JP4769535B2 - 固体撮像素子 - Google Patents

固体撮像素子 Download PDF

Info

Publication number
JP4769535B2
JP4769535B2 JP2005293776A JP2005293776A JP4769535B2 JP 4769535 B2 JP4769535 B2 JP 4769535B2 JP 2005293776 A JP2005293776 A JP 2005293776A JP 2005293776 A JP2005293776 A JP 2005293776A JP 4769535 B2 JP4769535 B2 JP 4769535B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
electrode film
conversion element
signal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005293776A
Other languages
English (en)
Other versions
JP2007103786A (ja
Inventor
信雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005293776A priority Critical patent/JP4769535B2/ja
Priority to US11/543,929 priority patent/US7498624B2/en
Publication of JP2007103786A publication Critical patent/JP2007103786A/ja
Application granted granted Critical
Publication of JP4769535B2 publication Critical patent/JP4769535B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • H01L27/14647Multicolour imagers having a stacked pixel-element structure, e.g. npn, npnpn or MQW elements

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

本発明は、行方向とこれに直交する列方向に配列された多数の画素を有する固体撮像素子に関する。
CCD型やCMOS型のイメージセンサに代表される単板式カラー固体撮像素子では、光電変換する受光部の配列上に3種または4種の色フィルタをモザイク状に配置している。これにより、各受光部から色フィルタに対応した色信号が出力され、これ等の色信号を信号処理することでカラー画像が生成される。
しかし、モザイク状に色フィルタを配列したカラー固体撮像素子は、原色の色フィルタの場合、およそ入射光の2/3が色フィルタで吸収されてしまうため、光利用効率が悪く、感度が低いという問題がある。また、各受光部で1色の色信号しか得られないため、解像度も悪く、特に、偽色が目立つという問題もある。
そこで、斯かる問題を克服するために、信号読出回路が形成された半導体基板の上に3層の光電変換膜を積層する構造の撮像素子が研究・開発されている(例えば、下記の特許文献1,2)。この撮像素子は、例えば、光入射面から順次、青(B),緑(G),赤(R)の光に対して信号電荷(電子,正孔)を発生する光電変換膜を重ねた受光部構造を備え、しかも各受光部毎に、各光電変換膜で光発生した信号電荷を独立に読み出すことができる信号読み出し回路が設けられる。
斯かる構造の撮像素子の場合、入射光が殆ど光電変換されて読み出され、可視光の利用効率は100%に近く、しかも各受光部でR,G,Bの3色の色信号が得られるため、高感度で、高解像度(偽色が目立たない)の良好な画像が生成できる。
また、下記特許文献3に記載された撮像素子では、シリコン基板内に光信号を検出する3重のウエル(フォトダイオード)を設け、シリコン基板の深さの違いにより、分光感度の異なる信号(表面からB(青)、G(緑)、R(赤)の波長にピークを持つ)を得るようになっている。これは、入射光のシリコン基板内への侵入距離が波長に依存することを利用している。この撮像素子も、特許文献1,2に記載された撮像素子と同様に、高感度で、高解像度(偽色が目立たない)の良好な画像を得ることができる。
しかし、特許文献1,2に記載された撮像素子は、3層の光電変換膜を半導体基板の上に順に積層し、且つ、各光電変換膜で発生したR,G,B毎の信号電荷を夫々半導体基板に形成した信号読出回路に接続する縦配線を形成する必要があるが、その製造は難しく、製造歩留まりが低いためコストが嵩んでしまうという問題がある。
一方、特許文献3に記載された撮像素子は、青色光は最浅部のフォトダイオード、赤色光は最深部のフォトダイオード、緑色光は中間部のフォトダイオードで検出する構造になっているが、例えば最浅部のフォトダイオードでは緑色光や赤色光によっても光電荷が発生してしまうため、R信号,G信号,B信号の分光感度特性の分離が十分でなく、色再現性が悪いという問題がある。しかも、真のR信号,G信号,B信号を得るために各フォトダイオードからの出力信号を加減算処理する必要があり、この加減算処理により画像信号のS/Nが劣化してしまうという問題もある。
前述した特許文献1,2,3記載の撮像素子の各問題点を改善するものとして、特許文献4記載の撮像素子が提案されている。この撮像素子は、特許文献1,2記載の撮像素子と特許文献3記載の撮像素子のハイブリッド型となっており、シリコン基板内のフォトダイオードでBとRの光を検出し、シリコン基板上方の光電変換素子でGの光を検出するものである。シリコン基板上方に設けられる光電変換素子は、シリコン基板上に積層された第一電極膜と、第一電極膜上に積層された有機材料からなる光電変換膜と、光電変換膜上に積層された第二電極膜とを含んで構成されており、第一電極膜と第二電極膜に電圧を印加することで、光電変換膜内で発生した信号電荷が第一電極膜と第二電極膜に移動し、いずれかの電極膜に移動した信号電荷に応じた信号が、シリコン基板内に設けられたCCDやCMOS回路等の信号読み出し回路で読み出される構成となっている。本明細書において、光電変換膜とは、そこに入射した特定の波長の光を吸収し、吸収した光量に応じた電子及び正孔を発生する膜のことを言う。
この構成によれば、光電変換膜が1層で済むため、製造工程が簡単になり、コストアップや歩留り低下を避けることができる。また、光電変換膜で緑色光が吸収されるため、半導体基板内の青色用と赤色用の各フォトダイオードの分光感度特性の分離は改善され、色再現性が良好になると共に、S/Nも改善されるという利点がある。
特表2002−502120号公報 特開2002−83946号公報 特表2002−513145号公報 特開2003−332551号公報
B光とR光を検出する2つのフォトダイオードや信号読出し回路等が設けられているシリコン基板は、電子の移動度が正孔の移動度より約3倍大きい。したがって、信号読出し回路を構成するトランジスタはnチャネルMOS型トランジスタが一般的に使用される。これに対応して、シリコン基板上内の光電変換膜から取り出す電荷も電子が利用される。
しかしながら、光電変換膜は有機半導体が使用されることが多く、この有機半導体の一般的な性質として電子の移動度より正孔の移動度の方が大きいことが知られている。G光を検出する光電変換膜から取り出す電荷として移動度が小さい電子を利用すると、電子が移動中に消滅する確率が大きく、さらに、トラップ準位に電子が捕獲される確率も大きい。その結果、G光の感度が低下する恐れがある。
また、第二電極膜上方から光を入射した場合、有機半導体からなる光電変換膜は、光吸収係数が大きい波長の光に対しては、電子を、第二電極膜付近に比較的多く発生する。したがって、第一電極膜で電子を捕集するものとすると、光吸収係数が大きい波長の光の場合、電子は第一電極膜まで長い距離を移動することになる。この結果、光吸収係数が大きい波長の光に対する感度低下は非常に大きくなる。一方、有機半導体からなる光電変換膜は、光吸収係数が比較的小さい波長の光に対しては、電子を、光電変換膜内でほぼ一様に発生する。したがって、光吸収係数が大きい波長の光に比べると、感度低下はそれほど大きくない。これらの理由から、ハイブリッド型の撮像素子において、光電変換膜でG光を検出する場合、G光の分光感度特性は、ピーク感度が低下し、緩やかな山のような分布となるため、G光の色分離特性が劣化し、結果としてカラー再生画像の色再現性が悪くなる。光電変換膜でR光やB光を検出する場合でも色再現性は悪化するが、G光を検出する場合に、特に顕著となる。
本発明は、上記事情に鑑みてなされたものであり、ハイブリッド型の固体撮像素子において、感度及び色再現性を向上させることを目的とする。
本発明の固体撮像素子は、行方向とこれに直交する列方向に配列された多数の画素を有する固体撮像素子であって、前記画素は、半導体基板内に形成されたそれぞれ異なる色の光を検出する複数種類の基板内光電変換素子と、前記複数種類の基板内光電変換素子上方に積層され、前記複数種類の基板内光電変換素子で検出される色とは異なる色の光を検出する基板上光電変換素子とを含む受光部と、前記基板内光電変換素子で発生して蓄積される電荷に応じた信号を読み出す前記半導体基板に形成された第一の信号読み出し回路と、前記基板上光電変換素子で発生して蓄積される電荷に応じた信号を読み出す前記半導体基板に形成された第二の信号読み出し回路とを含んで構成され、前記基板上光電変換素子は、前記半導体基板上方に積層された第一の電極膜と、前記第一の電極膜上方に積層された光電変換膜と、前記光電変換膜上方に積層された第二の電極膜とからなり、前記光電変換膜が、内部での正孔の移動度が電子の移動度より大きい有機半導体を含み、撮像期間中、前記第一の電極膜と前記第二の電極膜には、前記光電変換膜で発生した正孔が前記第一の電極膜に蓄積されるように電圧が印加され、前記基板内光電変換素子で発生して蓄積される電荷は電子であり、前記基板上光電変換素子で発生して蓄積される電荷は正孔であって、前記第一の信号読み出し回路及び前記第二の信号読み出し回路は、それぞれ、前記電荷を信号に変換するための出力トランジスタと、前記電荷をリセットするためのリセットトランジスタと、前記画素を選択するための選択トランジスタとを含み、前記出力トランジスタ、前記リセットトランジスタ、及び前記選択トランジスタは、それぞれnチャネルMOS型トランジスタであり、前記第二の信号読み出し回路の前記リセットトランジスタのドレイン電圧は、前記第一の信号読み出し回路の前記リセットトランジスタのドレイン電圧よりも低く設定される。
本発明の固体撮像素子は、前記第二の信号読み出し回路の入力端子が前記第一の電極膜に接続され、前記第二の信号読み出し回路が、前記第一の電極膜の電圧を所定電圧以下に保持して、前記第一の電極膜に接続されるトランジスタを保護する保護回路を含む。
本発明の固体撮像素子は、前記保護回路が、ソースとゲートが前記第一の電極膜に接続され、ドレインが前記所定電圧未満の電圧を供給する電源に接続されたトランジスタであり、前記トランジスタは、前記ゲートの電圧が前記所定電圧になった場合に、前記第一の電極膜と前記電源を導通する。
本発明の固体撮像素子は、前記複数種類の基板内光電変換素子が、前記半導体基板の深さ方向に積層されフォトダイオードである。
本発明の固体撮像素子は、前記複数種類の基板内光電変換素子が、青色の光を検出する基板内光電変換素子と、赤色の光を検出する基板内光電変換素子との2種類であり、前記基板上光電変換素子が、緑色の光を検出する。
本発明によれば、ハイブリッド型の固体撮像素子において、感度及び色再現性を向上させることができる
以下、本発明の実施形態について図面を参照して説明する。
図1は、本発明の実施形態を説明するためのハイブリッド型の固体撮像素子の構成を示す表面模式図である。
図1に示す固体撮像素子は、図中の行方向及びこれに直交する列方向に正方格子状に配列された多数の画素100を備える。多数の画素100は、行方向に配列された複数の画素100からなる行を画素行とし、この画素行を列方向に多数配列した配置、又は、列方向に配列された複数の画素100からなる列を画素列とし、この画素列を行方向に多数配列した配置となっている。各画素100は、R,G,Bの各光を検出してそれに応じた電荷を発生して蓄積する部分である受光部と、該受光部に蓄積された電荷に応じた信号を読み出すためのMOS型トランジスタからなる信号読み出し回路とが含まれる。
n型シリコン基板120上には、各画素100に含まれる信号読み出し回路を駆動するための駆動信号を該信号読み出し回路に供給する行選択走査部102と、各画素100の信号読み出し回路から読み出されたR,G,Bの3つの色信号に相関二重サンプリング処理やA/D変換処理等の信号処理を行う信号処理部103と、各画素100に含まれる受光部を駆動するためのタイミングパルスを生成して、これを各受光部に供給したり、行選択走査部102及び信号処理部103を制御したりする制御部104とが形成されている。
n型シリコン基板120上には、各画素100に含まれる信号読み出し回路を駆動するための駆動信号を供給するための2種類の信号線(リセット信号線109,行選択信号線110)が、各画素行の間を行方向に延びて形成されている。リセット信号線109,行選択信号線110は、これらを1組にして各画素行に対応して設けられている。リセット信号線109,行選択信号線110は、これらに対応する画素行に含まれる各画素100の信号読み出し回路と、行選択走査部102とに接続されている。行選択走査部102から、リセット信号線109,行選択信号線110を介して駆動信号が信号読み出し回路に供給されることで、信号読み出し回路の信号読み出し動作が制御される。
行選択走査部102は、図1に示す固体撮像素子の上端側から順に配列される画素行を、1つずつ上から順次選択して、1画素行単位で信号を読み出させる制御を行う。
n型シリコン基板120上には、各画素100に含まれる信号読み出し回路から読み出されたR,G,Bの各色信号を信号処理部103に伝達するための3種類の信号線(色列信号線111r,色列信号線111g,色列信号線111b)が、各画素列の間を列方向に延びて形成されている。色列信号線111g,色列信号線111b,色列信号線111rは、各画素列に対応して設けられている。色列信号線111g,色列信号線111b,色列信号線111rは、これらに対応する画素列に含まれる各画素100の信号読み出し回路と、信号処理部103とに接続される。
図2は、図1に示す1つの画素の概略構成を示す模式図であり、受光部の概略断面と、そこに接続される信号読み出し回路とを模式的に示した図である。図2に示すように、画素100には、受光部100aと、信号読み出し回路100bが含まれる。
n型シリコン基板120表面部にはpウェル層121が形成され、pウェル層121内には、p+型半導体層125、n型半導体層124、p型半導体層123、n型半導体層122がこの順に、浅い位置から深い位置に向かって形成されている。
n型シリコン基板120上には透明絶縁膜126が積層され、透明絶縁膜126上に受光部100a毎に分割された画素電極膜127(特許請求の範囲の第一の電極膜に相当)が形成されている。画素電極膜127は、光学的に透明または光吸収が少ない材料で形成される。例えば、ITO等のような金属化合物や、非常に薄い金属膜等で形成される。
画素電極膜127上には、全ての画素に含まれる受光部100aで共通の1枚構成でなる光電変換膜128が積層される。この光電変換膜128は、主として緑色(G)の波長領域の光に感度を有し、入射光の内の緑色の入射光量に応じた信号電荷を発生する。光電変換膜128の構造は、単層膜構造でも多層膜構造でもよく、主に緑に感度がある有機半導体材料、有機色素を含む有機材料等で形成される。例えば、光電変換膜128は、その膜厚の大部分(50%以上)を有機半導体材料が占めており、この有機半導体材料の内部での正孔の移動度が電子の移動度よりも大きくなっているものが用いられる。
光電変換膜128上には透明の共通電極膜(画素電極膜127の対向電極膜;特許請求の範囲の第二の電極膜に相当)129が形成され、その上には、透明の保護膜130が形成される。対向電極膜129は、全ての画素に含まれる受光部100aで共通の一枚の膜状電極でも良く、また、画素電極膜127と同様に受光部100a毎に分割して形成しこれらを共通配線した構成でも良い。材料としては、例えばITO等のような金属化合物や非常に薄い金属膜等で形成されるが、光学的に透明または光吸収が少ない材料とする必要がある。画素電極膜127と対向電極膜129には、撮像期間中、光電変換膜128で発生した正孔が画素電極膜127に移動するに十分な電界が光電変換膜128内に誘起されるような電圧が印加される。
画素電極膜127と、光電変換膜128と、対向電極膜129とのうち、画素電極膜127によって区画される部分がG光を検出してこれに応じた信号電荷を発生する基板上光電変換素子であるG光電変換素子を構成する。又、n型半導体層124とp型半導体層123で形成されるpn接合は、シリコン基板120の表面部に近いため、そこに到達する光は光吸収係数が大きい青色(B)光の成分が支配的になり、B光を検出してこれに応じた信号電荷を発生する基板内光電変換素子であるB光電変換素子(フォトダイオード)を構成する。n型半導体層122とpウェル層121で形成されるpn接合は、シリコン基板120の深部にあるため、そこに到達する光は光吸収係数が小さい赤色(R)光の成分が支配的になり、R光を検出してこれに応じた信号電荷を発生する基板内光電変換素子であるR光電変換素子(フォトダイオード)を構成する。
G光電変換素子を透過した光はB光電変換素子によって吸収され、B光電変換素子を透過した光はR光電変換素子によって吸収されるように、G光電変換素子、B光電変換素子、及びR光電変換素子は積層されている。
画素電極膜127には、光電変換膜128で光電変換されて、ここに蓄積された正孔に応じたG信号を読み出すための信号読み出し回路112g(特許請求の範囲の第二の信号読み出し回路に相当)の入力端子が接続されている。信号読み出し回路112gは、pウェル層121内部及び透明絶縁膜126内に形成されている。
n型半導体層124には、B光電変換素子で光電変換されて、ここに蓄積された電子に応じたB信号を読み出すための信号読み出し回路112b(特許請求の範囲の第一の信号読み出し回路に相当)の入力端子が接続されている。信号読み出し回路112bは、pウェル層121内部及び透明絶縁膜126内に形成されている。
n型半導体層122には、R光電変換素子で光電変換されて、ここに蓄積された電子に応じたR信号を読み出すための信号読み出し回路112r(特許請求の範囲の第一の信号読み出し回路に相当)の入力端子が接続されている。信号読み出し回路112rは、pウェル層121内部及び透明絶縁膜126内に形成されている。
次に、信号読み出し回路112r,112g,112bの回路構成を図3を参照して説明する。信号読み出し回路112rと112bは同一構成であるため、ここでは信号読み出し回路112rと、信号読み出し回路112gについてその回路構成を説明する。図3は、図2に示す信号読み出し回路の具体構成例を示した図であり、(a)は、信号読み出し回路112gの回路構成を示す図、(b)は信号読み出し回路112r,bの回路構成を示す図である。
図3(a)に示すように、信号読み出し回路112gは、画素電極膜127に蓄積された正孔を、その量に応じた信号に変換するための出力トランジスタ114と、画素行を選択するための行選択トランジスタ115と、画素電極膜127に蓄積された正孔をリセットするためのリセットトランジスタ116とを備える。これらのトランジスタは、光が入ることによる混色を避けるため、図示しない光遮蔽膜で覆われているPウェル層121内に形成される。信号読み出し回路112gに含まれるトランジスタは、全てnチャネルMOS型トランジスタである。
出力トランジスタ114は、そのゲートが入力端子118gに接続され、そのドレインが電源端子119に接続される。リセットトランジスタ116は、そのゲートがリセット信号線109に接続され、そのソースが入力端子118gに接続され、そのドレインが電源端子117に接続される。行選択トランジスタ115は、そのゲートが行選択信号線110に接続され、そのドレインが出力トランジスタ114のソースに接続され、そのソースが色列信号線111gに接続される。
図3(b)に示すように、信号読み出し回路112rは、R光電変換素子で発生して蓄積された電子を、その量に応じた信号に変換するための出力トランジスタ114と、行選択トランジスタ115と、R光電変換素子で発生して蓄積された電子をリセットするためのリセットトランジスタ116とを備える。これらのトランジスタは、光が入ることによる混色を避けるため、図示しない光遮蔽膜で覆われているPウェル層121内に形成される。信号読み出し回路112rに含まれるトランジスタは全てnチャネルMOS型トランジスタである。
出力トランジスタ114は、そのゲートが入力端子118rに接続され、そのドレインが電源端子119に接続される。リセットトランジスタ116は、そのゲートがリセット信号線109に接続され、そのソースが入力端子118rに接続され、そのドレインが電源端子119に接続される。行選択トランジスタ115は、そのゲートが行選択信号線110に接続され、そのドレインが出力トランジスタ114のソースに接続され、そのソースが色列信号線111rに接続される。
信号読み出し回路112bの説明は、段落0043〜0044の説明において、RをBに変更し、rをbに変更するだけである。
信号読み出し回路112gのリセットトランジスタ116のドレイン電圧は所定値よりも低い電圧に設定され、信号読み出し回路112r,112bのリセットトランジスタ116のドレイン電圧は所定値よりも高い電圧に設定される。信号読み出し回路112gのリセットトランジスタ116が低電圧にリセットされることにより、正孔に対応するプラスの電圧信号を列信号線に出力させることができるためである。
以上のような構成の固体撮像素子では、撮影指示に応じた露光期間(撮像期間)の終了後、行選択走査部102が、行選択信号線110に行選択信号を供給して、m(mは整数)行目の画素行を選択する。これにより、画素電極膜127に蓄積された正孔が、出力トランジスタ114のゲート部分に蓄積され、蓄積された正孔量に応じた信号が色列信号線111gに読み出される。同様に、n型半導体層124に蓄積された電子が出力トランジスタ114のゲート部分に蓄積され、蓄積された電子量に応じた信号が色列信号線111bに読み出される。同様に、n型半導体層122に蓄積された電子が出力トランジスタ114のゲート部分に蓄積され、蓄積された電子量に応じた信号が色列信号線111rに読み出される。そして、信号処理部103によって信号処理が行われ、各画素行から得られた信号が、その信号の生成元の画素の配列順にしたがって出力される。
以上のように、本実施形態の固体撮像素子は、G光電変換素子については、光電変換層128で発生した電荷のうちの正孔を画素電極膜127に蓄積し、蓄積した正孔に応じた信号を信号読み出し回路112gによって読み出し、R光電変換素子とB光電変換素子については、ここで発生した電荷のうち電子を蓄積して、蓄積した電子に応じた信号を信号読み出し回路112r,112bによって読み出すようにしている。光電変換膜128で発生した正孔を信号読み出し用の電荷とすることで、光電変換膜128で発生した電荷が光電変換膜128内を移動中に消滅してしまう確率やトラップ準位に捕獲される確率を低くすることができる。特に、G光の場合、光電変換膜128内の対向電極膜129側で多く電子が発生するため、電子を信号読み出し用の電荷にした場合と比べると、上記確率をより低くすることができる。この結果、G光の感度を向上させ、G光の感度をシャープ化させることができ、G光の色分離特性及び色再現性を向上させることができる。
一方、B光とR光については、シリコン基板内で電荷を処理する必要があるため、正孔よりも移動度が大きい電子を信号読み出し用の電荷としている。これにより、B光,R光に応じて発生した電子が移動中に消滅してしまう確率を低くすることができ、R光,B光の感度低下も防ぐことができる。
本実施形態の固体撮像素子に用いた信号読み出し回路112g,112r,112bの構成は、一般によく知られている3つのトランジスタを用いる構成であるため、信号読み出しに用いる電荷が正孔であっても、この3つのトランジスタをnチャネルMOS型トランジスタにすることができる。つまり、信号読み出し回路112g,112r,112bを全てnチャネルMOS型トランジスタで構成することができるため、固体撮像素子の感度向上と小型化が実現可能となる。
尚、本実施形態の固体撮像素子において、画素100以外に含まれるトランジスタは、pチャネルMOS型トランジスタでも、nチャネルMOS型トランジスタでもどちらでも良い。
又、本実施形態では、信号読み出し回路112r,112bをそれぞれ3つのトランジスタで構成したが、これに限らず、例えば一般的に知られている4つのトランジスタで構成することも可能である。4つのトランジスタを用いた場合には、kTC雑音をCDS処理により除去することができるため、低雑音の撮像信号を得る事ができる。本実施形態のように3つのトランジスタを用いた場合には、画素の微細化が容易になる。
尚、本実施形態の固体撮像素子では、対向電極膜129に印加する電圧を5〜15V程度に高くすると、光電変換膜128内での正孔の移動速度が大きくなり、G光の感度が上昇する。これは、撮像素子として非常に望ましいことである。しかし、光入力信号が大きい場合、画素電極膜127の電圧が対向電極膜129の電圧に近い値となる。この画素電極膜127の電圧は、出力トランジスタ114のゲートとリセットトランジスタ116のソースに印加される。トランジスタは3.3V以下で動作することが一般的である。したがって、出力トランジスタ114やリセットトランジスタ116に5〜15Vの電圧が印加されると、トランジスタが破壊されることになる。これを避けるために、信号読み出し回路112gに保護回路を設けることが好ましい。
図4は、保護回路を設けた信号読み出し回路112gの回路構成を示す図である。図4において図3(a)と同じ構成には同一符号を付してある。
図4に示す信号読み出し回路112gは、図3(a)に示す信号読み出し回路112gに、そのソース及びゲートが入力端子118gに接続され、そのドレインが電源端子119に接続されたnチャネルMOS型の保護トランジスタ113を追加したものである。
保護トランジスタ113は、画素電極膜127の電圧を所定電圧以下に保持して、画素電極膜127に接続されるリセットトランジスタ116及び出力トランジスタ114を保護する機能を果たす。このため、保護トランジスタ113は、そのゲートの電圧(画素電極膜128の電圧と等価)が上記所定電圧になった場合に、そのドレインとソースが導通するようにゲートの閾値電圧が選ばれている。又、電源端子119から供給される電圧は、上記所定電圧未満となるように設定されている。
上記所定電圧を4Vとし、電源端子119から供給される電圧を3.3Vとし、強い光が光電変換膜128に入射した場合を考える。この場合、画素電極膜127の電圧は上昇していくが、電圧4Vを超えると、画素電極膜127と電源端子119とが導通される。これにより、画素電極膜127の電圧上昇は止まり、ほぼ4Vに保持される。つまり、対向電極膜129の電圧が5〜15Vと高くても、画素電極膜127の電圧は常にほぼ4V以下となるため、出力トランジスタ114やリセットトランジスタ116が破壊されるのを防ぐことができる。
本発明の実施形態を説明するためのハイブリッド型の固体撮像素子の構成を示す表面模式図 図1に示す1つの画素の概略構成を示す模式図 図2に示す信号読み出し回路の具体構成例を示した図 保護回路を設けた信号読み出し回路の回路構成を示す図
符号の説明
100 画素
102 行選択走査部
103 信号処理部
104 制御部
109 リセット信号線
110 行選択信号線
111r,g,b 色列信号線
112r,g,b 信号読み出し回路
114 出力トランジスタ
115 行選択トランジスタ
116 リセットトランジスタ
118r,g,b 入力端子
120 シリコン基板

Claims (5)

  1. 行方向とこれに直交する列方向に配列された多数の画素を有する固体撮像素子であって、
    前記画素は、半導体基板内に形成されたそれぞれ異なる色の光を検出する複数種類の基板内光電変換素子と、前記複数種類の基板内光電変換素子上方に積層され、前記複数種類の基板内光電変換素子で検出される色とは異なる色の光を検出する基板上光電変換素子とを含む受光部と、前記基板内光電変換素子で発生して蓄積される電荷に応じた信号を読み出す前記半導体基板に形成された第一の信号読み出し回路と、前記基板上光電変換素子で発生して蓄積される電荷に応じた信号を読み出す前記半導体基板に形成された第二の信号読み出し回路とを含んで構成され、
    前記基板上光電変換素子は、前記半導体基板上方に積層された第一の電極膜と、前記第一の電極膜上方に積層された光電変換膜と、前記光電変換膜上方に積層された第二の電極膜とからなり、
    前記光電変換膜が、内部での正孔の移動度が電子の移動度より大きい有機半導体を含み、
    撮像期間中、前記第一の電極膜と前記第二の電極膜には、前記光電変換膜で発生した正孔が前記第一の電極膜に蓄積されるように電圧が印加され、
    前記基板内光電変換素子で発生して蓄積される電荷は電子であり、前記基板上光電変換素子で発生して蓄積される電荷は正孔であって、
    前記第一の信号読み出し回路及び前記第二の信号読み出し回路は、それぞれ、前記電荷を信号に変換するための出力トランジスタと、前記電荷をリセットするためのリセットトランジスタと、前記画素を選択するための選択トランジスタとを含み、
    前記出力トランジスタ、前記リセットトランジスタ、及び前記選択トランジスタは、それぞれnチャネルMOS型トランジスタであり、
    前記第二の信号読み出し回路の前記リセットトランジスタのドレイン電圧は、前記第一の信号読み出し回路の前記リセットトランジスタのドレイン電圧よりも低く設定される固体撮像素子。
  2. 請求項記載の固体撮像素子であって、
    前記第二の信号読み出し回路の入力端子が前記第一の電極膜に接続され、
    前記第二の信号読み出し回路が、前記第一の電極膜の電圧を所定電圧以下に保持して、前記第一の電極膜に接続されるトランジスタを保護する保護回路を含む固体撮像素子。
  3. 請求項記載の固体撮像素子であって、
    前記保護回路は、ソースとゲートが前記第一の電極膜に接続され、ドレインが前記所定電圧未満の電圧を供給する電源に接続されたトランジスタであり、
    前記トランジスタは、前記ゲートの電圧が前記所定電圧になった場合に、前記第一の電極膜と前記電源を導通する固体撮像素子。
  4. 請求項1〜のいずれか記載の固体撮像素子であって、
    前記複数種類の基板内光電変換素子は、前記半導体基板の深さ方向に積層されフォトダイオードである固体撮像素子。
  5. 請求項1〜のいずれか記載の固体撮像素子であって、
    前記複数種類の基板内光電変換素子が、青色の光を検出する基板内光電変換素子と、赤色の光を検出する基板内光電変換素子との2種類であり、
    前記基板上光電変換素子が、緑色の光を検出する固体撮像素子。
JP2005293776A 2005-10-06 2005-10-06 固体撮像素子 Active JP4769535B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005293776A JP4769535B2 (ja) 2005-10-06 2005-10-06 固体撮像素子
US11/543,929 US7498624B2 (en) 2005-10-06 2006-10-06 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005293776A JP4769535B2 (ja) 2005-10-06 2005-10-06 固体撮像素子

Publications (2)

Publication Number Publication Date
JP2007103786A JP2007103786A (ja) 2007-04-19
JP4769535B2 true JP4769535B2 (ja) 2011-09-07

Family

ID=38030411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005293776A Active JP4769535B2 (ja) 2005-10-06 2005-10-06 固体撮像素子

Country Status (2)

Country Link
US (1) US7498624B2 (ja)
JP (1) JP4769535B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4701130B2 (ja) * 2006-06-15 2011-06-15 富士フイルム株式会社 光電変換膜積層型カラー固体撮像素子
JP5295593B2 (ja) * 2008-03-13 2013-09-18 パナソニック株式会社 半導体装置
JP2011071481A (ja) * 2009-08-28 2011-04-07 Fujifilm Corp 固体撮像装置,固体撮像装置の製造方法,デジタルスチルカメラ,デジタルビデオカメラ,携帯電話,内視鏡
FR2958079B1 (fr) * 2010-03-26 2012-09-21 Commissariat Energie Atomique Dispositif imageur cmos a architecture en trois dimensions
JP5542091B2 (ja) 2010-05-18 2014-07-09 富士フイルム株式会社 固体撮像素子及び撮像装置
JP2011155276A (ja) * 2011-03-07 2011-08-11 Fujifilm Corp 有機光電変換素子
JP5449242B2 (ja) * 2011-03-29 2014-03-19 富士フイルム株式会社 固体撮像素子及び撮像装置
WO2013021577A1 (ja) 2011-08-08 2013-02-14 パナソニック株式会社 固体撮像装置及び固体撮像装置の駆動方法
US10355051B2 (en) 2016-11-28 2019-07-16 Samsung Electronics Co., Ltd. Semiconductor device
CN110996023B (zh) * 2019-12-12 2022-05-06 思特威(上海)电子科技股份有限公司 像素电路中基于复位晶体管电位控制的钳位方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6157181A (ja) * 1984-08-28 1986-03-24 Sharp Corp 固体撮像装置
JPH03263380A (ja) * 1989-11-27 1991-11-22 Ricoh Co Ltd 光起電力素子
JPH06244397A (ja) * 1993-02-18 1994-09-02 Mitsubishi Electric Corp 固体撮像素子
AU2492399A (en) * 1998-02-02 1999-08-16 Uniax Corporation Image sensors made from organic semiconductors
US5965875A (en) * 1998-04-24 1999-10-12 Foveon, Inc. Color separation in an active pixel cell imaging array using a triple-well structure
JP3421580B2 (ja) * 1998-06-22 2003-06-30 株式会社東芝 撮像装置
JP4419238B2 (ja) * 1999-12-27 2010-02-24 ソニー株式会社 固体撮像素子及びその製造方法
JP2002083946A (ja) * 2000-09-07 2002-03-22 Nippon Hoso Kyokai <Nhk> イメージセンサ
JP4723789B2 (ja) * 2001-10-03 2011-07-13 株式会社東芝 X線平面検出器
JP4817584B2 (ja) * 2002-05-08 2011-11-16 キヤノン株式会社 カラー撮像素子

Also Published As

Publication number Publication date
US7498624B2 (en) 2009-03-03
US20080083925A1 (en) 2008-04-10
JP2007103786A (ja) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4769535B2 (ja) 固体撮像素子
KR100962449B1 (ko) 광전 변환층 스택 타입 칼라 고상 이미징 장치
US8243176B2 (en) Solid-state image sensor
JP4599258B2 (ja) 固体撮像素子
KR101067303B1 (ko) 광전 변환층 적층형 고체 촬상 소자
US7218347B2 (en) Photoelectric conversion element and solid-state image sensing device using the same
US8258560B1 (en) Image sensors with stacked photo-diodes
KR100642760B1 (ko) 이미지 센서 및 그 제조 방법
JP2016127264A (ja) 固体撮像素子およびその製造方法、並びに電子機器
JP4491323B2 (ja) 光電変換膜積層型カラー固体撮像装置
US6956273B2 (en) Photoelectric conversion element and solid-state image sensing device, camera, and image input apparatus using the same
US7626627B2 (en) Photoelectric conversion layer stack type color solid-state imaging device
KR20140083975A (ko) 고체 촬상 장치, 촬상 장치
JP5320989B2 (ja) 固体撮像装置、及び電子機器
JP2009099867A (ja) 光電変換素子及び撮像素子
TWI709235B (zh) 固體攝像元件、其製造方法及電子機器
WO2016104177A1 (ja) 固体撮像素子およびその製造方法、並びに電子機器
US11594568B2 (en) Image sensor and electronic device
JP4404561B2 (ja) Mos型カラー固体撮像装置
US20200219912A1 (en) Image sensor
JP2013005297A (ja) 撮像素子および駆動方法、並びに電子機器
KR102520573B1 (ko) 이미지 센서 및 이를 포함하는 전자 장치
JP2006269922A (ja) 単板式カラー固体撮像素子
KR20090051790A (ko) 적층 구조의 포토다이오드를 구비한 이미지센서의 단위화소
JP4751690B2 (ja) 固体撮像素子

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

R150 Certificate of patent or registration of utility model

Ref document number: 4769535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250