 画像処理装置及び画像処理方法

Country Status (1)

Country Link
JP (1) JP4771902B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5279830B2 (ja) * 2008-07-14 2013-09-04 シャープ株式会社 映像信号処理装置及び映像表示装置
JP6542524B2 (ja) * 2014-10-29 2019-07-10 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 画像処理装置、画像処理方法、およびプログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004112603A (ja) * 2002-09-20 2004-04-08 Ricoh Co Ltd 画像処理装置、画像処理方法、およびコンピュータが実行するためのプログラム
JP2005101765A (ja) * 2003-09-22 2005-04-14 Sharp Corp 画像処理方法、画像処理装置及び画像形成装置

Also Published As

Publication number Publication date
JP2008078830A (ja) 2008-04-03

Similar Documents

Publication Publication Date Title
US7327874B2 (en) Method of and apparatus for image processing apparatus, and computer product
JP4509415B2 (ja) 画像処理装置
US7251060B2 (en) Image-processing device using quantization threshold values produced according to a dither threshold matrix and arranging dot-on pixels in a plural-pixel field according to the dither threshold matrix
KR102318488B1 (ko) 화상 처리장치 및 화상 처리방법
JP2017199981A (ja) 画像処理装置、画像処理方法およびプログラム
US9286661B2 (en) Method, apparatus, and computer program product for processing an image to reduce image deterioration
JP6976824B2 (ja) 画像処理装置、画像処理方法、及びプログラム
US10326913B2 (en) Image processing apparatus that generates halftone image data and image processing method
JP2002077623A (ja) 画像処理装置
JPH11164145A (ja) 画像処理装置
JP4771902B2 (ja) 画像処理装置及び画像処理方法
JP4264051B2 (ja) 画像処理装置
EP2413585B1 (en) Image processing apparatus, image processing method, and program
JP4939258B2 (ja) 画像処理装置およびその方法
JP7391619B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP4148443B2 (ja) 画像形成装置
JP2002077647A (ja) 画像処理装置
JP3965647B2 (ja) 画像処理装置、画像処理方法、該方法を実行するプログラムおよび該プログラムを記録した記録媒体
JP2004112728A (ja) 画像処理装置
JP2002158872A (ja) 画像処理方法、画像処理装置および記録媒体
JP4011494B2 (ja) 画像処理装置および画像処理方法およびプログラムおよび記録媒体
US8373901B2 (en) Image-processing apparatus and image-processing method
JP2008306400A (ja) 画像処理方法、画像処理装置、画像形成装置、コンピュータプログラム及び記録媒体
JP3813146B2 (ja) 画像処理装置、画像処理方法、画像形成装置、コンピュータプログラム及び記録媒体
JP2004282511A (ja) 画像処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees