JP4733543B2 - 赤外線式ガス検知器 - Google Patents

赤外線式ガス検知器 Download PDF

Info

Publication number
JP4733543B2
JP4733543B2 JP2006078341A JP2006078341A JP4733543B2 JP 4733543 B2 JP4733543 B2 JP 4733543B2 JP 2006078341 A JP2006078341 A JP 2006078341A JP 2006078341 A JP2006078341 A JP 2006078341A JP 4733543 B2 JP4733543 B2 JP 4733543B2
Authority
JP
Japan
Prior art keywords
infrared light
light source
infrared
gas
gas detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006078341A
Other languages
English (en)
Other versions
JP2007255969A (ja
Inventor
晋祐 小▲暮▼
浩昭 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Keiki KK
Original Assignee
Riken Keiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki KK filed Critical Riken Keiki KK
Priority to JP2006078341A priority Critical patent/JP4733543B2/ja
Publication of JP2007255969A publication Critical patent/JP2007255969A/ja
Application granted granted Critical
Publication of JP4733543B2 publication Critical patent/JP4733543B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば自動車に搭載されて車室内の二酸化炭素ガスの濃度の監視を行うために用いられる赤外線式ガス検知器に関するものである。
現在、例えば二酸化炭素ガスの濃度を非分散型赤外線吸収法を利用して検知する赤外線式ガス検知器のある種のものとしては、細長い形態を有する、被検ガスが導入されるガス導入空間を形成するガスセルを備え、このガスセル内における両端位置に、赤外線光源と赤外線センサとが互いに対向して配置されてなるものが知られている(例えば特許文献1参照。)。
このような構成の赤外線式ガス検知器においては、例えば赤外線光源が点滅駆動されることにより赤外線光源から放射される赤外線が周期的に赤外線センサに供給されることにより持続的な出力信号が得られ、被検ガスに含まれる二酸化炭素ガスにより赤外線が吸収されることによって赤外線センサに受光される赤外線量が低下することによる出力信号の振幅の減少割合に応じて、二酸化炭素ガスの濃度が算出される。
近年、環境保全の観点から、フロン代替冷媒ガスとして二酸化炭素ガスが用いられるようになってきており、例えば自動車の空調機の冷媒などに利用されている。
そして、二酸化炭素ガスが自動車の車室内のような狭い密閉空間に漏洩した場合には、二酸化炭素ガスの充満が速く、人体に対して危険な状態となるおそれがあることから、自動車の車室内における二酸化炭素ガスの濃度の監視を行うことが求められており、非分散型赤外線吸収法を利用した赤外線式ガス検知器を車室内に搭載する試みがなされている。
而して、赤外線式ガス検知器を自動車の車室内に搭載して使用するためには、十分に小型のものとして構成することが必要とされる。また、赤外線式ガス検知器を小型のものとして構成する場合には、感度の低下を防止するために、赤外線光源から赤外線センサに至る光路長を十分に確保することが必要とされる。
このような要請に対して、赤外線光源から放射される赤外線を例えば反射鏡によって反射して赤外線センサに入射させる構成、いわゆる反射型の赤外線式ガス検知器が提案されており、このような反射構造を採用することによって、目的とするガス検知を行うために必要とされる十分な大きさの光路長を確保することができるとされている(例えば特許文献2参照。)。
特開平9−079980号公報 特開平9−184803号公報
上記のような赤外線式ガス検知器においては、例えばフィラメントランプが赤外線光源として用いられており、ガス検知が行われるに際して、例えば所定の点滅周期で点滅駆動される。
しかしながら、点灯状態におけるフィラメントは衝撃に弱い状態となっているため、例えば自動車の走行中の振動や衝突事故等によってフィラメントに衝撃が加えられた場合に、例えば隣接する単コイルが接触する事故などが生じて、ガス検知それ自体行うことができなくなる場合がある、という問題がある。
本発明は、以上のような事情に基づいてなされたものであって、十分に小型化されたものでありながら、所要のガス検知を高い信頼性をもって行うことのできる赤外線式ガス検知器を提供することを目的とする。
本発明の赤外線式ガス検知器は、赤外線センサに入射される赤外線量の減衰の程度に応じて検知対象ガスの濃度を検出する赤外線式ガス検知器であって、
各々、点滅駆動されるフィラメントランプよりなる二以上の赤外線光源を具えてなり、各々の赤外線光源の動作状態が、一方の赤外線光源のみが点滅駆動されると共に他方の赤外線光源が消灯状態が維持された状態とされるよう、制御され、
ガス検知動作中において検出される当該一方の赤外線光源のランプ電圧値またはランプ電流値に基づいて、当該一方の赤外線光源が正常に機能していないことが検出されたときに、他方の赤外線光源が点滅駆動され、
二の赤外線光源のうち継続して点滅駆動されるべき一の赤外線光源が交互に使用されることを特徴とする。
また、本発明の赤外線式ガス検知器においては、二の赤外線光源を具えてなり、各々の赤外線光源の動作状態が、各々の赤外線光源が交互に点灯状態とされるよう、制御され、 ガス検知動作中において検出される各々の赤外線光源のランプ電圧値またはランプ電流値に基づいて、いずれか一方の赤外線光源が正常に機能していないことが検出されたときに、他方の赤外線光源のみが点滅駆動される構成とすることができる。このような構成のものにおいては、いずれか一方の赤外線光源が正常に機能していないことが検出されたときに、他方の赤外線光源が点滅周期が変更された状態で点滅駆動される構成とされていることが好ましい。
本発明の赤外線式ガス検知器によれば、基本的には、赤外線光源から放射される赤外線を反射させて赤外線センサに入射させる構成いわゆる反射型のものであることにより、十分に小型化が図られたものでありながら、ガス検知に必要とされる十分な大きさの光路長が確保されたものとして構成することができる結果、所要のガス検知を確実に行うことができ、しかも、複数の赤外線光源を具え、ガス検知動作中において少なくとも一の赤外線光源が消灯状態が維持された状態とされていることにより、各々の赤外線光源に係るフィラメントに衝撃が加えられた場合であっても、フィラメントが破損するなどして正常に機能しなくなるものが点灯状態とされることによってフィラメントの強度が低下した状態にある赤外線光源のみであって、他の赤外線光源によってガス検知器本来の測定機能を維持することができるので、所要のガス検知を高い信頼性をもって確実に行うことができる。
以下、本発明について、図面を参照しながら説明する。
図1は、本発明の赤外線式ガス検知器の一例における構成の概略を示す縦断面図、図2は、図1に示す赤外線式ガス検知器におけるセンサユニットの構成を、一部を破断した状態において示す平面図、図3は、図2に示すセンサユニットの拡大断面図、図4は、図1に示す赤外線式ガス検知器を構成する制御用回路基板における信号処理回路の一例を示すブロック図である。
この赤外線式ガス検知器10は、全体が略細長い中空柱状の本体ケース11を具えており、この本体ケース11における一面(図1において上面)には、長手方向に対して垂直な方向(図1において上方向)に突出して伸びる円筒状部分12が形成されている。
円筒状部分12の内部空間は、本体ケース11の内部空間と連通しており、円筒状部分12の一端開口が、被検ガスが自然拡散により導入されるガス導入口15として構成されている。
本体ケース11内には、平坦な制御用回路基板21がケース本体11の長手方向に沿って伸びるよう配設されており、この制御用回路基板21の一面におけるガス導入口15に対向する領域には、本体ケース11における円筒状部分12の内部空間が利用されて複数、例えば2つの赤外線光源25A,25B、反射器30および赤外線センサ27が配設されている。
具体的には、制御用回路基板21の一面におけるガス導入口15に対向する円領域内において、当該円領域の外縁に沿って互いに離間して並ぶよう配設された第1の赤外線光源25Aおよび第2の赤外線光源25Bと、赤外線センサ27とが当該円領域の中心位置を挟んでケース本体11の長手方向に互いに離間して並んだ位置に配設されている。
反射器30は、後述するように、第1の赤外線光源25Aおよび第2の赤外線光源25Bから放射された赤外線を反射して赤外線センサ27に入射させるための反射ミラー31が赤外線センサ27の直上に位置された状態で、配設されている。
この赤外線式ガス検知器10においては、第1の赤外線光源25Aおよび第2の赤外線光源25B、反射器30並びに赤外線センサ27が共通の制御用回路基板21に支持されて一の構造体であるセンサユニット20として構成されている。このような構成であることにより、2つの赤外線光源25A,25B、赤外線センサ27および反射器30の三者の位置関係が固定された状態とされるので、例えば本体ケース11に対するセンサユニット20の装着状態等に関わらず、所要のガス検知を安定して行うことができると共に、光学系の調整を極めて容易に行うことができる。
図1において、33は、制御用回路基板21の一面において、第1の赤外線光源25A、第2の赤外線光源25B、赤外線センサ27および反射器30の周囲を囲うよう配設された円筒状のスリーブ部材であって、スリーブ部材33が本体ケース11の円筒状部分12の内部に嵌合されることにより、センサユニット20が本体ケース11に対して装着されている。
また、35は、本体ケース11の円筒状部分12の内径と同等の大きさの直径を有する円板状のガス透過性ダストフィルタであって、一面における外周縁部分が、円筒状部分12の一端部における内面に周方向の全周にわたって形成された、径方向内方に突出する段部13に係止されると共に、他面における外周縁部分がスリーブ部材33の一端面によって支持されており、スリーブ部材33の内面およびガス透過性ダストフィルタ35によって被検ガスが導入されるガス導入空間Sが形成されている。ここに、ガス透過性ダストフィルタ35としては、例えばPP(ポリプロピレン)−PE(ポリエチレン)の複合繊維の不織布よりなり、例えば粒径が5μm以上の塵埃等の粒子を捕捉可能なものが用いられている。
本体ケース11の内部における制御用回路基板21の他面側は、配線用空間18とされている。
制御用回路基板21は、第1の赤外線光源25Aおよび第2の赤外線光源25Bの各々を輝度が一定の周期で正弦波状に変化するよう変調する状態で点滅駆動させる光源駆動回路23と、赤外線センサ27からのガス検知信号を増幅させる増幅回路22と、取得されたガス検知信号に対して特定の信号処理を施して検知対象ガスのガス濃度を算出する機能および光源駆動回路23に対する動作指令信号を出力して第1の赤外線光源25Aおよび第2の赤外線光源25Bの各々の動作状態を制御する機能を有するマイコン24とを有する。
第1の赤外線光源25Aおよび第2の赤外線光源25Bは、各々、例えばコイルフィラメントを備えたフィラメントランプよりなり、制御用回路基板21の一面において支持された高さ調整用のスペーサ部材28によって下方から支持された状態で、コイルフィラメントに対する給電部材26の端部が制御用回路基板21の他面において例えばハンダ付けされて固定されている。コイルフィラメントの形状は、特に制限されるものではなく、例えば一重コイルおよび二重コイルのいずれであってもよく、また、コイル軸が直線的に延びる形態であっても、弧状に湾曲した状態で延びる形態であってもよい。
赤外線センサ27は、背の低い円柱状のものであって、制御用回路基板21の他面において例えばハンダ付けされて固定されている。
赤外線センサ27は、検知対象ガスによって吸収される赤外線に対してのみ高い透過率を有するバンドパスフィルター(図示せず)を備えている。
反射器30は、図5および図6に示すように、例えば凹面状の反射面31Aを有する集光性凹面鏡よりなる反射ミラー31と、この反射ミラー31の両端部を支持する一対の板状の支持部材32とにより構成されており、反射ミラー31が赤外線センサ27の直上に位置された状態で、支持部材32の他端に形成された舌片状の固定用脚部32Aが制御用回路基板21の他面において固定されている。これにより、第1の赤外線光源25Aおよび第2の赤外線光源25Bから例えば制御用回路基板21の一面に沿った方向に放射された赤外線が反射ミラー31によって反射されて赤外線センサ27に対して垂直方向から入射される構成とされている。このような構成であることにより、反射ミラー31による反射光の、赤外線センサ27に対する入射角を安定させることができるので、赤外線センサ27における光学フィルタの透過波長域が変化することを抑制することができる結果、所要のガス検知を一層高い信頼性をもって行うことができる。
以上の赤外線式ガス検知器10における一構成例を挙げると、赤外線光路の全光路長が例えば11mmであり、光源側赤外線光路Iaの光路長の大きさLaが例えば8mm、センサ側赤外線光路Ibの光路長の大きさLbが例えば3mmである。ここに、例えば濃度が0〜20体積%(vol%)程度の二酸化炭素ガスの検知を行うに際して必要とされる光路長の大きさは、少なくとも例えば10mm以上である。
また、スリーブ部材33は、例えば、内径が16.4mm、外径が17.4mm、肉厚が0.5mmのものであって、ガス導入用空間Sの内容積の大きさが2.24ccとなる長さを有する。
第1の赤外線光源25Aおよび第2の赤外線光源25Bを構成するフィラメントランプは、例えば、定格電圧値が5V、定格電流値が115mA、ランプ高さが10mmであるものである。
赤外線センサ27は、高さが4.8mm、外径がφ9.2mmのものである。
上記赤外線式ガス検知器10においては、第1の赤外線光源25Aおよび第2の赤外線光源25Bが、一方が点灯状態にあるときに他方が消灯状態となるよう制御されて、所定の点滅周期で点滅駆動される。
具体的には、図7に示すように、例えば2つの赤外線光源のうちのいずれか一方の赤外線光源例えば第1の赤外線光源25Aのみが光源駆動回路23によって点滅駆動され(図7(a))、ガス検知動作が行われるに際しては、基本的には、第1の赤外線光源25Aが継続して使用される。また、ガス検知動作中においては、使用されている第1の赤外線光源25Aが正常に機能しているか否かを判定する判定処理がマイコン24によって行われている。この判定処理について具体的に説明すると、各々の赤外線光源は定電流制御および定電圧制御のいずれの方法によって駆動されてもよいが、定電流制御により駆動される場合には、ランプ電圧が検出され、また、定電圧制御により駆動される場合には、ランプ電流値が検出され、これらの検出結果に基づいて判定処理が行われる。
一方、第2の赤外線光源25Bは、第1の赤外線光源25Aが正常に機能している場合には、通常、消灯状態が維持された状態とされており、第1の赤外線光源25Aが正常に機能していないことがマイコン24によって検出されると、第2の赤外線光源25Bが光源駆動回路23によって点滅駆動される(図7(b))。
ここに、第1の赤外線光源25Aおよび第2の赤外線光源25Bは、例えば1Hzの周期で、すなわち0.5秒間の間点灯された後、0.5秒間の間消灯されるよう、点滅駆動される。ランプ電圧値は、例えば点灯(ON)時が3V程度、消灯(OFF)時が1V程度である。
また、継続して使用される赤外線光源の切り替えは、赤外線光源の異常が検知された後、例えば5〜10秒間程度経過してから行われることが好ましい。この理由は、例えば衝突によって衝撃が加えられることに伴って赤外線光源が正常に機能しなくなった場合に、数秒間の間、切り替えられた後の赤外線光源が衝撃を受けるおそれがあるためである。
そして、例えば第1の赤外線光源25Aが点滅駆動されることにより、第1の赤外線光源25Aから例えば制御用回路基板21の一面に沿った方向に放射される赤外線は、反射器30における反射ミラー31によって1回反射されて、その反射光が赤外線センサ27に対して垂直方向から入射される。この状態において、被検ガスが、自然拡散によって、ガス導入口15からガス透過性ダストフィルタ35を介してガス導入空間S内に導入されて、目的とする検知対象ガス例えば二酸化炭素ガスの濃度測定が行われる。すなわち、例えば二酸化炭素ガスが被検ガスに含まれている場合には、赤外線が二酸化炭素ガスによって吸収されることに伴って赤外線センサ27によって検出される赤外線量が減衰し、赤外線量の減衰の程度に応じて二酸化炭素ガスの濃度が算出され、その結果が、例えば外部出力機器や出力表示器等に出力される。
このような構成の赤外線式ガス検知器においては、第1の赤外線光源25Aおよび第2の赤外線光源25Bのうち、継続して点滅駆動されるべき一の赤外線光源が交互に選択されて使用されるよう制御される構成とされていることが好ましい。使用される赤外線光源の切り替えは、例えばガス検知器の電源が投入される度毎に、あるいは定期的に例えば1日毎に行うことができる。
而して、上記構成の赤外線式ガス検知器10によれば、基本的には、第1の赤外線光源25A,第2の赤外線光源25B、赤外線センサ27および反射器30が共通の制御用回路基板21上に所定の位置関係を満足する状態で取り付けられて、一の構造体であるセンサユニット20としてコンパクトにまとめられた構成とされているので、赤外線式ガス検知器10全体を小型のものとして構成することができることに加え、十分に小型化が図られたものでありながら、第1の赤外線光源25Aまたは第2の赤外線光源25Bから放射される赤外線を反射器30によって反射して赤外線センサ27に入射させる反射構造を採用していることにより、目的とする検知対象ガスについてのガス検知を行うために必要とされる十分な大きさの光路長が確保されたものとして構成することができるので、所要のガス検知を高い信頼性をもって行うことができる。
しかも、ガス検知が行われるに際しては、2つの赤外線光源のうちの例えば第1の赤外線光源25Aのみが点滅駆動され、第2の赤外線光源25Bは消灯状態が維持された状態とされると共に、第1の赤外線光源25Aが正常に機能しなくなったときに、いわば予備光源としての第2の赤外線光源25Bに切り替えられることにより、図7(c)に示すように、赤外線式ガス検知器10の所期の測定機能を維持することができるので、所要のガス検知を高い信頼性をもって確実に行うことができる。換言すれば、赤外線光源が点灯状態にあるときのフィラメントの強度は、消灯状態にあるときのそれに比して相当に低い状態であって、フィラメントに何らかの衝撃が加わることで変形あるいは破損しやすい状態となっており、第1の赤外線光源25Aが正常に機能しなくなることによってガス検知それ自体を行うことができない状況になることを確実に防止することができる。
また、継続して点滅駆動される赤外線光源が交互に使用されるよう制御される構成とされている場合には、各々の赤外線光源の寿命を延ばすことができ、所要のガス検知を長期間の間にわたって確実に行うことができる。
さらに、上記構成の赤外線式ガス検知器によれば、以下に示すような効果が得られる。(1)第1の赤外線光源25Aまたは第2の赤外線光源25Bから放射される赤外線を垂直方向に反射させることができる構成とされていればよいので、利用可能な反射器30の選択の自由度が高くなると共に、反射器30の反射特性による赤外線光源および赤外線センサ27の配置位置に対する制限がなくなるので、このような理由からも、赤外線式ガス検知器10の小型化が図りやすくなると共に、光学系の調整を容易に行うことができる。(2)本体ケース11がその一面から突出する円筒状部分12が形成されたものであり、この円筒状部分12の内部空間が利用されてガス導入空間Sが形成されていることにより、ガス導入口15を、この実施例のように本体ケース11の上部位置、あるいは円筒状部分12の側面位置など、いずれの部分においても形成することができるので、被検ガスを自然拡散により導入する拡散構造のものとして容易に構成することができる。また、この円筒状部分12のみを測定対象空間、例えば空調機のダクト内に挿入して配置することができるので、赤外線式ガス検知器10の設置作業やメンテナンス作業が容易になるなど、使用上の利便性が高いものとして構成することができる。
(3)第1の赤外線光源25Aおよび第2の赤外線光源25Bの動作制御、赤外線センサ27からの出力信号の処理が単一の制御用回路基板21によって行われるので、部品点数を減少させることができる結果、構造の簡素化を図ることができると共に、所要の赤外線式ガス検知器10を有利に製造することができる。
以上のように、本発明の赤外線式ガス検知器によれば、基本的には、十分に小型のものでありながら、ガス検知に必要な十分な大きさの光路長を確保することができるものであり、しかも、赤外線光源、赤外線センサおよび反射器の三者が所定の位置関係を満足する状態で共通の制御用回路基板に固定されているので、例えば自動車の車室内の二酸化炭素ガスの濃度を監視するために用いられた場合に、走行中における振動等によっても、赤外線光源、赤外線センサおよび反射器の三者の位置関係が変わることがないので、所要のガス検知を高い信頼性をもって行うことができると共に、仮に、衝突事故等が生じることによってガス検知動作中に使用されている一の赤外線光源が正常に機能しなくなった場合であっても、他の赤外線光源に切り替えられることにより赤外線式ガス検知器の所期の測定機能が維持される可能性が高くなるので、自動車の車室内における二酸化炭素ガスの濃度の監視を継続して行うことができ、極めて有用なものとなる。
以上においては、2つの赤外線光源のうち一方のみを継続して使用し、当該赤外線光源が正常に機能しなくなったことが検出されたときに、一方の赤外線光源から他方の赤外線光源に切り替えて他方の赤外線光源が点滅駆動される構成のものについて説明したが、以下の方法により赤外線光源の駆動制御が行われるよう構成することもできる。
すなわち、図8に示すように、各々、所定の点滅周期t1、t2で点滅駆動される第1の赤外線光源25Aおよび第2の赤外線光源25Bが、一方が点灯状態にあるときに他方が消灯状態となるよう、制御されて(図8(a),(b)参照。)、第1の赤外線光源25Aおよび第2の赤外線光源25Bが交互に点灯状態とされるよう点滅駆動されることにより、全体として、赤外線が例えば1Hzの周期Tで赤外線センサ27に供給されるよう第1の赤外線光源25Aおよび第2の赤外線光源25Bの動作状態が制御される構成とすることができる(図8(c))。
そして、図8(b)に示すように、例えば第2の赤外線光源25Bが正常に機能しなくなったことが検出されたときには、同図(a)に示すように、第1の赤外線光源25Aが必要に応じて点滅周期が短く変更された状態で継続して使用される。ここに、第1の赤外線光源25Aの点滅周期t2は変更されなくてもよい。
また、このような制御方法が実施される赤外線式ガス検知器においても、いずれか一方の赤外線光源の異常が検知された後、継続して使用される赤外線光源の切り替えは、例えば5〜10秒間程度経過してから行われることが好ましい。この理由は、例えば衝突によって衝撃が加えられることに伴って赤外線光源が正常に機能しなくった場合に、数秒間の間、切り替えられた後の赤外線光源が衝撃を受けるおそれがあるためである。
このような制御方法により例えば2つの赤外線光源が点滅駆動される構成の赤外線式ガス検知器においても、上記のものと同様の実用上十分な効果を得ることができる。すなわち、第1の赤外線光源25Aおよび第2の赤外線光源25Bの動作状態が、一方が点灯状態にあるときに他方が消灯状態となるよう制御されることにより、赤外線式ガス検知器10全体に衝撃が加えられた場合に、これに起因してフィラメントが変形または破損するおそれのある赤外線光源は点灯状態にあるいずれか一方のものであり、消灯状態とされている他方の赤外線光源によってガス検知器の所期の測定機能を維持することができ、所要のガス検知を確実に行うことができる。
また、各々の赤外線光源の寿命を延ばすことができ、所要のガス検知を長期間の間にわたって確実に行うことができる。
以上、本発明の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、種々の変更を加えることができる。
例えば、本発明の赤外線式ガス検知器においては、赤外線光源の数は、特に制限されるものではなく適宜に変更することができるが、赤外線式ガス検知器が大型のものとなることを防止するために、実際上は、2〜3個であることが好ましい。
また、本発明の赤外線式ガス検知器においては、図9および図10に示すように、センサユニット20におけるスリーブ部材33の内部空間において、第1の赤外線光源25Aおよび第2の赤外線光源25Bの検出光軸方向(図9において右方向)における背面側に、リフレクタ40が設けられた構成とすることができる。このような構成の赤外線式ガス検知器10によれば、第1の赤外線光源25Aおよび第2の赤外線光源25Bから放射される赤外線を反射して反射器30が位置される検出光軸方向に照射することができ、これにより、赤外線を確実に反射器30によって反射させて赤外線センサ27に供給することができる。
さらに、本発明の赤外線式ガス検知器においては、以下に示すような構成とすることができる。
(1)反射器は、上記実施例のような構成のものに限定されるものではなく、例えば赤外線光源を臨む面が開口する枠体のものにより構成されていてもよい。
(2)反射ミラーは、凹面鏡であっても、平面鏡であってもよく、反射面の表面に、赤外域で高い反射率を示す材質よりなる反射膜が形成されていてもよい。
(3)上記実施例においては、本発明をいわゆる反射型の赤外線式ガス検知器に適用した場合について説明したが、本発明は、反射型のものに限定されず、赤外線光源と赤外線センサとがガスセル内において対向配置されてなる、いわゆる直光型(非反射型)のものにも適用することができる。
(4)検知対象ガスは二酸化炭素ガスに限定されるものではなく、赤外線吸特性を有するガスであれば、いずれのものについても適用することができ、光路長の大きさは、検知対象ガスの種類に応じて適宜に設定変更することができる。
(5)警報器としての機能を備えた構成とされていてもよい。
本発明の赤外線式ガス検知器の一例における構成の概略を示す縦断面図である。 図1に示す赤外線式ガス検知器におけるセンサユニットの構成を、一部を破断した状態において示す平面図である。 図2に示すセンサユニットの拡大断面図である。 図1に示す赤外線式ガス検知器を構成する制御用回路基板における信号処理回路の一例を示すブロック図である。 センサユニットを構成する反射器の構成を示す平面図である。 図5におけるA−A線断面図である。 赤外線光源の駆動制御方法の一例を示すタイミングチャートである。 赤外線光源の駆動制御方法の他の例を示すタイミングチャートである。 本発明の赤外線式ガス検知器の他の例における構成の概略を示す縦断面図である。 図9に示す赤外線式ガス検知器におけるセンサユニットの構成を、一部を破断した状態において示す平面図である。
符号の説明
10 赤外線式ガス検知器
11 本体ケース
12 円筒状部分
13 段部
15 ガス導入口
18 配線用空間
20 センサユニット
21 制御用回路基板
22 増幅回路
23 光源駆動回路
24 マイコン
25A 第1の赤外線光源
25B 第2の赤外線光源
26 給電部材
27 赤外線センサ
28 スペーサ部材
30 反射器
31 反射ミラー
31A 反射面
32 支持部材
32A 固定用脚部
33 スリーブ部材
35 ガス透過性ダストフィルタ
40 リフレクタ
S ガス導入空間
Ia 光源側赤外線光路
Ib センサ側赤外線光路

Claims (3)

  1. 赤外線センサに入射される赤外線量の減衰の程度に応じて検知対象ガスの濃度を検出する赤外線式ガス検知器であって、
    各々、点滅駆動されるフィラメントランプよりなる二以上の赤外線光源を具えてなり、各々の赤外線光源の動作状態が、一方の赤外線光源のみが点滅駆動されると共に他方の赤外線光源が消灯状態が維持された状態とされるよう、制御され、
    ガス検知動作中において検出される当該一方の赤外線光源のランプ電圧値またはランプ電流値に基づいて、当該一方の赤外線光源が正常に機能していないことが検出されたときに、他方の赤外線光源が点滅駆動され、
    二の赤外線光源のうち継続して点滅駆動されるべき一の赤外線光源が交互に使用されることを特徴とする赤外線式ガス検知器。
  2. 赤外線センサに入射される赤外線量の減衰の程度に応じて検知対象ガスの濃度を検出する赤外線式ガス検知器であって、
    各々、点滅駆動されるフィラメントランプよりなる二以上の赤外線光源を具えてなり、 各々の赤外線光源の動作状態が、各々の赤外線光源が交互に点灯状態とされるよう、制御され、
    ガス検知動作中において検出される各々の赤外線光源のランプ電圧値またはランプ電流値に基づいて、いずれか一方の赤外線光源が正常に機能していないことが検出されたときに、他方の赤外線光源のみが点滅駆動されることを特徴とする赤外線式ガス検知器。
  3. いずれか一方の赤外線光源が正常に機能していないことが検出されたときに、他方の赤外線光源が点滅周期が変更された状態で点滅駆動されることを特徴とする請求項2に記載の赤外線式ガス検知器。
JP2006078341A 2006-03-22 2006-03-22 赤外線式ガス検知器 Expired - Fee Related JP4733543B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006078341A JP4733543B2 (ja) 2006-03-22 2006-03-22 赤外線式ガス検知器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006078341A JP4733543B2 (ja) 2006-03-22 2006-03-22 赤外線式ガス検知器

Publications (2)

Publication Number Publication Date
JP2007255969A JP2007255969A (ja) 2007-10-04
JP4733543B2 true JP4733543B2 (ja) 2011-07-27

Family

ID=38630377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006078341A Expired - Fee Related JP4733543B2 (ja) 2006-03-22 2006-03-22 赤外線式ガス検知器

Country Status (1)

Country Link
JP (1) JP4733543B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4812141B2 (ja) 2010-03-24 2011-11-09 Necシステムテクノロジー株式会社 分析装置
JP7448344B2 (ja) * 2018-12-07 2024-03-12 旭化成エレクトロニクス株式会社 ガスセンサ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277758A (ja) * 1988-04-28 1989-11-08 Toshiba Corp 自動化学分析装置
JPH0575653U (ja) * 1992-03-13 1993-10-15 横河電機株式会社 紙パルプ測定制御システムにおける光源装置
JPH07128231A (ja) * 1993-11-08 1995-05-19 Matsushita Electric Ind Co Ltd 赤外線式ガスセンサー
JP2002071553A (ja) * 2000-08-28 2002-03-08 Sunx Ltd 光ファイバセンサ
JP2003501622A (ja) * 1999-05-26 2003-01-14 インスティテュート フューア ヒェモ− ウント ビオゼンゾリック ミュンスター アインゲトラーゲナー フェライン ガスセンサ機構

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277758A (ja) * 1988-04-28 1989-11-08 Toshiba Corp 自動化学分析装置
JPH0575653U (ja) * 1992-03-13 1993-10-15 横河電機株式会社 紙パルプ測定制御システムにおける光源装置
JPH07128231A (ja) * 1993-11-08 1995-05-19 Matsushita Electric Ind Co Ltd 赤外線式ガスセンサー
JP2003501622A (ja) * 1999-05-26 2003-01-14 インスティテュート フューア ヒェモ− ウント ビオゼンゾリック ミュンスター アインゲトラーゲナー フェライン ガスセンサ機構
JP2002071553A (ja) * 2000-08-28 2002-03-08 Sunx Ltd 光ファイバセンサ

Also Published As

Publication number Publication date
JP2007255969A (ja) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4643875B2 (ja) ガスセンサ機構
US20110063115A1 (en) Light emitting device, illumination device, and photo sensor
US9360183B2 (en) Mirror apparatus for a vehicle
JP2012252252A (ja) プロジェクター
JP4733543B2 (ja) 赤外線式ガス検知器
JPH05185873A (ja) 霧中で使用するための照明・表示装置
JP2007256242A (ja) 赤外線式ガス検知器
JP2006266769A (ja) 反射型赤外線ガス検知器
JP2020170783A (ja) 車両用灯具
JP5280655B2 (ja) 減光式感知器
JP4507912B2 (ja) 照明器具
JP4216110B2 (ja) 多重反射式セルおよび赤外線式ガス検知装置
JP2008281428A (ja) 炭酸ガス検出装置
JP4325109B2 (ja) 分光光度計
JP4928244B2 (ja) 赤外線式ガス検知器
JP4469699B2 (ja) 赤外線式炭酸ガス検知器
JP2005121490A (ja) 自動試験機能付炎感知器
JP2010027245A (ja) 誘導灯
JP2007256243A (ja) 赤外線式ガス検知器
JP2007264847A (ja) 火災感知器の作動試験器
CN112272905A (zh) 激光装置及激光装置的除湿管理方法
JP3116657B2 (ja) 放電灯ヘッドランプ装置
KR100514820B1 (ko) 차량의 램프 점등 확인장치
AU2014100090A4 (en) Parking Guide System and Method
KR102140107B1 (ko) 전기 자동차의 운행 종료시 전원차단 알림 시스템

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees