JP3546919B2 - Nitrogen oxide and oxygen detection sensor - Google Patents

Nitrogen oxide and oxygen detection sensor Download PDF

Info

Publication number
JP3546919B2
JP3546919B2 JP03416698A JP3416698A JP3546919B2 JP 3546919 B2 JP3546919 B2 JP 3546919B2 JP 03416698 A JP03416698 A JP 03416698A JP 3416698 A JP3416698 A JP 3416698A JP 3546919 B2 JP3546919 B2 JP 3546919B2
Authority
JP
Japan
Prior art keywords
gas
cell
oxygen
sensor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03416698A
Other languages
Japanese (ja)
Other versions
JPH11218514A (en
Inventor
英昭 高橋
啓市 佐治
勝次 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP03416698A priority Critical patent/JP3546919B2/en
Publication of JPH11218514A publication Critical patent/JPH11218514A/en
Application granted granted Critical
Publication of JP3546919B2 publication Critical patent/JP3546919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ボイラー,自動車等から排出される燃焼排気ガス、更には生活環境雰囲気中に含まれるOガス及びNOガスを、他のガスの影響を受けることなく選別して高精度に検出することができると共に、著しく小型化が可能な窒素酸化物及び酸素検出センサに関するものである。
【0002】
【従来の技術】
被測定ガス中のガス成分やその濃度を測定するために各種の測定法及び測定装置が提案され、又は実用化されている。その中でも、測定精度及び信頼性が高いガス分析法として、赤外吸収を利用する測定法がある。例えばO,NO,SO,CO,HO等の酸素結合ガスは赤外線領域に固有の吸収スペクトルを示すので、ガス成分に応じた特有の吸収波長が存在し、その波長における吸光度から各ガス成分の濃度を測定することができる。しかし、赤外吸収を利用する測定法では測定装置が大型となり、それ故、例えば自動車の排気管のような微小空間内のガス分布の測定に用いることは困難である。また、赤外吸収を利用する測定法以外の他の測定法として、固体電解質の両端にガス濃度の差が生じると、ガス濃度の差に応じた起電力が発生する原理を利用した測定法もある。例えば、ZrO(ジルコニア)電解質からなるペレットの両端に電極を設けて、一方の電極側を一定の酸素濃度(例えば大気)にして基準極とし、他の電極を測定極とすると、ネルンストの式に基ずく酸素濃度の濃淡に応じた起電カが発生する。この方法にて、酸素ガスはもとよりNO,SO,CO,HOの各ガスを測定することができる。ZrO電解質を用いるガス成分の測定法は、目的とするガス以外の他のガスの影響を比較的受けにくいことから優れた測定法であるが、個々のガス基準極を必要とするためにセンサ素子の構造が複雑になるという欠点がある。
【0003】
ZrO電解質を用いるガス成分の測定法における前記の欠点を解決するための方法も提案されている。すなわち、ZrO電解質は酸素を一方の電極から他方の電極へ排出する酸素ポンプ作用があるので、ZrO電解質を用いて、前記の酸素ポンプ作用によって流れる電流から雰囲気中の酸素濃度を測定する酸素濃度測定法がある。この測定法を用いると、以下の原理に基づいて酸素結合ガスの濃度を測定することができる。
酸素結合ガスを低酸素分圧の下で分解温度まで加熱すると酸素結合ガスの分解によってOガスが生成する。そこで、生成したOガスをZrO電解質に取り込み、陰極から陽極に移動させて放出し(酸素ポンプ作用)、その時に流れる電流値から酸素結合ガスの濃度を測定する。よって、この方法で得られる出力は酸素結合ガスの濃度に対応した出力となることから、リニアな出力となる。しかし、酸素結合ガスの中でNOガスはOガスとほぼ同じ特性を示すので、Oガスと分離してNOガスを測定することは困難である。
【0004】
ZrO電解質からなるセンサ素子を用いてOガスとNOガスが混在した被測定ガス中のNOガスを測定する方法として、特開平8−271476号公報には、ZrO電解質からなるセンサ素子に設ける電極の材料を変えることにより電極近傍におけるNOガスの分解条件を変えると共に、NOガスの測定の障害となる酸素を排除し、その後、残留しているNOガスをNガスとOガスに分解し、分解によって生じたOガスの酸素ポンプ作用にて流れる電流値からNOガス濃度を測定する方法が提案されている。
【0005】
【発明が解決しようとする課題】
特開平8−271476号公報に記載された方法においても、OガスとNOガスが混在した被測定ガス中のOガスを実質的に無視し得る程度に除去した後でなければNOガスを測定することができない。このように、従来技術における固体電解質の特性を利用したガス成分の測定法も、また、他の何れのガス成分の測定法も、基本的には単一成分のガスを測定する方法であり、多成分のガスの各成分を測定するためには、個々に測定条件を変える必要がある。しかしながら、多成分からなる被測定ガスを実際に測定する場合には、被測定ガス中に含まれる複数のガスを同時に測定したい場合が多い。そこで、これまでは単一ガスを測定する各種のガスセンサを被測定ガス雰囲気中に挿入して、各ガスセンサの信号から雰囲気中のガス成分とその濃度を測定していた。そのため、被測定ガス中に含まれる複数のガス成分及びその濃度を測定するために測定装置が全体として大型化し、また、その構成が複雑になると共に、測定に際して被測定ガスの雰囲気を乱す等の問題があった。それ故、被測定ガス中の複数のガス成分、とりわけOガスとNOガス(NOガス中の主成分)を簡便迅速に測定するために用いることができる小型の測定装置が望まれていた。
【0006】
本発明は前記従来技術の問題点を解決するためのものであり、その目的とするところは、窒素酸化物及び酸素以外の他のガス,流速,温度の影響を受けることなく同時に、連続的に、且つ応答性良く、Oガス+NOガス(NOガス中に少量含まれる),NOガスを測定することができる窒素酸化物及び酸素検出センサを提供することにある。
【0007】
【課題を解決するための手段】
本発明の窒素酸化物及び酸素検出センサは、多孔質基板上に窒素酸化物検知セルと酸素検知セルとからなる検知部が形成されたセンサ素子を備えた窒素酸化物及び酸素検出センサであって、
前記窒素酸化物検知セルは、電極,酸素イオン伝導性固体電解質,白金電極が順次積層されてなり、
前記酸素検知セルは、電極,酸素イオン伝導性固体電解質,白金−金電極が順次積層されてなることを特徴とする。
本発明のセンサを用いることにより、従来の方式、すなわち個々のガスセンサにてガス成分,ガス濃度を測定することにより同時に複数のガスを測定する方式の前記欠点を大幅に改善することができる。
【0008】
<基礎検討>
一般に、酸素結合ガスは低酸素分圧の雰囲気で加熱されると酸素及び酸素と結合していた他の成分に分解する。その分解速度がある一定の大きさになる酸素分圧は各々の酸素結合ガスによって異なる。また、ZrO電解質等の酸素イオン伝導性固体電解質の両端に電極をつけて酸素結合ガスを含む雰囲気にて電解質に電圧を印加すると、酸素ポンプ作用にて陰極から陽極へ酸素が排出されると共に陽極から陰極へ電流が流れるが、その酸素ポンプ作用の始まる電圧は個々の酸素結合ガスによって異なる。
例えば、図10に示す如く、ZrO電解質(センサ素子;陽極=Pt電極,陰極=Pt−Pd電極)を550℃に加熱し、N(Nのみ),O(1%O/N),NO(0.1%NO/N),CO(1%CO/N),HO(10%HO/N),NO(0.1%NO/N)の各ガスの雰囲気で電解質に電圧を印加すると、O,NO,NOでは電圧が0Vを越えたところから酸素ポンプ作用に基づく電流が流れる。それに対して、HO,COでは電圧が約1V近傍から酸素ポンプ作用に基づく電流が流れる。
しかし、ガス分解にともなって酸素ポンプ作用の始まる前記の電圧は、電解質に設ける電極(特に、陰極)の材料によっても変わる可能性がある。そこで、このような可能性を調べるために、電極(陰極)材料を変えて、図11に示す素子を備えた限界電流式センサを作製した。すなわち、多孔質基板1の一面に電極2(陽極),ZrO電解質3,電極4(陰極)を順次積層して検知部を構成し、また基板の他面にはPtヒータ5を設けた限界電流式センサを作製し、陰極の電極材料と酸素結合ガスの分解によって酸素ポンプ作用の始まる電圧(分解電圧)との関係を検討した。電極材料としては、Pt,Pt−Pd(Pd1重量%を含む),Pt−Rh(Rh10重量%を含む),Pt−Au(Au1重量%を含む)の四種類の材料を用いた。結果を図12に示す。
図12から明らかな如く、電極材料の相違によって各種酸素結合ガスの酸素ポンプ作用の始まる電圧が変わる。特に、陰極の電極材料としてPt−Au(Au1重量%を含む)を用いた場合、Oに対する分解電圧とNOに対する分解電圧とが充分に分離されていることが判る。
【0009】
【発明の実施の形態】
本発明のセンサにおいて、窒素酸化物検知セル及び酸素検知セルの固体電解質材料としては酸化物イオン伝導性を示すものを使用することができる。具体的には、例えばジルコニウム系固体電解質(ZrO−M固溶体又はZrO−MO固溶体、M=Y,Yb,Gd,Ca,Mgなど)、セリア系固体電解質(CeO−M固溶体又はCeO−MO固溶体、M=Y,Smなど)、酸化ビスマス系固体電解質(Bi−WO固溶体など)を使用することができる。排気ガス中での安定性の観点から、ジルコニウム系固体電解質が好ましく、特に熱衝撃抵抗と酸化物イオン伝導率との兼ね合いで、5〜8mol%のYを固溶させたZrOが最も好ましい。
【0010】
窒素酸化物検知セル及び酸素検知セルに設ける二つの電極のうちの一方の電極(陰極)の材料として、窒素酸化物検知セルでは白金を、酸素検知セルでは白金−金を使用する。酸素検知セルの白金−金電極は、白金に対して適量の金を添加した材料から形成されてよい。白金に金を添加することにより、NOガスに対する感度を低下させることができるが、金の添加率が0.1重量%未満では感度低下効果が充分ではなく、反対に金の添加率が10重量%を越えると電極としての機能が低くなり過ぎる。それ故、白金に対する金の添加量は、好ましくは0.01ないし10重量%、特に好ましくは0.1ないし3重量%である。
【0011】
窒素酸化物検知セル及び酸素検知セルに設ける二つの電極のうちの他方の電極(陽極)の材料は特に限定されるものではないが、前記の一方の電極と組み合わせて好適な性能を発揮し得る材料、例えば白金などの貴金属を利用することができる。
【0012】
本発明の窒素酸化物及び酸素検出センサにおけるセンサ素子(窒素酸化物検知セル,酸素検知セル)及び電極は、この分野における慣用の方法、例えば、焼成法(センサ素子),印刷法及びスパッタリング法(電極)等により製造してよい。センサ素子(窒素酸化物検知セル,酸素検知セル)及び電極の大きさや形状は、本センサの大きさや形状に応じて適宜選択する。
【0013】
本センサのセンサ素子の窒素酸化物検知セルや酸素検知セルの上部及び/又は近傍には、必要に応じて種々の機能を更に付与するために、固体電解質や電極からなる構造を設けてもよい。窒素酸化物検知セル及び酸素検知セルは多孔質基板の同一面上に設けても、異なる面上に設けてもよいが、同一面上に設けると構成が単純になるので好ましい。窒素酸化物検知セル及び酸素検知セルの構成要素のうちで共通するものは共用することにより、又は、連続して形成することにより、センサ素子全体の構成を単純化したり、又は、被測定ガスの移動を容易にすることができる。例えば、窒素酸化物検知セルと酸素検知セルとで固体電解質を共用してよく、また、窒素酸化物検知セルの白金電極と酸素検知セルの白金−金電極とは連続して形成してよい。
【0014】
本発明の窒素酸化物及び酸素検出センサにおける電圧源又は電流源としては、好適な直流電圧電源又は直流電流電源を選択する。本発明のセンサを慣用の電圧又は電流の極性の切り替え装置と組み合わせて使用することもできる。
前記電圧源,電流源,切り替え装置を制御・管理したり、又は、センサ素子からの信号を処理するために、パーソナルコンピューターなどの装置を使用することができる。
【0015】
本発明のセンサにおけるセンサ素子を更に他の機能を有するセンサ素子、例えば水素センサ素子,炭化水素センサ素子等と組み合わせて使用することもできる。機能を異にする複数のセンサ素子において、その構成要素、例えば酸素イオン伝導性固体電解質や電極を共有することができる場合には、一つの酸素イオン伝導性固体電解質上に本発明のセンサのセンサ素子を含む複数のセンサ素子を形成して更なる複合型センサを構成してもよい。
【0016】
【実施例】
以下の実施例により、本発明を更に詳細に説明する。なお、以下の実施例の中には、比較・検討のための比較例も含まれる。
実施例1:本発明のセンサの構造及び製造
1)本発明のセンサの構造
本発明の実施例1のセンサの断面図を図1に、上面図を図2に示す。図1において、多孔質基板6の一面に酸素検知セル(Oセル)の陽極7(Pt電極),窒素酸化物検知セル(NOセル)の陽極8(Pt電極),ZrO電解質9,酸素検知セルの陰極10(Pt−Au電極),窒素酸化物検知セルの陰極11(Pt電極),ZrO電解質12,参照電極13(Pt電極)が順次積層・形成されている。多孔質基板6の他面にPtヒータ14が形成されている。また、酸素検知セルの陰極10と窒素酸化物検知セルの陰極11とは連設されており、被測定ガスは多孔性のPtリード線15より入り、多孔性の陰極10,11を順次通過し得る。酸素検知セル(Oセル)側には、電源16,電圧計17,モニター18が接続されており、また、窒素酸化物検知セル(NOセル)側には、電源19,モニター20が接続されている。図2から、陰極10と陰極11とが連設されていることが判る。
2)本発明のセンサの製造
多孔質アルミナ基板(寸法3×4×0.3mm)上に検知部及びヒータ部を、以下の手順でRFスパッタ装置にて作製した。その作製手順を図3に基づいて説明する。
多孔質基板にヒータ部を作製するために、マスクを多孔質基板6上に乗せ、Pt電極材料を約3〜4μmの厚さで成膜してPtヒータ14を作製した。一方、他の一面に検知部を形成するために、まず、陽極作製のためにPt電極材料を約0.5μmの厚さで成膜して陽極7,8を作製し、更にその上に、ZrO電解質9(ZrO+8mol %Y)を約7μmの厚さで成膜した。そしてZrO電解質9上には、Oセルを構成するための陰極としてPt−Au電極材料を用いて陰極10(膜厚0.5μm)を作製し、更にNOセルを構成するための陰極としてPt電極材料を用いて陰極11(膜厚0.5μm)を作製した。次に、その上に、ZrO電解質12(ZrO+8mol %Y)を7μmの厚さで成膜した。更にZrO電解質12上には、Pt電極材料を0.5μmの厚さで成膜して参照電極13を作製した。なお、ここでは、図3のセンサ作製工程を説明したが、これ以外にも、例えば当業者が多用している印刷技術、更にはグリーンシート技術、焼結技術等の何れかの他の方法により、本発明のセンサを作製してもよい。
【0017】
実施例2:性能評価試験
I.基本特性の評価
実施例1の如く作製したセンサを用いて、以下の方法にてOガス,NOガスが検出できるかどうか検討した。
方法:図1に示す本センサのOセルの温度を720℃,その時のセル抵抗を5.3kΩとし、また、NOセルの温度を665℃、その時のセル抵抗を6kΩとすることにより両セルの抵抗をほぼ同じ値にした。そして、O,NOセル単独のOガス、NOガス濃度変化に対する特性、更に、両セルを共に動作状態にしたときのNO+Oガス中での特性を調べた。
<結果>
I−1)NOセルに電圧を印加せず、Oセルに電圧を0.6V印加した場合のN−O(0〜5%)ガス変化(Oガス濃度を0〜5%の範囲で変化させた,以下同様)に対する出力電流特性、及びN−NO(0〜2000ppm)ガス変化(NOガス濃度を0〜2000ppmの範囲で変化させた,以下同様)に対する出力電流特性を調べた。結果を図4(a),(b)に示す。図4(a)から明らかなように、Oガスに対しては濃度に対応した出力電流が得られるが、図4(b)から明らかなように、NOガスに対しては濃度が変化しても電流は流れない。
I−2)NOセルに0.6Vの電圧を印加してI−1)と同様にN−O(0〜5%)ガス変化に対する出力電流特性、及びN−NO(0〜2000ppm)ガス変化に対する出力電流特性を調べた。結果を図5(a),(b)に示す。図5(a)から明らかなように、Oガスに対しては図4(a)の場合と同様に濃度に対応した出力電流が得られる。また、図5(b)から明らかなように、NOセルでは、NOガス濃度に対応した出力電流が流れる。
I−3)Oセルに0.6Vの電圧を印加し、更にNOセルに0.4Vの電圧を印加した動作状態でN−O(5%)−NO(0〜2000ppm)ガス変化に対するNOセルの出力電流特性を調べた。結果を図6に示す。NOセルでNOガス濃度に対応した出力電流が得られることが明確に判る。
それ故、図4,5,6から明らかなように、Oガス共存雰囲気においてもNOセルでは微量のNOガスを検出することができる。
【0018】
II.共存OガスがNOセルの出力電流特性に及ぼす影響の検討
セルに0.6Vの電圧を印加し、NOセルに0.4Vの電圧を印加した状態で共存Oガスをパラメータに取り、NOセルのNOガス濃度変化に対する出力電流特性を調べた。なお、NOガスの影響もあるために、一定濃度のNOガスも共存させた。すなわち、N−NO(1000ppm)−NO(0〜2000ppm)−O(0〜5%)ガス変化に対するNOセルの出力電流特性を調べた。結果を図7に示す。
図7の結果によれば、共存するO濃度によってNO濃度に対する出力電流値が異なる。特に、O濃度が1%以下になるとNO濃度の変化に対して電流出力がなくなる。このことは、Oセルに0.6Vの電圧を印加すると、共存するOガス,NOガスのみが酸素ポンプ作用にて汲み出されているのではなく微量のNOガスも同時に汲み出されていると推定される。また、O濃度が高くなると、NO濃度に対する出力電流値が大きくなるのはNOセルにOガスが微量漏れてNOガス出力が増加すると考えられる。そこで、Oセルの陰極と参照電極問の起電力がガス雰囲気が変化しても常に0.5VになるようにOセルに印加する電圧を制御して、前記の条件及び測定法にて共存OガスがNOセルの出力電流特性に及ぼす影響を調べた。その結果を図8に示す。図8の結果から明らかなように、Oセルの陰極と参照電極間の起電力が一定になるように制御すると、共存するOガスの濃度が変化しても、NOセルの出力電流はNOガス濃度に対応した出力を示す。
【0019】
III )Oセル及びNOセルに印加する電圧条件の検討
本センサの検知部は電極端子の少ない単純な構造とすることができる。すなわち、他のガスに影響されることなく、Oセルでは被測定ガス中のO+NOガスを検出し、NOセルではNOガスを検出するために、本発明の実施例1のセンサでは3端子の電極にてOセルとNOセルが構成されている。そのため、Oセル,NOセルに印加する電圧条件の最適化を図ることが重要である。そこで、以下のガス雰囲気〔N+O(5%)+HO(10%)+CO(5%)+NO(2000ppm)混合ガス〕中でのNOガス濃度を測定するために、Oセル及びNOセルに印加する最適電庄条件について検討した。結果を表1に示す。総合的な判定を○×式で行った。なお、前記の検討をするにあたって、下記の如く、O,NOセルの抵抗が同一になるようにヒータ温度を変えて各セルを調整した。
セル:温度680℃(抵抗5.3kΩ)
NOセル:温度650℃(抵抗5.0kΩ)
表1:Oセル,NOセルの電圧印加条件の検討結果

Figure 0003546919
表1の結果から、Oセル、NOセルに印加する電圧条件を適正に選ぶ必要があることが判った。すなわち、NOセルとOセルでは電極材料が異なることから、NOセルと電極の活性が異なるOセルでは、1V以上の電圧を印加するとO,NO,CO,HOガスを酸素ポンプ作用にて排出する。よって、Oセルでは0.6V程度の電圧印加にすればOガスのみを、そしてNOセルでは0.4V程度の電圧印加にすればNOガスのみを排出することができ、各セルに流れる電流からOガス濃度,NOガス濃度を測定できることが判った。
【0020】
IV)Oセルの電極材料におけるPtへのAu添加率についての検討
本発明のセンサでは、OセルとNOセルを組み合わせることにより、被測定ガス中のO+NO,NOガスのみを分離して計測することから、特に、Oセルに用いる電極材料の組成が重要であり、充分に検討する必要がある。
先に、Pt電極とPt−Pd電極の組み合わせにて限界電流式センサを作製して各酸素結合ガスの分解電圧について調べた結果について報告した(図10〜12参照)。そこでは、Ptのみ,Pt−Pd,Pt−Rh電極材料を用いた場合を比較して、PtにAuを混合したPt−Au電極材料を用いた電極では、他の電極材料を用いた場合に比べて、NOガスに対して約0.6Vも高い電圧にて分解が始まることを示した(図12参照)。
そこで、本検討においては、Ptに添加するAu量の効果を更に詳細に調べるために、Au100%のターゲット、及びPtに添加するAu量を0.1%,1%,10%と変えたPt−Auターゲットを準備して、スパッタ装置にて電極を種々に変えた限界電流式センサを作製し、NにNOを2000ppm添加したガス雰囲気での電流一電圧特性を測定した。なお、その時のセンサ温度は600℃、ガス流量5リットル/分とした。結果を図9に示す。
図9から明らかなように、Auの添加率の影響は大きく、Auを0.1%添加しただけでも、Ptのみの電極に比較して、電流の流れ始める電圧が高電圧側へ移行する。Auの添加率が更に増大するにつれて、センサの抵抗も増大することが電流一電圧特性から判る。
よって、センサ抵抗、分解電圧等から考えて、Ptに添加するAuの添加率としては0.01〜10%が有効と考えられる。
【0021】
【発明の効果】
本発明の窒素酸化物及び酸素検出センサは、単一の多孔質基板上に窒素酸化物検知セルと酸素検知セルとからなる検知部を慣用の製造方法により一体化して形成することができるので、センサの構成が単純で作製が容易である。また、本センサからの出力信号は限界電流であり、一定の電圧を印加すれば被測定ガスの濃度と出力電流が比例するので、低濃度から高濃度まで高精度で被測定ガスを検出することができる。また、使用に際して被測定ガスを酸素検知セル,窒素酸化物検知セルの順に流すと、酸素濃度を被測定ガス流の上流側で検知することになり下流側の酸素濃度を監視していることとなるので、下流側での窒素酸化物検知セルによる窒素酸化物の検知における酸素濃度の影響を抑制することが可能となる。このため、本発明のセンサを用いると、窒素酸化物及び酸素が混在する被測定ガスから選別性良く窒素酸化物(例えばNO)を検出することができる。
更に、本発明の窒素酸化物及び酸素検出センサは熱的及び化学的に安定な材料から構成されているので、燃焼排気ガス中での安定性に優れており、同時に、高温(例えば700℃)でも使用できるため、排気管などの高温排気ガス雰囲気に直接挿入することができる小型且つ軽量なセンサを容易に得ることができる。
【図面の簡単な説明】
【図1】本発明の実施例1のセンサの断面図である。
【図2】図1のセンサの上面図である。
【図3】実施例1のセンサの作製手順を示す説明図である。
【図4】実施例1のセンサの作動特性を示す図である。
【図5】実施例1のセンサの作動特性を示す別の図である。
【図6】実施例1のセンサの作動特性を示す更に別の図である。
【図7】実施例1のセンサにおいて、共存OガスがNOセルの出力電流特性に及ぼす影響を示す図である。
【図8】実施例1のセンサにおいて、Oセルに印加する電圧を好適に制御した場合の、共存OガスがNOセルの出力電流特性に及ぼす影響を示す図である。
【図9】限界電流式センサにおいて、Oセルの電極材料におけるPtへのAu添加率の出力電流特性に及ぼす影響を示す図である。
【図10】限界電流式センサにおいて、種々のガスの雰囲気での出力電流特性を示す図である。
【図11】限界電流式センサのセンサ素子の概略構成図である。
【図12】図11のセンサにおける、陰極の電極材料と酸素結合ガスの分解によって酸素ポンプ作用の始まる電圧(分解電圧)との関係を示す図である。
【符号の説明】
1,6:多孔質基板 2,4:電極
3,9,12:ZrO電解質 5,14:Ptヒータ
7,10:陰極 8,11:陽極
13:参照電極 15:Ptリード線
16,19:電源 17:電圧計
18,20:モニター[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention selectively detects combustion exhaust gas discharged from a boiler, an automobile, and the like, and O 2 gas and NO gas contained in a living environment atmosphere without being affected by other gases. The present invention relates to a nitrogen oxide and oxygen detection sensor that can be manufactured and can be significantly reduced in size.
[0002]
[Prior art]
Various measuring methods and measuring devices have been proposed or put into practical use for measuring gas components and their concentrations in a gas to be measured. Among them, there is a measurement method utilizing infrared absorption as a gas analysis method having high measurement accuracy and high reliability. For example, an oxygen-bonded gas such as O 2 , NO x , SO x , CO 2 , and H 2 O has an absorption spectrum specific to the infrared region, and therefore has a specific absorption wavelength corresponding to the gas component, and an absorbance at that wavelength. From this, the concentration of each gas component can be measured. However, the measuring method using infrared absorption requires a large measuring device, and therefore it is difficult to use it for measuring a gas distribution in a minute space such as an exhaust pipe of an automobile. As a measurement method other than the measurement method using infrared absorption, a measurement method using a principle that when a gas concentration difference occurs at both ends of a solid electrolyte, an electromotive force corresponding to the gas concentration difference is generated. is there. For example, if electrodes are provided at both ends of a pellet made of a ZrO 2 (zirconia) electrolyte, one electrode side is set to a constant oxygen concentration (for example, the atmosphere) and used as a reference electrode, and the other electrode is used as a measurement electrode, the Nernst equation An electromotive force is generated according to the concentration of the oxygen concentration. At this process, oxygen gas can be measured each gas well NO x, SO x, CO 2 , H 2 O. The gas component measurement method using the ZrO 2 electrolyte is an excellent measurement method because it is relatively insensitive to other gases other than the target gas, but the sensor method requires an individual gas reference electrode. There is a disadvantage that the structure of the element becomes complicated.
[0003]
A method for solving the above-mentioned drawbacks in the gas component measurement method using a ZrO 2 electrolyte has also been proposed. That is, since the ZrO 2 electrolyte has an oxygen pumping function of discharging oxygen from one electrode to the other electrode, an oxygen measuring the oxygen concentration in the atmosphere from the current flowing by the oxygen pumping action using the ZrO 2 electrolyte. There is a concentration measurement method. Using this measuring method, the concentration of the oxygen binding gas can be measured based on the following principle.
O 2 gas is generated by decomposition of oxygen bound gas when the oxygen binding gas heated under a low oxygen partial pressure to the decomposition temperature. Then, the generated O 2 gas is taken into the ZrO 2 electrolyte, moved from the cathode to the anode and released (oxygen pump action), and the concentration of the oxygen-bonded gas is measured from the current value flowing at that time. Therefore, the output obtained by this method is an output corresponding to the concentration of the oxygen-bonded gas, and is a linear output. However, NO x gases in the oxygen binding gas exhibits substantially the same characteristics as the O 2 gas, it is difficult to measure the NO x gas is separated from the O 2 gas.
[0004]
As a method for measuring the NO x gas in a measurement gas O 2 gas and NO x gases with a sensor element consisting of ZrO 2 electrolyte are mixed, JP-A-8-271476, composed of ZrO 2 electrolyte sensor with varying degradation condition of the NO x gas in the vicinity of the electrode by changing the material of the electrode provided on the device, eliminating the oxygen impede measurement of the NO x gas, then, the NO x gas remaining N 2 gas and decomposed into O 2 gas, a method of measuring NO x gas concentration from the current value flowing in the oxygen pumping action of the O 2 gas produced by decomposition is proposed.
[0005]
[Problems to be solved by the invention]
Also in the method described in Japanese Patent Laid-Open No. 8-271476, only after the removal of the O 2 gas in the measurement gas O 2 gas and NO x gas are mixed to an extent that can substantially negligible NO x Gas cannot be measured. As described above, the gas component measurement method using the characteristics of the solid electrolyte in the related art, and any other gas component measurement method, is basically a method of measuring a single component gas, In order to measure each component of a multi-component gas, it is necessary to individually change measurement conditions. However, when actually measuring a gas to be measured composed of multiple components, it is often desired to simultaneously measure a plurality of gases contained in the gas to be measured. To date, various gas sensors for measuring a single gas have been inserted into the gas atmosphere to be measured, and the gas components and their concentrations in the atmosphere have been measured from the signals of the gas sensors. As a result, the measuring device becomes larger as a whole in order to measure a plurality of gas components and their concentrations contained in the gas to be measured, and the configuration becomes complicated, and the atmosphere of the gas to be measured is disturbed during the measurement. There was a problem. Therefore, a small measuring device that can be used to easily and quickly measure a plurality of gas components in a gas to be measured, particularly, O 2 gas and NO gas (main components in NO x gas) has been desired. .
[0006]
The present invention has been made to solve the above-mentioned problems of the prior art, and has as its object to continuously and simultaneously be affected by gases other than nitrogen oxides and oxygen, flow rates and temperatures. Another object of the present invention is to provide a nitrogen oxide and oxygen detection sensor capable of measuring O 2 gas + NO 2 gas (a small amount contained in NO x gas) and NO gas with high responsiveness.
[0007]
[Means for Solving the Problems]
A nitrogen oxide and oxygen detection sensor according to the present invention is a nitrogen oxide and oxygen detection sensor including a sensor element in which a detection unit including a nitrogen oxide detection cell and an oxygen detection cell is formed on a porous substrate. ,
The nitrogen oxide sensing cell has an electrode, an oxygen ion conductive solid electrolyte, and a platinum electrode sequentially laminated,
The oxygen sensing cell is characterized in that an electrode, an oxygen ion conductive solid electrolyte, and a platinum-gold electrode are sequentially laminated.
By using the sensor of the present invention, the above-mentioned drawbacks of the conventional method, that is, the method of measuring a plurality of gases simultaneously by measuring gas components and gas concentrations with individual gas sensors, can be greatly improved.
[0008]
<Basic study>
Generally, when heated in a low oxygen partial pressure atmosphere, the oxygen-bonded gas decomposes into oxygen and other components that have been combined with oxygen. The oxygen partial pressure at which the decomposition rate reaches a certain level differs for each oxygen-bonded gas. When electrodes are attached to both ends of an oxygen ion conductive solid electrolyte such as a ZrO 2 electrolyte and a voltage is applied to the electrolyte in an atmosphere containing an oxygen binding gas, oxygen is discharged from the cathode to the anode by an oxygen pump action, and Current flows from the anode to the cathode, but the voltage at which the oxygen pumping action starts depends on the individual oxygen-binding gas.
For example, as shown in FIG. 10, a ZrO 2 electrolyte (sensor element; anode = Pt electrode, cathode = Pt-Pd electrode) is heated to 550 ° C., and N 2 (N 2 only), O 2 (1% O 2 / N 2 ), NO (0.1% NO / N 2 ), CO 2 (1% CO 2 / N 2 ), H 2 O (10% H 2 O / N 2 ), NO 2 (0.1% NO / N 2 ) When a voltage is applied to the electrolyte in the atmosphere of each gas of 2 / N 2 ), a current based on the oxygen pump action flows from the point where the voltage exceeds 0 V in O 2 , NO, and NO 2 . On the other hand, in H 2 O and CO 2 , a current based on the oxygen pump action flows from a voltage of about 1 V.
However, the above-mentioned voltage at which the oxygen pump action starts with gas decomposition may vary depending on the material of an electrode (particularly, a cathode) provided in the electrolyte. Therefore, in order to investigate such a possibility, a limiting current sensor equipped with the element shown in FIG. 11 was manufactured by changing the material of the electrode (cathode). That is, the electrode 2 (anode), the ZrO 2 electrolyte 3 and the electrode 4 (cathode) are sequentially laminated on one surface of the porous substrate 1 to form a detection unit, and the Pt heater 5 is provided on the other surface of the substrate. A current sensor was fabricated, and the relationship between the electrode material of the cathode and the voltage (decomposition voltage) at which the oxygen pump action started due to decomposition of the oxygen-bonded gas was examined. As the electrode material, four kinds of materials of Pt, Pt-Pd (including 1% by weight of Pd), Pt-Rh (including 10% by weight of Rh), and Pt-Au (including 1% by weight of Au) were used. The results are shown in FIG.
As is apparent from FIG. 12, the voltage at which the oxygen pumping action of various oxygen bonding gases starts varies depending on the electrode material. In particular, it can be seen that when using the Pt-Au (including Au1 wt%) as a cathode electrode material, in which the decomposition voltage for the decomposition voltage and NO for O 2 is sufficiently separated.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
In the sensor of the present invention, as the solid electrolyte material of the nitrogen oxide sensing cell and the oxygen sensing cell, those having oxide ion conductivity can be used. Specifically, for example, zirconium-based solid electrolyte (ZrO 2 -M 2 O 3 solid solution or ZrO 2 -MO solid solution, M = Y, Yb, Gd , Ca, Mg , etc.), ceria based solid electrolytes (CeO 2 -M 2 O 3 solid solution or CeO 2 -MO solid solution, M = Y, Sm, etc.) and bismuth oxide solid electrolyte (Bi 2 O 3 -WO 3 solid solution, etc.) can be used. From the viewpoint of stability in exhaust gas, a zirconium-based solid electrolyte is preferable, and ZrO 2 in which 5 to 8 mol% of Y 2 O 3 is dissolved as a solid solution in consideration of thermal shock resistance and oxide ion conductivity is preferred. Most preferred.
[0010]
As a material of one electrode (cathode) of the two electrodes provided in the nitrogen oxide sensing cell and the oxygen sensing cell, platinum is used in the nitrogen oxide sensing cell, and platinum-gold is used in the oxygen sensing cell. The platinum-gold electrode of the oxygen sensing cell may be formed from a material obtained by adding an appropriate amount of gold to platinum. By adding gold to platinum, the sensitivity to NO gas can be reduced. However, if the gold addition rate is less than 0.1% by weight, the sensitivity reduction effect is not sufficient, and conversely, the gold addition rate is 10% by weight. %, The function as an electrode becomes too low. Therefore, the amount of gold added to platinum is preferably 0.01 to 10% by weight, particularly preferably 0.1 to 3% by weight.
[0011]
The material of the other electrode (anode) of the two electrodes provided in the nitrogen oxide sensing cell and the oxygen sensing cell is not particularly limited, but can exhibit suitable performance in combination with the one electrode. Materials, for example noble metals such as platinum, can be used.
[0012]
The sensor elements (nitrogen oxide detection cell, oxygen detection cell) and electrodes in the nitrogen oxide and oxygen detection sensor of the present invention can be formed by conventional methods in this field, for example, a firing method (sensor element), a printing method, and a sputtering method ( Electrodes) or the like. The size and shape of the sensor element (nitrogen oxide detection cell, oxygen detection cell) and electrodes are appropriately selected according to the size and shape of the present sensor.
[0013]
A structure made of a solid electrolyte or an electrode may be provided on and / or near the nitrogen oxide sensing cell or oxygen sensing cell of the sensor element of the present sensor in order to further provide various functions as necessary. . The nitrogen oxide sensing cell and the oxygen sensing cell may be provided on the same surface of the porous substrate or on different surfaces. However, it is preferable to provide them on the same surface because the structure is simplified. The common component among the components of the nitrogen oxide sensing cell and the oxygen sensing cell is shared or formed continuously, thereby simplifying the configuration of the entire sensor element or reducing the gas to be measured. Movement can be facilitated. For example, the solid electrolyte may be shared by the nitrogen oxide sensing cell and the oxygen sensing cell, and the platinum electrode of the nitrogen oxide sensing cell and the platinum-gold electrode of the oxygen sensing cell may be formed continuously.
[0014]
As a voltage source or a current source in the nitrogen oxide and oxygen detection sensor of the present invention, a suitable DC voltage power supply or DC current power supply is selected. The sensors of the present invention can also be used in combination with conventional voltage or current polarity switching devices.
A device such as a personal computer can be used to control and manage the voltage source, the current source, and the switching device, or to process a signal from the sensor element.
[0015]
The sensor element in the sensor of the present invention can be used in combination with a sensor element having another function, such as a hydrogen sensor element or a hydrocarbon sensor element. In the case where a plurality of sensor elements having different functions can share the components thereof, for example, the oxygen ion conductive solid electrolyte and the electrode, the sensor of the present invention is provided on one oxygen ion conductive solid electrolyte. A plurality of sensor elements including the element may be formed to form a further composite sensor.
[0016]
【Example】
The following examples illustrate the invention in more detail. The following examples include comparative examples for comparison and study.
Example 1 : Structure and manufacture of sensor of the present invention 1) Structure of sensor of the present invention FIG. 1 is a cross-sectional view of the sensor of Example 1 of the present invention, and FIG. 2 is a top view thereof. In FIG. 1, an anode 7 (Pt electrode) of an oxygen sensing cell (O 2 cell), an anode 8 (Pt electrode) of a nitrogen oxide sensing cell (NO cell), a ZrO 2 electrolyte 9, oxygen cathode 10 of the sensing cell (Pt-Au electrode), a cathode 11 of the nitrogen oxide sensing cell (Pt electrode), ZrO 2 electrolyte 12, reference electrode 13 (Pt electrode) are sequentially laminated and formed. On the other surface of the porous substrate 6, a Pt heater 14 is formed. The cathode 10 of the oxygen sensing cell is connected to the cathode 11 of the nitrogen oxide sensing cell, and the gas to be measured enters through the porous Pt lead wire 15 and passes through the porous cathodes 10 and 11 sequentially. obtain. The oxygen sensor cell (O 2 cell) side, the power source 16, voltmeter 17, and monitor 18 are connected, the nitrogen oxide sensing cell (NO cells) side power source 19, the monitor 20 is connected ing. From FIG. 2, it can be seen that the cathode 10 and the cathode 11 are provided continuously.
2) Production of the Sensor of the Present Invention A detection section and a heater section were produced on a porous alumina substrate (dimensions 3 × 4 × 0.3 mm) by an RF sputtering apparatus in the following procedure. The manufacturing procedure will be described with reference to FIG.
In order to form a heater section on the porous substrate, a mask was placed on the porous substrate 6 and a Pt electrode material was formed into a film with a thickness of about 3 to 4 μm to produce the Pt heater 14. On the other hand, in order to form a detecting portion on the other surface, first, a Pt electrode material is formed into a film having a thickness of about 0.5 μm to form anodes 7 and 8 for anode formation. A ZrO 2 electrolyte 9 (ZrO 2 +8 mol% Y 2 O 3 ) was formed to a thickness of about 7 μm. Then, on the ZrO 2 electrolyte 9, a cathode 10 (0.5 μm in film thickness) was formed using a Pt—Au electrode material as a cathode for constituting an O 2 cell, and further as a cathode for constituting a NO cell. The cathode 11 (film thickness 0.5 μm) was manufactured using a Pt electrode material. Next, a ZrO 2 electrolyte 12 (ZrO 2 +8 mol% Y 2 O 3 ) was formed thereon to a thickness of 7 μm. Further, a Pt electrode material was formed to a thickness of 0.5 μm on the ZrO 2 electrolyte 12 to produce a reference electrode 13. Although the sensor manufacturing process of FIG. 3 has been described here, besides this, for example, any other method such as a printing technology often used by those skilled in the art, a green sheet technology, a sintering technology, or the like is used. Alternatively, the sensor of the present invention may be manufactured.
[0017]
Example 2 : Performance evaluation test Evaluation of Basic Characteristics Using the sensor manufactured as in Example 1, it was examined whether O 2 gas and NO gas could be detected by the following method.
Method: The temperature of the O 2 cell of this sensor shown in FIG. 1 was set to 720 ° C., the cell resistance at that time was set to 5.3 kΩ, and the temperature of the NO cell was set to 665 ° C., and the cell resistance at that time was set to 6 kΩ. Were made almost the same value. Then, the characteristics of the O 2 and NO cells with respect to changes in the O 2 gas and NO gas concentrations alone, and the characteristics in the NO + O 2 gas when both cells were operated were examined.
<Result>
I-1) without applying a voltage to the NO cell, N 2 -O 2 (0~5% in the case of 0.6V is applied a voltage to the O 2 cell) gas changes (O 2 gas concentration of 0-5% The output current characteristics with respect to the N 2 -NO (0 to 2,000 ppm) gas change (the NO gas concentration was changed within the range of 0 to 2,000 ppm, and the same hereinafter) with respect to the output current characteristics with respect to the change in the range and the same hereinafter are examined. Was. The results are shown in FIGS. As is clear from FIG. 4 (a), an output current corresponding to the concentration is obtained for the O 2 gas, but as is clear from FIG. 4 (b), the concentration changes for the NO gas. No current flows.
I-2) A voltage of 0.6 V is applied to the NO cell, and the output current characteristics with respect to the N 2 -O 2 (0 to 5%) gas change and N 2 -NO (0 to 2000 ppm) in the same manner as I-1). ) Output current characteristics with respect to gas change were examined. The results are shown in FIGS. 5 (a) and 5 (b). As is clear from FIG. 5A, an output current corresponding to the concentration can be obtained for the O 2 gas as in the case of FIG. 4A. Further, as is apparent from FIG. 5B, an output current corresponding to the NO gas concentration flows in the NO cell.
I-3) N 2 -O 2 (5%)-NO (0 to 2000 ppm) gas change in an operating state in which a voltage of 0.6 V is applied to the O 2 cell and a voltage of 0.4 V is further applied to the NO cell The output current characteristics of the NO cell were examined. FIG. 6 shows the results. It is clear that an output current corresponding to the NO gas concentration can be obtained in the NO cell.
Therefore, as is clear from FIGS. 4, 5, and 6, even in the atmosphere in which the O 2 gas coexists, the NO cell can detect a small amount of NO gas.
[0018]
II. Examination of the effect of coexisting O 2 gas on the output current characteristics of the NO cell A voltage of 0.6 V was applied to the O 2 cell, and the coexisting O 2 gas was taken as a parameter with a voltage of 0.4 V applied to the NO cell. The output current characteristics of the NO cell with respect to the change in NO gas concentration were examined. Incidentally, because of the influence of NO 2 gas, NO 2 gas constant concentration also allowed to coexist. That, N 2 -NO 2 (1000ppm) -NO (0~2000ppm) -O 2 (0~5%) were examined output current characteristics of the NO cell for gas change. FIG. 7 shows the results.
According to the results of FIG. 7, the output current value with respect to the NO concentration differs depending on the coexisting O 2 concentration. In particular, when the O 2 concentration becomes 1% or less, the current output stops responding to a change in the NO concentration. This means that when a voltage of 0.6 V is applied to the O 2 cell, not only the coexisting O 2 gas and NO 2 gas are pumped out by the oxygen pump action but also a small amount of NO gas is pumped out at the same time. It is estimated that Further, it is considered that the output current value with respect to the NO concentration increases as the O 2 concentration increases because a small amount of O 2 gas leaks into the NO cell and the NO gas output increases. Therefore, the voltage applied to the O 2 cell is controlled so that the electromotive force between the cathode and the reference electrode of the O 2 cell is always 0.5 V even when the gas atmosphere changes, and the above-described conditions and measurement method are used. The effect of the coexisting O 2 gas on the output current characteristics of the NO cell was examined. FIG. 8 shows the result. As is clear from the results in FIG. 8, when the electromotive force between the cathode and the reference electrode of the O 2 cell is controlled to be constant, the output current of the NO cell is changed even if the concentration of the coexisting O 2 gas changes. The output corresponding to the NO gas concentration is shown.
[0019]
III) Examination of voltage conditions applied to O 2 cell and NO cell The detection unit of the present sensor can have a simple structure with few electrode terminals. That is, without being affected by other gases, the O 2 cell detects O 2 + NO 2 gas in the gas to be measured, and the NO cell detects NO gas. An O 2 cell and a NO cell are constituted by three-terminal electrodes. Therefore, it is important to optimize the voltage conditions applied to the O 2 cell and the NO cell. Therefore, in order to measure the NO gas concentration in the following gas atmosphere [N 2 + O 2 (5%) + H 2 O (10%) + CO 2 (5%) + NO (2000 ppm) mixed gas], an O 2 cell was used. And the optimal voltage conditions applied to the NO cell were examined. Table 1 shows the results. Comprehensive judgment was made by the formula XX. In the above study, each cell was adjusted by changing the heater temperature so that the resistances of the O 2 and NO cells would be the same as described below.
O 2 cell: temperature 680 ° C. (resistance 5.3 kΩ)
NO cell: temperature 650 ° C (resistance 5.0 kΩ)
Table 1: Results of examination of voltage application conditions for O 2 cell and NO cell
Figure 0003546919
From the results in Table 1, it was found that it is necessary to appropriately select the voltage conditions applied to the O 2 cell and the NO cell. In other words, oxygen from the the electrode material differ in NO cell and O 2 cell, the NO cell and activity are different O 2 cell electrode, by applying a voltage greater than 1V O 2, NO, and CO 2, H 2 O gas Discharged by pump action. Therefore, in the O 2 cell, only the O 2 gas can be discharged by applying a voltage of about 0.6 V, and in the NO cell, only the NO gas can be discharged by applying the voltage of about 0.4 V, and flows to each cell. It was found that the O 2 gas concentration and the NO gas concentration could be measured from the current.
[0020]
IV) Investigation of Au addition rate to Pt in electrode material of O 2 cell In the sensor of the present invention, by combining O 2 cell and NO cell, only O 2 + NO 2 and NO gas in the gas to be measured are separated. In particular, the composition of the electrode material used in the O 2 cell is important, and needs to be sufficiently studied.
Previously, a limit current sensor was fabricated using a combination of a Pt electrode and a Pt-Pd electrode, and the results of examining the decomposition voltage of each oxygen-bonded gas were reported (see FIGS. 10 to 12). Here, in comparison with the case where only Pt, Pt-Pd, and Pt-Rh electrode materials are used, an electrode using a Pt-Au electrode material in which Pt is mixed with Au is used when other electrode materials are used. In comparison, it was shown that decomposition started at a voltage as high as about 0.6 V with respect to the NO gas (see FIG. 12).
Therefore, in this study, in order to investigate the effect of the amount of Au added to Pt in more detail, the target of 100% Au and the amount of Au added to Pt were changed to 0.1%, 1%, and 10%. prepare -Au target, to produce a limiting current type sensor for changing the electrodes to various by a sputtering apparatus, the measurement of the current - voltage characteristics of a gas atmosphere of NO was added 2000ppm to N 2. The sensor temperature at that time was 600 ° C. and the gas flow rate was 5 liter / minute. FIG. 9 shows the results.
As is clear from FIG. 9, the effect of the Au addition rate is large, and even when only 0.1% of Au is added, the voltage at which the current starts to flow shifts to a higher voltage side as compared with the Pt-only electrode. It can be seen from the current-voltage characteristics that the resistance of the sensor increases as the addition rate of Au further increases.
Therefore, considering the sensor resistance, the decomposition voltage, and the like, it is considered that 0.01 to 10% is effective as an addition rate of Au added to Pt.
[0021]
【The invention's effect】
Since the nitrogen oxide and oxygen detection sensor of the present invention can be formed integrally on a single porous substrate by a conventional manufacturing method, a detection portion composed of a nitrogen oxide detection cell and an oxygen detection cell, The configuration of the sensor is simple and easy to manufacture. Also, the output signal from this sensor is a limiting current, and if a constant voltage is applied, the concentration of the gas to be measured is proportional to the output current, so it is necessary to detect the gas to be measured from low to high concentrations with high accuracy. Can be. In addition, when the gas to be measured flows in the order of the oxygen detection cell and the nitrogen oxide detection cell in use, the oxygen concentration is detected on the upstream side of the gas flow to be measured, and the oxygen concentration on the downstream side is monitored. Therefore, it is possible to suppress the influence of the oxygen concentration on the detection of nitrogen oxides by the nitrogen oxide detection cell on the downstream side. Therefore, by using the sensor of the present invention, nitrogen oxides (for example, NO) can be detected with good selectivity from the gas to be measured in which nitrogen oxides and oxygen are mixed.
Further, the nitrogen oxide and oxygen detection sensor of the present invention is made of a thermally and chemically stable material, so that it has excellent stability in combustion exhaust gas, and at the same time, has a high temperature (for example, 700 ° C.). However, a small and lightweight sensor that can be directly inserted into a high-temperature exhaust gas atmosphere such as an exhaust pipe can be easily obtained.
[Brief description of the drawings]
FIG. 1 is a sectional view of a sensor according to a first embodiment of the present invention.
FIG. 2 is a top view of the sensor of FIG.
FIG. 3 is an explanatory view showing a procedure for manufacturing the sensor of Example 1.
FIG. 4 is a diagram illustrating operating characteristics of the sensor according to the first embodiment.
FIG. 5 is another diagram illustrating the operation characteristics of the sensor according to the first embodiment.
FIG. 6 is still another diagram illustrating the operation characteristics of the sensor according to the first embodiment.
FIG. 7 is a diagram showing the effect of the coexisting O 2 gas on the output current characteristics of the NO cell in the sensor of Example 1.
FIG. 8 is a diagram showing the effect of the coexisting O 2 gas on the output current characteristics of the NO cell when the voltage applied to the O 2 cell is suitably controlled in the sensor of Example 1.
FIG. 9 is a diagram showing the effect of the rate of Au addition to Pt on the output current characteristics in the electrode material of the O 2 cell in the limiting current sensor.
FIG. 10 is a diagram showing output current characteristics in various gas atmospheres in a limiting current sensor.
FIG. 11 is a schematic configuration diagram of a sensor element of a limiting current sensor.
12 is a diagram showing a relationship between a cathode electrode material and a voltage (decomposition voltage) at which an oxygen pumping action starts due to decomposition of an oxygen bonding gas in the sensor of FIG. 11;
[Explanation of symbols]
1, 6: porous substrate 2, 4: electrodes 3, 9, 12: ZrO 2 electrolyte 5, 14: Pt heater 7, 10: cathode 8, 11: anode 13: reference electrode 15: Pt lead wires 16, 19: Power supply 17: Voltmeter 18, 20: Monitor

Claims (1)

多孔質基板上に窒素酸化物検知セルと酸素検知セルとからなる検知部が形成されたセンサ素子を備えた窒素酸化物及び酸素検出センサであって、
前記窒素酸化物検知セルは、電極、酸素イオン伝導性固体電解質、白金電極が順次積層されてなり、
前記酸素検知セルは、電極,酸素イオン伝導性固体電解質、白金−金電極が順次積層されてなり、そして
被測定ガスが、先ず前記酸素検知セル、次いで前記窒素酸化物検知セルの順に流れるように構成されていることを特徴とする窒素酸化物及び酸素検出センサ。
A nitrogen oxide and oxygen detection sensor including a sensor element in which a detection unit including a nitrogen oxide detection cell and an oxygen detection cell is formed on a porous substrate,
The nitrogen oxide detection cell, an electrode, an oxygen ion conductive solid electrolyte, a platinum electrode is sequentially laminated,
Said oxygen sensing cell, electrodes, oxygen ion conductive solid electrolyte, platinum - Ri is Na are sequentially laminated gold electrode, and
A nitrogen oxide and oxygen detection sensor , wherein the gas to be measured flows first in the order of the oxygen detection cell and then the nitrogen oxide detection cell .
JP03416698A 1998-01-30 1998-01-30 Nitrogen oxide and oxygen detection sensor Expired - Fee Related JP3546919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03416698A JP3546919B2 (en) 1998-01-30 1998-01-30 Nitrogen oxide and oxygen detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03416698A JP3546919B2 (en) 1998-01-30 1998-01-30 Nitrogen oxide and oxygen detection sensor

Publications (2)

Publication Number Publication Date
JPH11218514A JPH11218514A (en) 1999-08-10
JP3546919B2 true JP3546919B2 (en) 2004-07-28

Family

ID=12406633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03416698A Expired - Fee Related JP3546919B2 (en) 1998-01-30 1998-01-30 Nitrogen oxide and oxygen detection sensor

Country Status (1)

Country Link
JP (1) JP3546919B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10048195C2 (en) * 2000-09-28 2002-11-14 Siemens Ag gas sensor
CN100405050C (en) * 2006-03-23 2008-07-23 广州杰赛科技股份有限公司 Chip and two-way series sheet type oxygen sensor including such chip
US20230288463A1 (en) * 2020-08-11 2023-09-14 Tripod Design Co., Ltd. Sensor system, sensor device, and sensing method

Also Published As

Publication number Publication date
JPH11218514A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
US7153412B2 (en) Electrodes, electrochemical elements, gas sensors, and gas measurement methods
EP0769693B1 (en) Method and sensing device for measuring predetermined gas component in measurement gas
US5643429A (en) Electrochemical cells and methods using perovskites
JP3871497B2 (en) Gas sensor
JP3128114B2 (en) Nitrogen oxide detector
KR100319010B1 (en) Gas sensor
US8974657B2 (en) Amperometric electrochemical cells and sensors
US20090218220A1 (en) Amperometric Electrochemical Cells and Sensors
EP1615024A2 (en) Hydrocarbon sensor
JP2017527814A (en) Amperometric solid electrolyte sensor and method for detecting NH3 and NOX
JP2001318075A (en) NOx GAS DETECTOR
EP0791825B1 (en) Sensing device for measuring nitrogen oxides
JP2003194773A (en) Porous electrode, electrochemical element containing the same, gas concentration detection sensor, method for controlling oxygen partial pressure, and method for detecting combustible gas
JP4743375B2 (en) Flammable gas concentration measurement method
JP3546919B2 (en) Nitrogen oxide and oxygen detection sensor
WO2008134066A1 (en) Device and method for detecting sulfur dioxide at high temperatures
JP2006133039A (en) Nitrogen oxide sensor
JP3487330B2 (en) Nitrogen oxide sensor
US20040134781A1 (en) Sulfur resistant sensors
JP3526000B2 (en) Nitrogen oxide sensor
JP3633825B2 (en) Nitrogen oxide sensor
JP3469344B2 (en) Carbon monoxide gas sensing element
JP3463735B2 (en) Method for detecting hydrocarbon gas component and detection sensor
JP3371358B2 (en) Oxygen / carbon monoxide gas sensor, oxygen / carbon monoxide measuring device and oxygen / carbon monoxide measuring method
JP2002116178A (en) Nitrogen oxides sensor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040406

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees