JP4731051B2 - 鉛蓄電池の容量検出方法 - Google Patents

鉛蓄電池の容量検出方法 Download PDF

Info

Publication number
JP4731051B2
JP4731051B2 JP2001185803A JP2001185803A JP4731051B2 JP 4731051 B2 JP4731051 B2 JP 4731051B2 JP 2001185803 A JP2001185803 A JP 2001185803A JP 2001185803 A JP2001185803 A JP 2001185803A JP 4731051 B2 JP4731051 B2 JP 4731051B2
Authority
JP
Japan
Prior art keywords
current
voltage
storage battery
capacity
lead storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001185803A
Other languages
English (en)
Other versions
JP2003007353A (ja
Inventor
博之 佐藤
昭治 堺
英則 横山
武 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP2001185803A priority Critical patent/JP4731051B2/ja
Publication of JP2003007353A publication Critical patent/JP2003007353A/ja
Application granted granted Critical
Publication of JP4731051B2 publication Critical patent/JP4731051B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は自動車等に用いられる鉛蓄電池の容量検出方法に関する。
【0002】
【従来の技術】
鉛蓄電池は、自動車の電装品に給電するための給電源等として広く用いられている。鉛蓄電池の残存する容量を検出する方法として、鉛蓄電池に流出入する電流を積算して求める電流積算方式が知られている。この方式では累積誤差により検出精度が悪化するため、例えば特開平11−206028号公報では電流値が正(放電)から負(充電)もしくは負から正に変化した時の電圧を開放電圧(起電圧)として、これを容量に換算し、得られた容量と電流積算により得られた容量とが許容値を越えて異なる場合には、起電圧に基づいて得られた容量を選択している。
【0003】
また、前記特開平11−206028号公報において、起電圧を求める方法として、多数組の電流および電圧のデータから最小二乗法により求めることが提案されている。
【0004】
【発明が解決しようとする課題】
しかしながら、鉛蓄電池では、充電での分極状態と放電での分極状態とで電流−電圧特性線が異なり、正確に起電圧が得られない。
【0005】
また、最小二乗法によって求める場合には、電流および電圧のデータを蓄積し計算するための膨大な容量のメモリが必要になる。その上、電流および電圧のデータは同じ容量とみなせる期間に収集する必要があるが、多くの電流および電圧のデータを蓄積するほど、容量が変化しているおそれが高く、結局、容量の検出精度の向上は期待できない。
【0006】
本発明は前記実情に鑑みなされたもので、簡単で高精度に容量を検出することのできる鉛蓄電池の容量検出方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1記載の発明では、鉛蓄電池に流出入する電流および鉛蓄電池の両極間の電圧を検出するとともに検出された電流および電圧のデータに基づいて鉛蓄電池の電流0のときの電圧値を算出することにより鉛蓄電池の起電圧を得、該起電圧に基づいて鉛蓄電池の容量を求める鉛蓄電池の容量検出方法において、
充電による分極状態が安定しているか否かを判断する第1の手順と、
該第1の手順が肯定判断された後に検出された複数組の電流および電圧のデータに基づいて鉛蓄電池の電流−電圧特性線を推定して、起電圧を算出する第2の手順とを順行する方法とする。
前記第1の手順では、電流値が0.5C以上であり、かつ、電流の向きが充電の方向である状態が5秒以上となっているとき充電による分極状態が安定していると判断する。
【0008】
分極状態が安定し鉛蓄電池の両極間の電圧にばらつきのない状態での電流および電圧のデータに基づいて鉛蓄電池の電流−電圧特性線が推定されるから、多くの電流および電圧のデータを蓄積しなくとも電流−電圧特性線の信頼性が高い。したがって、鉛蓄電池の容量の検出精度が高い。しかも多量の電流および電圧のデータを蓄積したり複雑な計算をする必要もないから簡単である。
鉛蓄電池の分極状態は、一定以上の電流が流れる充電状態が一定の期間続くと安定するから、かかる充電状態が持続していれば、分極状態が安定していると、判断することができる。起電圧の算出に必須の測定項目である電流を監視するだけでよいから簡単である。
【0009】
請求項2記載の発明では、請求項1の発明において、前記第2の手順では、
第1の手順が肯定判断された状態において、前記電流の向きに基づいて充電から放電に切り替わったか否かを判断し、
前記複数組の電流および電圧のデータを、前記判断が肯定判断された直前の電流および電圧のデータおよび直後の電流および電圧のデータとする。
【0010】
起電圧は、充電状態のときの電流および電圧のデータと放電状態のときの電流および電圧のデータとを内挿することにより得ることになるから、2組の電流および電圧のデータに基づくものであっても起電圧の精度がきわめて高い。
【0013】
請求項記載の発明では、鉛蓄電池に流出入する電流および鉛蓄電池の両極間の電圧を検出するとともに検出された電流および電圧のデータに基づいて鉛蓄電池の電流0のときの電圧値を算出することにより鉛蓄電池の起電圧を得、該起電圧に基づいて鉛蓄電池の容量を求める鉛蓄電池の容量検出方法において、
放電による分極状態が安定しているか否かを判断する第1の手順と、
該第1の手順が肯定判断された後に検出された複数組の電流および電圧のデータに基づいて鉛蓄電池の電流−電圧特性線を推定して、起電圧を算出する第2の手順とを順行する方法とする。
前記第1の手順では、電流値が0.5C以上であり、かつ、電流の向きが放電の方向である状態が5秒以上となっているとき、放電による分極状態が安定していると判断する。
【0014】
分極状態が安定し鉛蓄電池の両極間の電圧にばらつきのない状態での電流および電圧のデータに基づいて鉛蓄電池の電流−電圧特性線が推定されるから、多くの電流および電圧のデータを蓄積しなくとも電流−電圧特性線の信頼性が高い。したがって、鉛蓄電池の容量の検出精度が高い。しかも多量の電流および電圧のデータを蓄積したり複雑な計算をする必要もないから簡単である。
鉛蓄電池の分極状態は、一定以上の電流が流れる放電状態が一定の期間続くと安定するから、かかる放電状態が持続していれば、分極状態が安定していると、判断することができる。起電圧の算出に必須の測定項目である電流を監視するだけでよいから簡単である。
【0015】
請求項記載の発明では、請求項の発明において、前記第2の手順では、
第1の手順が肯定判断された状態において、前記電流の向きに基づいて放電から充電に切り替わったか否かを判断し、
前記複数組の電流および電圧のデータを、前記判断が肯定判断された直前の電流および電圧のデータおよび直後の電流および電圧のデータとする。
【0016】
起電圧は、放電状態のときの電流および電圧のデータと充電状態のときの電流および電圧のデータとを内挿することにより得ることになるから、2組の電流および電圧のデータに基づくものであっても起電圧の精度がきわめて高い。
【0019】
【発明の実施の形態】
(第1実施形態)
図1に本発明の鉛蓄電池の容量検出方法を適用した自動車の電池システムを示す。電池1は鉛蓄電池であり、給電線2を介して自動車に搭載された電装品等の負荷と接続される。電池1の両極間の電圧を検出する電圧検出回路31が設けられ、電圧の検出信号が制御用のマイクロコンピュータ30に入力せしめてある。また、給電線2の途中に比較的抵抗値の小さな抵抗器34が設けられ、その両端間電圧が電流検出回路32に入力している。この入力電圧に基づいて電流検出回路32が電池1に流出入する電流、すなわち充電電流と放電電流とを検出する。電流の検出信号は電流検出回路32からマイクロコンピュータ30に入力せしめてある。
【0020】
これら電池1の電流および電圧のデータに基づいてマイクロコンピュータ30が電池1の容量を演算する。
【0021】
また、温度センサ35と、その出力信号を入力とする温度検出回路33が設けられ、電池1の温度を検出するようになっている。温度センサ35は電池1の表面に取り付けられて表面温度を検出するものや、電解液の温度を検出するものを用い得る。温度検出回路33からの温度の検出信号はマイクロコンピュータ30に入力し、マイクロコンピュータ30が検出温度に基づいて前記容量の補正をするようになっている。
【0022】
マイクロコンピュータ30は、CPU301やその作業領域となるRAM302、制御プログラム等を記憶したROM303等からなる一般的な構成のもので、図2にその制御プログラムにおける容量検出フローを示す。
【0023】
本フローはイグニッションオンでスタートする(ステップS101)。そして、電池1の電流および電圧を測定する(ステップS102)。電流および電圧のサンプリング間隔は例えば1秒とする。また、マイクロコンピュータ30のRAM302には、測定した電流および電圧のデータを格納する領域が設定されており、今回サンプリングしたデータ用のものと、前回1秒前にサンプリングしたデータ用のものとの2種類が割り当てられ、後述するように、1秒間隔で時間を追って更新されていく。
【0024】
続く第1の手順であるステップS103では、0.5C以上の電流での充電継続時間が5秒以上となったか否かを判断する。鉛蓄電池には、良好な作動状態を確保するため上限電圧および下限電圧、若しくは目標容量が設定されており、容量を調整するために充電状態や放電状態を継続させるように電池システムが働き、かかる場合に、前記のごとく充電が継続することになる。
【0025】
ここで、充電継続時間は、電流の向きが放電方向であるか、または充電電流の大きさが0.5C以下である状態から、電流の大きさが0.5C以上で、かつ、電流の向きが充電方向である状態に変化すると、タイマが起動してカウントする。また、電流が0.5C以上の充電電流であるか否かは、前回1秒前にサンプリングしたデータに基づいて判断する。したがって、前回のサンプリング時に充電継続時間が5秒以上経過したか否かを判断していることになる。あるいは、電流が0.5C以上の充電電流であるか否かを今回サンプリングしたデータに基づいて判断して、充電継続時間が5秒を越えたら、その旨のフラグをRAM302の所定領域に立てるようにし、次回のサンプリング時にこのフラグに基づいて判断するようにしてもよい。
【0026】
ステップS103が否定判断されると、すなわち、前記充電継続時間が5秒に達していなければステップS102に戻る。このとき、RAM302の電流および電圧のデータは更新され、常に、最新の電流および電圧のデータと、その1秒前の電流および電圧のデータとが記憶されていることになる。
【0027】
そして、充電継続時間が5秒を越えると、ステップS103が肯定判断され、ステップS104に進む。ステップS104およびステップS105は第2の手順であり、先ず、ステップS104では、今回サンプリングされた電流の向きに基づいて、放電か否かを判断する。否定判断されると、ステップS102に戻る。
【0028】
そして、充電継続時間が5秒を越え(ステップS103)、さらに、充電から放電に変わり、ステップS104が肯定判断されると、ステップS105に進む。
【0029】
ステップS105では、ステップS102を実行するごとに更新される最新の電流および電圧のデータと、その1秒前の電流および電圧のデータとに基づいて、起電圧を算出する。充電が6秒間継続し、7秒目に放電に変わったとすると、起電圧の算出に供されるデータは6秒目のデータと7秒目のデータということになる。以下、適宜、前記1秒前の電流および電圧のデータを充電期間最終データといい、前記最新の電流および電圧のデータを放電時データという。起電圧の算出は、充電期間最終データおよび放電時データを内挿して、電流=0のときの電圧値を算出し、起電圧とする。
【0030】
ステップS106では、予めマイクロコンピュータ30のROM303に記憶した起電圧−容量マップにしたがって、ステップS105で得られた起電圧から電池1の容量を求め、現在の容量値を更新する。そして、ステップS102に戻る。なお、マップは、公知の種々の方法、例えば実験的な方法で求めることができる。一例を挙げれば、容量が100%(満充電)の状態から、例えば0.5Cで放電した後、放電後の容量における起電圧のデータとして、電流=0として電圧が安定した時の電圧値を測定するとともに、前記起電圧のデータと対をなす容量のデータとして、そこから容量が0%になるまでの放電電流量を測定する。これを放電時間の異なる場合について測定する。マップは、かかる測定により得られた電圧値および放電電流量のデータ間の相関をとることにより作成する。
【0031】
本発明では、前記のごとく、2点のデータのみに基づいて電流−電圧特性線を推定し、電池1の起電圧を得ており、簡単に容量を求めることができる。
【0032】
また、本発明では電池1の容量の検出精度は次のように十分に高いものである。鉛蓄電池の電気化学的な分極状態が安定しない状態では電圧値がばらつく。しかし、一定以上の電流、例えば0.5C以上の電流が流れている状態では、数秒で分極状態が安定する。図3は、鉛蓄電池の放電電流と電圧との関係を示す電流−電圧特性線で、右下がりの直線となる。0.5C以上の放電電流が流れはじめてから5秒後のものと60秒後のものとの2つを併せて示している。図の例より知られるように5秒後における電流−電圧特性線は、60秒後における電流−電圧特性線と実質的に同じとみなせる。これは、充電状態における電流−電圧特性線についても同様のことがいえる。
【0033】
図4は、シール型で容量が30Ahの鉛蓄電池における、0.5C以上の充電が5秒以上継続した後の充電時のデータ、および、0.5C以上の充電が5秒以上継続した後、放電に変わった直後のデータを示している。各データはサンプリング間隔1秒でとったものである。なお、後述するように、図には併せて0.5C以上の放電が5秒以上継続し、その後、充電に変わった場合のデータも示しており、図中上側のデータ群が前者であり、図中下側のデータ群が後者である。
【0034】
充電から放電に変わった場合において、充電から放電に変わる直前直後のデータに着目する。例えば図中A点が直前でB点が直後である。前記のごとく鉛蓄電池の分極状態は数秒で安定し、0.5C以上の充電が5秒以上継続した後の充電時のデータは電流と電圧との関係が線型的になり、A点は所定の電流−電圧特性線にのっている。また、充電から放電に変わった直後は、変わる直前の分極状態と等価であり、B点も前記所定の電流−電圧特性線にのっているものと認められる。したがって、これらA点およびB点のデータは分極の不安定に基因した誤差は含んでいない。しかも、僅か1秒相前後するタイミングにおけるデータであるから、きわめて正確に、同じ起電圧すなわち同じ容量における電流−電圧特性線にのっている。本発明では、かかるA点およびB点のデータを起電圧の算出に用いるので、2点のデータからの内挿によるものであっても、高精度に起電圧を得ることができる。
【0035】
さらに、A点は充電の領域で0.5C以上の電流値をとり、B点は逆方向の放電の領域に位置するから、その電流差は比較的大きく、電流および電圧の測定誤差等が起電圧の算出値に与える影響は僅少である。
【0036】
(第2実施形態)
本発明の第2実施形態を図5により説明する。電池システムの基本的な構成は第1実施形態のものと同じであり、相違点はマイクロコンピュータで実行される制御プログラムだけであるので、図5に示した制御プログラムを中心に説明する。
【0037】
第1実施形態のステップS101,S102と同様に、イグニッションオンでスタートし(ステップS201)、電流および電圧を測定する(ステップS202)。電流および電圧のデータは第1実施形態のごとくRAM302に記憶される。
【0038】
続く第1の手順であるステップS203では、放電継続時間が5秒以上経過したか否かを判断する。ここで、放電継続時間とは、直近に0.5C以上の電流での放電状態となってからの時間であり、電流の大きさが0.5C以上で、かつ、電流の向きが放電方向である状態になるごとにタイマが起動してカウントする。
【0039】
ステップS203が否定判断されると、すなわち、放電継続時間が5秒に達していなければステップS202に戻る。このとき、RAMの電流および電圧のデータは更新され、常に、最新の電流および電圧のデータと、その1秒前の電流および電圧のデータとが記憶されていることになる。
【0040】
そして、放電継続時間が5秒を越えると、ステップS203が肯定判断され、ステップS204に進む。ステップS204およびステップS205は第2の手順であり、先ず、ステップS204では、ステップS202における電流の向きに基づいて、充電か否かを判断する。否定判断されると、ステップS202に戻る。
【0041】
そして、充電継続時間が5秒を越え(ステップS203)、さらに、放電から充電に変わり、ステップS204が肯定判断されると、ステップS205に進む。
【0042】
ステップS205では、第1実施形態と同様に、最新の電流および電圧のデータと、その1秒前の電流および電圧のデータとに基づいて、起電圧を算出する。以下、適宜、前記1秒前の電流および電圧のデータを放電期間最終データといい、前記最新の電流および電圧のデータを充電時データという。起電圧は、放電期間最終データおよび充電時データを内挿して、電流=0のときの電圧値を算出し、起電圧とする。
【0043】
ステップS206では、ステップS205で得られた起電圧から、第1実施形態のステップS106と同様に電池の容量を求める。そして、ステップS202に戻る。
【0044】
本実施形態においても、前記のごとく、2点のデータのみに基づいて電流−電圧特性線を推定し、起電圧を得ており、簡単に容量を求めることができる。
【0045】
また、本実施形態では、第1実施形態とは逆に放電状態から充電状態に変わっている点を除けば第1実施形態と同様のことが言え、前掲図4に示すように、0.5C以上の放電が5秒以上継続した後のデータ(C点)、その直後に充電に変わった時のデータ(D点)とに基づいて、内挿により起電圧を算出するので、高精度に起電圧を得ることができる。
【0046】
なお、前記各実施形態では、分極状態が安定した否かの判定を、充電状態もしくは放電状態において0.5C以上の充電若しくは放電が5秒以上継続したか否かに基づいて判断しているが、これらの電流のしきい値および時間のしきい値が電池1の種類等に応じて選択されるものであるのは勿論である。また、しきい値を電池1の温度等に応じて可変としてもよい。
【0047】
また、分極状態が安定した否かの判定は、電解液の状態等に基づく方法等、本発明の趣旨に反しない限り、任意である。
【0048】
また、起電圧の算出を、充電状態にあるときのデータと放電状態にあるときのデータとにより行っているが、例えば、分極状態が安定しているとみなせるときの、充電時のみの2組のデータか、放電時のみの2組のデータにより、起電圧を算出してもよい。この場合は、起電圧は外挿により求められることになる。
【0049】
また、前記各実施形態は本発明を自動車の電池システムに適用したものを示したが、鉛蓄電池が用いられるものであれば他の用途にも適用することができる。
【図面の簡単な説明】
【図1】本発明の鉛蓄電池の容量検出方法を適用した第1の電池システムの構成図である。
【図2】前記電池システムを構成するマイクロコンピュータの制御プログラムの内容を示すフローチャートである。
【図3】本発明の鉛蓄電池の容量検出方法を説明する第1のグラフである。
【図4】本発明の鉛蓄電池の容量検出方法を説明する第2のグラフである。
【図5】本発明の鉛蓄電池の容量検出方法を適用した第2の電池システムを構成するマイクロコンピュータの制御プログラムの内容を示すフローチャートである。
【符号の説明】
1 電池(鉛蓄電池)
2 給電線
30 マイクロコンピュータ
301 CPU
302 RAM
303 ROM
31 電圧検出回路
32 電流検出回路
33 温度検出回路

Claims (4)

  1. 鉛蓄電池に流出入する電流および鉛蓄電池の両極間の電圧を検出するとともに検出された電流および電圧のデータに基づいて鉛蓄電池の電流0のときの電圧値を算出することにより鉛蓄電池の起電圧を得、該起電圧に基づいて鉛蓄電池の容量を求める鉛蓄電池の容量検出方法において、
    充電による分極状態が安定しているか否かを判断する第1の手順と、
    該第1の手順が肯定判断された後に検出された複数組の電流および電圧のデータに基づいて鉛蓄電池の電流−電圧特性線を推定して、起電圧を算出する第2の手順とを順行し、
    前記第1の手順では、電流値が0.5C以上であり、かつ、電流の向きが充電の方向である状態が5秒以上となっているとき充電による分極状態が安定していると判断することを特徴とする鉛蓄電池の容量検出方法。
  2. 請求項1記載の鉛蓄電池の容量検出方法において、前記第2の手順では、
    第1の手順が肯定判断された状態において、前記電流の向きに基づいて充電から放電に切り替わったか否かを判断し、
    前記複数組の電流および電圧のデータを、前記判断が肯定判断された直前の電流および電圧のデータおよび直後の電流および電圧のデータとした鉛蓄電池の容量検出方法。
  3. 鉛蓄電池に流出入する電流および鉛蓄電池の両極間の電圧を検出するとともに検出された電流および電圧のデータに基づいて鉛蓄電池の電流0のときの電圧値を算出することにより鉛蓄電池の起電圧を得、該起電圧に基づいて鉛蓄電池の容量を求める鉛蓄電池の容量検出方法において、
    放電による分極状態が安定しているか否かを判断する第1の手順と、
    該第1の手順が肯定判断された後に検出された複数組の電流および電圧のデータに基づいて鉛蓄電池の電流−電圧特性線を推定して、起電圧を算出する第2の手順とを順行し、
    前記第1の手順では、電流値が0.5C以上であり、かつ、電流の向きが放電の方向である状態が5秒以上となっているとき、放電による分極状態が安定していると判断することを特徴とする鉛蓄電池の容量検出方法。
  4. 請求項3記載の鉛蓄電池の容量検出方法において、前記第2の手順では、
    第1の手順が肯定判断された状態において、前記電流の向きに基づいて放電から充電に切り替わったか否かを判断し、
    前記複数組の電流および電圧のデータを、前記判断が肯定判断された直前の電流および電圧のデータおよび直後の電流および電圧のデータとした鉛蓄電池の容量検出方法。
JP2001185803A 2001-06-20 2001-06-20 鉛蓄電池の容量検出方法 Expired - Fee Related JP4731051B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001185803A JP4731051B2 (ja) 2001-06-20 2001-06-20 鉛蓄電池の容量検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001185803A JP4731051B2 (ja) 2001-06-20 2001-06-20 鉛蓄電池の容量検出方法

Publications (2)

Publication Number Publication Date
JP2003007353A JP2003007353A (ja) 2003-01-10
JP4731051B2 true JP4731051B2 (ja) 2011-07-20

Family

ID=19025325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001185803A Expired - Fee Related JP4731051B2 (ja) 2001-06-20 2001-06-20 鉛蓄電池の容量検出方法

Country Status (1)

Country Link
JP (1) JP4731051B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8878539B2 (en) 2004-04-06 2014-11-04 Robert Bosch Gmbh State of charge tracking system for battery systems based on relaxation voltage
MXPA06011389A (es) * 2004-04-06 2007-06-19 Cobasys Llc Estimador del estado de carga de bateria.
JP4880451B2 (ja) * 2004-05-26 2012-02-22 日本電気株式会社 二次電池の残存容量推定方法及び装置
JP2007121030A (ja) * 2005-10-26 2007-05-17 Denso Corp 車両用蓄電装置の内部状態検出装置
JP4893653B2 (ja) 2008-02-19 2012-03-07 トヨタ自動車株式会社 車両、二次電池の充電状態推定方法および車両の制御方法
US20110106280A1 (en) * 2009-11-03 2011-05-05 Bruce Eric Zeier Automated battery scanning, repair, and optimization
JP5487183B2 (ja) * 2011-10-25 2014-05-07 本田技研工業株式会社 蓄電装置の充電容量パラメータ推定装置
CN105021997B (zh) * 2015-08-07 2018-03-27 中国人民解放军重庆通信学院 蓄电池容量曲线的绘制方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3767150B2 (ja) * 1998-01-09 2006-04-19 日産自動車株式会社 電池の残存容量検出装置
JP3475894B2 (ja) * 1999-09-13 2003-12-10 株式会社日本自動車部品総合研究所 車両用二次電池の満充電判定装置及び残存容量算出装置
JP3436203B2 (ja) * 1999-10-01 2003-08-11 株式会社日本自動車部品総合研究所 車両用二次電池の残存容量算出装置、エンジン自動停止始動装置及び電気回転機制御装置
JP4094187B2 (ja) * 1999-09-24 2008-06-04 本田技研工業株式会社 蓄電装置の残容量検出装置

Also Published As

Publication number Publication date
JP2003007353A (ja) 2003-01-10

Similar Documents

Publication Publication Date Title
US8274291B2 (en) Charged state estimating device and charged state estimating method of secondary battery
JP5109304B2 (ja) 電池の残存容量検出装置
EP3343689B1 (en) Deterioration degree estimation device and deterioration degree estimation method
JP5515524B2 (ja) 二次電池の劣化状態判別システム、および二次電池の劣化状態判別方法
US7692410B2 (en) Method and device for determining characteristics of an unknown battery
US7317299B2 (en) Method of calculating aging factor of battery for hybrid vehicle
JP6097599B2 (ja) 二次電池の状態検知方法及び状態検知装置
US20190094305A1 (en) Amount of charge calculation device, recording medium, and amount of charge calculation method
WO2008026476A1 (fr) Procédé et dispositif pour estimer une valeur d'état de charge de batterie secondaire et procédé et dispositif de jugement de dégradation
KR101695122B1 (ko) 축전 디바이스 전력량 추정 장치 및 축전 디바이스 전력량 추정 방법
CN109073708B (zh) 二次电池劣化估计装置和二次电池劣化估计方法
JP2017167034A (ja) 劣化判定装置及び劣化判定方法
CN112534283B (zh) 电池管理系统、电池管理方法、电池组和电动车辆
JP4415074B2 (ja) 充放電制御システム
JP4731051B2 (ja) 鉛蓄電池の容量検出方法
JP5911407B2 (ja) バッテリの健全度算出装置および健全度算出方法
US20020053910A1 (en) Method and apparatus for measuring pure resistance of in-vehicle battery
JP5298773B2 (ja) 蓄電装置
JP2007261433A (ja) バッテリ制御装置およびバッテリ制御方法
JP5904916B2 (ja) バッテリの健全度算出装置および健全度算出方法
JP2007265693A (ja) バッテリ制御装置およびバッテリ制御方法
JP4144116B2 (ja) バッテリ充電状態検出装置
JP6672976B2 (ja) 充電量算出装置、コンピュータプログラム及び充電量算出方法
JP4872513B2 (ja) 電池の電流−電圧特性検出装置およびそれを用いた内部抵抗検出装置
JPH1138107A (ja) 二次電池の残存容量推定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees