JP2003083929A - Combustible gas sensor and combustible-gas-concentration measuring method - Google Patents

Combustible gas sensor and combustible-gas-concentration measuring method

Info

Publication number
JP2003083929A
JP2003083929A JP2001277300A JP2001277300A JP2003083929A JP 2003083929 A JP2003083929 A JP 2003083929A JP 2001277300 A JP2001277300 A JP 2001277300A JP 2001277300 A JP2001277300 A JP 2001277300A JP 2003083929 A JP2003083929 A JP 2003083929A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte body
combustible gas
measured
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001277300A
Other languages
Japanese (ja)
Other versions
JP4743375B2 (en
Inventor
Takashi Hibino
高士 日比野
Shiro Kakimoto
志郎 柿元
Takaharu Inoue
隆治 井上
Noboru Ishida
昇 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical NGK Spark Plug Co Ltd
Priority to JP2001277300A priority Critical patent/JP4743375B2/en
Publication of JP2003083929A publication Critical patent/JP2003083929A/en
Application granted granted Critical
Publication of JP4743375B2 publication Critical patent/JP4743375B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a combustible gas sensor by which a combustible gas (especially a hydrocarbon-based gas) excluding hydrogen, carbon monoxide and nitrogen monoxide can be detected with satisfactory sensitivity without depending on steam, and to provide a combustible-gas-concentration measuring method. SOLUTION: The combustible gas sensor 1 in which a platinum electrode 121 and a gold electrode 122 are formed in parallel on the same face coming into contact with an atmosphere to be measured of a solid electrolyte body 11 displaying proton conductivity is used, the temperature of the solid electrolyte body at the sensor 1 is held so as to become 250 to 450 deg.C, a potential difference generated across the platinum electrode and the gold electrode is measured, and the concentration of the combustible gas is measured on the basis of the potential difference.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は可燃性ガスセンサ及
び可燃性ガス濃度測定方法に関する。更に詳しくは、プ
ロトン導電性を示す固体電解質体上に形成された電極間
の電位差を測定することで対象ガスの濃度を測定する可
燃性ガスセンサ及びこのような可燃性ガス濃度の測定方
法に関する。本発明の可燃性ガスセンサは、各種可燃性
ガスの濃度測定に用いることができるが、なかでも内燃
機関の排気ガス中に含まれる炭化水素ガスの濃度測定に
好適である。
TECHNICAL FIELD The present invention relates to a combustible gas sensor and a combustible gas concentration measuring method. More specifically, the present invention relates to a combustible gas sensor that measures the concentration of a target gas by measuring the potential difference between electrodes formed on a solid electrolyte body that exhibits proton conductivity, and a method for measuring such a combustible gas concentration. The combustible gas sensor of the present invention can be used for measuring the concentration of various combustible gases, but is particularly suitable for measuring the concentration of hydrocarbon gas contained in the exhaust gas of an internal combustion engine.

【0002】[0002]

【従来の技術】近年、酸素イオン導電性を有する固体電
解質体を利用した炭化水素ガスセンサ等が多く開発さ
れ、特表平8−510840号公報及び特開2000−
146902号公報等に開示された技術が知られてい
る。しかし、これらは何れも酸素イオンの導電を利用す
るため元来酸素濃度の影響を受け易く、更に、水素、一
酸化炭素及び一酸化窒素等と、炭化水素ガス等とを区別
して濃度測定することが難しい。このため、酸素濃度の
影響を小さくする特殊な技術及び水素、一酸化炭素及び
一酸化窒素等と炭化水素ガス等とを区別するための特殊
な技術等を必要とする。一方、プロトン導電性を有する
固体電解質体を利用し、一対の電極間に生じる電位差か
ら炭化水素ガスの濃度を測定する炭化水素ガスセンサと
して、特開平6−242060号公報及び特開平9−1
27055号公報等が開示されている。
2. Description of the Related Art In recent years, many hydrocarbon gas sensors and the like utilizing a solid electrolyte having oxygen ion conductivity have been developed, and JP-A-8-510840 and JP-A-2000-
The technique disclosed in Japanese Patent No. 146902 is known. However, since all of them use the conductivity of oxygen ions, they are naturally susceptible to the oxygen concentration. Furthermore, the concentration of hydrogen, carbon monoxide, nitric oxide, etc. should be distinguished from that of hydrocarbon gas etc. Is difficult. Therefore, a special technique for reducing the influence of oxygen concentration and a special technique for distinguishing hydrogen, carbon monoxide, nitric oxide and the like from hydrocarbon gas and the like are required. On the other hand, as a hydrocarbon gas sensor that uses a solid electrolyte having proton conductivity to measure the concentration of hydrocarbon gas from the potential difference generated between a pair of electrodes, JP-A-6-242060 and JP-A-9-1
Japanese Patent No. 27055 is disclosed.

【0003】[0003]

【発明が解決しようとする課題】これらの公報に開示さ
れる炭化水素センサ(特開平9−127055号公報に
おいては起電力式の炭化水素ガスセンサ)は一対の電極
を備える。これらの電極のうちの一方は、高温(特開平
6−242060号公報においては770℃、特開平9
−127055号公報においては500℃)で炭化水素
ガスをその「表面」において燃焼させることができる活
性な電極であり、他方の電極は同じ温度においても炭化
水素ガスを燃焼させることができない不活性な電極であ
る。この活性な電極の「表面」では炭化水素ガスが燃焼
することにより水蒸気が発生し、不活性な電極との間で
水蒸気の分圧差に起因する電位差を生じる。この電位差
を測定することで炭化水素ガスを検知し、更には、その
濃度を測定しようとするものである。
The hydrocarbon sensor disclosed in these publications (electromotive force type hydrocarbon gas sensor in JP-A-9-127055) has a pair of electrodes. One of these electrodes has a high temperature (770 ° C. in JP-A-6-24060,
No. 127055) is an active electrode capable of burning hydrocarbon gas at its “surface” at 500 ° C., and the other electrode is an inert electrode capable of burning hydrocarbon gas even at the same temperature. It is an electrode. On the "surface" of this active electrode, the hydrocarbon gas burns to generate water vapor, which causes a potential difference due to the partial pressure difference of the water vapor with the inactive electrode. The hydrocarbon gas is detected by measuring this potential difference, and further, its concentration is measured.

【0004】しかし、(1)上記では内燃機関の排気ガ
ス等のように水蒸気を多く含有する雰囲気においては炭
化水素ガスの濃度を測定することが極めて困難であると
いう問題がある。また、(2)実使用を鑑みると、炭化
水素ガスの濃度がppmオーダーでも測定できる必要が
あるため、電極間で得られる電位差は大きいことが望ま
れる。
However, (1) In the above, there is a problem that it is extremely difficult to measure the concentration of hydrocarbon gas in an atmosphere containing a large amount of water vapor such as exhaust gas of an internal combustion engine. Further, in view of (2) actual use, it is necessary that the concentration of the hydrocarbon gas can be measured even in the ppm order, so that a large potential difference obtained between the electrodes is desired.

【0005】本発明は上記問題点を解決するものであ
り、水蒸気が多い雰囲気であっても可燃性ガスの濃度を
測定することができ、可燃性ガスの濃度が薄い場合にも
正確な測定が可能である可燃性ガスセンサ及び可燃性ガ
ス濃度測定方法を提供することを目的とする。
The present invention solves the above-mentioned problems. It is possible to measure the concentration of combustible gas even in an atmosphere containing a large amount of water vapor, and accurate measurement is possible even when the concentration of combustible gas is low. An object of the present invention is to provide a combustible gas sensor and a combustible gas concentration measuring method which are possible.

【0006】[0006]

【課題を解決するための手段】本発明の可燃性ガスセン
サは、プロトン導電性を示す固体電解質体と、該固体電
解質体の被測定雰囲気と接する同一面上に各々形成され
た一対の異なる材料からなる電極とを備え、該固体電解
質体の温度が250〜450℃の間で用いられることを
特徴とする。
The combustible gas sensor of the present invention comprises a solid electrolyte body having proton conductivity and a pair of different materials formed on the same surface of the solid electrolyte body in contact with the atmosphere to be measured. And a temperature of the solid electrolyte body is used in the range of 250 to 450 ° C.

【0007】本発明の他の可燃性ガスセンサは、プロト
ン導電性を示す固体電解質体と、該固体電解質体の被測
定雰囲気と接する同一面上に各々形成された一対の異な
る材料からなる電極とを備え、該電極間に生じる少なく
とも混成電位に基づく可燃性ガス濃度測定に用いられる
ことを特徴とする。
Another combustible gas sensor of the present invention comprises a solid electrolyte body having proton conductivity, and a pair of electrodes made of different materials formed on the same surface of the solid electrolyte body in contact with the atmosphere to be measured. It is characterized in that it is used for measuring the combustible gas concentration based on at least the mixed potential generated between the electrodes.

【0008】また、上記固体電解質体はBaCeO
プロトン導電性酸化物とすることができる。更に、上記
電極の間の最短距離は1.5mm以下とすることができ
る。また、炭素数2以上の可燃性ガスの濃度測定に用い
ることができる。更に、50ppmのプロペンと、21
体積%の酸素と、2.3体積%の水蒸気とを含有し、残
部がアルゴンからなる被測定ガスを、毎分150mlで
供給し、温度350℃で測定した場合の電位差が60m
V以上とすることができる。
The solid electrolyte body may be a BaCeO 3 type proton conductive oxide. Furthermore, the shortest distance between the electrodes can be 1.5 mm or less. Further, it can be used for measuring the concentration of a combustible gas having 2 or more carbon atoms. Furthermore, 50 ppm of propene and 21
A measured gas containing volume% oxygen and 2.3 volume% steam with the balance being argon was supplied at 150 ml / min, and the potential difference when measured at a temperature of 350 ° C. was 60 m.
It can be V or higher.

【0009】本発明の可燃性ガス濃度測定方法は、プロ
トン導電性を示す固体電解質体と、該固体電解質体の被
測定雰囲気と接する同一面上に各々形成された一対の異
なる材料からなる電極とを備える可燃性ガスセンサを用
い、該電極を該被測定雰囲気に晒し、該固体電解質体の
温度が250〜450℃となる条件において、該電極間
に生じる電位差に基づき可燃性ガスの濃度を測定するこ
とを特徴とする。
The flammable gas concentration measuring method of the present invention comprises a solid electrolyte body having proton conductivity, and a pair of electrodes made of different materials formed on the same surface of the solid electrolyte body in contact with the atmosphere to be measured. The flammable gas sensor is used to measure the concentration of the flammable gas based on the potential difference generated between the electrodes under the condition that the temperature of the solid electrolyte body is 250 to 450 ° C. by exposing the electrode to the atmosphere to be measured. It is characterized by

【0010】本発明の他の可燃性ガス濃度測定方法は、
プロトン導電性を示す固体電解質体と、該固体電解質体
の被測定雰囲気と接する同一面上に各々形成された一対
の異なる材料からなる電極とを備える可燃性ガスセンサ
を用い、該電極を該被測定雰囲気に晒し、該電極間に生
じる少なくとも混成電位を含む電位差に基づき可燃性ガ
スの濃度を測定することを特徴とする。
Another combustible gas concentration measuring method of the present invention is
A combustible gas sensor comprising a solid electrolyte body having proton conductivity and a pair of electrodes made of different materials formed on the same surface of the solid electrolyte body in contact with the atmosphere to be measured is used. It is characterized by exposing to an atmosphere and measuring the concentration of the combustible gas based on a potential difference including at least a mixed potential generated between the electrodes.

【0011】また、上記電位差は炭素数2以上の可燃性
ガスの濃度に起因するものとできる。
The potential difference may be caused by the concentration of combustible gas having 2 or more carbon atoms.

【0012】[0012]

【発明の実施の形態】本発明者らは、公知のプロトン導
電性の固体電解質体について検討を重ねた。その中で、
プロトン導電性固体電解質体について、(1)板状の固
体電解質体の表裏面を一対の電極で挟むように配置し、
この電極間で導電率を測定した場合と、(2)板状の固
体電解質体の一面上に電極を並べて配置し、この電極間
で導電率を測定した場合とでは、導電率に差を生じるこ
とを見出した。また、(1)のように電極を配置した場
合に比べて、(2)のように電極を配置した場合の方が
高い導電率が得られることを見出した。このことはこれ
まで知られていなかったことであり、また、これまで多
く使用されてきた酸素イオン導電性の固体電解質体につ
いて、同様な測定を行ってもその差は認められない特異
な現象であった。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have made extensive studies on a known proton conductive solid electrolyte body. inside that,
Regarding the proton conductive solid electrolyte body, (1) the plate-shaped solid electrolyte body is arranged such that the front and back surfaces are sandwiched by a pair of electrodes,
There is a difference in conductivity between the case where the conductivity is measured between the electrodes and the case where (2) the electrodes are arranged side by side on one surface of the plate-shaped solid electrolyte body and the conductivity is measured between the electrodes. I found that. It was also found that higher conductivity can be obtained when the electrodes are arranged as in (2) than when the electrodes are arranged as in (1). This is something that was not known so far, and for the oxygen ion conductive solid electrolyte body that has been used many times until now, even if the same measurement is performed, the difference is not a unique phenomenon. there were.

【0013】更に、これまでプロトン導電性の固体電解
質体を用い、炭化水素ガス等の濃度を測定するセンサで
は、その測定温度(固体電解質体の温度)を500℃〜
800℃の高温に調節して行っていた。これは前記のよ
うに炭化水素ガスを電極表面で燃焼させるためである。
しかし、本発明者らは450℃以下の低温において、寧
ろ炭化水素ガスが電極表面では燃焼し難い条件とした場
合に、従来に比べて著しく高い感度が得られることを見
出した。これは、可燃性ガスが電極の表面で燃焼するこ
となく、電極と固体電解質体との界面にまで達した場合
に、可燃性ガスと電極材料と固体電解質との三相の間で
何らかの反応を生じるために、従来の水素分圧に起因す
る電位差とは異なる電位差(混成電位)を生じるためで
あると考えられる。本発明者らは、これら2つの知見に
基づき本発明を完成させた。
Further, a sensor for measuring the concentration of hydrocarbon gas or the like using a proton-conductive solid electrolyte has hitherto been measured at a temperature (temperature of the solid electrolyte) of 500.degree.
The temperature was adjusted to a high temperature of 800 ° C. This is because the hydrocarbon gas is burned on the electrode surface as described above.
However, the present inventors have found that at a low temperature of 450 ° C. or lower, when the hydrocarbon gas is set to a condition that it is difficult to burn on the electrode surface, the sensitivity is remarkably higher than that of the conventional one. This means that when the combustible gas reaches the interface between the electrode and the solid electrolyte body without burning on the surface of the electrode, some reaction occurs between the combustible gas, the electrode material and the three phases of the solid electrolyte. It is considered that this is because a potential difference (mixed potential) different from the potential difference due to the conventional hydrogen partial pressure is generated. The present inventors have completed the present invention based on these two findings.

【0014】上記「固体電解質体」は、プロトン導電性
を有するものであればよく、その組成等は特に限定され
ない。このようなプロトン導電性を発揮できる固体電解
質体としては、例えば、BaCeO系酸化物、SrC
eO系酸化物、SrZrO 系酸化物、及び、CaZ
rO系酸化物等を挙げることができる。これらの固体
電解質体は、各々のBサイト(ABO系酸化物として
表した場合のBの位置)にSc、Y、In、Nd、P
m、Sm、Eu、Gd、Dy、Ho、Er、Tm、Yb
及びLuのうちの少なくとも1種が固溶されていてもよ
い。これらの固溶により特に高いプロトン導電性が発揮
できる。例えば、BaCeO 系酸化物としてはBa
(Ce,Y)O系酸化物及びBa(Ce,Nd)O
系酸化物、SrCeO系酸化物としてはSr(Ce,
Yb)O系酸化物、SrZrO系酸化物としてはS
r(Zr,Y)O系酸化物及びSr(Zr,Yb)O
系酸化物、CaZrO系酸化物としてはCa(Z
r,In)O系酸化物等を挙げることができる。
The above "solid electrolyte body" is a proton conductive material.
The composition and the like are not particularly limited.
Absent. Solid electrolysis capable of exhibiting such proton conductivity
As the body, for example, BaCeOThreeOxides, SrC
eOThree-Based oxide, SrZrO Three-Based oxides and CaZ
rOThreeExamples thereof include system oxides. These solids
Electrolytes are used at each B site (ABOThreeAs a system oxide
Sc, Y, In, Nd, and P at the position of B when expressed)
m, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb
And at least one of Lu may be solid-dissolved
Yes. Particularly high proton conductivity due to their solid solution
it can. For example, BaCeO ThreeBa as the oxide
(Ce, Y) OThree-Based oxides and Ba (Ce, Nd) OThree
-Based oxide, SrCeOThreeAs the system oxide, Sr (Ce,
Yb) OThree-Based oxide, SrZrOThreeS as a system oxide
r (Zr, Y) OThree-Based oxides and Sr (Zr, Yb) O
ThreeOxides, CaZrOThreeCa (Z
r, In) OThreeExamples thereof include system oxides.

【0015】これら酸化物を各々A(B1,B2)O
系酸化物(AB1O系酸化物のB1サイトにB2が固
溶していることを表す)として表した場合に、B1元素
及びB2元素の合計と、Oとの組成比は、B1元素、B
2元素、O元素の組成比B1:B2:Oをy1:y2:
3−δとすると、0.8≦y1≦0.95、0.05≦
y2≦0.2、0.025≦δ≦0.1であることが好
ましい。更に、Ba(Ce,Y)O系酸化物において
は0.7≦y1≦0.9、0.1≦y2≦0.3である
ことがより好ましい。Sr(Ce,Yb)O系酸化物
においては0.9≦y1≦0.98、0.02≦y2≦
0.1であることがより好ましい。Sr(Zr,Y)O
系酸化物においては0.9≦y1≦0.98、0.0
2≦y2≦0.1であることがより好ましい。Ca(Z
r,In)O系酸化物においては0.85≦y1≦
0.95、0.05≦y2≦0.15であることがより
好ましい。
Each of these oxides is A (B1, B2) O 3
When expressed as a system oxide (representing that B2 is a solid solution at the B1 site of the AB1O 3 system oxide), the composition ratio of the total of B1 element and B2 element to O is B1 element, B
Composition ratio B1: B2: O of 2 elements and O elements is changed to y1: y2:
If 3-δ, 0.8 ≦ y1 ≦ 0.95, 0.05 ≦
It is preferable that y2 ≦ 0.2 and 0.025 ≦ δ ≦ 0.1. Further, in the Ba (Ce, Y) O 3 based oxide, it is more preferable that 0.7 ≦ y1 ≦ 0.9 and 0.1 ≦ y2 ≦ 0.3. In Sr (Ce, Yb) O 3 -based oxide, 0.9 ≦ y1 ≦ 0.98, 0.02 ≦ y2 ≦
It is more preferably 0.1. Sr (Zr, Y) O
For 3 type oxides, 0.9 ≦ y1 ≦ 0.98, 0.0
It is more preferable that 2 ≦ y2 ≦ 0.1. Ca (Z
In the case of r, In) O 3 -based oxide, 0.85 ≦ y1 ≦
It is more preferable that 0.95 and 0.05 ≦ y2 ≦ 0.15.

【0016】上記に挙げたBaCeO系酸化物、Sr
CeO系酸化物、SrZrO系酸化物、及び、Ca
ZrO系酸化物等の中でも、導電性に優れ、可燃性ガ
スとの接触により特に大きな電位差(混成電位)を生じ
させることができるためBaCeO系酸化物、SrC
eO系酸化物及びSrZrO系酸化物のうちのいず
れかを用いることが好ましく、更には、BaCeO
酸化物を用いることがより好ましい。
The above-mentioned BaCeO 3 -based oxides, Sr
CeO 3 -based oxide, SrZrO 3 -based oxide, and Ca
Among ZrO 3 -based oxides and the like, BaCeO 3 -based oxide and SrC have excellent conductivity and can generate a particularly large potential difference (mixed potential) by contact with a combustible gas.
It is preferable to use any of the eO 3 based oxide and SrZrO 3 based oxide, further, it is more preferable to use a BaCeO 3 based oxide.

【0017】この固体電解質体の形状、大きさ等は特に
限定されない。固体電解質体の形状としては、例えば、
有底円筒型、板型(長方形型、円盤型等、厚さ10μm
以上)、薄膜型(長方形型、円盤型等、厚さ10μm未
満)などを適宜選択して用いることができる。また、固
体電解質体の大きさは、例えば、板型においては電極を
備える一面の表面積は、0.09cm以上(通常、
0.5cm以下程度)であることが好ましい。
The shape and size of the solid electrolyte body are not particularly limited. As the shape of the solid electrolyte body, for example,
Bottomed cylinder type, plate type (rectangular type, disc type, etc., thickness 10 μm
Above), thin film type (rectangular type, disc type, etc., thickness less than 10 μm) can be appropriately selected and used. Moreover, the size of the solid electrolyte body is, for example, in the plate type, the surface area of one surface provided with the electrode is 0.09 cm 2 or more (usually,
0.5 cm 2 or less) is preferable.

【0018】上記「電極」は、少なくとも一対を備え
る。その他に電極は備えていても、備えていなくてもよ
い。この電極は、2つの電極間に可燃性ガスに起因する
電位差を生じる。この電極は固体電解質体の表面に形成
されている。また、両方の電極のうち、それらの一部又
は全部が被測定雰囲気に直接的に又は間接的(被毒物質
等から検知電極を保護する多孔性保護層等を介する場
合)に接するように配置されている。
The "electrode" comprises at least one pair. Other electrodes may or may not be provided. This electrode creates a potential difference between the two electrodes due to the flammable gas. This electrode is formed on the surface of the solid electrolyte body. Also, of both electrodes, some or all of them are arranged so as to be in direct or indirect contact with the atmosphere to be measured (when a porous protective layer that protects the detection electrode from poisonous substances, etc. is interposed). Has been done.

【0019】また、各々の電極は固体電解質体の同一面
上に形成されていることを要する。上記「同一面」と
は、(1)固体電解質体の一平面上に2つの電極が形成
されている場合、(2)固体電解質体の曲面上に2つの
電極が形成されている場合を意味する。また、(1)及
び(2)において、平面又は曲面の表面に微細な凹凸を
有する又は形成されている場合に、この微細な凹凸に従
って電極が形成されているときも同一面上にこれらの電
極は形成されているものとする。(1)及び(2)のう
ちでも、(1)のように2つの電極が形成されているこ
とがより好ましい。このように、同一面上に電極を配置
することで、前記の固体電解質体の表面付近の導電率が
高いという特性を効果的に利用することができる。
Further, each electrode needs to be formed on the same surface of the solid electrolyte body. The "same plane" means (1) two electrodes are formed on one plane of the solid electrolyte body, and (2) two electrodes are formed on the curved surface of the solid electrolyte body. To do. Further, in (1) and (2), when the surface of a flat surface or a curved surface has or is formed with fine irregularities, even when electrodes are formed according to the fine irregularities, these electrodes are formed on the same surface. Are formed. Among (1) and (2), it is more preferable that two electrodes are formed as in (1). By arranging the electrodes on the same surface as described above, it is possible to effectively utilize the characteristic that the electric conductivity near the surface of the solid electrolyte body is high.

【0020】電極を構成する材料は、250〜450℃
において十分な導電性を有すればよく、特に限定されな
いが、室温における電気抵抗率が10Ω・cm以下
(通常、1.5−6Ω・cm以上、Ω・cmとは試料の
大きさにおいて1×1×1cm 当たりの抵抗値を示
す)であることが好ましい。また、例えば、内燃機関の
排気ガス中の可燃性ガスの濃度測定に用いられる場合等
は、高温下に晒されるため、この電極は1000℃にお
いても融解しないことが好ましい(例えば、内燃機関始
動直後の排気ガスには可燃性ガスが含まれる可能性が高
く、また、この初期の排気ガスの温度がさほど高くな
い。このため、本発明の可燃性ガスセンサの効果的な利
用が可能である。しかし、内燃機関の暖機後は1000
℃程度までの高温の排気ガスが排出されることとなり、
高温に晒される)。更に、耐食性に優れ、また、固体電
解質体上に被膜を形成した場合に密着性に優れることが
好ましい。
The material constituting the electrodes is 250 to 450 ° C.
It suffices that it has sufficient conductivity in, and is not particularly limited.
However, the electrical resistivity at room temperature is 10FourΩ · cm or less
(Usually 1.5-6Ω · cm or more, Ω · cm is the sample
1 x 1 x 1 cm in size ThreeShows the resistance value per hit
Is preferred. Also, for example,
When used to measure the concentration of combustible gas in exhaust gas, etc.
Is exposed to high temperatures, this electrode is kept at 1000 ° C.
However, it is preferable that the
Exhaust gas immediately after operation is likely to contain flammable gas
In addition, the temperature of the exhaust gas at this initial stage is not so high.
Yes. Therefore, the effective use of the combustible gas sensor of the present invention
Can be used. However, after warming up the internal combustion engine, 1000
High temperature exhaust gas up to about ℃ will be exhausted,
Exposed to high temperatures). Furthermore, it has excellent corrosion resistance and solid-state
When a film is formed on the demolition material, it may have excellent adhesion.
preferable.

【0021】電極において、このような特性を発揮でき
る材料としては、Osを除く貴金属(Ru、Rh、P
d、Ag、Ir、Pt、Au)や、Fe、Ni、Cr、
Co、Cu等の金属の1種又は2種以上を含有する金
属、合金及び金属酸化物等が挙げられる。中でも、高温
耐久性と、酸化雰囲気及び還元雰囲気に対する耐食性に
優れるため、Pt、Au、Pd及びRh等を主成分(一
方の電極全体の80質量%以上、更には90質量%以上
含有する)とする材料を用いることが好ましい。また、
一対の電極の各々はそれぞれ異なる材料からなる必要が
ある(同一の材料からなると電位差を生じない)ため、
各々の電極の組成が異なるように用いることを要する。
尚、材料が異なるとは、含有される金属自体が異なって
いてもよいが、含有される金属は同じであり、その含有
量が異なるために材料の組成が異なるものであってもよ
い(通常、一方の電極全体に対して特定の金属の含有量
が10質量%以上異なる必要がある)。
In the electrode, materials capable of exhibiting such characteristics are noble metals (Ru, Rh, P) other than Os.
d, Ag, Ir, Pt, Au), Fe, Ni, Cr,
Examples include metals, alloys and metal oxides containing one or more metals such as Co and Cu. Among them, Pt, Au, Pd, Rh, and the like are the main components (containing 80% by mass or more, and further 90% by mass or more of one electrode as a whole) because of their excellent high-temperature durability and corrosion resistance against an oxidizing atmosphere and a reducing atmosphere. It is preferable to use a material that Also,
Since each of the pair of electrodes must be made of a different material (because the same material does not cause a potential difference),
It is necessary to use each electrode with different compositions.
The term “different materials” may mean that the contained metals themselves are different, but the contained metals are the same, and the compositions of the materials may be different due to the different contents (usually , The content of the specific metal needs to be different by 10 mass% or more with respect to the entire one electrode).

【0022】また、電極の形状、大きさ及び厚さなどは
特に限定されないが、その厚さは2μm以上(更には2
〜15μm、特に5〜12μm)とすることが好まし
い。2μm未満であると十分な導通を図ることが困難と
なる場合がある。更に、一方の電極においては、その厚
さは50μm以下とすることが好ましい。50μmを超
えて厚い場合は被測定ガス(被測定雰囲気中に含まれる
測定対象ガス)が、この電極と固体電解質体とが接する
三相界面(被測定ガスと検知電極と固体電解質体の3
相)に達することが困難となり、感度の低下を招くこと
がある。
The shape, size and thickness of the electrode are not particularly limited, but the thickness is 2 μm or more (further, 2
.About.15 .mu.m, especially 5 to 12 .mu.m). If it is less than 2 μm, it may be difficult to achieve sufficient conduction. Further, the thickness of one of the electrodes is preferably 50 μm or less. When the thickness is more than 50 μm, the gas to be measured (the gas to be measured contained in the atmosphere to be measured) has a three-phase interface (the gas to be measured, the detection electrode, and the solid electrolyte body) in contact with this electrode and the solid electrolyte body.
Phase), which may lead to a decrease in sensitivity.

【0023】また、これらの一対の電極の電極間の最短
距離は1.5mm以下(より好ましくは1.0mm以
下、更に好ましくは0.75mm以下、通常0.5mm
以上)であることが好ましい。電極間の最短距離が特に
2mmを超えると、プロトンが固体電解質体内を移動す
る距離が長くなり、両方の電極を固体電解質体の表面に
形成する効果が十分に得られ難くなるため好ましくな
い。
The shortest distance between the pair of electrodes is 1.5 mm or less (more preferably 1.0 mm or less, still more preferably 0.75 mm or less, usually 0.5 mm).
Or more) is preferable. If the shortest distance between the electrodes exceeds 2 mm, the distance that protons move within the solid electrolyte body becomes long, and it becomes difficult to obtain the effect of forming both electrodes on the surface of the solid electrolyte body, which is not preferable.

【0024】また、本発明の可燃性ガスセンサは、固体
電解質体の温度が250〜450℃(より好ましくは2
70〜430℃、更に好ましくは300〜400℃、特
に好ましくは320〜380℃)において用いることに
より、両電極間で最も大きな電位差を得ることができ
る。この電位差には少なくとも混成電位が含まれる。本
発明の可燃性ガスセンサを450℃を超える温度におい
て使用すると、可燃性ガスに対して活性な電極におい
て、その電極の表面で可燃性ガスが燃焼して水蒸気を生
じ、この水蒸気圧に起因する電位差しか測定できないこ
とがあるため測定感度が極端に低下する場合がある。一
方、250℃未満において使用すると、導電率が十分に
得られず、三相界面において被測定ガスの反応が起き難
くなり、感度が低下(電位差が小さくなる)する場合が
ある。
In the combustible gas sensor of the present invention, the temperature of the solid electrolyte body is 250 to 450 ° C. (more preferably 2 ° C.).
70 to 430 ° C., more preferably 300 to 400 ° C., and particularly preferably 320 to 380 ° C.), the largest potential difference can be obtained between both electrodes. This potential difference includes at least a mixed potential. When the flammable gas sensor of the present invention is used at a temperature higher than 450 ° C., in an electrode that is active against the flammable gas, the flammable gas burns on the surface of the electrode to generate water vapor, and the potential difference caused by the water vapor pressure is generated. In some cases, the measurement sensitivity may be extremely reduced because only the measurement can be performed. On the other hand, if used at less than 250 ° C., sufficient conductivity may not be obtained, reaction of the gas to be measured may not easily occur at the three-phase interface, and sensitivity may decrease (potential difference decreases).

【0025】固体電解質体を温度250〜450℃にす
る方法は特に限定されない。例えば、被測定ガス自体が
250〜450℃であるために、別途加熱手段を用いな
くとも可燃性ガス濃度測定時に固体電解質体の温度が上
記温度範囲となるものであってもよく、また、別途ヒー
タ等の加熱装置を用いることにより強制的に固体電解質
体を250〜450℃にするものであってもよい。更
に、固体電解質体の抵抗値は固体電解質体自体の温度に
依存するため、この抵抗を測定し、この結果をフィード
バックして加熱装置の可動・停止を制御する加熱装置制
御手段を設けることもできる。これらにより更に精度の
よい濃度測定を行うことができる。
The method of raising the temperature of the solid electrolyte body to 250 to 450 ° C. is not particularly limited. For example, since the gas to be measured itself is 250 to 450 ° C., the temperature of the solid electrolyte body may be within the above temperature range at the time of measuring the combustible gas concentration without using a separate heating means. The solid electrolyte body may be forced to 250 to 450 ° C. by using a heating device such as a heater. Further, since the resistance value of the solid electrolyte body depends on the temperature of the solid electrolyte body itself, it is possible to provide a heating device control means for measuring the resistance and feeding back the result to control the movement / stop of the heating device. . With these, more accurate concentration measurement can be performed.

【0026】上記「混成電位」とは、固体電解質体の温
度に比例しない起電力である(図5参照)。即ち、例え
ば、水蒸気濃淡に起因する起電力EH2Oは、ネルンス
トの式EH2O=(RT/2F)ln{PHO(2)
/PHO(1)}から近似的に算出される。また、酸
素濃淡に起因する起電力EO2は、ネルンストの式E
O2=(RT/4F)ln{PO(2)/PO
(1)}から近似的に算出される。これらいずれの起
電力も上記式から分かるように固体電解質体の温度Tに
比例する値であるが、混成電位は異なっている。また、
この混成電位は固体電解質体の温度が250〜450℃
の範囲で感度良く測定することができる(温度が低いた
めに電極表面で可燃性ガスが燃焼することなく、三相界
面に達するために測定できる起電力)。
The above "mixed potential" means the temperature of the solid electrolyte body.
It is an electromotive force that is not proportional to the degree (see FIG. 5). That is, like
For example, the electromotive force E due to the light and shade of water vaporH2OThe Nerns
Formula EH2O= (RT / 2F) ln {PHTwoO (2)
/ PHTwoIt is approximately calculated from O (1)}. Also acid
Electromotive force E due to light and shadeO2Is the Nernst formula E
O2= (RT / 4F) ln {POTwo(2) / PO
Two(1)} is approximately calculated. Either of these
As can be seen from the above formula, the electric power also depends on the temperature T of the solid electrolyte body.
Although the values are proportional, the mixed potentials are different. Also,
This mixed potential is such that the temperature of the solid electrolyte body is 250 to 450 ° C.
It is possible to measure with high sensitivity in the range of
In order to prevent the combustible gas from burning on the electrode surface,
Electromotive force that can be measured to reach the surface).

【0027】本発明の可燃性ガスセンサ及び可燃性ガス
濃度測定方法によると、水素、一酸化炭素及び一酸化窒
素等に対する感度は非常に小さく(各成分ガスが含有さ
れない時の起電力と50ppm含有される時の起電力と
の電位差が10mV未満)、ほとんど検知しない。これ
に対して、炭素数が2以上(通常炭素数15以下、特に
炭素数3〜10、とりわけ炭素数4〜10)の炭化水素
{脂肪族炭化水素、環状炭化水素及び芳香族炭化水素
(これらの炭化水素が飽和、不飽和、直鎖、分枝を有す
るものはこれらも含む)など}や、CH=CHX、C
=CHCHX、CX及びCH−CHX−
CH等のハロゲン化炭化水素(但し、Xはハロゲン原
子)、COH等のアルコール類、CHNO
のニトロ化合物類、CHNH等のアミン化合物類、
CHCOOH等のカルボン酸化合物類、CHCHO
等のアルデヒド化合物類、アセトン等のケトン化合物
類、及び、CHOCH等のエーテル化合物類等に対
する電位差は測定可能な程度に有するため、これらの可
燃性ガスの検知及び濃度測定に好適である。
According to the combustible gas sensor and the method for measuring the combustible gas concentration of the present invention, the sensitivity to hydrogen, carbon monoxide, nitric oxide, etc. is very small (electromotive force when each component gas is not contained and 50 ppm is contained). The potential difference from the electromotive force at the time of the discharge is less than 10 mV. On the other hand, hydrocarbons having 2 or more carbon atoms (usually 15 or less carbon atoms, particularly 3 to 10 carbon atoms, especially 4 to 10 carbon atoms) (aliphatic hydrocarbons, cyclic hydrocarbons and aromatic hydrocarbons (these are Hydrocarbons of saturated, unsaturated, straight-chain, branched, etc.) and CH 2 ═CHX, C
H 2 = CHCH 2 X, C 3 H 7 X , and CH 3 -CHX-
Halogenated hydrocarbons such as CH 3 (where X is a halogen atom), alcohols such as C 2 H 5 OH, nitro compounds such as CH 3 NO 2 , amine compounds such as CH 3 NH 2 ,
Carboxylic acid compounds such as CH 3 COOH, CH 3 CHO
Since it has a measurable potential difference with respect to aldehyde compounds such as, ketone compounds such as acetone, and ether compounds such as CH 3 OCH 3 , it is suitable for detection and concentration measurement of these flammable gases. .

【0028】本発明の可燃性ガスセンサ及び可燃性ガス
濃度測定方法は、これらの可燃性ガスの中でも炭素数2
以上の炭化水素ガス(通常炭素数15以下、特に炭素数
3〜10、とりわけ炭素数4〜10)に対する感度に優
れている。また、更には2重結合を有する炭素数2以上
の炭化水素ガス(通常炭素数15以下、特に炭素数3〜
10、とりわけ炭素数4〜10)に対する感度に特に優
れている。本発明の可燃性ガスセンサ及び可燃性ガス濃
度測定方法によると、50ppmのプロペンと、21体
積%の酸素と、2.3体積%の水蒸気とを含有し、残部
がアルゴンからなる被測定ガスを、毎分150mlで供
給し、温度350℃で測定した場合の電位差が60mV
以上(更には70mV以上、特に75mV以上、とりわ
け80mV以上)とすることができる。
The combustible gas sensor and the method for measuring the concentration of the combustible gas according to the present invention have two carbon atoms among these combustible gases.
It has excellent sensitivity to the above hydrocarbon gases (usually having 15 or less carbon atoms, particularly 3 to 10 carbon atoms, and particularly 4 to 10 carbon atoms). Further, a hydrocarbon gas having a double bond and having a carbon number of 2 or more (usually having a carbon number of 15 or less, particularly 3 to
It is particularly excellent in sensitivity to 10, especially to 4 to 10 carbon atoms. According to the combustible gas sensor and the combustible gas concentration measuring method of the present invention, a measured gas containing 50 ppm of propene, 21% by volume of oxygen, and 2.3% by volume of water vapor, the balance being argon, The potential difference is 60 mV when supplied at 150 ml / min and measured at a temperature of 350 ° C.
Or more (further, 70 mV or more, particularly 75 mV or more, particularly 80 mV or more).

【0029】[0029]

【実施例】以下、実施例により本発明を具体的に説明す
る。 [1]プロトン導電性固体電解質体を用いた素子と酸素
イオン導電性固体電解質体を用いた素子との、導電性と
固体電解質体温度との相関の検討 (1)本発明品の作製 プロトン導電性固体電解質体を用い、一面側に一対の電
極が形成された素子1(可燃性ガスセンサ1)の作製
(図1参照) 横10mm、縦10mm、厚さ0.75mmであり、組
成式BaCe0.750.253−δで表されるプ
ロトン導電性を有する固体電解質体11{以下、単に
「[BCY]」という}の一面上に、Pt粉末を71〜
76質量%含有する白金ペーストを所定の形状に塗布
し、900℃で1時間加熱して、横10mm、縦1.0
mm、厚さ5〜30μmの白金電極121を形成した。
次いで、[BCY]11上の白金電極121を形成した
同じ面上に、Au粉末を71〜76質量%含有する金ペ
ーストを所定の形状に塗布し、900℃で1時間加熱し
て、横10mm、縦1.0mm、厚さ5〜30μmの金
電極122を形成した。この2つの電極は1.0mmの
幅をもって並んで配置されている。次いで、白金電極1
21には外部へ起電力を取り出すためのリード線となる
白金線131を接続し、金電極122にはリード線とな
る金線132を接続し、素子1(可燃性ガスセンサ1)
を得た。
EXAMPLES The present invention will be specifically described below with reference to examples. [1] Investigation of correlation between conductivity and solid electrolyte body temperature between an element using a proton conductive solid electrolyte body and an element using an oxygen ion conductive solid electrolyte body (1) Production of the present invention Proton conductivity Of a device 1 (combustible gas sensor 1) having a pair of electrodes formed on one surface side by using a porous solid electrolyte body (see FIG. 1): 10 mm in width, 10 mm in length, 0.75 mm in thickness, composition formula BaCe 0 .75 Y 0.25 O 3−δ having a proton conductive solid electrolyte body 11 {hereinafter, simply referred to as “[BCY]”}, Pt powder 71 to 71
A platinum paste containing 76 mass% is applied in a predetermined shape and heated at 900 ° C. for 1 hour to obtain a width of 10 mm and a length of 1.0.
A platinum electrode 121 having a thickness of 5 mm and a thickness of 5 to 30 μm was formed.
Then, a gold paste containing 71 to 76% by mass of Au powder was applied in a predetermined shape on the same surface of the [BCY] 11 on which the platinum electrode 121 was formed, and heated at 900 ° C. for 1 hour to obtain a width of 10 mm. A gold electrode 122 having a length of 1.0 mm and a thickness of 5 to 30 μm was formed. The two electrodes are arranged side by side with a width of 1.0 mm. Then, platinum electrode 1
A platinum wire 131, which is a lead wire for extracting electromotive force to the outside, is connected to 21, and a gold wire 132, which is a lead wire, is connected to the gold electrode 122, and the element 1 (flammable gas sensor 1) is connected.
Got

【0030】(2)比較品(素子2)の作製 プロトン導電性固体電解質体を用い、表裏面に各々電極
が形成された素子2の作製(図2参照) 横10mm、縦10mm、厚さ0.75mmの[BC
Y]21の一面上に、Pt粉末を71〜76質量%含有
する白金ペーストを所定の形状に塗布し、900℃で1
時間加熱して、横10mm、縦1.0mm、厚さ5〜3
0μmの白金電極221を形成した。次いで、[BC
Y]21上の白金電極221を形成した面とは反対の面
上の白金電極221に対向する位置に、Au粉末を71
〜76質量%含有する金ペーストを所定の形状に塗布
し、900℃で1時間加熱して、横10mm、縦1.0
mm、厚さ5〜30μmの金電極222を形成した。次
いで、白金電極221には外部へ起電力を取り出すため
のリード線となる白金線231を接続し、金電極にはリ
ード線となる金線232を接続し、素子2を得た。
(2) Preparation of comparative product (element 2) Preparation of element 2 in which electrodes were formed on the front and back surfaces using a proton conductive solid electrolyte body (see FIG. 2) 10 mm wide, 10 mm long, 0 thickness 0.75 mm [BC
Y] 21 is coated on one surface with a platinum paste containing 71 to 76 mass% of Pt powder in a predetermined shape, and the temperature is set to 900 ° C. for 1 hour.
Heated for 10 hours, width 10mm, length 1.0mm, thickness 5-3
A platinum electrode 221 of 0 μm was formed. Then, [BC
Y] 71 on the surface opposite to the surface on which the platinum electrode 221 was formed, facing the platinum electrode 221 with Au powder 71
~ 76 mass% of the gold paste is applied in a predetermined shape and heated at 900 ° C for 1 hour to obtain a width of 10 mm and a length of 1.0.
A gold electrode 222 having a thickness of 5 mm and a thickness of 5 to 30 μm was formed. Next, the platinum electrode 221 was connected to a platinum wire 231 serving as a lead wire for extracting an electromotive force to the outside, and the gold electrode was connected to a gold wire 232 serving as a lead wire to obtain the element 2.

【0031】(3)比較品(素子3)の作製 酸素イオン導電性固体電解質体を用い、一面側に一対の
電極が形成された素子3の作製 [BCY]に変えて、組成式Ce0.8Sm0.2
1.9で表される酸素イオン導電性を有する固体電解質
体{以下、単に「[CSO]」という}を用いたこと以
外は上記(1)と同様にして、素子3を得た。
(3) Preparation of Comparative Product (Element 3) Instead of the preparation [BCY] of Element 3 in which a pair of electrodes were formed on one surface side using an oxygen ion conductive solid electrolyte body, the composition formula Ce 0. 8 Sm 0.2 O
Element 3 was obtained in the same manner as in (1) above, except that a solid electrolyte body having oxygen ion conductivity represented by 1.9 {hereinafter, simply referred to as "[CSO]"} was used.

【0032】(4)比較品(素子4)の作製 酸素イオン導電性固体電解質体を用い、表裏面に各々電
極が形成された素子4の作製 [BCY]に変えて、[CSO]を用いたこと以外は上
記(2)と同様にして、素子4を得た。
(4) Preparation of comparative product (element 4) [CSO] was used instead of preparation [BCY] of element 4 in which electrodes were formed on the front and back surfaces using an oxygen ion conductive solid electrolyte body. Element 4 was obtained in the same manner as in the above (2) except for the above.

【0033】(5)比較品(素子5)の作製 酸素イオン導電性固体電解質体を用い、一面側に一対の
電極が形成された素子5の作製 [BCY]に変えて、組成式Zr0.920.08
1.96で表される酸素イオン導電性を有する固体電解
質体{以下、単に「[YSZ]」という}を用いたこと
以外は上記(1)と同様にして、素子5を得た。
(5) Preparation of comparative product (element 5) Instead of the preparation [BCY] of element 5 having a pair of electrodes formed on one surface side using an oxygen ion conductive solid electrolyte body, composition formula Zr 0. 92 Y 0.08 O
Element 5 was obtained in the same manner as in (1) above, except that the solid electrolyte body having oxygen ion conductivity represented by 1.96 {hereinafter, simply referred to as "[YSZ]"} was used.

【0034】(6)比較品(素子6)の作製 酸素イオン導電性固体電解質体を用い、表裏面に各々電
極が形成された素子6の作製 [BCY]に変えて、[YSZ]を用いたこと以外は上
記(2)と同様にして、素子6を得た。
(6) Preparation of comparative product (element 6) [YSZ] was used instead of preparation [BCY] of element 6 in which electrodes were formed on the front and back surfaces using an oxygen ion conductive solid electrolyte body. Element 6 was obtained in the same manner as in (2) except for the above.

【0035】(7)測定装置の作製 上記(1)〜(6)で得られた[BCY]、[CSO]
又は[YSZ]を用いた素子1〜6の各々を、外径6m
m、内径4mmのアルミナ製の細管31内に、図3に示
すような位置関係となるように固定した。次いで、この
細管31を外径13mm、内径9mmの外管32内に固
定した。そして、白金線及び金線を管外まで導出し、白
金線をエレクトロメータ(北斗電工株式会社製、形式
「HE−104」)の正極に接続し、金線を負極に接続
して6種類の測定装置を得た。図3は素子1を用いて得
られた測定装置(可燃性ガス濃度測定装置3)を示して
いる。
(7) Preparation of measuring device [BCY], [CSO] obtained in the above (1) to (6)
Alternatively, each of the elements 1 to 6 using [YSZ] has an outer diameter of 6 m.
It was fixed in a thin tube 31 made of alumina and having an inner diameter of 4 mm and an inner diameter of 4 mm so as to have a positional relationship as shown in FIG. Next, this thin tube 31 was fixed in an outer tube 32 having an outer diameter of 13 mm and an inner diameter of 9 mm. Then, the platinum wire and the gold wire were led out to the outside of the tube, the platinum wire was connected to the positive electrode of an electrometer (Hokuto Denko KK, type “HE-104”), and the gold wire was connected to the negative electrode. A measuring device was obtained. FIG. 3 shows a measuring device (flammable gas concentration measuring device 3) obtained by using the element 1.

【0036】(8)導電率の測定 上記(7)で得られた素子1〜6を備える6種類の測定
装置の各々を、測定装置全体を所定の温度に保温できる
加熱炉内に載置した。次いで、酸素が21体積%、水蒸
気が2.3体積%、残部がアルゴンとなるように調節し
た基準ガスを細管内に毎分150mlの速度で流入させ
た。そして、上記白金電極と金電極との間に一定の電流
を流し、この時に得られる電位差を、加熱炉内の温度を
400〜800℃まで50℃刻みで変化させながら測定
した。流した電流値と測定された電位差とから抵抗値を
算出し、この抵抗値の逆数である導電率を算出し、図4
に導電率と温度との相関をグラフとして示した。
(8) Measurement of conductivity Each of the six types of measuring devices including the elements 1 to 6 obtained in (7) above was placed in a heating furnace capable of keeping the entire measuring device at a predetermined temperature. . Next, a reference gas adjusted so that oxygen was 21% by volume, water vapor was 2.3% by volume, and the balance was argon was flown into the capillary at a rate of 150 ml / min. Then, a constant current was passed between the platinum electrode and the gold electrode, and the potential difference obtained at this time was measured while changing the temperature in the heating furnace from 400 to 800 ° C. in steps of 50 ° C. The resistance value was calculated from the value of the flowing current and the measured potential difference, and the conductivity, which is the reciprocal of the resistance value, was calculated.
The graph shows the correlation between conductivity and temperature.

【0037】(9)評価 図4より、プロトン導電性の固体電解質体[BCY]を
用いた素子も、酸素イオン導電性の[CSO]又は[Y
SZ]を用いた素子3〜6も、電極の形成場所に関わら
ず固体電解質体の温度の上昇に従い導電性が向上するこ
とが分かる。これらの中でも、[BCY]は他の酸素イ
オン導電性の固体電解質体に比べて、特に低温(600
℃以下、更には500℃以下)においても高い導電性を
維持できることが分かる。更に、[BCY]を用いた素
子であって、且つ、電極が[BCY]の一面側にのみ形
成されている素子1だけは、450℃以下の低温におけ
る導電性が際立って大きいことが分かる。即ち、450
℃以下の低温において高い導電性を得るためには、プロ
トン導電性の固体電解質体を用い、電極を固体電解質体
の一面側にのみ形成された形態とすることが好ましいこ
とが分かる。
(9) Evaluation From FIG. 4, the element using the proton conductive solid electrolyte body [BCY] also shows the oxygen ion conductive [CSO] or [Y].
It can be seen that the elements 3 to 6 using SZ] also have improved conductivity as the temperature of the solid electrolyte body rises regardless of the electrode formation location. Among these, [BCY] has a particularly low temperature (600) as compared with other oxygen ion conductive solid electrolyte bodies.
It can be seen that high conductivity can be maintained even at a temperature of not higher than 0 ° C, and further not higher than 500 ° C. Further, it can be seen that only the element 1 using [BCY] and having electrodes formed only on one surface side of [BCY] has remarkably large conductivity at a low temperature of 450 ° C. or lower. That is, 450
It is understood that in order to obtain high conductivity at a low temperature of not higher than 0 ° C., it is preferable to use a proton conductive solid electrolyte body and form the electrode only on one surface side of the solid electrolyte body.

【0038】[2]測定温度と起電力との相関の検討 (1)起電力の変化の測定 上記[1]の(7)で得られた[BCY]を備える可燃
性ガス濃度測定装置3を所定の温度に保温された加熱炉
内に載置した。加熱炉は、その温度を200〜500℃
まで50℃刻みで各々の温度に保持しながら使用した。
次いで、プロペンが50ppm、酸素が21体積%、水
蒸気が2.3体積%、残部がアルゴンとなるように調節
した被測定ガスを細管内に毎分150mlの速度で流入
させた。この時の上記白金電極と金電極との間に生じる
電位差を測定し、図5にグラフとして示した。
[2] Investigation of correlation between measured temperature and electromotive force (1) Measurement of change in electromotive force A combustible gas concentration measuring device 3 equipped with [BCY] obtained in (7) of [1] above was used. It was placed in a heating furnace kept at a predetermined temperature. The heating furnace has a temperature of 200 to 500 ° C.
It was used while maintaining each temperature up to 50 ° C.
Then, a measured gas adjusted so that propene was 50 ppm, oxygen was 21% by volume, water vapor was 2.3% by volume, and the balance was argon was flown into the capillary at a rate of 150 ml / min. At this time, the potential difference generated between the platinum electrode and the gold electrode was measured and shown in the graph of FIG.

【0039】(2)評価 図5より、得られる起電力が最も大きいのは温度300
〜400℃の範囲内に存在することが分かる。また、特
に350℃における起電力は大きいことが分かる。
(2) Evaluation From FIG. 5, the maximum electromotive force obtained is at temperature 300.
It can be seen that it exists in the range of 400 ° C. Further, it can be seen that the electromotive force is particularly large at 350 ° C.

【0040】[3]各種ガスの濃度と起電力との相関の
検討 (1)各種ガス濃度の測定 上記[1]の(7)で得られた[BCY]を備える可燃
性ガス濃度測定装置3を用い、上記加熱炉内の温度を3
50℃に保温した。次いで、メタン、エタン、エテン、
エチン、プロパン、プロペン、ブテン、1−ブテン、水
素及び一酸化炭素の各々の測定対象ガスが所定量、酸素
が21体積%、水蒸気が2.3体積%、残部がアルゴン
となるように調節した被測定ガスを細管内に毎分150
mlの速度で流入させた。尚、上記の各種被測定ガスの
所定量とは、5〜50ppmまでの5ppm刻みの各濃
度である(図6及び図7参照)。この各種の被測定ガス
を流入させている間に上記白金電極と金電極との間に生
じる電位差を測定し、図6及び図7にグラフとして示し
た。
[3] Examination of correlation between concentration of various gases and electromotive force (1) Measurement of concentration of various gases Combustible gas concentration measuring device 3 equipped with [BCY] obtained in (7) of [1] above The temperature inside the heating furnace to 3
It was kept warm at 50 ° C. Then methane, ethane, ethene,
Each of the measurement target gases of ethyne, propane, propene, butene, 1-butene, hydrogen and carbon monoxide was adjusted to a predetermined amount, oxygen was 21% by volume, water vapor was 2.3% by volume, and the balance was argon. 150 to be measured gas into the thin tube per minute
Flowed at a rate of ml. In addition, the above-mentioned predetermined amount of each gas to be measured is each concentration in 5 ppm increments from 5 to 50 ppm (see FIGS. 6 and 7). The potential difference generated between the platinum electrode and the gold electrode during the flow of these various gases to be measured was measured and shown as a graph in FIGS. 6 and 7.

【0041】(3)評価 図6より、本発明の可燃性ガスセンサは、プロペン等の
炭化水素系の化合物が共存する場合には、可燃性ガスで
はあるが水素及び一酸化炭素には、相対的にほとんど感
度を有していないことが分かる。このことは、本発明の
可燃性ガスセンサを内燃機関の排ガス内の炭化水素系化
合物の濃度のみを選択的に測定したい場合に非常に有益
である。即ち、通常、内燃機関の排気ガスに含まれる水
素及び一酸化炭素を除く純粋な炭化水素系化合物のみの
濃度を測定することが可能である。
(3) Evaluation From FIG. 6, the combustible gas sensor of the present invention is a combustible gas in the presence of a hydrocarbon-based compound such as propene, but is relatively insensitive to hydrogen and carbon monoxide. It can be seen that it has almost no sensitivity to. This is very useful when the combustible gas sensor of the present invention is used to selectively measure only the concentration of hydrocarbon compounds in the exhaust gas of an internal combustion engine. That is, it is usually possible to measure the concentration of only pure hydrocarbon compounds excluding hydrogen and carbon monoxide contained in the exhaust gas of an internal combustion engine.

【0042】また、図7より、高濃度(50ppm以上
程度)であれば、エタン、プロパン及びブタン等の不飽
和結合を有さない炭化水素化合物の濃度の測定も可能で
あるが、特に、2重の不飽和結合を有するエテン、プロ
ペン、n−ブテン及び1−ブテン等に対する感度に優れ
ていることが分かる。また、その感度は炭素数が2であ
るものに比べて、炭素数が3であるものに対して高く、
更に、炭素数が3であるものに比べて、炭素数が4であ
るものに対して高いことが分かる。
From FIG. 7, it is possible to measure the concentration of a hydrocarbon compound having no unsaturated bond such as ethane, propane and butane at a high concentration (about 50 ppm or more). It can be seen that the sensitivity to ethene, propene, n-butene, 1-butene and the like having a heavy unsaturated bond is excellent. In addition, the sensitivity is higher for those having 3 carbon atoms than for those having 2 carbon atoms,
Furthermore, it can be seen that the number of carbon atoms is higher than that of three carbon atoms.

【0043】従って、上記[1]〜[3]より、可燃性
ガスセンサとしては、固体電解質体としてプロトン導電
性を有する固体電解質体を用い、電極をこの固体電解質
体の一面側にのみ形成し、更に、固体電解質体の温度を
250〜450℃に保持することで極めて優れた性能を
発揮させることができることが分かる。
Therefore, from the above [1] to [3], as the combustible gas sensor, the solid electrolyte body having proton conductivity is used as the solid electrolyte body, and the electrode is formed only on one surface side of the solid electrolyte body. Furthermore, it can be seen that extremely excellent performance can be exhibited by maintaining the temperature of the solid electrolyte body at 250 to 450 ° C.

【0044】[0044]

【発明の効果】本発明の可燃性ガスセンサ及び本発明の
他の可燃性ガスセンサによると、水素、一酸化炭素及び
一酸化窒素を除く各種の可燃性ガスの濃度を測定するこ
とができる。また、固体電解質体がBaCeO系プロ
トン導電性酸化物であることにより、優れた感度を発揮
させることができる。更に、電極の間の最短距離が所定
値以下であることにより、優れた感度を発揮させること
ができる。また、特に、炭素数2以上の可燃性ガスの濃
度測定に好適に用いることができる。更に、50ppm
のプロペンと、21体積%の酸素と、2.3体積%の水
蒸気とを含有し、残部がアルゴンからなる被測定ガス
を、毎分150mlで供給し、温度350℃で測定した
場合の電位差が60mV以上とすることができる。本発
明の可燃性ガス濃度測定方法及び本発明の他の可燃性ガ
ス濃度測定方法によると、水素、一酸化炭素及び一酸化
窒素を除く各種の可燃性ガスを測定することができる。
また、特に炭素数2以上の可燃性ガスの濃度測定を感度
良く、正確に行うことができる。
According to the combustible gas sensor of the present invention and the other combustible gas sensor of the present invention, it is possible to measure the concentrations of various combustible gases except hydrogen, carbon monoxide and nitric oxide. Moreover, when the solid electrolyte body is a BaCeO 3 -based proton conductive oxide, excellent sensitivity can be exhibited. Furthermore, when the shortest distance between the electrodes is equal to or less than a predetermined value, excellent sensitivity can be exhibited. Further, it can be preferably used particularly for measuring the concentration of a combustible gas having 2 or more carbon atoms. Furthermore, 50ppm
Of propene, 21% by volume of oxygen and 2.3% by volume of water vapor, with the balance being argon, the gas to be measured was supplied at 150 ml / min and the potential difference when measured at a temperature of 350 ° C. It can be 60 mV or more. According to the combustible gas concentration measuring method of the present invention and the other combustible gas concentration measuring method of the present invention, various combustible gases other than hydrogen, carbon monoxide and nitric oxide can be measured.
Further, it is possible to accurately and accurately measure the concentration of a combustible gas having 2 or more carbon atoms.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガスセンサの一例の模式的な斜視図で
ある。
FIG. 1 is a schematic perspective view of an example of a gas sensor of the present invention.

【図2】比較品のガスセンサの一例の模式的な透視斜視
図である。
FIG. 2 is a schematic perspective view of an example of a gas sensor of a comparative product.

【図3】実施例で用いた可燃性ガス濃度測定装置の模式
的な断面図である。
FIG. 3 is a schematic cross-sectional view of a combustible gas concentration measuring device used in an example.

【図4】固体電解質体の温度と起電力との相関を示すグ
ラフである。
FIG. 4 is a graph showing a correlation between a temperature of a solid electrolyte body and an electromotive force.

【図5】本発明の可燃性ガスセンサによる固体電解質体
の温度と得られる起電力との相関である。
FIG. 5 is a correlation between the temperature of the solid electrolyte body and the electromotive force obtained by the combustible gas sensor of the present invention.

【図6】本発明の可燃性ガスセンサによる各種ガスの濃
度と得られる起電力との相関を示すグラフである。
FIG. 6 is a graph showing the correlation between the concentrations of various gases and the electromotive force obtained by the combustible gas sensor of the present invention.

【図7】本発明の可燃性ガスセンサによる各種ガスの濃
度と得られる起電力との相関を示すグラフである。
FIG. 7 is a graph showing the correlation between the concentrations of various gases and the electromotive force obtained by the combustible gas sensor of the present invention.

【符号の説明】[Explanation of symbols]

1;可燃性ガスセンサ(素子1)、11;プロトン導電
性を有する固体電解質体([BCY])、121;白金
電極、122;金電極、131;白金線、132;金
線、2;素子2、21;プロトン導電性を有する固体電
解質体([BCY])、221;白金電極、222;金
電極、231;白金線、232;金線、3;可燃性ガス
濃度測定装置、31;細管、32;外管。
1; flammable gas sensor (element 1), 11; solid electrolyte body ([BCY]) having proton conductivity, 121; platinum electrode, 122; gold electrode, 131; platinum wire, 132; gold wire, 2; element 2 , 21; solid electrolyte body ([BCY]) having proton conductivity, 221; platinum electrode, 222; gold electrode, 231; platinum wire, 232; gold wire, 3; combustible gas concentration measuring device, 31; capillary tube, 32; outer tube.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柿元 志郎 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 (72)発明者 井上 隆治 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 (72)発明者 石田 昇 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 Fターム(参考) 2G004 ZA05 2G060 AA02 AA03 AA04 AD01 AE40 AF09 AG10 AG11 HB06 KA01   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shiro Kakimoto             14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi Japan special             Within Toyo Co., Ltd. (72) Inventor Ryuji Inoue             14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi Japan special             Within Toyo Co., Ltd. (72) Inventor Noboru Ishida             14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi Japan special             Within Toyo Co., Ltd. F term (reference) 2G004 ZA05                 2G060 AA02 AA03 AA04 AD01 AE40                       AF09 AG10 AG11 HB06 KA01

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 プロトン導電性を示す固体電解質体と、
該固体電解質体の被測定雰囲気と接する同一面上に各々
形成された一対の異なる材料からなる電極とを備え、該
固体電解質体の温度が250〜450℃の間で用いられ
ることを特徴とする可燃性ガスセンサ。
1. A solid electrolyte body having proton conductivity,
The solid electrolyte body is provided with a pair of electrodes made of different materials formed on the same surface in contact with the atmosphere to be measured, and the solid electrolyte body is used at a temperature of 250 to 450 ° C. Combustible gas sensor.
【請求項2】 プロトン導電性を示す固体電解質体と、
該固体電解質体の被測定雰囲気と接する同一面上に各々
形成された一対の異なる材料からなる電極とを備え、該
電極間に生じる少なくとも混成電位を含む電位差に基づ
く可燃性ガス濃度測定に用いられることを特徴とする可
燃性ガスセンサ。
2. A solid electrolyte body having proton conductivity,
It is provided with a pair of electrodes made of different materials formed on the same surface in contact with the atmosphere to be measured of the solid electrolyte body, and is used for measuring the concentration of flammable gas based on a potential difference including at least a hybrid potential generated between the electrodes. A combustible gas sensor characterized in that
【請求項3】 上記固体電解質体はBaCeO系プロ
トン導電性酸化物である請求項1又は2に記載の可燃性
ガスセンサ。
3. The flammable gas sensor according to claim 1, wherein the solid electrolyte body is a BaCeO 3 -based proton conductive oxide.
【請求項4】 上記電極の間の最短距離は1.5mm以
下である請求項1乃至3のうちのいずれか1項に記載の
可燃性ガスセンサ。
4. The flammable gas sensor according to claim 1, wherein the shortest distance between the electrodes is 1.5 mm or less.
【請求項5】 炭素数2以上の可燃性ガスの濃度測定に
用いられる請求項1乃至4のうちのいずれか1項に記載
の可燃性ガスセンサ。
5. The combustible gas sensor according to claim 1, which is used for measuring the concentration of a combustible gas having 2 or more carbon atoms.
【請求項6】 50ppmのプロペンと、21体積%の
酸素と、2.3体積%の水蒸気とを含有し、残部がアル
ゴンからなる被測定ガスを、毎分150mlで供給し、
温度350℃で測定した場合の電位差が60mV以上で
ある請求項1乃至5のうちのいずれか1項に記載の可燃
性ガスセンサ。
6. A measured gas containing 50 ppm of propene, 21% by volume of oxygen and 2.3% by volume of water vapor, the balance being argon, is supplied at 150 ml / min,
The combustible gas sensor according to any one of claims 1 to 5, wherein the potential difference when measured at a temperature of 350 ° C is 60 mV or more.
【請求項7】 プロトン導電性を示す固体電解質体と、
該固体電解質体の被測定雰囲気と接する同一面上に各々
形成された一対の異なる材料からなる電極とを備える可
燃性ガスセンサを用い、該電極を該被測定雰囲気に晒
し、該固体電解質体の温度が250〜450℃となる条
件において、該電極間に生じる電位差に基づき可燃性ガ
スの濃度を測定することを特徴とする可燃性ガス濃度測
定方法。
7. A solid electrolyte body having proton conductivity,
Using a flammable gas sensor having a pair of electrodes made of different materials formed on the same surface in contact with the atmosphere to be measured of the solid electrolyte body, exposing the electrodes to the atmosphere to be measured, the temperature of the solid electrolyte body Is 250 to 450 ° C., the combustible gas concentration is measured based on the potential difference generated between the electrodes.
【請求項8】 プロトン導電性を示す固体電解質体と、
該固体電解質体の被測定雰囲気と接する同一面上に各々
形成された一対の異なる材料からなる電極とを備える可
燃性ガスセンサを用い、該電極を該被測定雰囲気に晒
し、該電極間に生じる少なくとも混成電位を含む電位差
に基づき可燃性ガスの濃度を測定することを特徴とする
可燃性ガス濃度測定方法。
8. A solid electrolyte body having proton conductivity,
A flammable gas sensor comprising a pair of electrodes made of different materials formed on the same surface in contact with the atmosphere to be measured of the solid electrolyte body is used, and the electrodes are exposed to the atmosphere to be measured to generate at least between the electrodes. A combustible gas concentration measuring method comprising measuring the concentration of a combustible gas based on a potential difference including a mixed potential.
【請求項9】 上記電位差は炭素数2以上の可燃性ガス
の濃度に起因するものである請求項7又は8に記載の可
燃性ガス濃度測定方法。
9. The combustible gas concentration measuring method according to claim 7, wherein the potential difference is caused by the concentration of the combustible gas having 2 or more carbon atoms.
JP2001277300A 2001-09-12 2001-09-12 Flammable gas concentration measurement method Expired - Lifetime JP4743375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001277300A JP4743375B2 (en) 2001-09-12 2001-09-12 Flammable gas concentration measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001277300A JP4743375B2 (en) 2001-09-12 2001-09-12 Flammable gas concentration measurement method

Publications (2)

Publication Number Publication Date
JP2003083929A true JP2003083929A (en) 2003-03-19
JP4743375B2 JP4743375B2 (en) 2011-08-10

Family

ID=19101850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001277300A Expired - Lifetime JP4743375B2 (en) 2001-09-12 2001-09-12 Flammable gas concentration measurement method

Country Status (1)

Country Link
JP (1) JP4743375B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100864A (en) * 2003-09-25 2005-04-14 Nec Corp Measurement method of alcohol concentration, measurement device of alcohol concentration, and fuel cell system including the device
JP2007121048A (en) * 2005-10-27 2007-05-17 Tokai Denshi Kk Method of measuring breath alcohol
GB2434647A (en) * 2006-01-13 2007-08-01 Asthma Alert Ltd Gas Concentration and Humidity Sensor
JP2008032712A (en) * 2006-07-25 2008-02-14 Robert Bosch Gmbh Mixed potential type sensor and detection method using same for detecting various gases in gas mixture
JP2009008493A (en) * 2007-06-27 2009-01-15 Norio Miura Non-methane hydrocarbon gas sensing element
KR100884307B1 (en) 2007-04-25 2009-02-18 주식회사 시오스 NOX Sensor
WO2010010978A1 (en) * 2008-07-23 2010-01-28 Cios Inc. Nox sensor
JP2010197075A (en) * 2009-02-23 2010-09-09 Gunze Ltd Hydrogen gas sensor
JP2010197074A (en) * 2009-02-23 2010-09-09 Gunze Ltd Hydrogen gas sensor
JP2016108979A (en) * 2014-12-03 2016-06-20 日本碍子株式会社 Catalyst deterioration diagnostic method
JP2016108982A (en) * 2014-12-03 2016-06-20 日本碍子株式会社 Catalyst deterioration diagnostic system and catalyst deterioration diagnostic method
JP2016108983A (en) * 2014-12-03 2016-06-20 日本碍子株式会社 Catalyst deterioration diagnostic method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242060A (en) * 1993-02-23 1994-09-02 Tokyo Yogyo Co Ltd Hydrocarbon sensor
JPH09127055A (en) * 1995-11-02 1997-05-16 Matsushita Electric Ind Co Ltd Hydrocarbon sensor
JPH10284108A (en) * 1997-03-31 1998-10-23 Toyota Motor Corp Solid electrolyte, and fuel cell, hydrogen pump, oxygen concentration sensor, and steam concentration sensor using the electrolyte
JPH11326268A (en) * 1998-05-18 1999-11-26 Ngk Spark Plug Co Ltd Planar limiting current-type sensor
JPH11337518A (en) * 1998-05-25 1999-12-10 Matsushita Electric Ind Co Ltd Hydrocarbon sensor
JP2000028573A (en) * 1998-07-13 2000-01-28 Riken Corp Hydrocarbon gas sensor
JP2002174621A (en) * 2000-12-08 2002-06-21 Ngk Spark Plug Co Ltd Hydrocarbon gas concentration measuring device and hydrocarbon gas concentration measuring method using the device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242060A (en) * 1993-02-23 1994-09-02 Tokyo Yogyo Co Ltd Hydrocarbon sensor
JPH09127055A (en) * 1995-11-02 1997-05-16 Matsushita Electric Ind Co Ltd Hydrocarbon sensor
JPH10284108A (en) * 1997-03-31 1998-10-23 Toyota Motor Corp Solid electrolyte, and fuel cell, hydrogen pump, oxygen concentration sensor, and steam concentration sensor using the electrolyte
JPH11326268A (en) * 1998-05-18 1999-11-26 Ngk Spark Plug Co Ltd Planar limiting current-type sensor
JPH11337518A (en) * 1998-05-25 1999-12-10 Matsushita Electric Ind Co Ltd Hydrocarbon sensor
JP2000028573A (en) * 1998-07-13 2000-01-28 Riken Corp Hydrocarbon gas sensor
JP2002174621A (en) * 2000-12-08 2002-06-21 Ngk Spark Plug Co Ltd Hydrocarbon gas concentration measuring device and hydrocarbon gas concentration measuring method using the device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
日比野高士ら: "高温型プロトン導電性セラミックスを固体電解質に用いた起電力式炭化水素センサ", 日本化学会誌, JPN6010061531, 1995, JP, pages 768 - 773, ISSN: 0001886658 *
森賢太郎、日比野高士、橋本衷子、佐野充: "プロトン導電体を使用した混成電位型炭化水素センサ", CHEMICAL SENSORS, vol. 17, JPN6010061530, 1 April 2001 (2001-04-01), JP, pages 61 - 63, ISSN: 0001760529 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100864A (en) * 2003-09-25 2005-04-14 Nec Corp Measurement method of alcohol concentration, measurement device of alcohol concentration, and fuel cell system including the device
JP4709630B2 (en) * 2005-10-27 2011-06-22 東海電子株式会社 Breath alcohol measurement method
JP2007121048A (en) * 2005-10-27 2007-05-17 Tokai Denshi Kk Method of measuring breath alcohol
GB2434647A (en) * 2006-01-13 2007-08-01 Asthma Alert Ltd Gas Concentration and Humidity Sensor
JP2008032712A (en) * 2006-07-25 2008-02-14 Robert Bosch Gmbh Mixed potential type sensor and detection method using same for detecting various gases in gas mixture
KR100884307B1 (en) 2007-04-25 2009-02-18 주식회사 시오스 NOX Sensor
JP2009008493A (en) * 2007-06-27 2009-01-15 Norio Miura Non-methane hydrocarbon gas sensing element
WO2010010978A1 (en) * 2008-07-23 2010-01-28 Cios Inc. Nox sensor
JP2010197075A (en) * 2009-02-23 2010-09-09 Gunze Ltd Hydrogen gas sensor
JP2010197074A (en) * 2009-02-23 2010-09-09 Gunze Ltd Hydrogen gas sensor
JP2016108979A (en) * 2014-12-03 2016-06-20 日本碍子株式会社 Catalyst deterioration diagnostic method
JP2016108982A (en) * 2014-12-03 2016-06-20 日本碍子株式会社 Catalyst deterioration diagnostic system and catalyst deterioration diagnostic method
JP2016108983A (en) * 2014-12-03 2016-06-20 日本碍子株式会社 Catalyst deterioration diagnostic method
US10196958B2 (en) 2014-12-03 2019-02-05 Ngk Insulators, Ltd. Catalyst deterioration diagnosis method

Also Published As

Publication number Publication date
JP4743375B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP6131166B2 (en) Electrode for gas sensor and gas sensor element using the same
JP3107817B2 (en) Sensor element for limiting current sensor for detection of λ value of mixed gas
JP3128114B2 (en) Nitrogen oxide detector
US20070080074A1 (en) Multicell ammonia sensor and method of use thereof
EP1615025A2 (en) Hydrocarbon sensor
JPS6338154A (en) Nox sensor
JP2003083929A (en) Combustible gas sensor and combustible-gas-concentration measuring method
JP2017527814A (en) Amperometric solid electrolyte sensor and method for detecting NH3 and NOX
JP3855771B2 (en) Porous electrode, electrochemical element including the same, gas concentration detection sensor, oxygen partial pressure control method, and combustible gas detection method
WO2015194490A1 (en) Gas sensor
KR20180122701A (en) Current measurement Electrochemical sensors, sensor systems and detection methods (Amperometric electrochemical sensors,
JP2006133039A (en) Nitrogen oxide sensor
JPH05180798A (en) Solid electrolyte gas sensor
JP4730635B2 (en) Hydrocarbon gas sensor and hydrocarbon gas concentration measuring method
JP2003035693A (en) Flammable gas sensor
JP3463735B2 (en) Method for detecting hydrocarbon gas component and detection sensor
JP2002174621A (en) Hydrocarbon gas concentration measuring device and hydrocarbon gas concentration measuring method using the device
JP3546919B2 (en) Nitrogen oxide and oxygen detection sensor
JP2016521855A (en) Gas sensor for measuring a plurality of different gases and associated manufacturing method
JP2008224637A (en) Gas sensor and its manufacturing method
JP2003254924A (en) Nitrogen oxide sensor
JP2002156355A (en) Gas sensor element and gas concentration measuring device having the same
JP4750574B2 (en) Gas detection element
JP2019049444A (en) NOx sensor element and NOx sensor
JP3696494B2 (en) Nitrogen oxide sensor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4743375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term