JP4743375B2 - Flammable gas concentration measurement method - Google Patents

Flammable gas concentration measurement method Download PDF

Info

Publication number
JP4743375B2
JP4743375B2 JP2001277300A JP2001277300A JP4743375B2 JP 4743375 B2 JP4743375 B2 JP 4743375B2 JP 2001277300 A JP2001277300 A JP 2001277300A JP 2001277300 A JP2001277300 A JP 2001277300A JP 4743375 B2 JP4743375 B2 JP 4743375B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte body
electrode
combustible gas
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001277300A
Other languages
Japanese (ja)
Other versions
JP2003083929A (en
Inventor
高士 日比野
志郎 柿元
隆治 井上
昇 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
NGK Spark Plug Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical NGK Spark Plug Co Ltd
Priority to JP2001277300A priority Critical patent/JP4743375B2/en
Publication of JP2003083929A publication Critical patent/JP2003083929A/en
Application granted granted Critical
Publication of JP4743375B2 publication Critical patent/JP4743375B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は可燃性ガス濃度測定方法に関する。更に詳しくは、プロトン導電性を示す固体電解質体上に形成された電極間の電位差を測定することで対象ガスの濃度を測定する可燃性ガス濃度の測定方法に関する。本発明の可燃性ガス濃度測定方法は、各種可燃性ガスの濃度測定に用いることができるが、なかでも内燃機関の排気ガス中に含まれる炭化水素ガスの濃度測定に好適である。
【0002】
【従来の技術】
近年、酸素イオン導電性を有する固体電解質体を利用した炭化水素ガスセンサ等が多く開発され、特表平8−510840号公報及び特開2000−146902号公報等に開示された技術が知られている。しかし、これらは何れも酸素イオンの導電を利用するため元来酸素濃度の影響を受け易く、更に、水素、一酸化炭素及び一酸化窒素等と、炭化水素ガス等とを区別して濃度測定することが難しい。このため、酸素濃度の影響を小さくする特殊な技術及び水素、一酸化炭素及び一酸化窒素等と炭化水素ガス等とを区別するための特殊な技術等を必要とする。
一方、プロトン導電性を有する固体電解質体を利用し、一対の電極間に生じる電位差から炭化水素ガスの濃度を測定する炭化水素ガスセンサとして、特開平6−242060号公報及び特開平9−127055号公報等が開示されている。
【0003】
【発明が解決しようとする課題】
これらの公報に開示される炭化水素センサ(特開平9−127055号公報においては起電力式の炭化水素ガスセンサ)は一対の電極を備える。これらの電極のうちの一方は、高温(特開平6−242060号公報においては770℃、特開平9−127055号公報においては500℃)で炭化水素ガスをその「表面」において燃焼させることができる活性な電極であり、他方の電極は同じ温度においても炭化水素ガスを燃焼させることができない不活性な電極である。この活性な電極の「表面」では炭化水素ガスが燃焼することにより水蒸気が発生し、不活性な電極との間で水蒸気の分圧差に起因する電位差を生じる。この電位差を測定することで炭化水素ガスを検知し、更には、その濃度を測定しようとするものである。
【0004】
しかし、(1)上記では内燃機関の排気ガス等のように水蒸気を多く含有する雰囲気においては炭化水素ガスの濃度を測定することが極めて困難であるという問題がある。また、(2)実使用を鑑みると、炭化水素ガスの濃度がppmオーダーでも測定できる必要があるため、電極間で得られる電位差は大きいことが望まれる。
【0005】
本発明は上記問題点を解決するものであり、水蒸気が多い雰囲気であっても可燃性ガスの濃度を測定することができ、可燃性ガスの濃度が薄い場合にも正確な測定が可能である可燃性ガス濃度測定方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明に用いられる可燃性ガスセンサは、プロトン導電性を示す固体電解質体であるBaCeO 系プロトン導電性酸化物と、該固体電解質体の被測定雰囲気と接する同一面上に各々形成された一対の異なる材料からなる電極とを備え、該固体電解質体の温度が該固体電解質体の温度が300〜400℃となる条件において、該電極間に生じる少なくとも混成電位に基づく可燃性ガス濃度測定に用いられる。
【0008】
また、上記固体電解質体はBaCeO系プロトン導電性酸化物である。更に、上記電極の間の最短距離は1.5mm以下とすることができる。また、炭素数2以上の可燃性ガスの濃度測定に用いる。更に、50ppmのプロペンと、21体積%の酸素と、2.3体積%の水蒸気とを含有し、残部がアルゴンからなる被測定ガスを、毎分150mlで供給し、温度350℃で測定した場合の電位差が60mV以上とすることができる。
【0009】
本発明の可燃性ガス濃度測定方法は、プロトン導電性を示す固体電解質体であるBaCeO 系プロトン導電性酸化物と、該固体電解質体の被測定雰囲気と接する同一面上に各々形成された一対の異なる材料からなる電極とを備える可燃性ガスセンサを用い、該電極を該被測定雰囲気に晒し、該固体電解質体の温度が300〜400℃となる条件において、該電極間に生じる少なくとも混成電位を含む電位差に基づき炭素数2以上の可燃性ガスの濃度を測定することを特徴とする。
【0011】
また、上記電位差は炭素数2以上の可燃性ガスの濃度に起因するものとできる。
【0012】
【発明の実施の形態】
本発明者らは、公知のプロトン導電性の固体電解質体について検討を重ねた。その中で、プロトン導電性固体電解質体について、(1)板状の固体電解質体の表裏面を一対の電極で挟むように配置し、この電極間で導電率を測定した場合と、(2)板状の固体電解質体の一面上に電極を並べて配置し、この電極間で導電率を測定した場合とでは、導電率に差を生じることを見出した。また、(1)のように電極を配置した場合に比べて、(2)のように電極を配置した場合の方が高い導電率が得られることを見出した。このことはこれまで知られていなかったことであり、また、これまで多く使用されてきた酸素イオン導電性の固体電解質体について、同様な測定を行ってもその差は認められない特異な現象であった。
【0013】
更に、これまでプロトン導電性の固体電解質体を用い、炭化水素ガス等の濃度を測定するセンサでは、その測定温度(固体電解質体の温度)を500℃〜800℃の高温に調節して行っていた。これは前記のように炭化水素ガスを電極表面で燃焼させるためである。しかし、本発明者らは450℃以下の低温において、寧ろ炭化水素ガスが電極表面では燃焼し難い条件とした場合に、従来に比べて著しく高い感度が得られることを見出した。これは、可燃性ガスが電極の表面で燃焼することなく、電極と固体電解質体との界面にまで達した場合に、可燃性ガスと電極材料と固体電解質との三相の間で何らかの反応を生じるために、従来の水素分圧に起因する電位差とは異なる電位差(混成電位)を生じるためであると考えられる。
本発明者らは、これら2つの知見に基づき本発明を完成させた。
【0014】
上記「固体電解質体」は、プロトン導電性を示す固体電解質体であるBaCeO 系プロトン導電性酸化物である。尚、このようなプロトン導電性を発揮できる固体電解質体としては、例えば、SrCeO系酸化物、SrZrO系酸化物、及び、CaZrO系酸化物等を挙げることができる。
これらの固体電解質体は、各々のBサイト(ABO系酸化物として表した場合のBの位置)にSc、Y、In、Nd、Pm、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb及びLuのうちの少なくとも1種が固溶されていてもよい。これらの固溶により特に高いプロトン導電性が発揮できる。例えば、BaCeO系酸化物としてはBa(Ce,Y)O系酸化物及びBa(Ce,Nd)O系酸化物、SrCeO系酸化物としてはSr(Ce,Yb)O系酸化物、SrZrO系酸化物としてはSr(Zr,Y)O系酸化物及びSr(Zr,Yb)O系酸化物、CaZrO系酸化物としてはCa(Zr,In)O系酸化物等を挙げることができる。
【0015】
これら酸化物を各々A(B1,B2)O系酸化物(AB1O系酸化物のB1サイトにB2が固溶していることを表す)として表した場合に、B1元素及びB2元素の合計と、Oとの組成比は、B1元素、B2元素、O元素の組成比B1:B2:Oをy1:y2:3−δとすると、0.8≦y1≦0.95、0.05≦y2≦0.2、0.025≦δ≦0.1であることが好ましい。
更に、Ba(Ce,Y)O系酸化物においては0.7≦y1≦0.9、0.1≦y2≦0.3であることがより好ましい。Sr(Ce,Yb)O系酸化物においては0.9≦y1≦0.98、0.02≦y2≦0.1であることがより好ましい。Sr(Zr,Y)O系酸化物においては0.9≦y1≦0.98、0.02≦y2≦0.1であることがより好ましい。Ca(Zr,In)O系酸化物においては0.85≦y1≦0.95、0.05≦y2≦0.15であることがより好ましい。
【0016】
上記に挙げたBaCeO系酸化物、SrCeO系酸化物、SrZrO系酸化物、及び、CaZrO系酸化物等の中でも、導電性に優れ、可燃性ガスとの接触により特に大きな電位差(混成電位)を生じさせることができるためBaCeO系酸化物を用いる。
【0017】
この固体電解質体の形状、大きさ等は特に限定されない。固体電解質体の形状としては、例えば、有底円筒型、板型(長方形型、円盤型等、厚さ10μm以上)、薄膜型(長方形型、円盤型等、厚さ10μm未満)などを適宜選択して用いることができる。また、固体電解質体の大きさは、例えば、板型においては電極を備える一面の表面積は、0.09cm以上(通常、0.5cm以下程度)であることが好ましい。
【0018】
上記「電極」は、少なくとも一対を備える。その他に電極は備えていても、備えていなくてもよい。この電極は、2つの電極間に可燃性ガスに起因する電位差を生じる。この電極は固体電解質体の表面に形成されている。また、両方の電極のうち、それらの一部又は全部が被測定雰囲気に直接的に又は間接的(被毒物質等から検知電極を保護する多孔性保護層等を介する場合)に接するように配置されている。
【0019】
また、各々の電極は固体電解質体の同一面上に形成されていることを要する。上記「同一面」とは、(1)固体電解質体の一平面上に2つの電極が形成されている場合、(2)固体電解質体の曲面上に2つの電極が形成されている場合を意味する。また、(1)及び(2)において、平面又は曲面の表面に微細な凹凸を有する又は形成されている場合に、この微細な凹凸に従って電極が形成されているときも同一面上にこれらの電極は形成されているものとする。(1)及び(2)のうちでも、(1)のように2つの電極が形成されていることがより好ましい。
このように、同一面上に電極を配置することで、前記の固体電解質体の表面付近の導電率が高いという特性を効果的に利用することができる。
【0020】
電極を構成する材料は、250〜450℃において十分な導電性を有すればよく、特に限定されないが、室温における電気抵抗率が10Ω・cm以下(通常、1.5−6Ω・cm以上、Ω・cmとは試料の大きさにおいて1×1×1cm当たりの抵抗値を示す)であることが好ましい。また、例えば、内燃機関の排気ガス中の可燃性ガスの濃度測定に用いられる場合等は、高温下に晒されるため、この電極は1000℃においても融解しないことが好ましい(例えば、内燃機関始動直後の排気ガスには可燃性ガスが含まれる可能性が高く、また、この初期の排気ガスの温度がさほど高くない。このため、本発明の可燃性ガスセンサの効果的な利用が可能である。しかし、内燃機関の暖機後は1000℃程度までの高温の排気ガスが排出されることとなり、高温に晒される)。更に、耐食性に優れ、また、固体電解質体上に被膜を形成した場合に密着性に優れることが好ましい。
【0021】
電極において、このような特性を発揮できる材料としては、Osを除く貴金属(Ru、Rh、Pd、Ag、Ir、Pt、Au)や、Fe、Ni、Cr、Co、Cu等の金属の1種又は2種以上を含有する金属、合金及び金属酸化物等が挙げられる。中でも、高温耐久性と、酸化雰囲気及び還元雰囲気に対する耐食性に優れるため、Pt、Au、Pd及びRh等を主成分(一方の電極全体の80質量%以上、更には90質量%以上含有する)とする材料を用いることが好ましい。また、一対の電極の各々はそれぞれ異なる材料からなる必要がある(同一の材料からなると電位差を生じない)ため、各々の電極の組成が異なるように用いることを要する。尚、材料が異なるとは、含有される金属自体が異なっていてもよいが、含有される金属は同じであり、その含有量が異なるために材料の組成が異なるものであってもよい(通常、一方の電極全体に対して特定の金属の含有量が10質量%以上異なる必要がある)。
【0022】
また、電極の形状、大きさ及び厚さなどは特に限定されないが、その厚さは2μm以上(更には2〜15μm、特に5〜12μm)とすることが好ましい。2μm未満であると十分な導通を図ることが困難となる場合がある。更に、一方の電極においては、その厚さは50μm以下とすることが好ましい。50μmを超えて厚い場合は被測定ガス(被測定雰囲気中に含まれる測定対象ガス)が、この電極と固体電解質体とが接する三相界面(被測定ガスと検知電極と固体電解質体の3相)に達することが困難となり、感度の低下を招くことがある。
【0023】
また、これらの一対の電極の電極間の最短距離は1.5mm以下(より好ましくは1.0mm以下、更に好ましくは0.75mm以下、通常0.5mm以上)であることが好ましい。電極間の最短距離が特に2mmを超えると、プロトンが固体電解質体内を移動する距離が長くなり、両方の電極を固体電解質体の表面に形成する効果が十分に得られ難くなるため好ましくない。
【0024】
また、本発明の可燃性ガスセンサは、固体電解質体の温度が300〜400℃、好ましくは320〜380℃において用いることにより、両電極間で最も大きな電位差を得ることができる。この電位差には少なくとも混成電位が含まれる。本発明の可燃性ガスセンサを450℃を超える温度において使用すると、可燃性ガスに対して活性な電極において、その電極の表面で可燃性ガスが燃焼して水蒸気を生じ、この水蒸気圧に起因する電位差しか測定できないことがあるため測定感度が極端に低下する場合がある。一方、250℃未満において使用すると、導電率が十分に得られず、三相界面において被測定ガスの反応が起き難くなり、感度が低下(電位差が小さくなる)する場合がある。
【0025】
固体電解質体を温度300〜400℃にする方法は特に限定されない。例えば、被測定ガス自体が250〜450℃であるために、別途加熱手段を用いなくとも可燃性ガス濃度測定時に固体電解質体の温度が上記温度範囲となるものであってもよく、また、別途ヒータ等の加熱装置を用いることにより強制的に固体電解質体を300〜400℃にするものであってもよい。更に、固体電解質体の抵抗値は固体電解質体自体の温度に依存するため、この抵抗を測定し、この結果をフィードバックして加熱装置の可動・停止を制御する加熱装置制御手段を設けることもできる。これらにより更に精度のよい濃度測定を行うことができる。
【0026】
上記「混成電位」とは、固体電解質体の温度に比例しない起電力である(図5参照)。即ち、例えば、水蒸気濃淡に起因する起電力EH2Oは、ネルンストの式EH2O=(RT/2F)ln{PHO(2)/PHO(1)}から近似的に算出される。また、酸素濃淡に起因する起電力EO2は、ネルンストの式EO2=(RT/4F)ln{PO(2)/PO(1)}から近似的に算出される。これらいずれの起電力も上記式から分かるように固体電解質体の温度Tに比例する値であるが、混成電位は異なっている。
また、この混成電位は固体電解質体の温度が250〜450℃の範囲で感度良く測定することができる(温度が低いために電極表面で可燃性ガスが燃焼することなく、三相界面に達するために測定できる起電力)。
【0027】
本発明の可燃性ガス濃度測定方法によると、水素、一酸化炭素及び一酸化窒素等に対する感度は非常に小さく(各成分ガスが含有されない時の起電力と50ppm含有される時の起電力との電位差が10mV未満)、ほとんど検知しない。これに対して、炭素数が2以上(通常炭素数15以下、特に炭素数3〜10、とりわけ炭素数4〜10)の炭化水素{脂肪族炭化水素、環状炭化水素及び芳香族炭化水素(これらの炭化水素が飽和、不飽和、直鎖、分枝を有するものはこれらも含む)など}や、CH=CHX、CH=CHCHX、CX及びCH−CHX−CH等のハロゲン化炭化水素(但し、Xはハロゲン原子)、COH等のアルコール類、CHNO等のニトロ化合物類、CHNH等のアミン化合物類、CHCOOH等のカルボン酸化合物類、CHCHO等のアルデヒド化合物類、アセトン等のケトン化合物類、及び、CHOCH等のエーテル化合物類等に対する電位差は測定可能な程度に有するため、これらの可燃性ガスの検知及び濃度測定に好適である。
【0028】
本発明の可燃性ガス濃度測定方法は、これらの可燃性ガスの中でも炭素数2以上の炭化水素ガス(通常炭素数15以下、特に炭素数3〜10、とりわけ炭素数4〜10)に対する感度に優れている。また、更には2重結合を有する炭素数2以上の炭化水素ガス(通常炭素数15以下、特に炭素数3〜10、とりわけ炭素数4〜10)に対する感度に特に優れている。
本発明の可燃性ガス濃度測定方法によると、50ppmのプロペンと、21体積%の酸素と、2.3体積%の水蒸気とを含有し、残部がアルゴンからなる被測定ガスを、毎分150mlで供給し、温度350℃で測定した場合の電位差が60mV以上(更には70mV以上、特に75mV以上、とりわけ80mV以上)とすることができる。
【0029】
【実施例】
以下、実施例により本発明を具体的に説明する。
[1]プロトン導電性固体電解質体を用いた素子と酸素イオン導電性固体電解質体を用いた素子との、導電性と固体電解質体温度との相関の検討
(1)本発明に用いる素子1の作製
プロトン導電性固体電解質体を用い、一面側に一対の電極が形成された素子1(可燃性ガスセンサ1)の作製(図1参照)
横10mm、縦10mm、厚さ0.75mmであり、組成式BaCe0.750.253−δで表されるプロトン導電性を有する固体電解質体11{以下、単に「[BCY]」という}の一面上に、Pt粉末を71〜76質量%含有する白金ペーストを所定の形状に塗布し、900℃で1時間加熱して、横10mm、縦1.0mm、厚さ5〜30μmの白金電極121を形成した。次いで、[BCY]11上の白金電極121を形成した同じ面上に、Au粉末を71〜76質量%含有する金ペーストを所定の形状に塗布し、900℃で1時間加熱して、横10mm、縦1.0mm、厚さ5〜30μmの金電極122を形成した。この2つの電極は1.0mmの幅をもって並んで配置されている。次いで、白金電極121には外部へ起電力を取り出すためのリード線となる白金線131を接続し、金電極122にはリード線となる金線132を接続し、素子1(可燃性ガスセンサ1)を得た。
【0030】
(2)比較品(素子2)の作製
プロトン導電性固体電解質体を用い、表裏面に各々電極が形成された素子2の作製(図2参照)
横10mm、縦10mm、厚さ0.75mmの[BCY]21の一面上に、Pt粉末を71〜76質量%含有する白金ペーストを所定の形状に塗布し、900℃で1時間加熱して、横10mm、縦1.0mm、厚さ5〜30μmの白金電極221を形成した。次いで、[BCY]21上の白金電極221を形成した面とは反対の面上の白金電極221に対向する位置に、Au粉末を71〜76質量%含有する金ペーストを所定の形状に塗布し、900℃で1時間加熱して、横10mm、縦1.0mm、厚さ5〜30μmの金電極222を形成した。次いで、白金電極221には外部へ起電力を取り出すためのリード線となる白金線231を接続し、金電極にはリード線となる金線232を接続し、素子2を得た。
【0031】
(3)比較品(素子3)の作製
酸素イオン導電性固体電解質体を用い、一面側に一対の電極が形成された素子3の作製
[BCY]に変えて、組成式Ce0.8Sm0.21.9で表される酸素イオン導電性を有する固体電解質体{以下、単に「[CSO]」という}を用いたこと以外は上記(1)と同様にして、素子3を得た。
【0032】
(4)比較品(素子4)の作製
酸素イオン導電性固体電解質体を用い、表裏面に各々電極が形成された素子4の作製
[BCY]に変えて、[CSO]を用いたこと以外は上記(2)と同様にして、素子4を得た。
【0033】
(5)比較品(素子5)の作製
酸素イオン導電性固体電解質体を用い、一面側に一対の電極が形成された素子5の作製
[BCY]に変えて、組成式Zr0.920.081.96で表される酸素イオン導電性を有する固体電解質体{以下、単に「[YSZ]」という}を用いたこと以外は上記(1)と同様にして、素子5を得た。
【0034】
(6)比較品(素子6)の作製
酸素イオン導電性固体電解質体を用い、表裏面に各々電極が形成された素子6の作製
[BCY]に変えて、[YSZ]を用いたこと以外は上記(2)と同様にして、素子6を得た。
【0035】
(7)測定装置の作製
上記(1)〜(6)で得られた[BCY]、[CSO]又は[YSZ]を用いた素子1〜6の各々を、外径6mm、内径4mmのアルミナ製の細管31内に、図3に示すような位置関係となるように固定した。次いで、この細管31を外径13mm、内径9mmの外管32内に固定した。そして、白金線及び金線を管外まで導出し、白金線をエレクトロメータ(北斗電工株式会社製、形式「HE−104」)の正極に接続し、金線を負極に接続して6種類の測定装置を得た。図3は素子1を用いて得られた測定装置(可燃性ガス濃度測定装置3)を示している。
【0036】
(8)導電率の測定
上記(7)で得られた素子1〜6を備える6種類の測定装置の各々を、測定装置全体を所定の温度に保温できる加熱炉内に載置した。次いで、酸素が21体積%、水蒸気が2.3体積%、残部がアルゴンとなるように調節した基準ガスを細管内に毎分150mlの速度で流入させた。そして、上記白金電極と金電極との間に一定の電流を流し、この時に得られる電位差を、加熱炉内の温度を400〜800℃まで50℃刻みで変化させながら測定した。流した電流値と測定された電位差とから抵抗値を算出し、この抵抗値の逆数である導電率を算出し、図4に導電率と温度との相関をグラフとして示した。
【0037】
(9)評価
図4より、プロトン導電性の固体電解質体[BCY]を用いた素子も、酸素イオン導電性の[CSO]又は[YSZ]を用いた素子3〜6も、電極の形成場所に関わらず固体電解質体の温度の上昇に従い導電性が向上することが分かる。これらの中でも、[BCY]は他の酸素イオン導電性の固体電解質体に比べて、特に低温(600℃以下、更には500℃以下)においても高い導電性を維持できることが分かる。更に、[BCY]を用いた素子であって、且つ、電極が[BCY]の一面側にのみ形成されている素子1だけは、450℃以下の低温における導電性が際立って大きいことが分かる。即ち、450℃以下の低温において高い導電性を得るためには、プロトン導電性の固体電解質体を用い、電極を固体電解質体の一面側にのみ形成された形態とすることが好ましいことが分かる。
【0038】
[2]測定温度と起電力との相関の検討
(1)起電力の変化の測定
上記[1]の(7)で得られた[BCY]を備える可燃性ガス濃度測定装置3を所定の温度に保温された加熱炉内に載置した。加熱炉は、その温度を200〜500℃まで50℃刻みで各々の温度に保持しながら使用した。次いで、プロペンが50ppm、酸素が21体積%、水蒸気が2.3体積%、残部がアルゴンとなるように調節した被測定ガスを細管内に毎分150mlの速度で流入させた。この時の上記白金電極と金電極との間に生じる電位差を測定し、図5にグラフとして示した。
【0039】
(2)評価
図5より、得られる起電力が最も大きいのは温度300〜400℃の範囲内に存在することが分かる。また、特に350℃における起電力は大きいことが分かる。
【0040】
[3]各種ガスの濃度と起電力との相関の検討
(1)各種ガス濃度の測定
上記[1]の(7)で得られた[BCY]を備える可燃性ガス濃度測定装置3を用い、上記加熱炉内の温度を350℃に保温した。次いで、メタン、エタン、エテン、エチン、プロパン、プロペン、ブテン、1−ブテン、水素及び一酸化炭素の各々の測定対象ガスが所定量、酸素が21体積%、水蒸気が2.3体積%、残部がアルゴンとなるように調節した被測定ガスを細管内に毎分150mlの速度で流入させた。尚、上記の各種被測定ガスの所定量とは、5〜50ppmまでの5ppm刻みの各濃度である(図6及び図7参照)。この各種の被測定ガスを流入させている間に上記白金電極と金電極との間に生じる電位差を測定し、図6及び図7にグラフとして示した。
【0041】
(3)評価
図6より、本発明に用いる可燃性ガスセンサは、プロペン等の炭化水素系の化合物が共存する場合には、可燃性ガスではあるが水素及び一酸化炭素には、相対的にほとんど感度を有していないことが分かる。このことは、本発明の可燃性ガスセンサを内燃機関の排ガス内の炭化水素系化合物の濃度のみを選択的に測定したい場合に非常に有益である。即ち、通常、内燃機関の排気ガスに含まれる水素及び一酸化炭素を除く純粋な炭化水素系化合物のみの濃度を測定することが可能である。
【0042】
また、図7より、高濃度(50ppm以上程度)であれば、エタン、プロパン及びブタン等の不飽和結合を有さない炭化水素化合物の濃度の測定も可能であるが、特に、2重の不飽和結合を有するエテン、プロペン、n−ブテン及び1−ブテン等に対する感度に優れていることが分かる。また、その感度は炭素数が2であるものに比べて、炭素数が3であるものに対して高く、更に、炭素数が3であるものに比べて、炭素数が4であるものに対して高いことが分かる。
【0043】
従って、上記[1]〜[3]より、可燃性ガスセンサとしては、固体電解質体としてプロトン導電性を有する固体電解質体を用い、電極をこの固体電解質体の一面側にのみ形成し、更に、固体電解質体の温度を250〜450℃に保持することで極めて優れた性能を発揮させることができることが分かる。
【0044】
【発明の効果】
本発明に用いる可燃性ガスセンサによると、水素、一酸化炭素及び一酸化窒素を除く各種の可燃性ガスの濃度を測定することができる。また、固体電解質体がBaCeO系プロトン導電性酸化物であることにより、優れた感度を発揮させることができる。更に、電極の間の最短距離が所定値以下であることにより、優れた感度を発揮させることができる。また、特に、炭素数2以上の可燃性ガスの濃度測定に好適に用いることができる。更に、50ppmのプロペンと、21体積%の酸素と、2.3体積%の水蒸気とを含有し、残部がアルゴンからなる被測定ガスを、毎分150mlで供給し、温度350℃で測定した場合の電位差が60mV以上とすることができる。
本発明の可燃性ガス濃度測定方法及び本発明の他の可燃性ガス濃度測定方法によると、水素、一酸化炭素及び一酸化窒素を除く各種の可燃性ガスを測定することができる。また、特に炭素数2以上の可燃性ガスの濃度測定を感度良く、正確に行うことができる。
【図面の簡単な説明】
【図1】 本発明に用いるガスセンサの一例の模式的な斜視図である。
【図2】 比較品のガスセンサの一例の模式的な透視斜視図である。
【図3】 実施例で用いた可燃性ガス濃度測定装置の模式的な断面図である。
【図4】 固体電解質体の温度と起電力との相関を示すグラフである。
【図5】 本発明に用いる可燃性ガスセンサによる固体電解質体の温度と得られる起電力との相関である。
【図6】 本発明に用いる可燃性ガスセンサによる各種ガスの濃度と得られる起電力との相関を示すグラフである。
【図7】 本発明に用いる可燃性ガスセンサによる各種ガスの濃度と得られる起電力との相関を示すグラフである。
【符号の説明】
1;可燃性ガスセンサ(素子1)、11;プロトン導電性を有する固体電解質体([BCY])、121;白金電極、122;金電極、131;白金線、132;金線、2;素子2、21;プロトン導電性を有する固体電解質体([BCY])、221;白金電極、222;金電極、231;白金線、232;金線、3;可燃性ガス濃度測定装置、31;細管、32;外管。
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a flammable gas concentration measurement method. More specifically, the present invention relates to a method for measuring a combustible gas concentration in which the concentration of a target gas is measured by measuring a potential difference between electrodes formed on a solid electrolyte body exhibiting proton conductivity. Combustible gas of the present inventionConcentration measurement methodCan be used for measuring the concentration of various combustible gases, and is particularly suitable for measuring the concentration of hydrocarbon gas contained in the exhaust gas of an internal combustion engine.
[0002]
[Prior art]
In recent years, many hydrocarbon gas sensors and the like using a solid electrolyte body having oxygen ion conductivity have been developed, and the techniques disclosed in JP-A-8-510840 and JP-A-2000-146902 are known. . However, since these all use the conductivity of oxygen ions, they are inherently affected by oxygen concentration. In addition, hydrogen, carbon monoxide, nitrogen monoxide, etc., and hydrocarbon gas, etc., should be measured separately. Is difficult. For this reason, a special technique for reducing the influence of oxygen concentration and a special technique for distinguishing hydrogen, carbon monoxide, nitrogen monoxide, and the like from hydrocarbon gas and the like are required.
On the other hand, as a hydrocarbon gas sensor using a solid electrolyte body having proton conductivity and measuring the concentration of hydrocarbon gas from a potential difference generated between a pair of electrodes, JP-A-6-242060 and JP-A-9-127055 are disclosed. Etc. are disclosed.
[0003]
[Problems to be solved by the invention]
The hydrocarbon sensor disclosed in these publications (electromotive force type hydrocarbon gas sensor in Japanese Patent Laid-Open No. 9-127070) includes a pair of electrodes. One of these electrodes is capable of burning hydrocarbon gas at its “surface” at high temperatures (770 ° C. in JP-A-6-242060, 500 ° C. in JP-A-9-127055). It is an active electrode, and the other electrode is an inactive electrode that cannot burn hydrocarbon gas even at the same temperature. On the “surface” of the active electrode, water vapor is generated by the combustion of the hydrocarbon gas, and a potential difference due to the partial pressure difference of the water vapor is generated with the inactive electrode. By measuring this potential difference, the hydrocarbon gas is detected, and further its concentration is to be measured.
[0004]
However, (1) In the above, there is a problem that it is very difficult to measure the concentration of hydrocarbon gas in an atmosphere containing a lot of water vapor such as exhaust gas of an internal combustion engine. In view of (2) actual use, since it is necessary to be able to measure the concentration of hydrocarbon gas even in the order of ppm, it is desired that the potential difference obtained between the electrodes is large.
[0005]
  The present invention solves the above problems, and can measure the concentration of combustible gas even in an atmosphere with a lot of water vapor, and can accurately measure even when the concentration of combustible gas is low. It aims at providing the combustible gas concentration measuring method.
[0006]
[Means for Solving the Problems]
  The present inventionUsed forThe combustible gas sensor is a solid electrolyte that exhibits proton conductivity.BaCeO 3 Proton conductive oxideAnd electrodes made of a pair of different materials, each formed on the same surface in contact with the measured atmosphere of the solid electrolyte body, and the temperature of the solid electrolyte body isFor the measurement of the combustible gas concentration based on at least the mixed potential generated between the electrodes under the condition that the temperature of the solid electrolyte body is 300 to 400 ° C.Used.
[0008]
  The solid electrolyte body is BaCeO.3Proton conductive oxideIs. Furthermore, the shortest distance between the electrodes can be 1.5 mm or less. Moreover, it uses for the density | concentration measurement of combustible gas with 2 or more carbon atoms. Furthermore, when a measurement gas containing 50 ppm of propene, 21% by volume of oxygen and 2.3% by volume of water vapor, the balance of which consists of argon is supplied at 150 ml per minute, and measured at a temperature of 350 ° C. The potential difference can be 60 mV or more.
[0009]
  The combustible gas concentration measuring method of the present invention is a solid electrolyte body showing proton conductivity.BaCeO 3 Proton conductive oxideAnd an electrode made of a pair of different materials, each formed on the same surface in contact with the measured atmosphere of the solid electrolyte body, exposing the electrode to the measured atmosphere, and the solid electrolyte body Temperature of300-400 ° COccurs between the electrodes under the conditionsAt least mixed potentialBased on potential difference2 or more carbon atomsIt is characterized by measuring the concentration of combustible gas.
[0011]
The potential difference can be attributed to the concentration of combustible gas having 2 or more carbon atoms.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention repeatedly studied a known proton conductive solid electrolyte body. Among them, with respect to the proton conductive solid electrolyte body, (1) a case where the front and back surfaces of the plate-shaped solid electrolyte body are sandwiched between a pair of electrodes, and the conductivity is measured between the electrodes; It has been found that there is a difference in conductivity between the case where electrodes are arranged side by side on one surface of a plate-like solid electrolyte body and the conductivity is measured between the electrodes. Further, it has been found that higher conductivity can be obtained when the electrode is disposed as in (2) than when the electrode is disposed as in (1). This is a phenomenon that has not been known so far, and is a peculiar phenomenon that has not been recognized even if the same measurement is performed on the oxygen ion conductive solid electrolyte body that has been widely used so far. there were.
[0013]
Furthermore, until now, in a sensor using a proton conductive solid electrolyte body and measuring the concentration of hydrocarbon gas or the like, the measurement temperature (temperature of the solid electrolyte body) is adjusted to a high temperature of 500 ° C. to 800 ° C. It was. This is because the hydrocarbon gas is burned on the electrode surface as described above. However, the present inventors have found that at a low temperature of 450 ° C. or lower, rather high sensitivity can be obtained compared to the conventional case when hydrocarbon gas is hardly burned on the electrode surface. This means that when the combustible gas reaches the interface between the electrode and the solid electrolyte body without burning on the surface of the electrode, some reaction occurs between the three phases of the combustible gas, the electrode material, and the solid electrolyte. Therefore, it is considered that this is because a potential difference (hybrid potential) different from the potential difference caused by the conventional hydrogen partial pressure is generated.
The present inventors have completed the present invention based on these two findings.
[0014]
  The above "solid electrolyte body" has proton conductivityBaCeO which is a solid electrolyte body showing 3 It is a system proton conductive oxide. still,As a solid electrolyte body that can exhibit such proton conductivity, for example, SrCeO3Oxide, SrZrO3-Based oxides and CaZrO3Examples thereof include system oxides.
  These solid electrolyte bodies have their B sites (ABO).3At least one of Sc, Y, In, Nd, Pm, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu is dissolved in B) when expressed as a system oxide. It may be. These solid solutions can exhibit particularly high proton conductivity. For example, BaCeO3As the system oxide, Ba (Ce, Y) O3Oxides and Ba (Ce, Nd) O3Oxide, SrCeO3Sr (Ce, Yb) O as the system oxide3Oxide, SrZrO3Sr (Zr, Y) O as a system oxide3Oxides and Sr (Zr, Yb) O3Oxide, CaZrO3Ca (Zr, In) O as a system oxide3Examples thereof include system oxides.
[0015]
These oxides are respectively A (B1, B2) O.3Oxide (AB1O3The composition ratio of the total of B1 element and B2 element to O and the composition ratio of B1 element, B2 element, and O element When the ratio B1: B2: O is y1: y2: 3-δ, 0.8 ≦ y1 ≦ 0.95, 0.05 ≦ y2 ≦ 0.2, 0.025 ≦ δ ≦ 0.1. preferable.
Furthermore, Ba (Ce, Y) O3In the system oxide, it is more preferable that 0.7 ≦ y1 ≦ 0.9 and 0.1 ≦ y2 ≦ 0.3. Sr (Ce, Yb) O3In the system oxide, it is more preferable that 0.9 ≦ y1 ≦ 0.98 and 0.02 ≦ y2 ≦ 0.1. Sr (Zr, Y) O3In the system oxide, it is more preferable that 0.9 ≦ y1 ≦ 0.98 and 0.02 ≦ y2 ≦ 0.1. Ca (Zr, In) O3In the system oxide, it is more preferable that 0.85 ≦ y1 ≦ 0.95 and 0.05 ≦ y2 ≦ 0.15.
[0016]
  BaCeO listed above3Oxide, SrCeO3Oxide, SrZrO3-Based oxides and CaZrO3Among the base oxides, BaCeO has excellent conductivity and can generate a particularly large potential difference (hybridization potential) by contact with combustible gas.3A system oxide is used.
[0017]
The shape, size, etc. of the solid electrolyte body are not particularly limited. As the shape of the solid electrolyte body, for example, a bottomed cylindrical type, a plate type (rectangular type, disc type, etc., thickness 10 μm or more), a thin film type (rectangular type, disc type, etc., thickness less than 10 μm), etc. are appropriately selected. Can be used. In addition, the size of the solid electrolyte body is, for example, in the plate type, the surface area of one surface including the electrode is 0.09 cm2Above (normally 0.5cm2Or less).
[0018]
The “electrode” includes at least a pair. In addition, an electrode may or may not be provided. This electrode produces a potential difference due to the flammable gas between the two electrodes. This electrode is formed on the surface of the solid electrolyte body. In addition, of both electrodes, some or all of them are placed in contact with the measurement atmosphere directly or indirectly (through a porous protective layer that protects the detection electrode from poisonous substances, etc.). Has been.
[0019]
Moreover, each electrode needs to be formed on the same surface of the solid electrolyte body. The above "same surface" means (1) when two electrodes are formed on one plane of the solid electrolyte body, and (2) when two electrodes are formed on the curved surface of the solid electrolyte body. To do. Further, in (1) and (2), when a flat or curved surface has or is formed with fine irregularities, these electrodes are formed on the same surface even when the electrodes are formed according to the fine irregularities. Is assumed to be formed. Among (1) and (2), it is more preferable that two electrodes are formed as in (1).
Thus, by arranging the electrodes on the same surface, the property that the conductivity near the surface of the solid electrolyte body is high can be effectively used.
[0020]
The material constituting the electrode is not particularly limited as long as it has sufficient conductivity at 250 to 450 ° C., but the electrical resistivity at room temperature is 104Ω · cm or less (normally 1.5-6Ω · cm or more, Ω · cm is 1 × 1 × 1 cm in the sample size3The resistance value per unit is preferable. For example, when used for measuring the concentration of combustible gas in the exhaust gas of an internal combustion engine, the electrode is preferably not melted even at 1000 ° C. because it is exposed to a high temperature (for example, immediately after starting the internal combustion engine). The exhaust gas of the present invention is likely to contain a combustible gas, and the temperature of the initial exhaust gas is not so high, so that the combustible gas sensor of the present invention can be effectively used. After the internal combustion engine is warmed up, high-temperature exhaust gas up to about 1000 ° C. is exhausted and exposed to high temperature). Furthermore, it is preferable that it is excellent in corrosion resistance, and it is excellent in adhesiveness when a film is formed on a solid electrolyte body.
[0021]
In the electrode, materials capable of exhibiting such characteristics include noble metals other than Os (Ru, Rh, Pd, Ag, Ir, Pt, Au), and one kind of metal such as Fe, Ni, Cr, Co, and Cu. Or the metal, alloy, metal oxide, etc. containing 2 or more types are mentioned. Among them, since it is excellent in high temperature durability and corrosion resistance in an oxidizing atmosphere and a reducing atmosphere, Pt, Au, Pd, Rh, etc. are contained as a main component (containing 80% by mass or more, and further 90% by mass or more of one whole electrode). It is preferable to use a material to be used. In addition, each of the pair of electrodes needs to be made of a different material (if the same material is used, a potential difference does not occur), and thus it is necessary to use the electrodes so that the compositions of the electrodes are different. In addition, although the metal itself contained may differ from the material being different, the metal contained is the same, and since the content is different, the composition of the material may be different (usually The specific metal content needs to be different by 10 mass% or more with respect to the entire one electrode).
[0022]
The shape, size and thickness of the electrode are not particularly limited, but the thickness is preferably 2 μm or more (more preferably 2 to 15 μm, particularly 5 to 12 μm). If it is less than 2 μm, it may be difficult to achieve sufficient conduction. Further, the thickness of one electrode is preferably 50 μm or less. If it is thicker than 50 μm, the gas to be measured (the gas to be measured contained in the atmosphere to be measured) is a three-phase interface where the electrode and the solid electrolyte body are in contact (the three phases of the gas to be measured, the detection electrode and the solid electrolyte body). ) May be difficult to achieve, leading to a decrease in sensitivity.
[0023]
The shortest distance between the electrodes of these pair of electrodes is preferably 1.5 mm or less (more preferably 1.0 mm or less, still more preferably 0.75 mm or less, usually 0.5 mm or more). If the shortest distance between the electrodes exceeds 2 mm, the distance that protons move in the solid electrolyte body becomes long, and it is difficult to obtain the effect of forming both electrodes on the surface of the solid electrolyte body.
[0024]
  Moreover, the combustible gas sensor of this invention can obtain the largest electric potential difference between both electrodes by using the temperature of a solid electrolyte body in 300-400 degreeC, Preferably it is 320-380 degreeC. This potential difference includes at least a hybrid potential. When the combustible gas sensor of the present invention is used at a temperature exceeding 450 ° C., in the electrode active against the combustible gas, the combustible gas burns on the surface of the electrode to generate water vapor, and the potential difference caused by the water vapor pressure However, there are cases where the measurement sensitivity is extremely lowered because only the measurement can be performed. On the other hand, if it is used at less than 250 ° C., sufficient conductivity cannot be obtained, the reaction of the gas to be measured hardly occurs at the three-phase interface, and the sensitivity may be lowered (potential difference is reduced) in some cases.
[0025]
  Solid electrolyte body temperature300-400 ° CThe method of making is not particularly limited. For example, since the gas to be measured is 250 to 450 ° C., the temperature of the solid electrolyte body may be within the above temperature range at the time of measuring the combustible gas concentration without using a separate heating means. Force the solid electrolyte body by using a heating device such as a heater.300-400 ° CIt may be a thing to make. Furthermore, since the resistance value of the solid electrolyte body depends on the temperature of the solid electrolyte body itself, it is possible to provide a heating device control means for measuring this resistance and feeding back the result to control the movement / stopping of the heating device. . By these, it is possible to perform more accurate concentration measurement.
[0026]
The “hybrid potential” is an electromotive force that is not proportional to the temperature of the solid electrolyte body (see FIG. 5). That is, for example, electromotive force E caused by water vapor concentrationH2OIs the Nernst equation EH2O= (RT / 2F) ln {PH2O (2) / PH2O (1)} is approximately calculated. In addition, the electromotive force E caused by oxygen concentrationO2Is the Nernst equation EO2= (RT / 4F) ln {PO2(2) / PO2(1)} is approximately calculated. As can be seen from the above formula, these electromotive forces are values proportional to the temperature T of the solid electrolyte body, but the mixed potentials are different.
This hybrid potential can be measured with high sensitivity when the temperature of the solid electrolyte body is in the range of 250 to 450 ° C. (Because the temperature is low, the combustible gas does not burn on the electrode surface and reaches the three-phase interface. Can be measured).
[0027]
  According to the combustible gas concentration measurement method of the present invention, the sensitivity to hydrogen, carbon monoxide, nitrogen monoxide, etc. is very small (the electromotive force when each component gas is not contained and the electromotive force when 50 ppm is contained). (Potential difference is less than 10 mV), hardly detected. In contrast, hydrocarbons having 2 or more carbon atoms (usually 15 or less carbon atoms, especially 3 to 10 carbon atoms, especially 4 to 10 carbon atoms) {aliphatic hydrocarbons, cyclic hydrocarbons and aromatic hydrocarbons (these Hydrocarbons of saturated, unsaturated, straight chain, and branched are also included)}, and CH2= CHX, CH2= CHCH2X, C3H7X and CH3-CHX-CH3Halogenated hydrocarbons such as X (where X is a halogen atom), C2H5Alcohols such as OH, CH3NO2Nitro compounds such as CH3NH2Amine compounds such as CH3Carboxylic acid compounds such as COOH, CH3Aldehyde compounds such as CHO, ketone compounds such as acetone, and CH3OCH3Since the potential difference with respect to ether compounds and the like has a measurable level, it is suitable for detection and concentration measurement of these combustible gases.
[0028]
  The flammable gas concentration measurement method of the present invention is sensitive to hydrocarbon gas having 2 or more carbon atoms (usually 15 or less carbon atoms, especially 3 to 10 carbon atoms, especially 4 to 10 carbon atoms) among these flammable gases. Are better. Furthermore, it is particularly excellent in sensitivity to a hydrocarbon gas having 2 or more carbon atoms having a double bond (usually 15 or less carbon atoms, particularly 3 to 10 carbon atoms, especially 4 to 10 carbon atoms).
  According to the method for measuring the concentration of combustible gas according to the present invention, a measured gas containing 50 ppm of propene, 21% by volume of oxygen and 2.3% by volume of water vapor, with the balance being argon, is 150 ml per minute. When supplied and measured at a temperature of 350 ° C., the potential difference can be 60 mV or more (further 70 mV or more, particularly 75 mV or more, particularly 80 mV or more).
[0029]
【Example】
  Hereinafter, the present invention will be described specifically by way of examples.
[1] Examination of correlation between conductivity and solid electrolyte body temperature of element using proton conductive solid electrolyte body and element using oxygen ion conductive solid electrolyte body
(1) The present inventionElement 1 used forMaking
  Production of element 1 (flammable gas sensor 1) having a pair of electrodes formed on one surface using a proton conductive solid electrolyte body (see FIG. 1)
  The width is 10 mm, the length is 10 mm, the thickness is 0.75 mm, and the composition formula is BaCe.0.75Y0.25O3-δA platinum paste containing 71 to 76% by mass of Pt powder in a predetermined shape is applied on one surface of a solid electrolyte body 11 having proton conductivity represented by the following {hereinafter referred to simply as “[BCY]”}: 900 The platinum electrode 121 having a width of 10 mm, a length of 1.0 mm, and a thickness of 5 to 30 μm was formed by heating at 0 ° C. for 1 hour. Next, on the same surface on which the platinum electrode 121 on [BCY] 11 is formed, a gold paste containing 71 to 76 mass% of Au powder is applied in a predetermined shape, heated at 900 ° C. for 1 hour, and 10 mm wide. A gold electrode 122 having a length of 1.0 mm and a thickness of 5 to 30 μm was formed. These two electrodes are arranged side by side with a width of 1.0 mm. Next, a platinum wire 131 serving as a lead wire for extracting an electromotive force to the outside is connected to the platinum electrode 121, and a gold wire 132 serving as a lead wire is connected to the gold electrode 122, and the element 1 (flammable gas sensor 1). Got.
[0030]
(2) Production of comparative product (element 2)
Fabrication of element 2 in which electrodes are formed on the front and back surfaces using a proton conductive solid electrolyte body (see FIG. 2)
On one side of [BCY] 21 having a width of 10 mm, a length of 10 mm, and a thickness of 0.75 mm, a platinum paste containing 71 to 76% by mass of Pt powder is applied in a predetermined shape and heated at 900 ° C. for 1 hour. A platinum electrode 221 having a width of 10 mm, a length of 1.0 mm, and a thickness of 5 to 30 μm was formed. Next, a gold paste containing 71 to 76% by mass of Au powder is applied in a predetermined shape at a position facing the platinum electrode 221 on the surface opposite to the surface on which the platinum electrode 221 on the [BCY] 21 is formed. And heated at 900 ° C. for 1 hour to form a gold electrode 222 having a width of 10 mm, a length of 1.0 mm, and a thickness of 5 to 30 μm. Subsequently, the platinum electrode 221 was connected with a platinum wire 231 serving as a lead wire for extracting an electromotive force to the outside, and the gold wire 232 serving as a lead wire was connected to the gold electrode, whereby the element 2 was obtained.
[0031]
(3) Production of comparative product (element 3)
Fabrication of element 3 in which a pair of electrodes are formed on one side using an oxygen ion conductive solid electrolyte body
Instead of [BCY], the composition formula Ce0.8Sm0.2O1.9An element 3 was obtained in the same manner as in the above (1) except that a solid electrolyte body having oxygen ion conductivity represented by the following formula {hereinafter simply referred to as “[CSO]”} was used.
[0032]
(4) Production of comparative product (element 4)
Fabrication of element 4 in which electrodes are formed on the front and back surfaces using an oxygen ion conductive solid electrolyte body
An element 4 was obtained in the same manner as in the above (2) except that [CSO] was used instead of [BCY].
[0033]
(5) Production of comparative product (element 5)
Fabrication of element 5 in which a pair of electrodes are formed on one side using an oxygen ion conductive solid electrolyte body
Instead of [BCY], the composition formula Zr0.92Y0.08O1.96An element 5 was obtained in the same manner as in the above (1) except that a solid electrolyte body having oxygen ion conductivity represented by {{hereinafter simply referred to as “[YSZ]"}} was used.
[0034]
(6) Preparation of comparative product (element 6)
Fabrication of element 6 in which electrodes are formed on the front and back surfaces using an oxygen ion conductive solid electrolyte body
An element 6 was obtained in the same manner as in the above (2) except that [YSZ] was used instead of [BCY].
[0035]
(7) Production of measuring device
Each of the elements 1 to 6 using [BCY], [CSO] or [YSZ] obtained in (1) to (6) above is placed in an alumina thin tube 31 having an outer diameter of 6 mm and an inner diameter of 4 mm. It was fixed so that the positional relationship shown in FIG. Next, the thin tube 31 was fixed in an outer tube 32 having an outer diameter of 13 mm and an inner diameter of 9 mm. Then, the platinum wire and the gold wire are led out to the outside of the tube, the platinum wire is connected to the positive electrode of an electrometer (made by Hokuto Denko Co., Ltd., type “HE-104”), and the gold wire is connected to the negative electrode. A measuring device was obtained. FIG. 3 shows a measuring device (flammable gas concentration measuring device 3) obtained using the element 1.
[0036]
(8) Measurement of conductivity
Each of the six types of measuring devices including the elements 1 to 6 obtained in (7) above was placed in a heating furnace that can keep the entire measuring device at a predetermined temperature. Next, a reference gas adjusted so that oxygen was 21 vol%, water vapor was 2.3 vol%, and the balance was argon was allowed to flow into the capillary at a rate of 150 ml per minute. A constant current was passed between the platinum electrode and the gold electrode, and the potential difference obtained at this time was measured while changing the temperature in the heating furnace from 400 to 800 ° C. in increments of 50 ° C. The resistance value was calculated from the current value passed and the measured potential difference, and the conductivity which was the reciprocal of this resistance value was calculated. FIG. 4 shows the correlation between the conductivity and temperature as a graph.
[0037]
(9) Evaluation
From FIG. 4, the element using the proton conductive solid electrolyte body [BCY] and the elements 3 to 6 using oxygen ion conductive [CSO] or [YSZ] are both solid electrolytes regardless of the electrode formation location. It can be seen that the conductivity improves as the body temperature increases. Among these, it can be seen that [BCY] can maintain high conductivity, especially at low temperatures (600 ° C. or less, further 500 ° C. or less), as compared with other oxygen ion conductive solid electrolytes. Furthermore, it can be seen that only the element 1 using [BCY] and having the electrode formed only on one surface side of [BCY] has a remarkably high conductivity at a low temperature of 450 ° C. or lower. That is, it can be seen that in order to obtain high conductivity at a low temperature of 450 ° C. or lower, it is preferable to use a proton conductive solid electrolyte body and have an electrode formed only on one side of the solid electrolyte body.
[0038]
[2] Examination of correlation between measured temperature and electromotive force
(1) Measurement of changes in electromotive force
The combustible gas concentration measuring device 3 provided with [BCY] obtained in (7) of the above [1] was placed in a heating furnace kept at a predetermined temperature. The heating furnace was used while maintaining the temperature from 200 to 500 ° C. in 50 ° C. increments. Next, a gas to be measured, which was adjusted so that propene was 50 ppm, oxygen was 21 vol%, water vapor was 2.3 vol%, and the balance was argon, was allowed to flow into the capillary at a rate of 150 ml per minute. The potential difference generated between the platinum electrode and the gold electrode at this time was measured and shown as a graph in FIG.
[0039]
(2) Evaluation
From FIG. 5, it can be seen that the largest electromotive force obtained exists in the temperature range of 300 to 400 ° C. Moreover, it turns out that especially the electromotive force in 350 degreeC is large.
[0040]
[3] Examination of correlation between concentration of various gases and electromotive force
(1) Measurement of various gas concentrations
Using the combustible gas concentration measuring device 3 provided with [BCY] obtained in (7) of [1] above, the temperature in the heating furnace was kept at 350 ° C. Next, methane, ethane, ethene, ethyne, propane, propene, butene, 1-butene, hydrogen, and carbon monoxide each measurement target gas is a predetermined amount, oxygen is 21 vol%, water vapor is 2.3 vol%, and the balance The gas to be measured, adjusted to be argon, was allowed to flow into the capillary at a rate of 150 ml per minute. The predetermined amounts of the various gases to be measured are concentrations of 5 ppm in increments of 5 to 50 ppm (see FIGS. 6 and 7). The potential difference generated between the platinum electrode and the gold electrode was measured while the various gases to be measured were introduced, and these are shown as graphs in FIGS.
[0041]
(3) Evaluation
  From FIG. 6, the present inventionUsed forIt can be seen that the combustible gas sensor has relatively little sensitivity to hydrogen and carbon monoxide although it is a combustible gas when a hydrocarbon-based compound such as propene coexists. This is very useful when the combustible gas sensor of the present invention is intended to selectively measure only the concentration of the hydrocarbon compound in the exhaust gas of the internal combustion engine. That is, it is usually possible to measure the concentration of only pure hydrocarbon compounds excluding hydrogen and carbon monoxide contained in the exhaust gas of an internal combustion engine.
[0042]
From FIG. 7, it is possible to measure the concentration of a hydrocarbon compound having no unsaturated bond such as ethane, propane and butane at a high concentration (about 50 ppm or more). It can be seen that the sensitivity to ethene, propene, n-butene, 1-butene and the like having a saturated bond is excellent. Moreover, the sensitivity is higher for those having 3 carbons than those having 2 carbons, and for those having 4 carbons compared to those having 3 carbons. It can be seen that it is expensive.
[0043]
Therefore, from the above [1] to [3], as the combustible gas sensor, a solid electrolyte body having proton conductivity is used as the solid electrolyte body, and an electrode is formed only on one surface side of the solid electrolyte body. It can be seen that extremely excellent performance can be exhibited by maintaining the temperature of the electrolyte body at 250 to 450 ° C.
[0044]
【The invention's effect】
  The present inventionUsed forAccording to the combustible gas sensor, the concentration of various combustible gases excluding hydrogen, carbon monoxide and nitric oxide can be measured. Further, the solid electrolyte body is BaCeO.3By using a system proton conductive oxide, excellent sensitivity can be exhibited. Furthermore, when the shortest distance between the electrodes is equal to or less than a predetermined value, excellent sensitivity can be exhibited. In particular, it can be suitably used for measuring the concentration of combustible gas having 2 or more carbon atoms. Furthermore, when a measurement gas containing 50 ppm of propene, 21% by volume of oxygen and 2.3% by volume of water vapor, the balance of which consists of argon is supplied at 150 ml per minute, and measured at a temperature of 350 ° C. The potential difference can be 60 mV or more.
  According to the combustible gas concentration measuring method of the present invention and the other combustible gas concentration measuring method of the present invention, various combustible gases other than hydrogen, carbon monoxide and nitrogen monoxide can be measured. In particular, the concentration measurement of combustible gas having 2 or more carbon atoms can be accurately performed with high sensitivity.
[Brief description of the drawings]
FIG. 1 shows the present invention.Used forIt is a typical perspective view of an example of a gas sensor.
FIG. 2 is a schematic perspective view of an example of a comparative gas sensor.
FIG. 3 is a schematic cross-sectional view of a combustible gas concentration measuring device used in Examples.
FIG. 4 is a graph showing the correlation between the temperature of the solid electrolyte body and the electromotive force.
FIG. 5 shows the present invention.Used forIt is a correlation of the temperature of the solid electrolyte body by a combustible gas sensor, and the electromotive force obtained.
FIG. 6Used forIt is a graph which shows the correlation with the density | concentration of various gas by a combustible gas sensor, and the electromotive force obtained.
FIG. 7Used forIt is a graph which shows the correlation with the density | concentration of various gas by a combustible gas sensor, and the electromotive force obtained.
[Explanation of symbols]
  DESCRIPTION OF SYMBOLS 1; Flammable gas sensor (element 1), 11; Solid electrolyte body ([BCY]) which has proton conductivity, 121; Platinum electrode, 122; Gold electrode, 131; Platinum wire, 132; Gold wire, 2; , 21; solid electrolyte body having proton conductivity ([BCY]), 221; platinum electrode, 222; gold electrode, 231; platinum wire, 232; gold wire, 3; combustible gas concentration measuring device, 31; 32; outer tube.

Claims (4)

プロトン導電性を示す固体電解質体であるBaCeO系プロトン導電性酸化物と、該固体電解質体の被測定雰囲気と接する同一面上に各々形成された一対の異なる材料からなる電極とを備える可燃性ガスセンサを用い、該電極を該被測定雰囲気に晒し、該固体電解質体の温度が300〜400℃となる条件において、該電極間に生じる少なくとも混成電位を含む電位差に基づき炭素数2以上の可燃性ガスの濃度を測定することを特徴とする可燃性ガス濃度測定方法。A flammability comprising a BaCeO 3 -based proton conductive oxide, which is a solid electrolyte body showing proton conductivity, and electrodes made of a pair of different materials, each formed on the same surface in contact with the measured atmosphere of the solid electrolyte body Using a gas sensor, the electrode is exposed to the atmosphere to be measured, and the combustibility of 2 or more carbon atoms based on the potential difference including at least the mixed potential generated between the electrodes under the condition that the temperature of the solid electrolyte body is 300 to 400 ° C. A method for measuring the concentration of a combustible gas, comprising measuring the concentration of a gas. 上記電極の間の最短距離は1.5mm以下である請求項1に記載の可燃性ガス濃度測定方法。  The combustible gas concentration measuring method according to claim 1, wherein the shortest distance between the electrodes is 1.5 mm or less. 上記電極の厚さは2〜50μmである請求項1又は2に記載の可燃性ガス濃度測定方法。  The method for measuring a combustible gas concentration according to claim 1 or 2, wherein the electrode has a thickness of 2 to 50 µm. 上記固体電解質は、Ba(Cey1y2)O3−δで示した場合に、0.7≦y1≦0.90.1≦y2≦0.3且つ0.025≦δ≦0.1である請求項1乃至3のうちのいずれか1項に記載の可燃性ガス濃度測定方法。When the solid electrolyte is represented by Ba (Ce y1 Y y2 ) O 3-δ , 0.7 ≦ y1 ≦ 0.9 , 0.1 ≦ y2 ≦ 0.3, and 0.025 ≦ δ ≦ 0. The combustible gas concentration measuring method according to claim 1 , wherein the combustible gas concentration measuring method is one.
JP2001277300A 2001-09-12 2001-09-12 Flammable gas concentration measurement method Expired - Lifetime JP4743375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001277300A JP4743375B2 (en) 2001-09-12 2001-09-12 Flammable gas concentration measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001277300A JP4743375B2 (en) 2001-09-12 2001-09-12 Flammable gas concentration measurement method

Publications (2)

Publication Number Publication Date
JP2003083929A JP2003083929A (en) 2003-03-19
JP4743375B2 true JP4743375B2 (en) 2011-08-10

Family

ID=19101850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001277300A Expired - Lifetime JP4743375B2 (en) 2001-09-12 2001-09-12 Flammable gas concentration measurement method

Country Status (1)

Country Link
JP (1) JP4743375B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100864A (en) * 2003-09-25 2005-04-14 Nec Corp Measurement method of alcohol concentration, measurement device of alcohol concentration, and fuel cell system including the device
JP4709630B2 (en) * 2005-10-27 2011-06-22 東海電子株式会社 Breath alcohol measurement method
GB2434647A (en) * 2006-01-13 2007-08-01 Asthma Alert Ltd Gas Concentration and Humidity Sensor
DE102006034384A1 (en) * 2006-07-25 2008-01-31 Robert Bosch Gmbh Mixture potential sensor for detecting different gases in gas mixtures, has measuring device measuring voltage set between electrodes, and load resistor with variable resistance value connected between electrodes
KR100884307B1 (en) 2007-04-25 2009-02-18 주식회사 시오스 NOX Sensor
JP4912968B2 (en) * 2007-06-27 2012-04-11 則雄 三浦 Non-methane hydrocarbon gas detector
WO2010010978A1 (en) * 2008-07-23 2010-01-28 Cios Inc. Nox sensor
JP2010197075A (en) * 2009-02-23 2010-09-09 Gunze Ltd Hydrogen gas sensor
JP5208018B2 (en) * 2009-02-23 2013-06-12 グンゼ株式会社 Hydrogen gas sensor
JP6401595B2 (en) * 2014-12-03 2018-10-10 日本碍子株式会社 Catalyst deterioration diagnosis method
JP6374780B2 (en) * 2014-12-03 2018-08-15 日本碍子株式会社 Catalyst deterioration diagnosis system and catalyst deterioration diagnosis method
JP6408363B2 (en) * 2014-12-03 2018-10-17 日本碍子株式会社 Catalyst deterioration diagnosis method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242060A (en) * 1993-02-23 1994-09-02 Tokyo Yogyo Co Ltd Hydrocarbon sensor
JPH09127055A (en) * 1995-11-02 1997-05-16 Matsushita Electric Ind Co Ltd Hydrocarbon sensor
JPH10284108A (en) * 1997-03-31 1998-10-23 Toyota Motor Corp Solid electrolyte, and fuel cell, hydrogen pump, oxygen concentration sensor, and steam concentration sensor using the electrolyte
JPH11326268A (en) * 1998-05-18 1999-11-26 Ngk Spark Plug Co Ltd Planar limiting current-type sensor
JPH11337518A (en) * 1998-05-25 1999-12-10 Matsushita Electric Ind Co Ltd Hydrocarbon sensor
JP2000028573A (en) * 1998-07-13 2000-01-28 Riken Corp Hydrocarbon gas sensor
JP2002174621A (en) * 2000-12-08 2002-06-21 Ngk Spark Plug Co Ltd Hydrocarbon gas concentration measuring device and hydrocarbon gas concentration measuring method using the device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242060A (en) * 1993-02-23 1994-09-02 Tokyo Yogyo Co Ltd Hydrocarbon sensor
JPH09127055A (en) * 1995-11-02 1997-05-16 Matsushita Electric Ind Co Ltd Hydrocarbon sensor
JPH10284108A (en) * 1997-03-31 1998-10-23 Toyota Motor Corp Solid electrolyte, and fuel cell, hydrogen pump, oxygen concentration sensor, and steam concentration sensor using the electrolyte
JPH11326268A (en) * 1998-05-18 1999-11-26 Ngk Spark Plug Co Ltd Planar limiting current-type sensor
JPH11337518A (en) * 1998-05-25 1999-12-10 Matsushita Electric Ind Co Ltd Hydrocarbon sensor
JP2000028573A (en) * 1998-07-13 2000-01-28 Riken Corp Hydrocarbon gas sensor
JP2002174621A (en) * 2000-12-08 2002-06-21 Ngk Spark Plug Co Ltd Hydrocarbon gas concentration measuring device and hydrocarbon gas concentration measuring method using the device

Also Published As

Publication number Publication date
JP2003083929A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
KR101275972B1 (en) NOx SENSOR AND METHODS OF USING THE SAME
EP0772042B1 (en) Hydrocarbon sensor
JP3128114B2 (en) Nitrogen oxide detector
JP4743375B2 (en) Flammable gas concentration measurement method
JP2017527814A (en) Amperometric solid electrolyte sensor and method for detecting NH3 and NOX
JP3855771B2 (en) Porous electrode, electrochemical element including the same, gas concentration detection sensor, oxygen partial pressure control method, and combustible gas detection method
JP4915648B2 (en) Hydrogen detection element
KR102370434B1 (en) Amperometric electrochemical sensors, sensor systems and detection methods
JP4241993B2 (en) Hydrocarbon sensor
JP2006133039A (en) Nitrogen oxide sensor
KR100631276B1 (en) pH sensing electrode having a solid-state electrolyte layer and pH measuring system containing same
JP3075070B2 (en) Carbon monoxide gas sensor
JP4730635B2 (en) Hydrocarbon gas sensor and hydrocarbon gas concentration measuring method
JP3463735B2 (en) Method for detecting hydrocarbon gas component and detection sensor
JP2948124B2 (en) Oxygen sensor
JP3546919B2 (en) Nitrogen oxide and oxygen detection sensor
JP2002156355A (en) Gas sensor element and gas concentration measuring device having the same
JPH09264872A (en) Gas sensor
JP3696494B2 (en) Nitrogen oxide sensor
JP2002031619A (en) Nitrous oxide gas sensor
JP4750574B2 (en) Gas detection element
JP2019049444A (en) NOx sensor element and NOx sensor
JP3516488B2 (en) Nitrogen oxide sensor
JP4213939B2 (en) Gas detector
KR102549589B1 (en) TCD type hydrogen sensor and filament in order to prevent water formation reaction and fabrication methods therefor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4743375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term