JP4770535B2 - 多層基板の設計支援装置 - Google Patents

多層基板の設計支援装置 Download PDF

Info

Publication number
JP4770535B2
JP4770535B2 JP2006078574A JP2006078574A JP4770535B2 JP 4770535 B2 JP4770535 B2 JP 4770535B2 JP 2006078574 A JP2006078574 A JP 2006078574A JP 2006078574 A JP2006078574 A JP 2006078574A JP 4770535 B2 JP4770535 B2 JP 4770535B2
Authority
JP
Japan
Prior art keywords
design
wiring
pattern
wiring pattern
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006078574A
Other languages
English (en)
Other versions
JP2007258331A (ja
Inventor
聡 竹内
亀 小林
元太郎 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006078574A priority Critical patent/JP4770535B2/ja
Publication of JP2007258331A publication Critical patent/JP2007258331A/ja
Application granted granted Critical
Publication of JP4770535B2 publication Critical patent/JP4770535B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、多層基板の設計支援装置及び設計支援方法に関するものであり、より詳しくは、多層基板の接着工程時における配線パターンの変位を評価することにより、多層基板の回路設計を支援する多層基板の設計支援装置及び設計支援方法に関する。
近年、電子回路の高密度実装化が益々進展し、そのため、電子回路素子を多層に実装できる多層基板のニーズが高まっている。そのような多層基板は、例えば、絶縁基材となる樹脂フィルムを積層する積層工程と、樹脂フィルムの間に電気素子を配置する配置工程と、積層工程及び配置工程後に、積層した樹脂フィルムの積層体を両面から加圧しつつ加熱することにより、各樹脂フィルム相互の接着を行う接着工程を備えた多層基板の製造方法を用いて製造される(特許文献1参照)。
ここで、積層される各樹脂フィルムには、配線用の金属(例えば銅箔)がパターン形成されている。そのため、上記の積層工程を終了した段階では、銅箔の有無により、樹脂フィルム間に段差(空隙の有無)が生じる。この段差は、接着工程において樹脂が溶融し、空隙部分に流れ込むことにより埋められる。しかし、多層基板の設計結果によっては、積層される各樹脂フィルムのほとんどに銅箔が存在する領域と、逆に各樹脂フィルムのほとんどに銅箔が存在しない領域が生じる。銅箔の量が大きく異なる領域が隣接している場合(すなわち、空隙の多い領域と少ない領域が隣接している場合)、接着工程において積層体に加圧・加熱を加えると、大きな樹脂流動が発生する。この大きな樹脂流動が発生する場所に孤立した小さなランドパターン又は細い配線パターンが存在すると、樹脂流動によって配線パターンが大きく変形してしまい、ビアの位置が基板ごとに異なる、隣接する他の配線パターンと接触する、あるいは配線パターンが切れるといったパターン不良を生じるおそれがある。
従来、このようなパターン不良は、多層基板を実際に製造し、その後電気的な検査、X線による透視観察、又は多層基板を切断して断面を観察する破壊検査を行うことによって初めて発見されるものであった。さらに、このようなパターン不良に対する対策も、経験に頼った試行錯誤的なものであり、多大な時間とコストを要するものであった。
一方、このような問題に対して、多層基板の温度変化による変位量を予測する基板設計支援装置が開発されている(特許文献2参照)。特許文献2に記載された基板設計支援装置は、層厚演算部によって多層基板を構成する各層ごとにその層を構成する主要材料について、基板面積に対する平均厚さを求め、積層モデル作成部によって、層厚演算部で演算された層厚の層を積層して単純積層モデルを作成する。そして、変位量演算部により、作成された単純積層モデルについて、各層を構成する物性情報に基づいてプロセス温度変化に伴って生じる変位量を演算する。そのため、特許文献2に記載された基板設計支援装置は、基板各部の凹凸の変化として多層基板の温度変化による変位を予測することができる。
しかし、特許文献2に記載された基板設計装置は、多層基板の各所における変位の大小を予測することはできるものの、その変位によってパターン不良が生じるか否かを判断することは想定されていない。また、多層基板全体に対して変位量の計算を行うため、多層基板が大型化すると、その大型化に伴って変位量の算出に要する時間も増大することになる。
特開2003−086949号公報 特開2006−053706号公報
上記の問題点に鑑み、本発明の目的は、多層基板の試作を行うことなく、多層基板の配線設計情報からパターン不良を生じる可能性が高い部分の検出及び修正を行うことができる多層基板の設計支援装置及び設計支援方法を提供することにある。
また本発明の別の目的は、精度よく多層基板の配線設計情報からパターン不良を生じる可能性が高い部分の検出を行うことができる多層基板の設計支援装置及び設計支援方法を提供することにある。
本発明のさらなる別の目的は、短時間で多層基板の配線設計情報からパターン不良を生じる可能性が高い部分の検出及び修正を行うことができる多層基板の設計支援装置及び設計支援方法を提供することにある。
本発明の請求項1に記載の形態によれば、本発明に係る多層基板の設計支援装置(1)は、取得した配線設計情報から、熱可塑性樹脂からなり、配線パターンを備える複数の基板を層状に積層した積層体を加熱および加圧することによってパターン不良が発生する可能性のある危険部位を抽出する抽出部(12)と、配線設計情報に基づいて、抽出された危険部位に含まれる配線パターンに対して、積層体を加熱および加圧することにより発生する、前記熱可塑性樹脂の樹脂流動に起因した、その配線パターン個々の設計位置から変位する変位量を推定し、変位量に基づいてパターン不良が発生するか否かを判定する推定部(13)とを有する。係る構成により、多層基板の試作を行うことなく、多層基板の配線設計情報からパターン不良を生じる可能性が高い部分の検出を行うことができる。また、抽出部位に限定して変位量を計算するため、短時間で配線設計情報からパターン不良が生じる可能性の高い部分を検出することができる。
た、抽出部(12)は、多層基板を複数の領域に分割する分割手段(121)と、分割された複数の領域のそれぞれについて、配線設計情報に基づいて配線パターンを含む度合いを表すパターン密度を算出する密度算出手段(122)と、算出されたパターン密度に基づいて、危険部位を抽出する危険部位抽出手段(123)とを有する。
さらに、本発明の請求項に記載の形態によれば、危険部位抽出手段(123)は、複数の領域の少なくとも一つを着目領域として設定し、着目領域のパターン密度と、着目領域の近傍にある複数の領域の何れかのパターン密度の差に基づいて、危険部位を抽出する。
あるいは、本発明の請求項に記載の形態によれば、危険部位抽出手段(123)は、複数の領域の少なくとも一つを着目領域として設定し、着目領域のパターン密度と、着目領域の近傍にある複数の領域の何れかのパターン密度の差の絶対値が所定の閾値以上であり、且つ着目領域が所定の配線パターン構造に含まれる場合、所定の配線パターン構造を危険部位として抽出する。パターン密度の変化に基づいて危険部位を抽出することにより、正確に危険部位を抽出することができる。
また本発明の請求項に記載の形態によれば、本発明に係る多層基板の設計支援装置(1)は、推定部でパターン不良が発生すると判定された危険部位に含まれる配線パターンに対応する、配線設計情報内の設計データを修正する修正部(14)をさらに有する。係る構成により、多層基板の試作を行うことなく、多層基板の配線設計情報からパターン不良を生じる可能性が高い部分の修正を行うことができる。
また本発明の請求項に記載の形態によれば、修正部(14)は、少なくとも一つの修正ルールを有し、パターン不良が発生すると判定された危険部位に含まれる配線パターンに対応する設計データに基づいて少なくとも一つの修正ルールの適用可否を判定し、適用可と判定された修正ルールに基づいて設計データを修正する。
また請求項に記載の形態によれば、推定部(13)は、多層基板の危険部位についてのみ、流動−構造連成解析を行うことで変位量を推定することが好ましい。
さらに他の形態によれば、多層基板の設計支援装置(1)は、所定の設計ルールに基づいて、配線設計情報を検証する設計検証部(11)を有することにより、回路設計上問題となる部分が含まれている配線設計情報を、危険部位の抽出及び変位量の推定などの処理を行う以前に検出できる。そのため、無用な処理を行わずに済ませることができる。さらに、パターン不良を発生すると判定された危険部位に含まれる配線パターンに対応する設計データに基づいて、所定の設計ルールの修正又は新規な設計ルールの追加を行うルール追加部(15)を有することにより、設計支援装置(1)を使用する程、設計検証部(11)での検証精度を高めることができる。
また、他の実施形態によれば、熱可塑性樹脂からなり、配線パターンを備える複数の基板を層状に積層した積層体を形成し、その積層体を加熱および加圧することによって形成される多層基板の設計支援をプロセッサに実行させる設計支援用コンピュータプログラムが提供される。この設計支援用コンピュータプログラムは、多層基板の配線設計情報から、積層体を加熱および加圧することによってパターン不良が発生する可能性のある危険部位を抽出し、配線設計情報、熱可塑性樹脂の物性データ及び配線パターンの配線パターンの厚み情報に基づいて、危険部位に含まれる配線パターンに対して、積層体を加熱および加圧することにより発生する、熱可塑性樹脂の樹脂流動に起因した、配線パターン個々の設計位置から変位する変位量を推定し、その変位量に基づいてパターン不良が発生するか否かを判定することをプロセッサに実行させる。係るステップを含むことにより、この設計支援用コンピュータプログラムは、多層基板の試作を行うことなく、多層基板の配線設計情報からパターン不良を生じる可能性が高い部分の検出を行うことができる。また、抽出部位に限定して変位量を計算するため、短時間で配線設計情報からパターン不良が生じる可能性の高い部分を検出することができる。
なお、上記各手段に付した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
以下、図面を参照しつつ本発明を適用した基板設計支援装置について詳細に説明する。本発明を適用した基板設計支援装置は、多層基板の各層の基板の回路配置を表すアートワークである配線設計情報から、配線パターンが含まれる割合の局所的な変化に基づいて、樹脂流動に伴うパターン不良が発生する可能性のある危険部位を抽出する。そしてその基板設計支援装置は、危険部位の流動−構造連成解析を行って配線パターンの設計位置からの変位量を推定し、その推定結果に基づいてパターン不良が生じるか否か判定する。さらにその基板設計支援装置は、パターン不良が生じると判定した場合、パターン不良が生じると判定された危険部位に対応する配線パターンの設計データを自動的に修正する。そのため、多層基板の試作を行うことなく、適切な基板設計を行うことができる。また、本発明を適用した基板設計支援装置は、流動−構造連成解析を行う領域を限定しているため、解析に長時間を要することなく、比較的短時間で配線設計情報の検証及び修正を行うことができる。
図1に、本発明を適用した基板設計支援装置1の機能ブロック図を示す。本発明を適用した基板設計支援装置1は、データ入出力部2、記憶部3、及び処理部4を有する。そして基板設計支援装置1は、データ入出力部2から多層基板の配線設計情報を取得する。基板設計支援装置1の処理部4は、記憶部3から設計ルールや材料特性データなどの必要な情報を読み込み、取得した配線設計情報に対して、パターン不良が発生する危険性のある部位の抽出・検証を行う。また処理部4は、必要に応じて配線設計情報に含まれる配線パターンの設計データの修正を行う。その後基板設計支援装置1は、検証(場合によっては修正も)を行った配線設計情報をデータ入出力部2から出力する。
以下、各部について詳細に説明する。
データ入出力部2は、基板設計支援装置1と外部機器とを接続するインターフェースであり、イーサネット(登録商標)、USB、SCSI、RS−232Cなどの規格に準拠した通信ポート、電子回路及びドライバソフトウェアなどで構成される。そしてデータ入出力部2は、外部機器より送られてきた配線設計情報を取得し、処理部4に渡す。また、処理部4で検証・修正された配線設計情報を、外部機器に出力する。
記憶部3は、設計ルール、修正ルール、多層基板を構成する材料の物性データ(密度、粘度、熱拡散率等)、配線パターンを構成する銅、各層の樹脂、ビア等の厚み情報、処理部4で使用される各種プログラム及び設定ファイルなどを記憶するものであり、フラッシュメモリなどの不揮発性メモリ、ハードディスクなどの磁気記録媒体、又はCD−ROM、DVD−R/Wなどの光記録媒体で構成される。そして記憶部3は、処理部4からの要求に応じて、必要なデータなどを送信する。また記憶部3は、処理部4を通じて送られてくる各種のデータを記憶する。
処理部4は、データ入出力部2から取得した配線設計情報を検証し、また必要に応じて修正するものであり、中央演算装置(CPU)、数値演算プロセッサ、ROM又はRAMのような半導体メモリなどで構成される。また処理部4は、記憶部3から読み込まれたプログラムにしたがって、所定の動作を実行する。さらに処理部4は、データ入出力部2及び記憶部3と接続されており、それら各部に所定の制御信号を出力して制御を行う。また処理部4は、配線設計情報の検証及び修正と、各部の制御を行うために、制御部10、設計検証部11、抽出部12、推定部13、修正部14、及びルール追加部15を有する。
そして、設計検証部11は、取得した配線設計情報について、所定の設計ルールに違反している部分がないかどうか検証する。抽出部12は、その配線設計情報から配線パターン不良を生じる可能性がある部分を危険部位として抽出する。そして推定部13は、抽出された危険部位及びその周辺の小領域のアートワーク及び物性データに基づいて流動−構造連成解析を行い、配線パターン不良が生じるか否か判定する。また修正部14は、推定部13で配線パターン不良が生じると判定された危険部位に対応する設計データを所定の修正ルールに基づいて修正する。そして制御部10は、処理部4の各部、データ入出力部2及び記憶部3の制御を行う。
以下処理部4の各部について説明する。
制御部10は、記憶部3から読み込まれたプログラム及び各種設定ファイルにしたがって、データ入出力部2、記憶部3の制御、配線設計情報など各種データの受け渡しを行う。また、制御部10は、処理部4内のルール検証部11、抽出部12、推定部13及び修正部14による処理を制御する。
設計検証部11は、取得した配線設計情報を、記憶部3から取得した所定の設計ルールに基づいて検証する。ここで、配線設計情報は、上記のように各層の基板の回路配置を表すアートワークであり、例えばDrawing Exchange File(DXF)、eXtensible Markup Languege(XML)などの形式にしたがってCADデータとして記述される。そして、配線設計情報では、個々の配線パターンについての設計データとして、配線パターンの種別(ランド、ビア、ラインなど)、配線パターンの形状、サイズ、位置座標などが記述される。一方、所定の設計ルールは、例えば、各層における配線パターンの線幅、隣接配線パターンまでの距離、ビアの直径、配線パターンの長さ、配線パターンの種別などの各パラメータ及びそれらパラメータの組み合わせに対して許容範囲を設定するものとして規定される。すなわち各設計ルールは、評価項目に関するパラメータの許容範囲の上限値又は下限値で規定される。
また、評価対象となり得るパラメータ及びそれらパラメータの組み合わせに対して、それぞれ設計ルールが準備される。そのうち、ある時点で評価されていないパラメータに対する設計ルールは、未使用ルールとされる。未使用ルールでは、評価対象のパラメータについての許容範囲の上限値及び下限値が未設定を表す値(例えば“−999”)として記憶されている。後述するように、ルール追加部15によってこれまで評価されていないパラメータについて許容範囲の上限値又は下限値が設定されると(すなわち、設計ルールが追加されると)、設計検証部11は、以後その追加された設計ルールも用いて、設計検証を行う。
設計検証部11は、配線設計情報から、個々の配線パターンの設計データを順次読み込み、設計検証に用いる各パラメータを求める。そして求めた各パラメータについて、設計ルールに当てはめて、許容範囲内か否かを評価する。そして設計検証部11は、許容範囲外となるパラメータを見つけると、そのパラメータに関連する配線パターンの設計データを違反リストに書き込む。違反リストは、例えば、上記の配線パターンの設計データをリスト形式として記述するものである。そして設計検証部11は、配線設計情報中に違反する配線パターンを発見しない場合(すなわち、違反リストに何も記述されていなければ)、その配線設計情報にはルール違反箇所がないと判定する。そして配線設計情報を抽出部12へ送る。一方、配線設計情報中に違反する配線パターンを発見した場合(すなわち、違反リストに一つでも記述がある場合)、配線設計情報を違反リストとともに修正部14に送る。
なお、設計検証部11は、周知の他の方法を用いて、配線設計情報の検証を行ってもよい。また設計検証部11は、配線パターンの寸法以外(例えば、ビア数など)に関して定められたルールに基づいて検証を行ってもよい。
抽出部12は、多層基板を作成する際、複数の基板を積層した積層体を加熱又は加圧することによってパターン不良が発生する可能性のある危険部位を、その多層基板の配線設計情報から抽出する。そのために、抽出部12は、分割手段121、密度計算手段122、危険部位抽出手段123を有する。
分割手段121は、作成される多層基板全体を仮想的に小領域に分割する。ここで各小領域は立方体状の領域であり、一つの小領域は、多層基板の最上層から最下層までを含む。図2(a)及び(b)を用いて、小領域への分割の様子を示す。図2(a)は、多層基板の平面模式図であり、図2(b)は、図2(a)の領域250を拡大表示したものである。なお、図2(a)及び(b)において、説明の明確化のために各配線パターン210のサイズは誇張されている。図2(a)及び(b)に示すように、多層基板200上には、配線パターン210が形成されている。なお、図には表れないが、多層基板200の表面以外の各層にも同様に配線パターンが形成されている。また、図2(b)に示すように、各小領域260は、後述するパターン密度の差の評価を正確に行うために、配線パターンや配線パターン間の距離に対して十分小さいサイズとなるように設定される。本実施形態では、各小領域を、1辺の長さが配線設計情報に含まれる配線パターンの平均的な線幅の1/10である矩形領域とした。しかし各小領域のサイズはこれに限られず、例えば、1辺の長さが配線設計情報に含まれる配線パターンの平均的な線幅の1/5〜1/20となる矩形領域とすることができる。また、各小領域のサイズを基板上の場所によって変更してもよい。例えば、配線パターンの少ない領域では、小領域のサイズを大きく、配線パターンが密集している領域では、小領域のサイズを小さく設定してもよい。さらに、各小領域の形状は矩形に限られず、例えば円環を等角度間隔で区切った形状や三角形であってもよい。また、多層基板を上下二つに分割し、上側、下側それぞれ別個に小領域を設定してもよい。
密度計算手段122は、分割手段121で設定された各小領域のパターン密度を算出する。ここで、パターン密度とは、各小領域に含まれる全ての層の基板うち、配線パターンが形成されている基板が占める比率をいう。密度計算手段122は、各小領域について以下のようにパターン密度を計算する。まず、密度計算手段122は、着目する小領域について、各層の基板毎にその小領域に含まれる部分に配線パターンが少しでも形成されていれば‘1’、配線パターンが全く形成されていなければ‘0’とする。そして、密度計算手段122は、各層について求められた上記の1か0の値を加算する。最後に、その合計を多層基板を構成する層の数で除して、0〜1間の何れかの値を有するように正規化する。
図3を用いて、パターン密度の算出について説明する。図3は、作成される多層基板の断面模式図である。図3において、多層基板300は、樹脂で構成される基板層310a〜310eの5層で構成されている。そして各層間には、設計に応じて配線パターン320a〜320eが形成されている。また一つの小領域330が点線で示されている。そこで小領域330に着目すると、層310aに形成された配線パターン320aと層310cに形成された配線パターン320cが含まれている。したがって、小領域330のパターン密度は、(1+0+1+0+0)/5=0.4と計算される。
危険部位抽出手段123は、パターン密度の変化に基づいて、配線パターン不良が生じる可能性のある危険部位を抽出する。上記のように、多層基板の製造工程において生成される樹脂フィルムの積層体では、配線パターンの有無によって層間に空隙のある部分とない部分が生じる。そのため、積層体を両面から加圧しつつ加熱することにより、各樹脂フィルム相互の接着を行う接着工程では、樹脂が空隙を埋めるように流動するために配線パターン不良を生じるおそれがある。しかし、配線パターンが密集している部分又は配線パターンが周囲としっかり連結されているような領域では、配線パターン同士が樹脂が大きく流動することを防止するため、パターン不良が生じる可能性は少ない。一方、配線パターンの存在しない、すなわち、層間に多数の空隙を有する領域では、加熱及び加圧に対する変形を生じ易い。そのため、周囲と比較してパターン密度が急激に変化する部分、あるいは周囲をパターン密度の低い領域で囲まれた孤立パターン(例えば、ビアに相当する部分)は、大きな樹脂流動を生じ、パターン不良を生じる可能性がある。
図4を用いてこの様子を説明する。図4(a)は、接着工程を行う前の多層基板400の断面模式図であり、図4(b)は、図4(a)に示した多層基板400と同一の部分について接着工程を行った後の断面模式図である。図4(a)及び(b)において、配線パターン410は、太線で示されており、ビア420はハッチングで示されている。ここで、図4(a)及び図4(b)を比較すると、ほとんどの層に配線パターン410が形成されている、パターン密度の高い領域430では、接着工程の前後でほとんど配線パターンが変化していないことが分かる。一方、パターン密度の低い部分に挟まれた領域440では、接着工程後で配線パターン410が横に大きくずれていることが分かる。同様に、中央にビア420を含む領域450についても、接着工程後で各層間でビア420の位置がずれてしまうことが分かる。
そこで、危険部位抽出手段123は、パターン密度が急激に変化する部分を見つけることにより、パターン不良が生じる可能性のある危険部位を抽出する。そのために、危険部位抽出手段123は、各小領域から一つの小領域を順次着目小領域として設定し、その着目小領域のパターン密度と着目小領域の近傍領域(例えば、着小領域の8近傍、あるいは16近傍)に存在する小領域とパターン密度の差の絶対値を算出する。そして、何れかのパターン密度の差の絶対値が所定の閾値以上の場合、その着目小領域を要注意領域として検出し、その要注意領域の位置を処理部4を構成するメモリに記憶する。なお、所定の閾値は、例えば0.5に設定することができる。
全ての小領域について上記の処理を終えると、危険部位抽出手段123は、次にメモリに記憶されている各要注意領域の位置と、配線設計情報からパターン不良を生じ易い所定の配線パターン構造の位置を比較する。そして危険部位抽出手段123は、要注意領域の何れかと上記の所定の配線パターン構造の位置が一致すると、その所定の配線パターン構造全体を含む領域を危険部位として抽出する。なお、所定の構造を有する配線パターンとは、例えばビアなどの孤立パターンであり、経験によって予め設定することができる。なお、危険部位として抽出される領域は、例えば、上記の配線パターン構造及びその配線パターン構造に隣接する配線パターンが含まれる程度の領域に設定される。
推定部13は、抽出部12で抽出された危険部位について、配線パターン不良が生じるか否か、流動−構造連成解析を行って判定する。そのために、推定部13は、抽出された危険部位に含まれる積層体の各層を構成する樹脂、配線パターンを構成する銅等に関する材料の物性データおよび厚み情報を記憶部3から取得し、危険部位内の任意の位置について、対応する物性データおよび厚み情報が関連付けられた解析用モデルを作成する。このような解析用モデルは、例えばIGESフォーマットで記述することができる。推定部13は、抽出された危険部位が複数存在する場合、各危険部位に対して同様に解析用モデルを作成する。
解析用モデルを作成すると、推定部13は、その解析用モデルに対して流動−構造連成解析を行って、積層体に加熱及び加圧を加えた場合に発生する配線パターンの設計位置からの変位量を推定する。ここで、流動−構造連成解析として周知の種々の方法及び市販の構造解析ソルバを用いることができるため、詳細な説明は省略する。なお、そのような周知の方法の一例として、奥田、大城、「熱流体/構造系連成問題の統一的解析およびそのデータ並列化に関する研究」、日本計算工学会論文集、日本計算工学会、1999年、に記載された方法を利用することができる。
推定部13は、上記の推定結果に基づいて、例えば以下の何れかが発生している場合、その危険部位にパターン不良が生じたと判定する。すなわち、
(1)配線パターンの設計位置からの変位量(基板の各層に対して水平な方向又は垂直な方向)が所定の許容量を超える、
(2)隣接する配線パターンと接触する、
(3)連続しているはずの配線パターンが途切れる、
(4)各層間でビアの位置が所定の許容量を超えてずれる、
(5)基板表面段差が所定の閾値以上となる、
である。
なお、上記の所定の許容量は、配線パターンの製造許容公差(例えば、変位量が30μm以内)に設定することができる。
推定部13は、何れかの危険部位においてパターン不良が発生すると判定した場合、修正部14に対してその危険部位を示す情報を修正部14に送る。また推定部13は、後述するルール追加部15で設計ルールの追加及び修正に利用するため、パターン不良が発生すると判定された各危険部位に含まれる配線パターンに対応する設計データを記憶部3に保存する。
修正部14は、パターン不良が発生すると判定された危険部位に含まれる配線パターンの位置、寸法などを所定の修正ルールに基づいて修正し、配線設計情報を更新する。そして、更新された配線設計情報を再度ルール検証部11へ送る。
所定の修正ルールは、例えば、以下のようなものである。
(1)ランドなどの配線パターンの周囲にベタパターンを追加する。
(2)パターン密度が疎の部分(例えば、パターン密度が0.4以下)の領域において、何れかの層にベタパターンを追加し、パターン密度を増加させる。
(3)ランドなどの配線パターンについて、変位量が許容範囲を超える部分をなくすように位置又は形状を変更する。
修正部14は、各危険部位について、上記の修正ルールを順次適用可能か否か判定する。例えばルール(1)については、修正対象の配線パターンと隣接する配線パターンまでの距離を調べる。そして、修正部14は、その距離が所定以上離れていれば、適用可と判定する。その後、修正部14は、隣接する配線パターンとの距離が予め定められた最小距離以上となる範囲で修正対象の配線パターンの周囲にベタパターンを追加する。同様に、ルール(2)については、修正部14は、まず、危険部位に含まれる各層について、配線パターンが存在しない、所定以上の面積を有する未使用領域を探索する。そしてそのような未使用領域を発見すると、修正部14はルール(2)を適用可と判定する。その後修正部14は、発見した未使用領域内にベタパターンを追加する。またルール(3)についても、修正部14は、同様に適用可否を判定し、適用可と判定すれば、その修正ルールに則って配線パターンを修正する。
なお、修正部14は、各修正ルールに優先度を設定し、優先度の高い修正ルールから順番に適用を行うようにしてもよい。
ルール追加部15は、推定部13で配線不良が発生すると判定された領域の配線パターン及びその周囲の配線パターンなどに基づいて、ルール検証部11で使用する設計ルールを抽出し、記憶部3に記憶する。あるいは、既存の設計ルールの修正を行う。そこでルール追加部15は、配線設計情報の修正が終了すると、その配線設計情報の修正途中において、パターン不良が発生すると判定された危険部位に含まれる配線パターンに対応する設計データを記憶部3から取得し、その設計データに基づいて設計ルールの追加及び修正を行う。
ルール追加部15は、例えば以下のようにルール追加を行う。まず、ルール追加部15は、配線不良が発生すると判定された危険部位に含まれる各配線パターンに対応する設計データ(線幅、隣接配線パターンまでの間隔、ビアの直径、配線パターンの種別など)のうち、各評価項目に関するパラメータ値を配線設計情報から取得する。次に、ルール追加部15は、各パラメータ値について評価する既存の設計ルールを探索する。もし、そのパラメータ値について評価する既存の設計ルールが存在しない場合、ルール追加部15は、その評価項目に対する設計ルールを追加する。なお、上記のように、評価対象となり得る項目については、全て事前に不等式の形式で使用されない設計ルールも未使用ルールとして記憶されている。すなわち、その評価項目に関するパラメータについての許容範囲の上限値及び下限値が未設定を表す値(例えば“−999”)として記憶されている。そこでルール追加部15は、未使用ルールにおける未設定の上限値又は下限値に値を設定することにより、ルールを追加することができる。ここで、設定される上限値又は下限値は、追加使用とする評価項目に関するパラメータの値を許容範囲から外すように、そのパラメータ値に所定のオフセットを加えた値となる。
同様に、ルール追加部15は、既存のルールの修正も行うことができる。この場合、ルール追加部15は、評価項目に関するパラメータ値を既存のルールと比較して、そのパラメータ値が既存のルールで許容範囲内に含まれている場合、そのパラメータ値が許容範囲外となるように、許容範囲の上限値又は下限値を修正する。
以下に例を示す。
まず、記憶部3には、使用ルール、未使用ルールを含めて設計ルール1から設計ルールNまでが存在し、配線パターンの種別がビアの場合における、隣接する配線パターン(積層体の何れに形成される配線パターンでもよい)までの距離が、設計ルールk(ただし1≦k≦N)に設定されていると仮定する。また設計ルールkにおける、パラメータ(隣接する配線パターンまでの距離)の上限値、下限値は未設定(すなわち、設計ルールkは未使用)とする。また、距離を表すパラメータに対するオフセットを100μmとする。
この場合において、パターン不良が発生すると判定された配線パターンの種別がビアであり、隣接する配線パターンまでの距離が1000μmである場合、ルール追加部15は、設計ルールkについて、隣接する配線パターンまでの距離の上限値を900μmと設定する。このように隣接する配線パターンまでの距離の上限値が設定されることにより、設計ルールkは有効となり、以後の処理において、ルール検証部11で使用される。
また、設計ルールj(ただし1≦j≦N)において、配線パターンの種別がランドの場合における、隣接する配線パターン(積層体の何れに形成される配線パターンでもよい)までの距離が、設計ルールj(ただし1≦j≦N)に設定されていると仮定する。また設計ルールjにおける、パラメータ(隣接する配線パターンまでの距離)の上限値が、2000μmとして設定されているとする。この場合において、配線不良が生じると判定された配線パターンの種別がランドであり、隣接する配線パターンまでの距離が1500μmである場合、ルール追加部15は、設計ルールjについて、隣接する配線パターンまでの距離の上限値を1400μmと設定する。このように隣接する配線パターンまでの距離の上限値が修正され、以後の処理において、修正された設計ルールjがルール検証部11で使用される。
なお、ルール追加部15は、所定の設計ルールについては、修正を行わないように予め設定してもよい。
次に、図5を参照して、本発明を適用した基板設計支援装置1の動作フローを説明する。なお、以下に説明する基板設計支援装置1の動作は、処理部4に読み込まれたプログラムにしたがって、処理部4の制御部10により実行される。
まず、処理部4は、データ入出力部2より配線設計情報を取得する(ステップS101)。次に、処理部4のルール検証部11は、取得した配線設計情報に対して、記憶部3から読み込んだ設計ルールを用いて検証する(ステップS102)。そしてルール検証部11は、使用する全ての設計ルールについて検証を終えると、ルール違反の有無を調べる(ステップS103)。そしてルール違反がある場合、処理部4の修正部14は、配線設計情報を修正する(ステップS110)。
一方、ステップS103において、ルール違反が見つからなかった場合、処理部4の抽出部12は、分割手段121において、配線設計情報に表される基板を複数の小領域に分割する(ステップS104)。次に、抽出部12は、パターン密度算出手段122で、各小領域のパターン密度を算出する(ステップS105)。そして、抽出部12は、近接する各小領域間のパターン密度の差を算出し、その差に基づいてパターン不良が生じる可能性のある危険部位を抽出する(ステップS106)。次に、抽出部12は、危険部位が抽出されたか否かを調べる(ステップS107)。そして危険部位が抽出されなかった場合は、配線設計情報に修正すべき点を発見しないため、処理を終了する。
一方、ステップS107において、危険部位が抽出された場合、処理部4の推定部13は、その危険部位について流動−構造練成解析を行って、配線パターンの設計位置からの変位量を推定する(ステップS108)。そして推定部13は、推定された変位量に基づいて、パターン不良が生じるか否か判定する(ステップS109)。ステップS109において、パターン不良が生じると判定された場合、修正部14は、配線設計情報の修正を行う(ステップS110)。そして制御をステップS102の前に戻し、再度ステップS102〜S109の処理を行う。一方、ステップS109において、パターン不良が生じないと判定された場合、基板設計支援装置1は処理を終了する。
以上説明してきたように、本発明を適用した基板設計支援装置1は、多層基板上のパターン密度の変化に基づいてパターン不良が生じる可能性のある危険部位を抽出する。そして基板設計支援装置1は、その危険部位について流動−構造連成解析を行って配線パターンの設計位置からの変位量を推定し、その推定結果に基づいて、パターン不良が生じるか否か判定する。さらに基板設計支援装置1は、パターン不良が生じると判定した場合、パターン不良が生じると判定された危険部位に対応する配線パターンの設計データを自動的に修正する。そのため、多層基板の試作を行うことなく、配線パターン切れやビアの層間での位置ずれ、層間の密着不足といった問題を生じることがないように、適切な多層基板設計を行うことができる。また、本発明を適用した基板設計支援装置1は、パターン不良が生じる可能性のある部位に限定して流動−構造連成解析を行うため、解析に長時間を要することなく、比較的短時間で配線設計情報の検証及び修正を行うことができる。
なお、上述してきた実施形態は、本発明を説明するためのものであり、本発明は、上述の実施形態に限定されるものではない。
例えば、上述した基板設計支援装置1において、処理部4の修正部14及びルール追加部15を省略することにより、配線設計情報の修正を行わず、単に配線設計情報の検証のみを目的として使用することもできる。この場合、処理部4にモニタ(図示せず)を接続することが好ましい。基板設計支援装置を使用するユーザが、推定部13でパターン不良が発生すると判定された配線パターンの有無、及びそのような配線パターンが存在する場合にはその場所をモニタに表示して、容易にパターン不良箇所を知ることができるようにするためである。
以上のように、本発明の範囲内で、実施される形態に合わせて様々な変更を行うことができる。
本発明を適用した基板設計支援装置の機能ブロック図である。 (a)は多層基板の平面模式図であり、(b)は、(a)の領域250についての拡大表示図である。 作成される多層基板の断面模式図である。 (a)は、接着工程を行う前の多層基板の断面模式図であり、(b)は、(a)と同一の部分について接着工程を行った後の多層基板の断面模式図である。 本発明を適用した基板設計支援装置の動作フローチャートである。
符号の説明
1 基板設計支援装置
2 データ入出力部
3 記憶部
4 処理部
10 制御部
11 ルール検証部
12 抽出部
121 分割手段
122 密度算出手段
123 危険部位抽出手段
13 推定部
14 修正部
15 ルール追加部
200、300、400 多層基板
210 配線パターン
260 小領域
310a〜e 絶縁基板層
320a〜e 配線パターン
330 小領域
410 配線パターン
420 ビア
430 配線パターン密度の高い領域
440、450 配線パターン密度の低い領域に囲まれた領域

Claims (6)

  1. 熱可塑性樹脂からなり、配線パターンを備える複数の基板を層状に積層した積層体を形成し、該積層体を加熱および加圧することによって形成される多層基板の設計支援装置であって、
    前記多層基板の配線設計情報を取得する入力部(2)と、
    取得した前記配線設計情報から、前記積層体を加熱および加圧することによってパターン不良が発生する可能性のある危険部位を抽出する抽出部(12)と、
    前記配線設計情報に基づいて、前記抽出部(12)で抽出された危険部位に含まれる前記配線パターンに対して、前記積層体を加熱および加圧することにより発生する、前記熱可塑性樹脂の樹脂流動に起因した、該配線パターン個々の設計位置から変位する変位量を推定し、該変位量に基づいてパターン不良が発生するか否かを判定する推定部(13)と、
    を有し、
    前記抽出部(12)は、
    前記多層基板を複数の領域に分割する分割手段(121)と、
    前記分割手段(121)によって分割された前記複数の領域のそれぞれについて、前記配線設計情報に基づいて配線パターンを含む度合いを表すパターン密度を算出する密度算出手段(122)と、
    前記パターン密度に基づいて、前記危険部位を抽出する危険部位抽出手段(123)と、
    を有することを特徴とする設計支援装置。
  2. 前記危険部位抽出手段(123)は、前記複数の領域の少なくとも一つを着目領域として設定し、該着目領域のパターン密度と該着目領域の近傍にある前記複数の領域の何れかのパターン密度との差に基づいて、前記危険部位を抽出する、請求項に記載の設計支援装置。
  3. 前記危険部位抽出手段(123)は、前記複数の領域の少なくとも一つを着目領域として設定し、該着目領域のパターン密度と該着目領域の近傍にある前記複数の領域の何れかのパターン密度との差の絶対値が所定の閾値以上であり、且つ該着目領域が所定の配線パターン構造に含まれる場合、該所定の配線パターン構造を前記危険部位として抽出する、請求項に記載の設計支援装置。
  4. さらに、前記推定部(13)でパターン不良が発生すると判定された危険部位に含まれる配線パターンに対応する、前記配線設計情報内の設計データを修正する修正部(14)を有する、請求項1〜の何れか一項に記載の設計支援装置。
  5. 前記修正部(14)は、少なくとも一つの修正ルールを有し、パターン不良が発生すると判定された危険部位に含まれる配線パターンに対応する前記設計データに基づいて該少なくとも一つの修正ルールの適用可否を判定し、適用可と判定された該修正ルールに基づいて前記設計データを修正する、請求項に記載の設計支援装置。
  6. 前記推定部(13)は、前記多層基板の前記危険部位についてのみ、流動−構造連成解析を行うことで前記変位量を推定する、請求項1〜の何れか一項に記載の設計支援装置。
JP2006078574A 2006-03-22 2006-03-22 多層基板の設計支援装置 Active JP4770535B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006078574A JP4770535B2 (ja) 2006-03-22 2006-03-22 多層基板の設計支援装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006078574A JP4770535B2 (ja) 2006-03-22 2006-03-22 多層基板の設計支援装置

Publications (2)

Publication Number Publication Date
JP2007258331A JP2007258331A (ja) 2007-10-04
JP4770535B2 true JP4770535B2 (ja) 2011-09-14

Family

ID=38632279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006078574A Active JP4770535B2 (ja) 2006-03-22 2006-03-22 多層基板の設計支援装置

Country Status (1)

Country Link
JP (1) JP4770535B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6127674B2 (ja) * 2013-04-12 2017-05-17 富士通株式会社 基板設計支援装置、基板設計支援方法、及び基板設計支援プログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04360274A (ja) * 1991-06-06 1992-12-14 Fujitsu Ltd 領域パターン自動生成処理方式
JP3356660B2 (ja) * 1997-09-01 2002-12-16 日本電気株式会社 有限要素法を用いた構造体の反り状態解析方法およびシステム、有限要素法を用いた構造体の反り状態解析プログラムを記録した記録媒体
JP3348004B2 (ja) * 1998-01-29 2002-11-20 山一電機株式会社 多層配線基板およびその製造方法
JP3927076B2 (ja) * 2002-06-05 2007-06-06 株式会社東芝 基板の反り解析方法及びそのシステム、基板の反り解析プログラム
JP2005115859A (ja) * 2003-10-10 2005-04-28 Sharp Corp 自動設計支援システムおよび自動解析評価方法
JP4481761B2 (ja) * 2004-08-11 2010-06-16 富士通株式会社 基板設計支援装置、基板設計支援方法、及び基板設計支援プログラム

Also Published As

Publication number Publication date
JP2007258331A (ja) 2007-10-04

Similar Documents

Publication Publication Date Title
EP2050322B1 (en) Control system for controlling the manufacture of printed circuit boards and method of operating
CN107562976A (zh) 结构的多个平面中的裂纹传播的有限元建模和分析
JP4588502B2 (ja) プリント配線基板設計支援装置、プリント配線基板設計支援方法、及びプリント配線基板設計支援プログラム
JP2002539644A (ja) 補正モデル及び位置決めシミュレータ装置、およびプリント回路基板の製造方法
US8763240B2 (en) Fabrication process for embedded passive components
JP4770535B2 (ja) 多層基板の設計支援装置
JP4481761B2 (ja) 基板設計支援装置、基板設計支援方法、及び基板設計支援プログラム
JP4618065B2 (ja) 配線パターン設計装置及び方法並びにプログラム
Schwarz et al. Development of a Scalable Fabrication Concept for Sustainable, Programmable Shape‐Morphing Metamaterials
Madadnia et al. Technological development for the reduction of out-of-plane deformation of metallic meander structures in thermoformed electronics
JP2008157746A (ja) 熱解析方法、熱解析プログラムおよびその熱解析プログラムを記録したコンピュータ読み取り可能な記録媒体
JP5067048B2 (ja) プリント配線板
CN111079295A (zh) 柔性多层结构变形能力仿真方法、装置、计算机设备
US10488279B2 (en) Components configured to autonomously detect and accommodate structural changes
JP3994884B2 (ja) 薄膜の膜応力評価方法と弾性率・線膨張率同定方法
JP4204530B2 (ja) 部品実装基板用解析方法
JP4178241B2 (ja) 配線容量抽出用の容量値ルールテーブルを生成する方法および容量値ルールファイル生成プログラム
JP4121650B2 (ja) 熱伝導率算出方法及び装置並びに熱伝導率算出プログラムを記録した媒体
US20090291514A1 (en) Process management method and process management data for semiconductor device
JP2006185369A (ja) 数値解析支援装置,数値解析支援方法,数値解析支援プログラムおよび同プログラムを記録したコンピュータ読取可能な記録媒体
Zhu et al. Moisture diffusion modeling and application in a 3D RF module subject to moisture absorption and desorption loads
JP6432939B2 (ja) プリント基板
JP4282515B2 (ja) 部品内蔵基板の製造方法及び基板管理装置
JP2007241658A (ja) 熱伝導率算出方法、装置、およびプログラム
TWI457781B (zh) 佈局與線路圖的對比檢查方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4770535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350