JP4760115B2 - 流体の流れ計測装置 - Google Patents

流体の流れ計測装置 Download PDF

Info

Publication number
JP4760115B2
JP4760115B2 JP2005131802A JP2005131802A JP4760115B2 JP 4760115 B2 JP4760115 B2 JP 4760115B2 JP 2005131802 A JP2005131802 A JP 2005131802A JP 2005131802 A JP2005131802 A JP 2005131802A JP 4760115 B2 JP4760115 B2 JP 4760115B2
Authority
JP
Japan
Prior art keywords
ultrasonic
signal
comparison
received
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005131802A
Other languages
English (en)
Other versions
JP2006308439A (ja
Inventor
大介 別荘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005131802A priority Critical patent/JP4760115B2/ja
Publication of JP2006308439A publication Critical patent/JP2006308439A/ja
Application granted granted Critical
Publication of JP4760115B2 publication Critical patent/JP4760115B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、特に超音波によって流速および/または流量を測定する流体の流れ計測装置に関するものである。
従来の流体の流れ計測装置の一例としての超音波流量計を図15で示す。図15において、流体管路1の途中に超音波を発信する第1振動子2と受信する第2振動子3とが流れ方向を斜めに横切るごとく配置されている。
4は第1振動子2への発信回路、5は第2振動子3で受信した信号の増幅回路で、この増幅された信号は基準信号と比較回路6で比較され、発信から受信までの時間をタイマカウンタのような計時手段7で求め、その超音波伝幡時間に応じて流体の流速値を、また管路の大きさや流れの状態を考慮して対応する流量値を演算手段8で演算するようにし、この演算手段8の値によって計測間隔変更手段9を介して発信回路4トリガ手段10への信号送出のタイミングを調節するようにしている。
次にその動作について述べる。トリガ手段10から発信回路4よりバースト信号を送出される。第1振動子2で発信された超音波信号は、流れの中を伝幡して第2振動子3で受信される。増幅回路5と比較回路6で信号処理され、発信から受信までの時間を計時手段7で測定する(例えば、特許文献1参照)。
静止流体中の音をc、流体の流れの速さをvとすると、流れ方向の超音波の伝幡速度は(c+v)となる。振動子5と6の間の距離をL、超音波伝幡軸と管路の中心軸とがなす角度をφとすると、超音波が到達する時間Tは、
T=L/(c+v×cosφ) (1)
となり、(1)式より
v=(L/T−c)/cosφ (2)
となり、Lとφが既知ならTを測定すれば流速vが求められる。この流速より流量Qは、通過面積をS、補正計数をKとすれば、
Q=K×S×v (3)
となる。
図16は他の従来例を示すものであり、発信から受信を繰り返し手段11によって繰り返し、設定手段12で設定された回数だけ繰り返しを行う。さらに発振と受信の切換えを切換手段13で行なった後、同様に繰り返しを行う。
すなわち、発振回路4によって第1振動子2から超音波が送信され、この超音波を第2振動子3で受信し、増幅回路5を介し比較回路6に到達すると繰り返し手段11で再びトリガ手段10で発信回路4をトリガする。
この繰り返しは繰り返し設定手段12で設定された回数だけ行われ、設定回数に達すると繰り返しに要した時間を計時手段7で計測する。しかる後、切換手段13により第1振動子2と第2振動子3の発信受信を逆に接続し、今度は第2振動子3から第1振動子2に向かって超音波を発信し前述と同様に到達時間を求め、この差を演算手段8で流速および/または流量値を演算する。
静止流体中の音をc、流体の流れの速さをvとすると、流れに対して順方向の超音波の伝幡速度は(c+v)、逆方向の伝幡速度は(c−v)となる。振動子2,3の間の距離をL、超音波伝幡軸と管路の中心軸とがなす角度をφ、繰り返し回数をnとすると、順方向と逆方向のそれぞれの繰り返し時間T1とT2は、
T1=n×L/(c+v×cosφ) (4)
T2=n×L/(c−v×cosφ) (5)
となり、(4)、(5)式より
v=n×L/(2×cosφ)×(1/T1−1/T2) (6)
となり、Lとφが既知ならT1とT2を測定すれば流速vが求められる。しかしながら
T1とT2の差は流量が小さくかつ繰り返し回数が小さいときには極めて微小であり、正確に計ることが困難であるので測定回数を多く設定し誤差を比較的小さくし、流量が大きくなるとT1−T2の差も大きくなるので測定が容易になり、その場合には繰り返し設定の回数を小さくしてサンプリング間隔を速くして誤差を小さくする。すなわち、演算手段8によって繰り返し設定手段11の回数を変更する。
また、超音波を用いて高精度な超音波伝播時間の測定を短時間で、かつ、低消費電力で行う計測方法も提案されている(例えば、特許文献2参照)。
これは図17に示されるように、超音波信号を流体管路1の内面に対して送受信する振動子2と、前記振動子2の交流受信信号を複数周期にわたって閾値と比較する比較手段6と、振動子2の送信から比較手段6による検出ごとの複数の伝播時間を計測する計時手段7と、計時手段7の計時値の平均値より伝播時間を算出する時間演算手段14とを備えたものである。
これによって1回の超音波送受信によって何度も比較手段で比較を行った計測値が得られるので、その平均値を求めることによって高精度な伝播時間の測定値が短時間で得られ、低消費電力で計測を行うことができるように記載されている。
上記図16に示すものは、2つの振動子を用いて、送信と受信とを切り替え、それぞれの受信波形から求められる超音波の伝播時間から流速を求めて、流量を演算する方式である。振動子の受信波形はいくつかの波を持つため、決められた波で伝播時間を求める必要がある。
例えば、受信波形は図18のようになるので、閾値を超えた第3波が基準値と交わる点P1で、送信からの時間をクロックで計時するようにする。実際の受信波の到達点はPTであるので、PTからP1までの時間は、固定値として扱い、計算時に補正する。
このような方式のため、気体の流れによる受信波形の変化、超音波センサの温度特性、あるいはノイズなどが原因で定められた第3波でない波で伝播時間を検出すると大きな測定誤差となるという課題がある。
特開平8−122117号公報(図1、図7) 特開平10−30947号公報(図1)
しかしながら、2つの超音波センサを交互に送信と受信に入れ替えて、それぞれの超音波が伝播する時間を求めて、それらの逆数の差から流速を算出し、さらに流体を通る管路(流路ともいう)の断面積を考慮して流量を求める従来の計測装置は、受信波形が計測精度に大きな影響を与える。この点について図を用いて詳しく説明する。
今、計測システムを図19に示されるような流路50に超音波センサ51,52が配置され、切り替え回路53により超音波センサ51に送信回路54、超音波センサ52に受信回路55が接続され、気体中の超音波の伝播時間T1を測定し、次に、切り替え回路53により超音波センサ52に送信回路54、超音波センサ51に受信回路55が接続され、気体中の超音波の伝播時間T2を測定し、両方の時間差から流速を求めるものとする。
図20は超音波センサへの送信信号と、それの受信信号および時間を計測するためのクロック動作を示したタイミングチャートである。
同図(a−1)、(a−2),(a−3)は超音波センサ51が送信側、超音波センサ52が受信側の場合で、同図(b−1)、(b−2)、(b−3)は超音波センサ51が受信側、超音波センサ52が送信側の場合である。
気体に図19に示した方向の流れがあるために、超音波の伝播時間T1はT2よりも短くなる。受信波形の検出について図18を用いて詳細に説明する。同図は受信波形を示しており、これの検出は受信波形の第2波と第3波のピーク値のおよそ中間になるように設けられた閾値があり、この閾値を超えた信号があることで、それを受信信号とみなす。
閾値を超えた波形がくると受信波形と判断し、次にこの受信波形が基準値と交わるポイントP1を検出ポイントとする。送信信号から検出ポイントまでのクロックをカウントして超音波の伝播時間を計測する。実際の受信ポイントはPTであるので、PTから第3波までの時間は固定値として扱い、検出ポイントP1までの時間からこの固定値を差し引いて超音波の伝播時間を求める。
超音波センサから放射される超音波は、いくらかの広がりを持っており、超音波が伝播する際に流路を構成する壁面に当たるような場合、受信波形は様々な経路で進入する超音波の合成波となるので、気体の流速により合成波の状態が変化することがある。
このような波形の変化があると、設定した固定の閾値では第2波と第3波を区別できなくなり、第3波でない波で伝播時間を検出すると大きな測定誤差となるという課題がある。
また、前述したように超音波センサの温度特性、あるいはノイズなどが原因で定められた第3波でない波で伝播時間を検出した場合も大きな測定誤差となるという課題がある。
本発明はこのような従来の課題を解決したもので、高精度な計測を可能とした流体の流れ計測装置を提供することを目的とする。
前記従来の課題を解決するために、本発明の超音波流量計は、流体の通る流路に配置された一対の超音波センサと、前記超音波センサを駆動する送信手段と、前記超音波センサからの信号を受信する受信手段と、基準値と受信信号を比較して受信を検知する比較手段2つの閾値で受信波形との比較を行い、前記比較手段の結果が2つの閾値のどちらから先に検知したかを判断することで前記比較手段の比較結果の正誤を判断する判断手段と、超音波の伝播時間を計る計時手段とを備えることで、大きな計測誤差の発生を解消できる。
本発明の超音波流量計は、超音波の受信波形が流速、温度の影響で変化しても適確に受信波を検知して、その正誤を判断することで、計測の精度を向上することができるという効果がある。
の発明は、流体の通る流路に配置された一対の超音波センサと、前記超音波センサを駆動する送信手段と、前記超音波センサからの信号を受信する受信手段と、基準値と受信信号を比較して受信を検知する比較手段と、2つの閾値で受信波形との比較を行い、前記比較手段の結果が2つの閾値のどちらから先に検知したかを判断することで前記比較手段の比較結果の正誤を判断する判断手段と、超音波の伝播時間を計る計時手段と、を備えている。そして、比較手段は、基準値に対して、2つの閾値で受信波形との比
較を行い、判断手段は、比較手段の結果が2つの閾値のどちらから先に検知したかを判断するようにする。
例えば、基準値に対して正負の2つの閾値を設けると、正しい信号を検知した場合は必ず先に比較される閾値と後から検知される閾値とが決まっているので、これとは異なる順番で検知された信号は誤ったものと判断することができる。
の発明は、特に、第2の発明において、2つの閾値の1つで比較されてから、もう一つの閾値で比較されるまでの時間を計時することで、比較手段の信号の正誤を判断手段で判断するようにする。例えば、基準値に対して正負に設けられた2つの閾値において、正しい信号を検知した場合は必ず先に比較される閾値と後から検知される閾値との時間間隔がある範囲内で決まっているので、この時間間隔を計時することで、比較手段の出力信号の正誤を判断することができる。
の発明は、特に、第2の発明において、閾値を切換え複数の閾値で比較できるようにした比較手段を備えたることにより、回路の素子数を節約することができる。
(実施の形態1)
以下、本発明の実施の形態1について図面を参照して説明する。なお、この実施の形態において本発明が限定されるものではない。
図1において、気体が流れる流路71に超音波センサ72,73とが配置される。超音波センサ72,73には、送信手段74から送信信号が送られる。また、超音波センサの受信信号は受信手段75に伝えられる。
送信と受信は切換手段77で選択される。一方の超音波センサ72が送信手段74に接続するように選択された場合は、他方の超音波センサ73は受信手段75に接続するように選択される。
今、同図に示されるように気体の流れが左から右方向の場合、超音波センサ72が送信した超音波は伝播時間T1後に超音波センサ73に到達する。反対に超音波センサ73が送信した超音波は伝播時間T2後に超音波センサ72に到達するが、気体の流れの方向から、T1<T2となる。これらの伝播時間T1、T2は計時手段76によって計時される。
演算手段79は計時手段76からのデータを基にして流量を求める。
以上が超音波計測装置78の主要部である。
図2は、超音波センサの送信(送信手段)波形と、受信(受信手段)波形とクロック(計時手段)波形を示し、同図(a−1)、(a−2)、(a−3)は、それぞれ超音波センサ72から送信して超音波センサ73で受信する場合である。
同図(a−1)によれば送信信号は3波となっており、受信波形は同図(a−2)のような波形となる。超音波の伝播時間T1は、受信波形が基準値と交わる点であるTA1からTA7の時間を同図(a−3)のクロックでカウントして、あらかじめ定めた規定値T0を引くことで補正して求められる。同図(b−1)、(b−2)、(b−3)は、それぞれ超音波センサ73から送信して超音波センサ72で受信する場合で、同様にして超音波の伝播時間T2が求められる。
同図に示される閾値は受信波を検知するために、設けられるもので受信手段の比較手段への入力信号となるものである。比較手段を用いて受信を検知すると、さらに別の比較手段を用いて、基準値と交差する点、TA1からTA7および、TB1からTB7を検知するようにしている。
次に図3を用いて受信手段について説明する。超音波センサ72,73の受信信号は切換手段77を介して、受信手段75の増幅手段80に入力される。増幅された信号は、増幅手段81でさらに増幅され、比較手段83,84に入力される。
基準値設定部85は基準値を与える。これは、交流の受信信号に重畳されるとともに、比較手段87へも入力される。比較手段83、84の信号は判断手段86に入力される。比較手段83,84で受信を検知し、その受信の正誤を判断手段86で判断する。
判断が正であれば、基準値が与えられている比較手段87で受信波と基準値を比較して、交わるポイント(図2のTA1からTA7および、TB1からTB7)を検知する。比較手段87の信号は、計時手段76に伝達され、伝播時間が算定される。
図4は超音波センサ72から送信して、超音波センサ73で受信した場合の、比較手段の入力信号と出力信号の波形を示し、同図(a)は入力信号で、比較手段83の閾値Aと、比較手段84の閾値Bとを合わせて記載している。同図(b)は比較手段83の出力信号、同図(c)は比較手段84の出力信号である。
正常な動作では、比較手段83の出力信号から先にHIになり、後から比較手段84の出力信号がHIとなる。また、比較手段83の出力信号と、比較手段84の出力信号が同時にHIになることはない。このような判断は判断手段が行い受信の正誤を判断する。受信が正しいと判断されれば、比較手段87で基準値との交差点TA1からTA7を検知して、送信からの伝播時間を求める。
図5は同じく超音波センサ72から送信して、超音波センサ73で受信した場合の比較手段の入力信号と出力信号の波形を示し、同図(a)は受信信号である入力信号で、第1波目にノイズなどが重畳して、閾値Aを超えずに同図(b)の比較手段83の出力がHIにならない状態から、先に同図(c)の比較手段84の出力がHIになった状態を示したものである。この場合、判断手段は受信信号が誤っていると判断して、伝播時間の算出は行わず計測をやり直す。
図6は同じく超音波センサ72から送信して、超音波センサ73で受信した場合の比較手段の入力信号と出力信号の波形を示し、同図(a)は受信信号である入力信号、同図(b)は比較手段83の出力、同図(c)は比較手段84の出力、同図(d)は比較手段87の出力を表している。
正常に受信を検知した場合は、比較手段87は必ず、比較手段83,84の出力がLOWのときHIに立ち上がり、同様に比較手段A83,84の出力がLOWのときLOWに下がる。判断手段はこのような論理が成り立っているかを判断することで、受信信号の正誤を判断することができる。
図7(a)は同じく超音波センサ72から送信して、超音波センサ73で受信した場合の比較手段の入力信号と出力信号の波形を示し、同図(a)は受信信号である入力信号、同図(b)は比較手段83の出力、同図(c)は比較手段84の出力、同図(d)はクロックを表している。
クロックは、比較手段83の出力の立ち上がりから、比較手段84の出力の立ち上がりまで動作する。判断手段はクロック数をカウントして、その動作時間を求めることで、比較手段83,84の出力信号の正誤を判断する。
図8は同じく比較手段の入力信号と出力信号の波形を示し、同図(a)の受信波形(入力信号)は図7(a)に比べてその振幅が小さくなっている。図8(b)は比較手段83の出力、同図(c)は比較手段Bの出力、同図(d)はクロックを表している。クロックは、比較手段83の出力の立ち上がりから、比較手段84の出力の立ち上がりまで動作しているが、図7(d)の場合に比べ、クロック数が少なくなっている。
このように受信波形によってクロック数(動作時間)は異なるが、正常な場合動作時間は、ほぼ受信波の1/4周期から1/2周期の中に入るので、判断手段はこの時間外であるものを誤った受信波形であると判断する。
図9は受信波形の正誤を判断する他の構成を示し、図3で示される回路ブロック図と共通する部分は同じ符号を用いており、詳細な説明は図3のものを援用する。増幅手段81からの増幅された受信信号をピークホールド回路88で受け、ピーク値が更新される回数を判断手段86がカウントする。
また、増幅手段81からの増幅された受信信号は、比較手段87にも入力される。この比較手段87は受信波と基準値との比較結果を出力する。
図9で示された回路ブロック図の各部波形を図10に示す。同図(a)は増幅手段81からの増幅された受信信号であり、ピークホールド回路88の入力信号となる信号である。この受信信号は、超音波センサ72から送信され、超音波センサ73で受信した場合の波形である。
同図(b)はピークホールド回路88の出力信号であり、入力信号である受信波形のピーク毎にピーク値が更新されている様子を示している。また、同図(c)は判断手段86の内部信号で、ピークホールド回路88の信号を受けて、ピーク値が更新される毎にパルスを発生する回路部の信号波形である。
判断手段86はこのパルスにより、ピーク値の更新回数を記憶する。この場合は更新回数が4回である。同図(a)の増幅手段81からの増幅された受信信号は、比較手段87の入力信号でもある。比較手段87によって、基準値と受信信号との比較が行われ、その出力が計時手段76に入力される。
ただし、比較手段87の動作は同図(c)の判断手段内部信号Aの1つ目のパルスが出力されてから行われる。計時手段76は図に示される基準値と受信信号との交差するポイントTA1からTA7の時間を求める。求められた時間TA1からTA7はいったん記憶される。
次に、超音波センサ73から送信され、超音波センサ72で受信する動作に移る。図は図10と同等なものになるので図は省略するが、同様に計時手段76が求める基準値と受信信号との交差するポイントの時間をTB1からTB7とする。式(6)で示されるように時間の逆数差から伝播時間を求める場合は、例えばTA1とTB1の一対のデータから伝播時間をもとめ、同様に、TA2とTB2、TA3とTB3のようなそれぞれ一対のデータから求める。
ただし、TA2とTB2は2波目の伝播時間であるので、計算する場合はこのことを考
慮しておく。また、TA3とTB3は3波目であることを同様に考慮しておく。このようにして伝播時間を求めると、7つのデータが得られるので、この7つのデータを平均すれば、超音波センサ72および超音波センサ73においてそれぞれ1回の送受信で、従来例のように一つの一対の伝播時間データから流速を求める場合に比べ、よりばらつきの少ない計測データを得ることができる。
図11は図10と同様な各部波形を示しているが、同図(a)の受信信号は超音波センサ73から送信され、超音波センサ72で受信した場合の波形である。流速の関係で、受信波形のピーク値は図10に比べて低くなっているが、ピークに達すまでの波数は変わらない(波数がかわるのは、温度変化で超音波センサの特性変化があるときに生じるが、この場合も超音波センサ72から送信して超音波センサ73で受信する場合と、その反対の場合とで、受信波形がピークに達するまでの波数は同じである)。
このため、ピークホールド回路では同図(b)に示されるように、受信波形の1波目をとらえることかできずに、2波目からとらえている。従って、判断手段の内部信号も受信波の2波目から出力されているので、比較手段87は、基準値と受信信号との交差するポイントTB2からTB7の時間を求めることになる。
この場合のピーク値の更新回数は3回で、図10(c)に比べ、更新回数が1回少ないので判断手段86は、TB1が検知できなかったものと判断し、これらのデータは適用せずに最初から計測をやり直すか、または、TA2とTB2の一対のデータから以降を適用する。
図12も同様に図9で示された回路ブロック図の各部波形を示している。同図(a)は超音波センサ72の送信信号、同図(b)は超音波センサ73の受信信号、(c)はピークホールド回路出力信号、(d)は断手段内部信号A、(e)はクロックを表している。
同図(b)において、特に送信から受信の間にノイズが重畳されている様子を表している。同図(c)のピークホールド回路出力は、ノイズを検知している様子を表している。同図(d)は、ピークホールド回路出力に応じて、電圧変化があったタイミングでパルスを出力している。ノイズを検知しているので、同図(e)のクロックで計時される同図(e)のパルス間隔は一定周期の無いものとなる。
このパルスに送信信号に近い周期が見出されない場合は、ピークホールド回路出力をリセットしている。また、正しい受信信号が検知されている部分では、パルス間隔は一定周期を持つ。
このように、クロックを用いてパルス周期を計時することで、受信信号の正しい信号とノイズとを見分けることができる。一定周期を持ったパルスの数で、受信信号がピークに達するまでの波数を知ることができる。
(実施の形態2)
図13において、ピークホールド回路88と比較手段89を有する。この比較手段89は、ピークホールド回路88の出力と、増幅手段81からの信号である受信波信号とを比較することで、受信波の波数を数えるためのパルス信号を出力する。
図14は図13で示される回路ブロック図の一部の波形を示した波形図である。(a)受信波信号(比較手段D入力信号)と(b)ピークホールド回路出力信号(比較手段D入力信号)とを比較手段Dで比較して得られた信号が(c)の波数を求めるためのパルス信号{比較手段D出力信号(判断手段内部信号)}となる。
図では受信波のピークから次の一つの波まで検知するように、(a)と(b)の信号レベルを調整している。
(c)の波数を求めるためのパルス信号の立ち上がりの間隔は、ほぼ受信波の周期に近い値であるので、これを(d)のクロックを用いて確認し、受信波の正誤を判断する。受信波の波数は(b)パルス信号をカウントすることで得ることができる。
以上のように、本発明にかかる超音波流量計は、超音波センサの受信波形の振幅変化によらず適確な超音波の伝播時間測定が行え、かつ、1回の受信波形から複数の伝播時間データを取得でき、平均化をすることができるので計測精度が向上させることができ、かつ、超音波の受信波形が変化しやすい扁平流路を用いることも可能であるので、広い流量領域にわたり正確な計測が要求される、天然ガスや液化石油ガスの流量を測定する業務用や家庭用の超音波式ガス流量測定装置(ガスメータ)の用途に展開できる。
本発明の実施の形態1の超音波流れ測定装置の構成を示すブロック図 同の超音波流れ測定装置の波形図 同超音波流れ測定装置における受信手段の回路ブロック図 同超音波流れ測定装置の波形図 同超音波流れ測定装置の波形図 超音波流れ測定装置の波形図 超音波流れ測定装置の波形図 超音波流れ測定装置の波形図 本発明の実施の形態2の同超音波流れ測定装置における受信手段の回路ブロック図 超音波流れ測定装置の受信手段の波形図 超音波流れ測定装置の受信手段の波形図 超音波流れ測定装置の受信手段の波形図 超音波流れ測定装置の受信手段の回路ブロック図 超音波流れ測定装置の受信手段の波形図 従来の同超音波流れ測定装置の構成を示す制御ブロック図 従来の他の同超音波流れ測定装置の構成を示す制御ブロック図 従来の他の同超音波流れ測定装置の構成を示す制御ブロック図 従来の同超音波流れ測定装置の超音波センサの受信信号波形図 従来の同超音波流れ測定装置の構成を示すブロック図 従来の同超音波流れ測定装置の波形図
71 流路
72,73 超音波センサ
74 送信手段
75 受信手段
76 計時手段
86 判断手段
87 比較手段
88 ピークホールド回路
89 比較手段

Claims (3)

  1. 流体の通る流路に配置された一対の超音波センサと、
    前記超音波センサを駆動する送信手段と、
    前記超音波センサからの信号を受信する受信手段と、
    基準値と受信信号を比較して受信を検知する比較手段
    2つの閾値で受信波形との比較を行い、前記比較手段の結果が2つの閾値のどちらから先に検知したかを判断することで前記比較手段の比較結果の正誤を判断する判断手段と、
    超音波の伝播時間を計る計時手段と
    を具備した流体の流れ計測装置。
  2. 計時手段を有し、2つの閾値の1つで比較されてから、もう一つの閾値で比較されるまでの時間を計時することで、比較手段の信号の正誤を判断手段で判断するようにした請求項記載の流体の流れ計測装置。
  3. 閾値を切換えて、複数の閾値で比較できるようにした比較手段を備えた請求項記載の流体の流れ計測装置。
JP2005131802A 2005-04-28 2005-04-28 流体の流れ計測装置 Expired - Fee Related JP4760115B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005131802A JP4760115B2 (ja) 2005-04-28 2005-04-28 流体の流れ計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005131802A JP4760115B2 (ja) 2005-04-28 2005-04-28 流体の流れ計測装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011088731A Division JP5229349B2 (ja) 2011-04-13 2011-04-13 流体の流れ計測装置

Publications (2)

Publication Number Publication Date
JP2006308439A JP2006308439A (ja) 2006-11-09
JP4760115B2 true JP4760115B2 (ja) 2011-08-31

Family

ID=37475496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005131802A Expired - Fee Related JP4760115B2 (ja) 2005-04-28 2005-04-28 流体の流れ計測装置

Country Status (1)

Country Link
JP (1) JP4760115B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185441A (ja) * 2007-01-30 2008-08-14 Matsushita Electric Ind Co Ltd 超音波流量計
KR101097405B1 (ko) * 2009-03-31 2011-12-23 한국수자원공사 건식 초음파 유속측정장치
JP6513934B2 (ja) * 2014-11-18 2019-05-15 愛知時計電機株式会社 超音波流量計
JP7248407B2 (ja) * 2018-10-17 2023-03-29 アズビル株式会社 超音波流量計、流量計測方法、および流量演算装置
CN115792273B (zh) * 2022-11-02 2024-02-23 清华大学 用于测量流体流速的方法、测流设备和计算机存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124211A (en) * 1981-01-26 1982-08-03 Yokogawa Hokushin Electric Corp Ultrasonic measuring device
JPS6120821A (ja) * 1984-07-10 1986-01-29 Yokogawa Hokushin Electric Corp 超音波流量計
JP3473592B2 (ja) * 2001-05-11 2003-12-08 松下電器産業株式会社 流量計測装置
JP2004069524A (ja) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd 流量計測装置
CN100354609C (zh) * 2002-11-26 2007-12-12 松下电器产业株式会社 超声波流量计及利用超声波的流量计测方法

Also Published As

Publication number Publication date
JP2006308439A (ja) 2006-11-09

Similar Documents

Publication Publication Date Title
JP4954210B2 (ja) 低電力超音波流量計測
JP5402620B2 (ja) 流量計測装置
CN102713531A (zh) 超声波流量计
JP6957278B2 (ja) 超音波流量計
JP4976287B2 (ja) パルス波形検出による超音波信号の受信点検出
JP4760115B2 (ja) 流体の流れ計測装置
US6829948B2 (en) Flow meter
EP2224219B1 (en) Ultrasonic flow measurement device
JP2007187506A (ja) 超音波流量計
JP2001004419A (ja) 流量計
JP5965292B2 (ja) 超音波流量計
JP5229349B2 (ja) 流体の流れ計測装置
JP2008185441A (ja) 超音波流量計
JP3443658B2 (ja) 流量計測装置
JP2018136276A (ja) 超音波流量計
JP3624743B2 (ja) 超音波流量計
JP5239876B2 (ja) 流量計測装置
JP2008180566A (ja) 流速または流量計測装置とそのプログラム
JP7246021B2 (ja) 超音波流量計
JP6767628B2 (ja) 流量計測装置
JP4236479B2 (ja) 超音波送受信装置
JP2003232663A (ja) 流量計測装置
JP2010014690A (ja) 超音波流量計及び流量測定方法
JP2007232659A (ja) 超音波流量計
JP3883093B2 (ja) 超音波流量計

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080414

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees