JP4721804B2 - イオン発生装置及びこれを備えた電気機器 - Google Patents

イオン発生装置及びこれを備えた電気機器 Download PDF

Info

Publication number
JP4721804B2
JP4721804B2 JP2005222550A JP2005222550A JP4721804B2 JP 4721804 B2 JP4721804 B2 JP 4721804B2 JP 2005222550 A JP2005222550 A JP 2005222550A JP 2005222550 A JP2005222550 A JP 2005222550A JP 4721804 B2 JP4721804 B2 JP 4721804B2
Authority
JP
Japan
Prior art keywords
voltage
discharge
ssr
ion generator
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005222550A
Other languages
English (en)
Other versions
JP2007042312A (ja
Inventor
弘 西田
嘉彦 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005222550A priority Critical patent/JP4721804B2/ja
Publication of JP2007042312A publication Critical patent/JP2007042312A/ja
Application granted granted Critical
Publication of JP4721804B2 publication Critical patent/JP4721804B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Description

本発明は、プラスイオンとマイナスイオンを空間に放出することで、空気中に浮遊する細菌やカビ菌、有害物質などを分解することが可能なイオン発生装置及びこれを備えた電気機器に関するものである。なお、上記の電気機器に該当する例としては、主に閉空間(家屋内、ビル内の一室、病院の病室や手術室、車内、飛行機内、船内、倉庫内、冷蔵庫の庫内等)にプラスイオンとマイナスイオンを放出する空気調和機、除湿機、加湿器、空気清浄機、冷蔵庫、ファンヒータ、電子レンジ、洗濯乾燥機、掃除機、殺菌装置等を挙げることができる。
プラスイオン、マイナスイオンの両極性のイオンを放出して、空気中にプラスイオンであるH+(H2O)mと、マイナスイオンであるO2 -(H2O)n(m、nは自然数)を略同等量発生させることにより、両イオンが空気中の浮遊カビ菌やウィルスの周りを取り囲み、その際に生成される活性種の水酸基ラジカル(・OH)の作用により、前記浮遊カビ菌等を殺菌・不活化することが可能なイオン発生装置に関する発明が本願出願人によってすでに特許出願されている(例えば、特許文献1〜3を参照)。
なお、上記の発明については、本願出願人によって既に実用化され、実用機には、セラミックの誘電体を挟んで外側に放電電極、内側に誘導電極を配設した構造のイオン発生装置、及びこれを搭載した空気清浄機や空気調和機などがある。
特開2003−47651号公報 特開2002−319472号公報 特開2004−363088号公報
イオン発生装置からのイオン発生量が多ければ、前記浮遊カビ菌等を殺菌・不活化する効果を高めることができる。イオン発生量を増大させるには単位時間当たりの放電回数を増加させるとよい。ただし、単位時間当たりの放電回数を増加させると放電音が大きくなる、オゾンの発生量が増大する等の問題があるため単位時間当たりの放電回数を常に増加させるのではなく、前記浮遊カビ菌等を殺菌・不活化する効果を高める必要がない場合には単位時間当たりの放電回数を少なくすることができるように、単位時間当たりの放電回数の切り替えが可能な構成が望ましい。
ところが、特許文献2、3で開示されているイオン発生装置では、昇圧トランスの1次側回路に配置されているCR回路の時定数が固定されているため、単位時間当たりの放電回数が固定されており単位時間当たりの放電回数の切り替えが不可能な構成であった。
昇圧トランスの1次側回路に配置されているCR回路の時定数を変更すると単位時間当たりの放電回数も変更するので、単位時間当たりの放電回数の変更が可能なイオン発生装置として、例えば、図7又は図8に示すイオン発生装置を簡単に思いつくことができる。
図7に示すイオン発生装置は、第1放電部8及び第2放電部9を備えたイオン発生素子と、前記イオン発生素子に対して所定の電圧印加を行う電圧印加回路とから成る。前記電圧印加回路は、交流商用電源1から出力される交流電圧を所定の電圧に変換する回路であって、入力抵抗2と、全波整流回路3と、コンデンサ4と、ダイオード5と、トランス駆動用スイッチング素子(無ゲート2端子サイリスタ:サイダック[新電元工業の製品名])6と、昇圧トランス7と、ダイオード10及び11と、リレー接点RY0b及びリレーコイルRY0aから成るリレーと、マイクロコンピュータ13と、ダイオードD1と、抵抗R1と、リレー接点RY1b及びリレーコイルRY1aから成るリレーとを有する。
図8に示すイオン発生装置は、第1放電部8及び第2放電部9を備えたイオン発生素子と、前記イオン発生素子に対して所定の電圧印加を行う電圧印加回路とから成る。前記電圧印加回路は、交流商用電源1から出力される交流電圧を所定の電圧に変換する回路であって、入力抵抗2と、全波整流回路3と、コンデンサ4と、ダイオード5と、トランス駆動用スイッチング素子(無ゲート2端子サイリスタ:サイダック[新電元工業の製品名])6と、昇圧トランス7と、ダイオード10及び11と、リレー接点RY0b及びリレーコイルRY0aから成るリレーと、マイクロコンピュータ13と、ダイオードD1と、抵抗R1と、リレー接点RY1b及びリレーコイルRY1aから成る第1のリレーと、抵抗R2と、リレー接点RY2b及びリレーコイルRY2aから成る第2のリレーとを有する。
図7に示すイオン発生装置はリレー接点RY1b及びリレーコイルRY1aから成るリレーのオン/オフ切り替えにより単位時間当たりの放電回数を2段階で切り替える構成である。また、図8に示すイオン発生装置はリレー接点RY1b及びリレーコイルRY1aから成る第1のリレー並びにリレー接点RY2b及びリレーコイルRY2aから成る第2のリレーのオン/オフ切り替え(ただし、第1のリレー及び第2のリレーの双方がオンとなる場合を除く)により単位時間当たりの放電回数を3段階で切り替える構成である。第1のリレー及び第2のリレーの双方がオンとなる場合を加えると、単位時間当たりの放電回数を4段階で切り替える構成も可能である。CR回路を構成する抵抗の抵抗値を大きくすると、単位時間当たりの放電回数は少なくなる。逆に、CR回路を構成する抵抗の抵抗値を小さくすると、単位時間当たりの放電回数は多くなる。
しかしながら、図7又は図8に示すような昇圧トランスの1次側回路に配置されるCR回路の時定数をリレーのオン/オフ切り替えによって変更する構成では、単位時間当たりの放電回数の切替段数が増えれば増えるほど、部品点数が増加し低コスト化及び回路基板の省スペース化を図ることができなかった。また、昇圧トランスの1次側回路に配置されるCR回路を構成する抵抗の抵抗値によって単位時間当たりの放電回数を切り替えているので、単位時間当たりの放電回数の設定を変更するにはCR回路を構成する抵抗の取替えが必要であった。
本発明は、上記の問題点に鑑み、単位時間当たりの放電回数の切り替えが可能で尚かつ低コスト化及び省スペース化を図ることができるイオン発生装置及びこれを備えた電気機器を提供することを目的とする。
上記目的を達成するために本発明に係るイオン発生装置は、少なくとも一つの放電部と、交流電源から供給される交流電圧を変換して所定の電圧印加を前記放電部に対して行う電圧印加回路とを備えるイオン発生装置であって、前記電圧印加回路が、スイッチング素子と、前記スイッチング素子を制御する制御部と、時定数が固定である充放電回路とを有し、前記充放電回路の放電毎に所定の電圧印加を前記放電部に対して行い、前記スイッチング素子がオンのときに前記充放電回路に電圧が供給され、前記スイッチング素子がオフのときに前記充放電回路に電圧が供給されない回路であって、前記制御部が、前記交流電圧のゼロクロスを検出し、前記交流電圧の位相が所定の範囲のときに前記スイッチング素子をオンにし、前記交流電圧の位相が前記所定の範囲以外のときに前記スイッチング素子をオフにするようにしている。
このような構成によると、前記所定の範囲を変更することによって、単位時間当たりの放電回数の切り替えが可能となる。また、前記制御部の制御内容をソフトウェア的に変更することで、単位時間当たりの放電回数の切り替えが可能となるので、昇圧トランスの1次側回路に配置されるCR回路の時定数をリレーのオン/オフ切り替えによって変更する構成である図7又は図8に示すイオン発生装置に比べて、低コスト化及び省スペース化を図ることができる。
また、前記制御部が、前記交流電圧のゼロクロスを検出し、前記交流電圧の位相が所定の範囲のときに前記スイッチング素子をオンにし、前記交流電圧の位相が前記所定の範囲以外のときに前記スイッチング素子をオフにする第1の制御モードと、前記スイッチング素子をオン状態で保持する第2の制御モードとを切り替えるようにしてもよい。
このような構成によると、第1の制御モードと第2の制御モードとの切替によっても、単位時間当たりの放電回数の切り替えが可能となる。
また、前記第1の制御モードが前記所定の範囲が各々異なる複数の制御モード(例えば、図3に示す電圧波形が得られる制御モードと、図4に示す電圧波形が得られる制御モードの二つの制御モード)を有しており、前記制御部は、モード切り替えによって前記第1の制御モードを選択する場合、さらに前記複数の制御モードから一つのモードを選択するようにしてもよい。
このような構成によると、単位時間当たりの放電回数の切り替えを三段階以上にすることができる。
また、本発明に係る電気機器は、上記いずれかの構成のイオン発生装置と、前記イオン発生装置で発生したイオンを空気中に送出する送出手段(例えば送風ファンなど)とを備える構成とする。このような構成により、機器本来の機能に加えて、搭載したイオン発生装置で空気中のイオン量やイオンバランスを変化させ、室内等の環境を所望の雰囲気状態とすることが可能となる。
本発明によると、単位時間当たりの放電回数の切り替えが可能で尚かつ低コスト化及び省スペース化を図ることができるイオン発生装置及びこれを備えた電気機器を実現することができる。
本発明の実施形態について図面を参照して以下に説明する。図1は、本発明に係るイオン発生装置の電気的構成例を示す図である。
図1に示すイオン発生装置は、第1放電部8及び第2放電部9を備えたイオン発生素子と、前記イオン発生素子に対して所定の電圧印加を行う電圧印加回路とから成る。前記電圧印加回路は、交流商用電源1から出力される交流電圧を所定の電圧に変換する回路であって、入力抵抗2と、全波整流回路3と、コンデンサ4と、ダイオード5と、トランス駆動用スイッチング素子(無ゲート2端子サイリスタ:サイダック[新電元工業の製品名])6と、昇圧トランス7と、ダイオード10及び11と、リレー接点RY0b及びリレーコイルRY0aから成るリレーと、電源クロック回路12と、マイクロコンピュータ13と、抵抗14と、SSR15とを有する。昇圧トランス7の2次巻線7b及び7cは、巻き数をはじめとする全ての特性が互いに略同等である。また、電源クロック回路12は、交流商用電源1から出力される交流電圧を入力し、入力交流電圧の立ち上がりゼロクロスのタイミングで立ち上がり入力交流電圧の立ち下がりゼロクロスのタイミングで立ち下がる電源クロック信号S0を生成し、その電源クロック信号S0をマイクロコンピュータ13に供給する。マイクロコンピュータ13は、信号S1を、固定的にHighレベルにする或いは電源クロック信号S0の立ち上がりエッジに同期した信号にする。
まず、SSR15を固定的にオンする場合における昇圧トランス7の1次側回路の動作について図1及び図2を参照して説明する。図2は、交流商用電源1から出力される交流電圧の周波数が60HzであってSSR15を固定的にオンにする場合における図1に示すイオン発生装置の各部電圧波形を示す図である。
SSR15を固定的にオンする場合、マイクロコンピュータ13は、抵抗14を介してSSR15の一次側15aに供給する信号S1をHighレベルに固定する。
交流商用電源1から出力される交流電圧により、入力抵抗2、全波整流回路3、昇圧トランス7の1次巻線7a、SSR15の二次側15bを介してコンデンサ4が充電される。そして、トランス駆動用スイッチング素子6の両端電圧V2が規定電圧Vb0に達するとトランス駆動用スイッチング素子6がオンして、昇圧トランス7の1次巻線7aに電流が流れる。昇圧トランス7の1次巻線7aに電流が流れることで、コンデンサ4に充電されたエネルギーは放電され、コンデンサ4の両端電圧はゼロに戻り、トランス駆動用のスイッチング素子6がオフして再びコンデンサ4に充電がされ、規定周期で充放電を繰り返す。
本実施形態では、上記規定電圧Vb0を82.5[V]とし、SSR15が固定的にオンである場合にコンデンサ4の充放電が1秒間に600回繰り返されるように、入力抵抗2の抵抗値とコンデンサ4の容量値が設定されている。すなわち、交流商用電源1から出力される交流電圧V0の周波数が60Hzである場合は、交流商用電源1から出力される交流電圧V0の1周期にコンデンサ4の充放電が10回繰り返されるように、入力抵抗2の抵抗値とコンデンサ4の容量値が設定され、交流商用電源1から出力される交流電圧V0の周波数が50Hzである場合は、交流商用電源1から出力される交流電圧V0の1周期にコンデンサ4の充放電が12回繰り返されるように、入力抵抗2の抵抗値とコンデンサ4の容量値が設定される。
次に、交流商用電源1から出力される交流電圧V0の周波数が60Hzであってコンデンサ4の充放電を1秒間に60回繰り返す場合における昇圧トランス7の1次側回路の動作例について図1及び図3を参照して説明する。図3は、交流商用電源1から出力される交流電圧の周波数が60Hzであってコンデンサ4の充放電を1秒間に60回繰り返す場合における図1に示すイオン発生装置の各部電圧波形の一例を示す図である。
交流商用電源1から出力される交流電圧の周波数が60Hzであってコンデンサ4の充放電を1秒間に60回繰り返す場合、マイクロコンピュータ13は、抵抗14を介してSSR15の一次側15aに供給する信号S1を、電源クロック信号S0が立ち上がってからT1秒経過後にパルス幅W1のパルスが立ち上がる信号とする。
電源クロック信号S0が立ち上がってからT1秒経過後に信号S1が立ち上がり、SSR15がオンになる。SSR15がオンになると、交流商用電源1から出力される交流電圧により、入力抵抗2、全波整流回路3、昇圧トランス7の1次巻線7a、SSR15の二次側15bを介してコンデンサ4が充電される。そして、トランス駆動用スイッチング素子6の両端電圧V2が規定電圧Vb0に達するとトランス駆動用スイッチング素子6がオンして、昇圧トランス7の1次巻線7aに電流が流れる。その後、信号S1が立ち下がると、SSR15がオフになる。
このような動作により、交流商用電源1から出力される交流電圧V0の1周期にコンデンサ4の充放電が1回行われるので、コンデンサ4の充放電は1秒間に60回繰り返される。
次に、交流商用電源1から出力される交流電圧V0の周波数が60Hzであってコンデンサ4の充放電を1秒間に240回繰り返す場合における昇圧トランス7の1次側回路の動作例について図1及び図4を参照して説明する。図4は、交流商用電源1から出力される交流電圧の周波数が60Hzであってコンデンサ4の充放電を1秒間に240回繰り返す場合における図1に示すイオン発生装置の各部電圧波形の一例を示す図である。
交流商用電源1から出力される交流電圧の周波数が60Hzであってコンデンサ4の充放電を1秒間に240回繰り返す場合、マイクロコンピュータ13は、抵抗14を介してSSR15の一次側15aに供給する信号S1を、電源クロック信号S0が立ち上がってからT2秒経過後及びT3秒経過後にパルス幅W2のパルスが立ち上がる信号とする。
電源クロック信号S0が立ち上がってからT2秒経過後に信号S1が立ち上がり、SSR15がオンになる。SSR15がオンになると、交流商用電源1から出力される交流電圧により、入力抵抗2、全波整流回路3、昇圧トランス7の1次巻線7a、SSR15の二次側15bを介してコンデンサ4が充電される。そして、トランス駆動用スイッチング素子6の両端電圧V2が規定電圧Vb0に達するとトランス駆動用スイッチング素子6がオンして、昇圧トランス7の1次巻線7aに電流が流れる。昇圧トランス7の1次巻線7aに電流が流れることで、コンデンサ4に充電されたエネルギーは放電され、コンデンサ4の両端電圧はゼロに戻り、トランス駆動用のスイッチング素子6がオフして再びコンデンサ4に充電がされ、トランス駆動用スイッチング素子6の両端電圧V2が規定電圧Vb0に達するとコンデンサ4が再び放電される。このコンデンサ4の再放電とほぼ同時に信号S1が立ち下がり、SSR15がオフになる。
その後、電源クロック信号S0が立ち上がってからT3秒経過後に信号S1が再び立ち上がり、SSR15がオンになる。SSR15がオンになると、交流商用電源1から出力される交流電圧により、入力抵抗2、全波整流回路3、昇圧トランス7の1次巻線7a、SSR15の二次側15bを介してコンデンサ4が充電される。そして、トランス駆動用スイッチング素子6の両端電圧V2が規定電圧Vb0に達するとトランス駆動用スイッチング素子6がオンして、昇圧トランス7の1次巻線7aに電流が流れる。昇圧トランス7の1次巻線7aに電流が流れることで、コンデンサ4に充電されたエネルギーは放電され、コンデンサ4の両端電圧はゼロに戻り、トランス駆動用のスイッチング素子6がオフして再びコンデンサ4に充電がされ、トランス駆動用スイッチング素子6の両端電圧V2が規定電圧Vb0に達するとコンデンサ4が再び放電される。このコンデンサ4の再放電とほぼ同時に信号S1が立ち下がり、SSR15がオフになる。
このような動作により、交流商用電源1から出力される交流電圧V0の1周期にコンデンサ4の充放電が4回行われるので、コンデンサ4の充放電は1秒間に240回繰り返される。
次に、交流商用電源1から出力される交流電圧V0の周波数が50Hzであって、コンデンサ4の充放電を1秒間に60回繰り返す場合における昇圧トランス7の1次側回路の動作について図1及び図5を参照して説明する。図5は、交流商用電源1から出力される交流電圧の周波数が50Hzであってコンデンサ4の充放電を1秒間当たり58.3回繰り返す場合における図1に示すイオン発生装置の各部電圧波形の一例を示す図である。
交流商用電源1から出力される交流電圧の周波数が50Hzであってコンデンサ4の充放電を1秒間当たり58.3回繰り返す場合、マイクロコンピュータ13は、抵抗14を介してSSR15の一次側15aに供給する信号S1を、電源クロック信号S0が立ち上がってからT4秒経過後にパルス幅W3のパルスが立ち上がる信号とする。
電源クロック信号S0が立ち上がってからT4秒経過後に信号S1が立ち上がり、SSR15がオンになる。SSR15がオンになると、交流商用電源1から出力される交流電圧により、入力抵抗2、全波整流回路3、昇圧トランス7の1次巻線7a、SSR15の二次側15bを介してコンデンサ4が充電される。そして、トランス駆動用スイッチング素子6の両端電圧V2が規定電圧Vb0に達するとトランス駆動用スイッチング素子6がオンして、昇圧トランス7の1次巻線7aに電流が流れる。その後、信号S1が立ち下がると、SSR15がオフになる。
このような動作により、交流商用電源1から出力される交流電圧V0の50周期当たりコンデンサ4の充放電が58.3回行われるので、コンデンサ4の充放電は1秒間当たり58.3回繰り返される。
上記説明から明らかな通り、図1に示すイオン発生装置は、マイクロコンピュータ13から出力される信号S1の波形を変更するだけで、単位時間当たりのコンデンサ4の充放電回数ひいては後述する第1放電部8及び第2放電部9での単位時間当たりの放電回数を変更することができる。このように、図1に示すイオン発生装置はソフトウェア的に単位時間当たりの放電回数を変更することができるので、部品点数を増加させずに単位時間当たりの放電回数の切替段数を増やすことや入力抵抗2を取り替えずに単位時間当たりの放電回数の設定を変更することができる。
また、電源クロック回路12、抵抗14、及びSSR15は、図7又は図8に示すイオン発生装置が具備するダイオードD1、リレー、及び抵抗に比べて、小型かつ低コストであるため、図1に示すイオン発生装置は、図7又は図8に示すイオン発生装置と比べて、低コスト化及び回路基板の省スペース化を図ることができる。なお、この効果は、単位時間当たりの放電回数の切替段数が増えれば増えるほど顕著になる。
また、第1放電部8及び第2放電部9での単位時間当たりの放電回数を例えば交流商用電源1から出力される交流電圧の周波数が60Hzの場合において60回/秒とCR回路の定数を設定した場合、従来のイオン発生装置では交流商用電源1から出力される交流電圧の周波数が50Hzのときの第1放電部8及び第2放電部9での単位時間当たりの放電回数はなれあいで例えば57回/秒のようになり、目標値は交流商用電源1から出力される交流電圧の周波数が50Hzのときも60回/秒であってもその目標値に近づけることは難しかった。これに対して、図1に示すイオン発生装置では、交流商用電源1から出力される交流電圧の周波数が60Hzのときと交流商用電源1から出力される交流電圧の周波数が50Hzのときとで個別に信号S1の設定を行うことにより(図3及び図5を参照)、交流商用電源1から出力される交流電圧の周波数が60Hz、50Hzいずれの場合でも、第1放電部8及び第2放電部9での単位時間当たりの放電回数を目標値に一致或いは近づけることができる。
続いて昇圧トランス7の2次側回路について説明する。昇圧トランス7の2次巻線7bが第1放電部8の第1の放電電極8a、第1の誘導電極8bに接続され、昇圧トランス7の2次巻線7cが第2放電部9の第2の放電電極9a、第2の誘導電極9bに接続されている。
1次側回路のトランス駆動用スイッチング素子6がオンすることにより、1次側のエネルギーが昇圧トランス7の2次巻線7b及び7cに伝達され、昇圧トランス7の2次巻線7b及び7cの両端にそれぞれインパルス状の交番電圧が発生する。
日本国内では交流商用電源の片方が接地されているため、接地端子がない電気機器などは交流商用電源1の片側につなげば同じ機能を得ることができる。なお、イオン発生装置の電源プラグがコンセントに逆に挿入されても、100Vが重畳されるだけであり、接地されるのは同じである。
第1の放電電極8aには、昇圧トランス7の2次巻線7bだけでなく、ダイオード10のカソードが接続されている。また、第2の放電電極9aには、昇圧トランス7の2次巻線9cだけでなく、ダイオード11のアノードが接続されている。
まず、マイクロコンピュータ13の制御によりリレー接点RY0bがオンである場合について説明する。第1放電部8の第1の放電電極8aにはダイオード10のカソードが接続されるので、接地端子、場合によっては交流商用電源1の片側を基準にみた第1の放電電極8a、第1の誘導電極8bの電圧は2次巻線7bに発生するインパルス状の交番電圧を正にバイアスしたものとなり、接地端子、場合によっては交流商用電源1の片側を基準にみた第1の放電電極8a、第1の誘導電極8bの電位は共にプラスであり、第1放電部8から発生したマイナスイオンは第1の放電電極8a上で中和し、プラスイオンは反発し放出される。一方、第2放電部9の第2の放電電極9aにはダイオード11のアノードが接続されるので、接地端子、場合によっては交流商用電源1の片側を基準にみた第2の放電電極9a、第2の誘導電極9bの電圧は2次巻線7cに発生するインパルス状の交番電圧を負にバイアスしたものとなり、接地端子、場合によっては交流商用電源1の片側を基準にみた第2の放電電極9a、第2の誘導電極9bの電位は共にマイナスであり、第2放電部9から発生したプラスイオンは第2の放電電極9a上で中和し、マイナスイオンは反発し放出される。
また、第1の放電電極8aと第2の放電電極9aは同一形状であり、第1の誘導電極8bと第2の誘導電極9bは同一形状である。さらに、第1の放電電極8aと第1の誘導電極9bとの間の絶縁抵抗と、第2の放電電極8aと第2の誘導電極9bとの間の絶縁抵抗とが略同一である。このような構成により、リレー接点RY0bがオンである場合には第1放電部8から放出されるプラスイオンと第2放電部9から放出されるマイナスイオンが略同量になる。
ここで、第1放電部8から発生するプラスイオンはH+(H2O)mであり、第2放電部9から発生するマイナスイオンはO2 -(H2O)n(m、nは任意の自然数)である。
このように、第1放電部8から放出されるイオンはプラスイオンとなり、第2放電部9から放出されるイオンはマイナスイオンとなる。即ち、プラス、マイナス両方のイオンが個別に放出される。そして、空気中にH+(H2O)mとO2 -(H2O)nの両方を放出させることにより、これらのイオンが空気中の浮遊カビ菌やウィルスの周りを取り囲み、その際生成される活性種の水酸基ラジカル(・OH)の作用により浮遊カビ菌等を殺菌・不活化することが可能となる。
上記記載について詳細に述べる。第1放電部8、第2放電部9を構成する電極間に交流電圧を印加することにより、空気中の酸素分子ないしは水分子が放電によって生成された電子からエネルギーを受けてイオン化し、H+(H2O)m(mは任意の自然数)とO2 -(H2O)n(nは任意の自然数)のイオンを生成し、これらをファン等により空間に放出させる。これらH+(H2O)m及びO2 -(H2O)nは、浮遊菌の表面に付着し、化学反応して活性種であるH22または(・OH)を生成する。H22または(・OH)は、極めて強力な活性を示すため、これらにより、空気中の浮遊細菌を取り囲んで殺菌・不活化することができる。ここで、(・OH)は活性種の一種であり、ラジカルのOHを示している。
活性種である過酸化水素H22または水酸基ラジカル(・OH)は、有害物質を酸化若しくは分解して、ホルムアルデヒドやアンモニアなどの化学物質を、二酸化炭素や、水、窒素などの無害な物質に変換することにより、実質的に無害化することが可能である。
したがって、図1に示すイオン発生装置と送風ファンを電気機器に搭載し、前記送風ファンを駆動することにより、図1に示すイオン発生装置によって発生させたプラスイオンとマイナスイオンを本体外に送り出すことができる。そして、これらのプラスイオンとマイナスイオンの作用により、空気中のカビや菌を不活化してその増殖を抑制することができるとともに、有害物質を実質的に無害化することができる。
その他、プラスイオンとマイナスイオンには、コクサッキーウィルス、ポリオウィルス、などのウィルス類も不活化する働きがあり、これらウィルスの混入による汚染が防止できる。また、プラスイオンとマイナスイオンには、臭いの元となる分子を分解する働きがあることも確かめられており、空間の脱臭にも利用できる。
図1に示すイオン発生装置は、上述したように1秒間当たりのコンデンサ4の充放電回数を例えば600回/秒、60回/秒、240回/秒等に変化させることができるので、第1放電部8及び第2放電部9での1秒間当たりの放電回数を例えば600回/秒、60回/秒、240回/秒等に変化させることができる。第1放電部8及び第2放電部9での1秒間当たりの放電回数を増やして第1放電部8及び第2放電部9でのイオン発生量を増加させることで、上述した浮遊カビ菌等の殺菌・不活化、ウィルス類の不活化、空間の脱臭等の効果を高めることができる。
続いて、マイクロコンピュータ13の制御によりリレー接点RY0bがオフである場合について説明する。この場合、第1放電部8の第1の放電電極8aにバイアスがかからないため、昇圧トランス7の2次巻線7bの両端に発生するインパルス状の交番電圧がそのまま第1放電部8に印加されるので、第1放電部8から発生したプラスイオンとマイナスイオンの大半が中和などにより消滅する。したがって、第1放電部8からは少量のプラスイオンとマイナスイオンが放出される。また、本実施形態では、リレー接点RY0bをオフ制御する場合、信号S1を固定的にオンしない状態にしてコンデンサ4の1秒間当たりの充放電回数を60回(交流商用電源1から出力される交流電圧の周波数が60Hzの場合)又は58.3回(交流商用電源1から出力される交流電圧の周波数が50Hzの場合)にしている。
また、第2放電部9の第2の放電電極9aにアノードが接続されているダイオード11のカソードが交流商用電源1の片側に電気的に接続されるので、接地端子、場合によっては交流商用電源1の片側を基準にみた第2の放電電極9a、第2の誘導電極9bの電圧は2次巻線7cに発生するインパルス状の交番電圧を負にバイアスしたものとなり、接地端子、場合によっては交流商用電源1の片側を基準にみた第2の放電電極9a、第2の誘導電極9bの電位は共にマイナスであり、第2放電部9から発生したプラスイオンは第2の放電電極9a上で中和し、マイナスイオンは反発し放出される。
上記説明から明らかなように、マイクロコンピュータ13の制御によりリレー接点RY0bがオフである場合は、第1放電部8から放出される少量のプラスイオン及びマイナスイオンと第2放電部9から放出される多量のマイナスイオンとで全体としては少量のプラスイオンと多量のマイナスイオンでマイナスイオンリッチの状態となる。
したがって、家庭内の電気機器などでプラスイオン過多となった空間にマイナスイオンを多量に供給し、自然界での森の中のようなプラスとマイナスのイオンバランスのとれた状態にしたいときやリラクゼーション効果を求めたりすることができる。
次に、図1に示すイオン発生装置が具備するイオン発生素子の構成について説明する。図1に示すイオン発生装置が具備するイオン発生素子の上面図を図6(a)に示し、放電電極についてはA−A線で切断し誘導電極についてはB−B線で切断した模式断面図を図6(b)に示す。イオン発生素子は、誘電体16(上部誘電体16aと下部誘電体16b)と、第1放電部8(第1の放電電極8a、第1の誘導電極8b、放電電極接点8c、誘導電極接点8d、接続端子8e及び8f、並びに接続経路8g及び8h)と、第2放電部9(第2の放電電極9a、第2の誘導電極9b、放電電極接点9c、誘導電極接点9d、接続端子9e及び9f、並びに接続経路9g及び9h)と、コーティング層17とを有して成る。
誘電体16は、略直方体状の上部誘電体16aと下部誘電体16bを貼り合わせて成る(例えば縦15[mm]×横37[mm]×厚み0.45[mm])。誘電体16の材料として無機物を選択するのであれば、高純度アルミナ、結晶化ガラス、フォルステライト、ステアタイト等のセラミックを使用することができる。また、誘電体16の材料として有機物を選択するのであれば、耐酸化性に優れたポリイミドやガラスエポキシなどの樹脂が好適である。ただし、耐食性の面を考えれば、誘電体16の材料として無機物を選択する方が望ましく、さらに、成形性や後述する電極形成の容易性を考えれば、セラミックを用いて成形するのが好適である。また、第1の放電電極8aと第1の誘導電極8bとの間の絶縁抵抗及び第2の放電電極9aと第2の誘導電極9bとの間の絶縁抵抗は均一であることが望ましいため、誘電体16の材料としては、密度ばらつきが少なく、その絶縁率が均一であるものほど好適である。なお、誘電体16の形状は、略直方体状以外(円板状や楕円板状、多角形板状等)であってもよく、さらには円柱状であってもよいが、生産性を考えると、本実施形態のように平板状(円板状及び直方体状を含む)とするのが好適である。
第1の放電電極8a及び第2の放電電極9aは、上部誘電体16aの表面に該上部誘電体16aと一体的に形成されている。第1の放電電極8a及び第2の放電電極9aの材料としては、例えばタングステンのように、導電性を有するものであれば、特に制限なく使用することができるが、放電によって溶融等の変形を起こさないことが条件となる。
また、第1の誘導電極8bは、上部誘電体16aを挟んで、第1の放電電極8aと平行に設けられ、第2の誘導電極9bは、上部誘電体16aを挟んで、第2の放電電極9aと平行に設けられている。このような配置とすることにより、第1の放電電極8aと第1の誘導電極8bの距離(以下、第1の電極間距離と呼ぶ)及び第2の放電電極9aと第2の誘導電極9bの距離(以下、第2の電極間距離と呼ぶ)を一定とすることができるので、放電電極と誘導電極との間の絶縁抵抗を均一化して放電状態を安定させ、プラスイオン及びマイナスイオンを好適に発生させることが可能となる。なお、誘電体16を円柱状とした場合には、第1の放電電極8a及び第2の放電電極9aを円柱の外周表面に設けるとともに、第1の誘導電極8b及び第2の誘導電極9bを軸状に設けることによって、前記第1の電極間距離及び前記第2の電極間距離を一定とすることができる。第1の誘導電極8b及び第2の誘導電極9bの材料としては、第1の放電電極8a及び第2の放電電極9bと同様、例えばタングステンのように、導電性を有するものであれば、特に制限なく使用することができるが、放電によって溶融等の変形を起こさないことが条件となる。
放電電極接点8cは、第1の放電電極8aと同一形成面(すなわち上部誘電体16aの表面)に設けられた接続端子8e、及び接続経路8gを介して、第1の放電電極8aと電気的に導通されている。従って、放電電極接点8cにリード線(銅線やアルミ線など)の一端を接続し、該リード線の他端を昇圧トランス7の2次巻線7b及びダイオード10のカソードに接続すれば、第1の放電電極8aと昇圧トランス7の2次巻線7b及びダイオード10とを電気的に導通させることができる。
放電電極接点9cは、第2の放電電極9aと同一形成面(すなわち上部誘電体16aの表面)に設けられた接続端子9e、及び接続経路9gを介して、第2の放電電極9aと電気的に導通されている。従って、放電電極接点9cにリード線(銅線やアルミ線など)の一端を接続し、該リード線の他端を昇圧トランス7の2次巻線7c及びダイオード11のアノードに接続すれば、第2の放電電極9aと昇圧トランス7の2次巻線7c及びダイオード11とを電気的に導通させることができる。
誘導電極接点8dは、第1の誘導電極8bと同一形成面(すなわち下部誘電体16bの表面)に設けられた接続端子8f、及び接続経路8hを介して、第1の誘導電極8bと電気的に導通されている。従って、誘導電極接点8dにリード線(銅線やアルミ線など)の一端を接続し、該リード線の他端を昇圧トランス7の2次巻線7bに接続すれば、第1の誘電電極8bと昇圧トランス7の2次巻線7bとを電気的に導通させることができる。
誘導電極接点9dは、第2の誘導電極9bと同一形成面(すなわち下部誘電体16bの表面)に設けられた接続端子9f、及び接続経路9hを介して、第2の誘導電極9bと電気的に導通されている。従って、誘導電極接点9dにリード線(銅線やアルミ線など)の一端を接続し、該リード線の他端を昇圧トランス7の2次巻線7cに接続すれば、第2の誘電電極9bと昇圧トランス7の2次巻線7cとを電気的に導通させることができる。
さらに、放電電極接点8c及び9cと誘導電極接点8d及び9dは、誘電体16の表面であって第1の放電電極8a及び第2の放電電極9aが設けられた面以外の面に設けることが望ましい。このような構成であれば、誘電体16の上面に不要なリード線などが配設されないので、図1に示すイオン発生装置とそのイオン発生装置で発生したイオンを空気中に送出する送風ファンを搭載した電気機器において、前記送風ファン(不図示)からの空気流が乱れにくくなり、プラスイオンとマイナスイオンの中和を低減することができる。以上のことを考慮して、図6に示すイオン発生素子では、放電電極接点8c及び9cと誘導電極接点8d及び9dが、誘電体16の上面に相対する面に設けられている。
なお、図6に示すイオン発生素子において、第1の放電電極8a及び第2の放電電極9aは鋭角部を持ち、その部分で電界を集中させ、局部的に放電を起こす構成としている。
上述した本発明に係るイオン発生装置は、空気調和機、除湿機、加湿器、空気清浄機、冷蔵庫、ファンヒータ、電子レンジ、洗濯乾燥機、掃除機、殺菌装置などの電気機器に搭載するとよい。そして、かかる電気機器にはイオン発生装置で発生したイオンを空気中に送出する送出手段(例えば、送風ファン)を搭載するとよい。このような電気機器であれば、機器本来の機能に加えて、搭載したイオン発生装置から放出されたプラスイオン、マイナスイオンの作用により空気中のカビや菌を不活化してその増殖を抑制すること等ができ、室内環境を所望の雰囲気状態とすることが可能となる。
また、上記の実施形態ではプラスイオンとマイナスイオンを個別に発生させることによって、両極性のイオン各々を独立して室内に放出する方式のイオン発生装置について説明したが、単一の放電部でプラスイオンとマイナスイオンを所定周期で交互に発生させる方式のイオン発生装置であってもよい。
本発明は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において各部の構成等を適宜に変更して実施することも可能である。例えば、上記の実施形態では全波整流回路を用いたが、半波整流回路を用いても構わない。また、上記の実施形態ではマイクロコンピュータ13から出力される信号S1は、固定的にHighレベルの信号或いは電源クロック信号S0の立ち上がりエッジに同期した信号であったが、固定的にHighレベルの信号或いは電源クロック信号S0の立ち下がりエッジに同期した信号であっても構わない。また、上記の実施形態では、リレー接点RY0bをオフ制御する場合は信号S1を固定的にオンしない状態にしているが、リレー接点RY0bをオン制御するときと同様に信号S1を固定的にオンする状態と信号S1を固定的にオンしない状態とを切り替えるようにしてもよい。
は、本発明に係るイオン発生装置の電気的構成例を示す図である。 は、図1に示すイオン発生装置の各部電圧波形を示す図である。 は、図1に示すイオン発生装置の各部電圧波形を示す図である。 は、図1に示すイオン発生装置の各部電圧波形を示す図である。 は、図1に示すイオン発生装置の各部電圧波形を示す図である。 は、図1に示すイオン発生装置が具備するイオン発生素子の構成を示す図である。 は、イオン発生量を2段階に切り替えることができるイオン発生装置の電気的構成例を示す図である。 は、イオン発生量を3段階に切り替えることができるイオン発生装置の電気的構成例を示す図である。
符号の説明
1 交流商用電源
2 入力抵抗
3 全波整流回路
4 コンデンサ
5、10、11 ダイオード
6 トランス駆動用スイッチング素子
7 昇圧トランス
8 第1放電部
9 第2放電部
8a 第1の放電電極
8b 第1の誘電電極
9a 第2の放電電極
9b 第2の誘電電極
12 電源クロック回路
13 マイクロコンピュータ
14 抵抗
15 SSR(ソリッドステートリレー)
16 誘電体
17 コーティング層
RY0a リレーコイル
RY0b リレー接点

Claims (4)

  1. 少なくとも一つの放電部と、
    交流電源から供給される交流電圧を変換して所定の電圧印加を前記放電部に対して行う電圧印加回路と
    を備えるイオン発生装置であって、
    前記電圧印加回路が、SSRと、前記SSRを制御する制御部と、時定数が固定である充放電回路とを有し、前記充放電回路の放電毎に所定の電圧印加を前記放電部に対して行い、前記SSRがオンのときに前記充放電回路に電圧が供給され、前記SSRがオフのときに前記充放電回路に電圧が供給されない回路であって、
    前記制御部が、前記交流電圧のゼロクロスを検出し、前記SSRを制御する信号を出力し、前記交流電圧の位相が所定の範囲のときに前記SSRをオンにし、前記交流電圧の位相が前記所定の範囲以外のときに前記SSRをオフにし、前記信号の波形を変更することにより前記SSRのオン・オフの動作を変更することを特徴とするイオン発生装置。
  2. 前記制御部が、前記交流電圧のゼロクロスを検出し、前記交流電圧の位相が所定の範囲のときに前記SSRをオンにし、前記交流電圧の位相が前記所定の範囲以外のときに前記SSRをオフにする第1の制御モードと、前記SSRをオン状態で保持する第2の制御モードとを切り替える請求項1に記載のイオン発生装置。
  3. 前記第1の制御モードが前記所定の範囲が各々異なる複数の制御モードを有しており、
    前記制御部は、モード切り替えによって前記第1の制御モードを選択する場合、さらに前記複数の制御モードから一つのモードを選択する請求項2に記載のイオン発生装置。
  4. 請求項1〜請求項3のいずれか一つに記載のイオン発生装置と、前記イオン発生装置で発生したイオンを空気中に送出する送出手段とを備えることを特徴とする電気機器。
JP2005222550A 2005-08-01 2005-08-01 イオン発生装置及びこれを備えた電気機器 Expired - Fee Related JP4721804B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005222550A JP4721804B2 (ja) 2005-08-01 2005-08-01 イオン発生装置及びこれを備えた電気機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005222550A JP4721804B2 (ja) 2005-08-01 2005-08-01 イオン発生装置及びこれを備えた電気機器

Publications (2)

Publication Number Publication Date
JP2007042312A JP2007042312A (ja) 2007-02-15
JP4721804B2 true JP4721804B2 (ja) 2011-07-13

Family

ID=37800122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005222550A Expired - Fee Related JP4721804B2 (ja) 2005-08-01 2005-08-01 イオン発生装置及びこれを備えた電気機器

Country Status (1)

Country Link
JP (1) JP4721804B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5947119B2 (ja) * 2012-06-14 2016-07-06 シャープ株式会社 掃除装置
CN115962536A (zh) * 2022-12-15 2023-04-14 珠海格力电器股份有限公司 离子发生电路、空调器及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09284997A (ja) * 1996-04-16 1997-10-31 Matsushita Seiko Co Ltd リレー保護装置
JP2002216933A (ja) * 2000-09-26 2002-08-02 Sharp Corp イオン発生装置及びこれを用いた空気調節装置
JP2004055351A (ja) * 2002-07-19 2004-02-19 Kyushu Hitachi Maxell Ltd イオン発生器具
JP2004194477A (ja) * 2002-12-13 2004-07-08 Omron Corp 電力制御装置および電力制御方法
JP2004363088A (ja) * 2003-05-15 2004-12-24 Sharp Corp イオン発生素子、イオン発生装置、電気機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09284997A (ja) * 1996-04-16 1997-10-31 Matsushita Seiko Co Ltd リレー保護装置
JP2002216933A (ja) * 2000-09-26 2002-08-02 Sharp Corp イオン発生装置及びこれを用いた空気調節装置
JP2004055351A (ja) * 2002-07-19 2004-02-19 Kyushu Hitachi Maxell Ltd イオン発生器具
JP2004194477A (ja) * 2002-12-13 2004-07-08 Omron Corp 電力制御装置および電力制御方法
JP2004363088A (ja) * 2003-05-15 2004-12-24 Sharp Corp イオン発生素子、イオン発生装置、電気機器

Also Published As

Publication number Publication date
JP2007042312A (ja) 2007-02-15

Similar Documents

Publication Publication Date Title
JP4063784B2 (ja) イオン発生素子、イオン発生装置
JP4856684B2 (ja) イオン発生素子、電気機器
JP2007305606A5 (ja)
KR100518387B1 (ko) 교류용 음이온 및 은이온 발생기
JP2009021110A (ja) 高電圧発生回路、イオン発生装置、及び電気機器
JP4721804B2 (ja) イオン発生装置及びこれを備えた電気機器
JP4127524B2 (ja) イオン発生装置及びこれを備えた電気機器
JP2005116229A (ja) イオン発生装置及びこれを備えた電気機器
JP4255418B2 (ja) イオン発生装置及びこれを備えた電気機器
JP2005038616A (ja) イオン発生装置及びこれを備えた電気機器
JP2005327696A (ja) イオン発生装置及びこれを備えた電気機器
JP4322153B2 (ja) イオン発生装置及びこれを備えた電気機器
JP2006324142A (ja) イオン発生装置及びこれを備えた電気機器
JP4422014B2 (ja) イオン発生装置
JP2007213920A (ja) イオン発生装置及びこれを備えた電気機器
JP2003100420A (ja) イオン発生装置及びこれを備えた空気調節装置
JP2006294439A (ja) イオン発生装置及びこれを備えた電気機器
JP2006164767A (ja) イオン発生装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees