JP4717935B2 - 画像処理装置および方法並びにプログラム - Google Patents

画像処理装置および方法並びにプログラム Download PDF

Info

Publication number
JP4717935B2
JP4717935B2 JP2009069895A JP2009069895A JP4717935B2 JP 4717935 B2 JP4717935 B2 JP 4717935B2 JP 2009069895 A JP2009069895 A JP 2009069895A JP 2009069895 A JP2009069895 A JP 2009069895A JP 4717935 B2 JP4717935 B2 JP 4717935B2
Authority
JP
Japan
Prior art keywords
candidate points
target tissue
axis direction
position information
candidate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009069895A
Other languages
English (en)
Other versions
JP2010220742A (ja
JP2010220742A5 (ja
Inventor
嘉郎 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009069895A priority Critical patent/JP4717935B2/ja
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to AU2010220015A priority patent/AU2010220015A1/en
Priority to EP10748460.2A priority patent/EP2404553B1/en
Priority to US12/737,623 priority patent/US8526690B2/en
Priority to CN2010800022477A priority patent/CN102112056A/zh
Priority to BRPI1004212A priority patent/BRPI1004212A2/pt
Priority to PCT/JP2010/001191 priority patent/WO2010100858A1/ja
Priority to CA2732647A priority patent/CA2732647C/en
Publication of JP2010220742A publication Critical patent/JP2010220742A/ja
Publication of JP2010220742A5 publication Critical patent/JP2010220742A5/ja
Application granted granted Critical
Publication of JP4717935B2 publication Critical patent/JP4717935B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Description

本発明は三次元画像の検出処理に関し、特に三次元画像における線状構造からなる対象組織の自動検出に適した、画像処理装置および方法並びにそのためのプログラムに関するものである。
従来、医療分野においては、複数の二次元画像に対して、所定の検出処理(例えば、マシンラーニングによる検出手法等)を施すことにより対象組織を検出し、三次元的な画像の構築を可能とする画像投影法(Intensity Projection法)やボリュームレンダリング法を計算機に実行させることにより、対象組織を表す疑似三次元画像を生成することが行われている。これにより、読影者は、対象組織の状況を容易に確認することができる。
三次元画像を構成する二次元画像(CT画像)毎に微分フィルタを施し、CT画像の画素値の変化する位置を検出することにより、注目領域上の線状構造からなる対象組織(例えば、血管等)を検出する手法が、非特許文献1に提案されている。
Andrzej Szymczak, et al.. Coronary vessel tree from 3D imagery:A topological approach. Medical Image Analysis 2006
非特許文献1に記載される発明は、候補点(ノード)間の距離が近いものほど、重みを小さく設定し、最小全域木手法により木構造を再構成するものである。例えば、血管に対して本手法を適用した場合、図2に示すように各候補点であるノードと、ノードを接続する重みに相当するエッジ情報(図2に示す数値は、エッジ情報値)が与えられているとき、全てのノードを最小のコストで接続するエッジの組み合わせが得られる。例えば、図3(A)に示すように画像上に複数の候補点を設定し、図3(B)に示すように最小全域木手法により候補点間を接続し、木構造を再構築することにより、血管を検出する。
しかしながら、非特許文献1の手法は、候補点(ノード)間の距離が近いもの同士を単純に接続する傾向が強く、ノイズとなる候補点が混在した場合に、血管の経路を正しく接続することができないという問題があった。
そこで、本発明は、上記事情に鑑み、線状構造からなる対象組織であっても、誤接続を軽減し、本来の線状構造をより正確に反映した木構造を生成することが可能な画像処理装置および方法並びにそのためのプログラムを提供することを目的とするものである。
本発明の画像処理装置は、被写体を撮像して得られた三次元画像に対して所定の検出処理を施すことにより、線状構造からなる対象組織を表す複数の候補点の位置情報と主軸方向を算出する候補点算出部と、算出された位置情報および主軸方向に基づいた変数とするコスト関数を用いて、複数の候補点が接続されるように再構築する再構築処理部とを備えたものであることを特徴とする。
「候補点算出部」は、三次元画像に対して所定の検出処理を施すことにより、線状構造からなる対象組織を表す複数の候補点の位置情報と主軸方向を算出するものである。
また、「候補点算出部」は、三次元画像に対してヘッセ行列を算出し、算出されたヘッセ行列の固有値を解析することにより、位置情報と主軸情報を有する複数の候補点を検出するものであってもよい。
また、「候補点算出部」は、固有値が所定の閾値条件を満たすものであるか否かにより、候補点を検出するものであってもよい。
「候補点算出部」は、主軸方向に基づいて、対象組織を含む対象領域に対して正規化処理を施す正規化処理部と、正規化処理を施された対象領域の特徴量を算出し、算出された特徴量を用いて対象領域に真の対象組織が含まれるか否かを判別する判別部を備えるものであってもよい。
「判別部」は、対象組織と同種の対象組織を含む予め用意された三次元画像に対して、同種の対象組織の主軸方向に基づいて正規化処理を施されたデータを用いて、マシンラーニング手法を行うことにより得られた教師データを備えるものであって、教師データを用いて、算出された特徴量の解析を行うことにより、対象領域に真の対象組織が含まれるか否かを判別するものであってもよい。
「再構築処理部」は、算出された位置情報および主軸方向に基づいた変数とするコスト関数を用いて、複数の候補点が接続されるように再構築するものである。また、「再構築処理部」は、複数の候補点のうち少なくとも二つの候補点の関係が、二つの候補点それぞれの位置情報から一定の距離内にあって、かつ二つの候補点を結ぶ基本線と、二つの候補点それぞれの主軸方向から求まる二つの鋭角の和が一定角度内であることを条件とするコスト関数を用いて、複数の候補点が接続されるように再構築するものである。
例えば、最小全域木手法を用いることにより再構築するものであってもよい。また、再構築処理部は、二つの候補点の輝度値を変数としたコスト関数を用いてもよい。
「三次元画像」は、ボクセルデータから構成される画像である。例えば、複数の二次元画像により構成される三次元的な画像である。二次元画像として、例えば、放射線画像、CT画像、MRI画像、RI画像、PET画像等が挙げられる。
「対象組織」は、三次元画像に表される被写体の所定の部位からなる線状構造からなる組織をいい、例えば、冠動脈、脳血管、肝臓血管、気管支、肺血管等、その他の線状構造からなる組織であってもよい。
本発明の画像処理方法は、被写体を撮像して得られた三次元画像に対して所定の検出処理を施すことにより、線状構造からなる対象組織を表す複数の候補点の位置情報と主軸方向を算出し、算出された位置情報および主軸方向に基づいた変数とするコスト関数を用いて、複数の候補点が接続されるように再構築することを特徴とする。
本発明のプログラムは、被写体を撮像して得られた三次元画像に対して所定の検出処理を施すことにより、線状構造からなる対象組織を表す複数の候補点の位置情報と主軸方向を算出する機能と、算出された位置情報および主軸方向に基づいた変数とするコスト関数を用いて、複数の候補点が接続されるように再構築する機能をコンピュータに実行させることを特徴とする。
本発明の画像処理装置および方法並びにプログラムによれば、被写体を撮像して得られた三次元画像に対して所定の検出処理を施すことにより、線状構造からなる対象組織を表す複数の候補点の位置情報と主軸方向を算出し、算出された位置情報および主軸方向に基づいた変数とするコスト関数を用いて、複数の候補点が接続されるように再構築することにより、三次元画像上にノイズとなる候補点が混在しても、誤接続が生じることなく正確に対象組織を検出することができる。
画像処理装置における機能ブロック図 最小全域木手法を説明するための図 非特許文献1を説明するための木構造を示す候補点と接続例を示す図 心臓領域のボリュームレンダリングされた心臓領域を表す図 本発明の実施形態における一連のフローチャート ガウシアンピラミッド構造を説明するための概念図 線状構造からなる対象組織の主軸方向を算出することを説明するための概念図 正規化処理を説明するための概念図 二つの候補点(ノード)を結ぶ基本線と、基本線とそれぞれの主軸方向から求まる二つの鋭角の和を説明するための概念図 コスト関数(距離)を説明するためのグラフ コスト関数(角度)を説明するためのグラフ コスト関数(CT値)を説明するためのグラフ 木構造の再構築を説明するための概念図 冠動脈と静脈の再構築処理を説明するための概念図 心臓領域の形状をコスト関数とすることを説明するための概念図 コスト関数(心臓形状)を説明するためのグラフ
以下、図面を参照して本発明の画像処理装置の一実施形態について説明する。
図1は本発明の画像処理装置の好ましい実施の形態を示すブロック図である。
なお、図1のような画像処理装置の構成は、補助記憶装置(不図示)に読み込まれたプログラムをコンピュータ(たとえばパーソナルコンピュータ等)上で実行することにより実現される。また、このプログラムは、CD−ROM等の情報記憶媒体に記憶され、もしくはインターネット等のネットワークを介して配布され、コンピュータにインストールされることになる。
画像処理装置は、たとえばX線CT装置10により撮像された複数の二次元画像により構成される三次元画像に表される対象組織を自動的に算出するものであって、候補点算出部25、再構築処理部70等を有している。
画像処理装置には、画像取得部20と、入力部80と、表示部90等が接続されている。
画像取得部20は、たとえば図1に示すような撮像装置、例えばX線CT装置10により撮像されたCT画像(二次元画像)を取得するものである。なお、画像取得手段1は、たとえばCT画像のみならず、いわゆるMRI画像、RI画像、PET画像、X線画像等の二次元画像を取得するものであってもよい。また、画像取得部20は、このような複数の二次元画像により構成される三次元画像を取得するものである。
なお、入力部80は、キーボード、マウス等である。
本発明の画像処理装置は、被写体を撮像して得られた三次元画像に対して所定の検出処理を施すことにより、線状構造からなる対象組織を表す複数の候補点の位置情報と主軸方向を算出する候補点算出部25と、算出された位置情報および主軸方向に基づいた変数とするコスト関数を用いて、複数の候補点が接続されるように再構築する再構築処理部70とを備えるものである。
候補点算出部25は、検出領域設定部30と、主軸方向算出部40と、正規化処理部50と、判別部60から構成される。
候補点算出部25は、三次元画像に対して所定の検出処理を施すことにより、線状構造からなる対象組織を表す複数の候補点の位置情報と主軸方向を算出するものである。
また、候補点算出部25は、三次元画像に対してヘッセ行列を算出し、ヘッセ行列の固有値を解析することにより、複数の候補点それぞれの位置情報及び主軸情報を算出するものである。更に、候補点算出部25は、算出された固有値が所定の閾値条件を満たすものであるか否かにより、候補点を検出するものであってもよい。
候補点算出部25は、画像取得部20により得られた三次元画像中の検出領域を設定する検出領域設定部30と、検出領域における線状構造からなる対象組織の主軸方向を算出する主軸方向算出部40と、主軸方向に基づいて、対象組織を含む対象領域に対して正規化処理を施す正規化処理部50と、正規化処理を施された対象領域の特徴量を算出し、算出された特徴量を用いて対象領域に真の対象組織が含まれるか否かを判別する判別部60を備えるものである。
検出領域設定部30は、画像取得部20により取得された三次元画像中の検出領域を設定するものである。検出領域設定部30は、検出アルゴリズムを実行させることにより、検出領域を設定するものであって、例えば、閾値処理、セグメント分割処理を用いた検出アルゴリズムを実行するものである。例えば、検出領域として心臓が挙げられる。
また、検出領域設定部30は、入力部80により入力された領域を検出領域として設定してもよい。
正規化処理部50は、主軸算出部40により算出された主軸方向に基づいて、対象組織を含む対象領域に対して正規化処理を施すものである。
判別部60は、正規化処理部50により正規化処理を施された対象領域の特徴量を算出し、算出された特徴量を用いて対象領域に真の対象組織が含まれるか否かを判別するものである。
また、判別部60は、対象組織と同種の対象組織を含む予め用意された三次元画像に対して、同種の対象組織の主軸方向に基づいて正規化処理を施されたデータを教師データとして備えるものであって、教師データを用いて、マシンラーニング手法を利用して算出された特徴量の解析を行うことにより、対象領域に真の対象組織が含まれるか否かを判別するものであってもよい。冠動脈を判別する判別器の学習においては、正の教師データとして冠動脈の直線部の他、湾曲部、分岐部、狭窄、石灰化またステント留置部などの病変部を表すデータを含めることができる。これらを教師データに含めて学習することで、冠動脈のバリエーションに対応し、病変部等も血管として高精度に判別することが可能となる。負の教師データには冠動脈以外の部位をランダムに用意することができる。
具体的には、対象組織の検出方法として、統合学習機械をつくる手法であるAdaboostに基づいたマシンラーニング手法を利用するものであることが考えられる。判別部60は、上記の対象組織の検出手法に用いることができる。対象組織は、特徴点検出等の公知の手法や学習データに対してリサンプリングの際に重みを逐次的に更新し、できた機械を最後に学習機械に対する重みをつけることで、統合学習機械をつくる手法であるAdaboostに基づいたマシンラーニング手法を用いる。学習サンプル画像において、対象組織の中心座標とその主軸方向また線状構造の場合はその半径を指定し、中心座標を基準としてその主軸方向に回転させた立方体を関心領域とする。立方体のスケールは半径で規格化する。冠動脈を判別する際の正の学習サンプルには、直線的な血管の湾曲部、血管の分岐部、また狭窄や石灰化、ステント留置部などの病変部を表すデータを含める。負の教師データには冠動脈以外の部位をランダムに用意する。
次に、正と負の学習サンプル画像に対して、ランダムに選択されたn組の画素ペアの値の組み合わせを特徴量とし、Adaboostに基づいたマシンラーニング手法により、正と負のパターンを見分ける判別器を作成する。対象組織を検出する際、3次元画像を走査し、注目画素を中心とした様々なサイズの立方体領域を切り出し、特徴量を算出する。それを学習段階で得られた判別器に入力し、判別値を求め、判別値が所定の閾値を超えた場合、対象組織であると判別する。
判別のための特徴量はCT画像におけるCT値のX,Y,Z,XY,YZ,ZX方向それぞれの1次微分値とする。その他、CT値の絶対値、CT値のヒストグラム、2次微分値などを用いてもよい。
また、対象組織を検出する手法として、他の様々な統計解析法や機械学習法、例えば線形判別法やニューラルネットワーク、サポートベクターマシン等を用いることができる。
判別部60は、上述した手法により、三次元画像から対象組織の位置を複数検出し、上述した候補点を複数算出する。
表示部70は、二次元画像または三次元画像等を表示するモニタ、CRT画面等である。読影者は、表示部70上に、図4(A)に示すように検出領域(心臓領域)として判別さ
れた領域をボリュームレンダリング表示することで、検出領域を視認することができる。
また、読影者は、表示部70上に、図4(B)に示すように対象組織(血管A1)と検出領域(心臓領域)をボリュームレンダリング表示することで、線状構造の全体を概観し、その連続性を視認することができる。
なお、判別部60は、切り出した真の対象組織を含む対象領域の所定点を候補点として算出する。
再構築処理部70は、算出された位置情報および主軸方向に基づいた変数とするコスト関数を用いて、複数の候補点が接続されるように再構築するものである。また、再構築処理部70は、複数の候補点のうち少なくとも二つの候補点の関係が、二つの候補点それぞれの位置情報から一定の距離内にあって、かつ二つの候補点を結ぶ基本線と、二つの候補点それぞれの主軸方向から求まる二つの鋭角の和が一定角度内であることを条件とするコスト関数を用いて、複数の候補点が接続されるように再構築するものである。具体的には、最小全域木手法を用いることにより再構築するものであってもよい。また、再構築処理部70は、二つの候補点の輝度値を変数としたコスト関数を用いてもよい。
次に、以上の構成の画像処理装置において行われる実施態様における処理について説明する。
図5は、画像処理装置が三次元画像における線状構造からなる対象組織を検出するまでの一連の処理フローチャートである。
まず、図5に示す如く、X線CT装置10により撮像された三次元画像を画像取得部20に入力する(ステップS1)。
次に、検出領域設定部30は、上述した検出アルゴリズムを実行することにより、心臓領域を検出する。検出領域設定部30は、検出された心臓領域内から、検出領域を設定する(ステップS2)。この検出領域は、被写体を撮像して得られた三次元画像中にある対象領域を含む所定の領域をいい、例えば、心臓領域を含む領域若しくはその領域の一部の領域等であってもよい。
検出領域設定部30は、検出領域における線状構造からなる対象組織を検出すべく、予め三次元画像を多重解像度変換することにより、ガウシアンピラミッドを生成する。
その後、検出領域設定部30は、図6に示すように、生成したガウシアンピラミッドごとに検出アルゴリズムを走査することで異なるサイズの線状構造からなる対象候補組織(例えば、冠動脈等)を検出する。
検出領域設定部30は、ガウシアンピラミッド構造である図6(a)の検出領域に対してスキャンニングを行い、順次、図6(b)の検出領域、図6(c)の検出領域をスキャンして検出処理を実行する座標を設定する。多重解像度画像を順次走査することで、異なるサイズの対象組織(例えば、冠動脈)を検出することができる。
次に、主軸方向算出部40は、検出座標を中心とする局所領域において線状構造からなる対象組織(例えば、冠動脈)の主軸方向を算出する(ステップS3)。
主軸方向算出部40は、対象候補組織を含む領域内にて、ヘッセ行列の固有値解析を行い、主軸方向を算出する。ヘッセ行列は、2階の偏微分係数を要素とする行列であり、三次元画像に対しては、数(1)のように3×3行列となる。
ガウシアンカーネル(f)関数を用いた場合、ヘッセ行列を得るためのフィルタ係数は数(2)によって、求められる。σは検出したいサイズの線状構造に対応させる。
このヘッセ行列を固有値分解して固有値と固有ベクトルを得たとき、0に最も近い固有値に対応する固有ベクトルが主軸方向である。
線状構造は、図7に示すように、3つのうち二つの固有値の値が大きく、1つが0に近い特徴を持つことが知られている。そこで固有値から線状構造らしさを判定し、残った候補についてより詳細な判定を行うようにすると効果的である。数(1)の固有値は、例えば線状構造からなる対象組織に対して、数(3)のような関係を持つ。
正規化処理部50は、主軸方向算出部40により算出された主軸方向に基づいて、対象組織を含む対象領域に対して正規化処理を施す(ステップS4)。正規化処理部50は、図8(a)に示すように、算出された主軸方向に沿って正規化した画像を切り出す。図8(b)に示すように、正規化処理後の対象組織の三次元画像は、回転不変な特徴を持ったものとなる。但し、画像処理装置は、正規化処理を必ずしも行う必要はなく、判別部60が、正規化した場合と同じ条件で判別のための特徴量を取得してマシンラーニング手法を利用してもよい。
次に、判別部60は、正規化処理部50により正規化処理を施された対象領域の特徴量を算出し、算出された特徴量を用いて対象領域に真の対象組織が含まれるか否かを判別する(ステップS5)。
判別部60は、正規化処理部50により正規化処理を施した対象領域から上述のマシンラーニング手法等により、特徴量を取り出し、真の対象組織か否かの判別を行う。
判別部60は、対象組織であると判別した場合、その画像から切り出された対象領域の所定の点を候補点として設定する。判別すべき対象領域がある限り、判別を繰り返す(ステップS6;YES)。
なお、本発明の実施形態は、対象組織として、冠動脈の判別を例に挙げたが、脳血管、肝臓血管、肺血管、気管支など、他の線状構造の抽出に利用することができる。
次に、全ての対象領域の判別が終了し、判別が不要となった際には(ステップS6;NO)、設定された複数の候補点のうち少なくとも二つの候補点の関係が、二つの候補点それぞれの位置情報から一定の距離内にあって、かつ二つの候補点を結ぶ基本線と、基本線とそれぞれの主軸方向から求まる二つの鋭角の和が一定角度内であることを条件とするコスト関数を用いて、複数の候補点が接続されるものであるか否かを再構築する(ステップS7)。
具体的には、再構築処理部70は、設定した複数の候補点を最小全域木手法によって、再構築し、冠動脈である対象組織の木構造を得る。このとき、再構築処理70は、候補点間のエッジ情報を用いて、コスト関数を設定する。
例えば、コスト関数は、候補点間のエッジ情報の重みを、距離が近いものほど小さく設定
する。更に、コスト関数は、図8に示すように二つの候補点(Node1, Node2)を結ぶ基本線Lを基準として、二つの候補点それぞれの主軸方向から求まる二つの鋭角の和(Angle1+Angle2)が一定角度内であって、コスト関数は、二つの鋭角の和が小さいほど、エッジ情報の重みを小さくするように設定する。このようにコスト関数を設定することにより、再構築処理70は、図13(A)に示すような候補点の接続前の状況から、図13(B)に示すように候補点が再構築され接続されることを可能とする。
具体的には、再構築処理70は、コスト関数を数(4)のように設定する。
コスト関数は、候補点間の距離と血管の半径、主軸方向、候補点におけるCT値のそれぞれの要素を変数として用いて設定する。
数(4)の候補点間の距離と血管の半径を用いたガウシアンカーネル(f)関数は、物理的距離が長いほど出力が小さくなる関数であって、図10に示すように、設定される。図10の縦軸は、候補点間の距離と血管の半径を用いたガウシアンカーネル(f)関数であり、横軸は、二つの候補点間の物理的距離を候補点の血管半径で割った値を示すものである。
但し、血管の半径により規格化することにより、太い血管は相対的に長い距離でも出力を大きくするようにコスト関数を設定してもよい。また、血管の半径(太さ)とは、候補点が判別の際に、多重解像度画像としてどの程度のスケールであるかを表す。例えば、ボクセルデータが1.0mmの解像度画像で見つかった候補は血管半径を2.0mmとし、ボクセルが2.0mmの解像度画像で見つかった候補は血管半径を4.0mmとする。
また、数(4)の主軸方向を用いたガウシアンカーネル(f)関数は、図11に示すように、二つの候補点(Node1とNode2)の指す方向(Angle1とAngle2)が一致していないほど出力が小さくなるように設定する。上述したように、図9に示すように二つの候補点(Node1, Node2)を結ぶ基本線Lと、基本線とそれぞれの主軸方向から求まる二つの鋭角の和(Angle1+Angle2)が一定角度内であって、コスト関数は、二つの鋭角の和が小さいほど、エッジの重みを小さくするように設定する。
このように二つの鋭角の和が、一定角度内に収まり、よりゼロに近いほど、方向の一致度は高くなる。
なお、図11の縦軸は、主軸方向を用いたガウシアンカーネル(f)関数であり、横軸は、主軸方向の一致度を示すものである。
再構築処理70は、最小全域木手法により候補点と候補点を結ぶことで木構造を生成するため、原則としてループが存在しないルールとなっている。そのため、図14(A)に示すように、静脈(点線)が動脈(鎖線)と交差している場合は、再構築をしても図14(B)に示すようにループ中のいずれかの点が切断されて再構成される。そこでCT値をコスト関数に考慮することで、図14(C)に示すように、接続されないエッジが静脈経路(点線)上になり、動脈経路(鎖線)を正しく再構成できる。
また、数(4)のCT値を用いたガウシアンカーネル(f)関数は、図12に示すように、候補点位置におけるCT値が低いほど重みが小さくなるよう設定されたものである。造影された冠動脈のCT値が200〜400程度であることを基準としている。図12の縦軸は、CT値を用いたガウシアンカーネル(f)関数であり、横軸は、候補点(ノード)のCT値を示すものである。
更にコスト関数は、心臓形状を重みとして設定するものであってもよい。
具体的には、図15(A)に示すように動脈A2が、概ね楕円体をしている心臓H1のまわりに存在していることを利用し、図15(B)に示すように最小二乗法を用いてNode3,Node4(候補点)の点群に楕円体をフィッティングし、図15(B)に示すように二つのノード(候補点)について、それぞれを結ぶ方向を計算する。また、図16に示すように心臓形状を用いたガウシアンカーネル(f)関数は、楕円体の接線方向を計算し、これら二つの角度の差が小さいほどコストを小さくし、楕円体の法線方向に近いほど(差が90度に近い)重みを小さく設定するものであってもよい。図16の縦軸は、心臓形状を用いたガウシアンカーネル(f)関数であり、横軸は、二つの候補点(ノード)を結ぶ方向と楕円体の接線方向との差を示すものである。
なお、心臓形状に限定することなく、所定の組織形状を用いたガウシアンカーネル(f)関数を設定してもよい。
このように再構築処理部70は、検出された複数の候補点のうち少なくとも二つの候補点の関係について接続できるものであるか否かを上述したコスト関数を用いて、最小全域木手法を用いて計算し、その他の候補点の関係も計算することにより対象組織の検出をおこなう。
以上により、本発明の画像処理装置は、被写体を撮像して得られた三次元画像に対して所定の検出処理を施すことにより、線状構造からなる対象組織を表す複数の候補点の位置情報と主軸方向を算出し、算出された位置情報および主軸方向に基づいた変数とするコスト関数を用いて、複数の候補点が接続されるように再構築することにより、三次元画像上にノイズとなる候補点が混在しても、誤接続が生じることなく正確に対象組織を検出することができる。

Claims (12)

  1. 被写体を撮像して得られた三次元画像に対して所定の検出処理を施すことにより、線状構造からなる対象組織を表す複数の候補点の位置情報と主軸方向を算出する候補点算出部と、
    前記算出された位置情報および主軸方向に基づいた変数とするコスト関数を用いて、前記複数の候補点が接続されるように再構築する再構築処理部とを備えたものであって、
    前記再構築処理部が、前記複数の候補点のうち少なくとも二つの候補点の関係が、該二つの候補点それぞれの位置情報から一定の距離内にあって、かつ前記二つの候補点を結ぶ基本線と、前記二つの候補点それぞれの主軸方向から求まる二つの鋭角の和が一定角度内であることを条件とするコスト関数を用いて、再構築するものであることを特徴とする画像処理装置。
  2. 被写体を撮像して得られた三次元画像に対して所定の検出処理を施すことにより、線状構造からなる対象組織を表す複数の候補点の位置情報と主軸方向を算出する候補点算出部と、
    前記算出された位置情報および主軸方向に基づいた変数とするコスト関数を用いて、前記複数の候補点が接続されるように再構築する再構築処理部とを備えたものであって、
    前記候補点算出部が、
    更に、前記主軸方向に基づいて、前記対象組織を含む対象領域に対して正規化処理を施す正規化処理部と、
    前記正規化処理を施された対象領域の特徴量を算出し、該算出された特徴量を用いて前記対象領域に真の対象組織が含まれるか否かを判別する判別部を備えたことを特徴とする画像処理装置。
  3. 前記候補点算出部は、前記三次元画像に対してヘッセ行列を算出し、該算出されたヘッセ行列の固有値を解析することにより、前記複数の候補点それぞれの位置情報及び主軸情報を算出するものであることを特徴とする請求項1記載の画像処理装置。
  4. 前記候補点算出部は、前記固有値が所定の閾値条件を満たすものであるか否かにより、前記候補点を検出することを特徴とする請求項3記載の画像処理装置。
  5. 前記判別部は、前記対象組織と同種の対象組織を含む予め用意された三次元画像に対して、前記同種の対象組織の主軸方向に基づいて正規化処理を施されたデータを教師データとして備えるものであって、
    前記教師データを用いて、マシンラーニング手法を利用して前記算出された特徴量の解析を行うことにより、前記対象領域に真の対象組織が含まれるか否かを判別するものであることを特徴とする請求項2記載の画像処理装置。
  6. 前記再構築処理部は、最小全域木手法を用いることにより再構築するものであることを特徴とする請求項1から5いずれか1項記載の画像処理装置。
  7. 前記再構築処理部が、前記二つの候補点の輝度値を変数としたコスト関数を用いることを特徴とする請求項1から6いずれか1項記載の画像処理装置。
  8. 前記対象組織は、冠動脈であることを特徴とする請求項1から7いずれか1項記載の画像処理装置。
  9. 被写体を撮像して得られた三次元画像に対して所定の検出処理を施すことにより、線状構造からなる対象組織を表す複数の候補点の位置情報と主軸方向を算出するための候補点算出を行い、
    前記算出された位置情報および主軸方向に基づいた変数とするコスト関数を用いて、前記複数の候補点が接続されるように再構築処理を行い、
    前記再構築処理を行うに際して、前記複数の候補点のうち少なくとも二つの候補点の関係が、該二つの候補点それぞれの位置情報から一定の距離内にあって、かつ前記二つの候補点を結ぶ基本線と、前記二つの候補点それぞれの主軸方向から求まる二つの鋭角の和が一定角度内であることを条件とするコスト関数を用いて、再構築する画像処理方法。
  10. 被写体を撮像して得られた三次元画像に対して所定の検出処理を施すことにより、線状構造からなる対象組織を表す複数の候補点の位置情報と主軸方向を算出するための候補点算出を行い、
    前記算出された位置情報および主軸方向に基づいた変数とするコスト関数を用いて、前記複数の候補点が接続されるように再構築処理を行い、
    前記候補点算出を行うに際して、
    前記主軸方向に基づいて、前記対象組織を含む対象領域に対して正規化処理を施し、
    前記正規化処理を施された対象領域の特徴量を算出し、該算出された特徴量を用いて前記対象領域に真の対象組織が含まれるか否かを判別する画像処理方法。
  11. 被写体を撮像して得られた三次元画像に対して所定の検出処理を施すことにより、線状構造からなる対象組織を構成する複数の候補点の位置情報と主軸方向を算出する機能と、
    前記算出された位置情報および主軸方向に基づいた変数とするコスト関数を用いて、前記複数の候補点が接続されるように再構築する機能とをコンピュータに実現させるプログラムであって、
    前記再構築する機能が、前記複数の候補点のうち少なくとも二つの候補点の関係が、該二つの候補点それぞれの位置情報から一定の距離内にあって、かつ前記二つの候補点を結ぶ基本線と、前記二つの候補点それぞれの主軸方向から求まる二つの鋭角の和が一定角度内であることを条件とするコスト関数を用いて、再構築するものであることを特徴とするプログラム。
  12. 被写体を撮像して得られた三次元画像に対して所定の検出処理を施すことにより、線状構造からなる対象組織を構成する複数の候補点の位置情報と主軸方向を算出するための候補点算出機能と、
    前記算出された位置情報および主軸方向に基づいた変数とするコスト関数を用いて、前記複数の候補点が接続されるように再構築する機能とをコンピュータに実現させるプログラムであって、
    前記候補点算出機能が、前記主軸方向に基づいて、前記対象組織を含む対象領域に対して正規化処理を施し、前記正規化処理を施された対象領域の特徴量を算出し、該算出された特徴量を用いて前記対象領域に真の対象組織が含まれるか否かを判別するものであることを特徴とするプログラム。
JP2009069895A 2009-03-03 2009-03-23 画像処理装置および方法並びにプログラム Active JP4717935B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2009069895A JP4717935B2 (ja) 2009-03-23 2009-03-23 画像処理装置および方法並びにプログラム
EP10748460.2A EP2404553B1 (en) 2009-03-03 2010-02-23 Image processing device and method, and program
US12/737,623 US8526690B2 (en) 2009-03-03 2010-02-23 Automatic detection of target tissues formed by linear structures from within three dimensional images
CN2010800022477A CN102112056A (zh) 2009-03-03 2010-02-23 图像处理装置、图像处理方法和图像处理程序
AU2010220015A AU2010220015A1 (en) 2009-03-03 2010-02-23 Image processing device and method, and program
BRPI1004212A BRPI1004212A2 (pt) 2009-03-03 2010-02-23 aparelho de processamento de imagem, método de processamento de imagem, e programa de processamento de imagem
PCT/JP2010/001191 WO2010100858A1 (ja) 2009-03-03 2010-02-23 画像処理装置および方法並びにプログラム
CA2732647A CA2732647C (en) 2009-03-03 2010-02-23 Image processing apparatus, image processing method, and image processing program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009069895A JP4717935B2 (ja) 2009-03-23 2009-03-23 画像処理装置および方法並びにプログラム

Publications (3)

Publication Number Publication Date
JP2010220742A JP2010220742A (ja) 2010-10-07
JP2010220742A5 JP2010220742A5 (ja) 2011-02-03
JP4717935B2 true JP4717935B2 (ja) 2011-07-06

Family

ID=43038607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009069895A Active JP4717935B2 (ja) 2009-03-03 2009-03-23 画像処理装置および方法並びにプログラム

Country Status (1)

Country Link
JP (1) JP4717935B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136786A1 (ja) 2012-03-15 2013-09-19 富士フイルム株式会社 医用画像表示装置、医用画像表示方法および医用画像表示プログラム
US9965698B2 (en) 2013-03-27 2018-05-08 Fujifilm Corporation Image processing apparatus, non-transitory computer-readable recording medium having stored therein image processing program, and operation method of image processing apparatus

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5263995B2 (ja) * 2011-03-18 2013-08-14 富士フイルム株式会社 ネットワーク構築装置および方法ならびにプログラム
JP2012223338A (ja) * 2011-04-19 2012-11-15 Fujifilm Corp 木構造作成装置および方法ならびにプログラム
JP5701138B2 (ja) * 2011-04-19 2015-04-15 富士フイルム株式会社 医用画像処理装置および方法、並びにプログラム
JP5391229B2 (ja) * 2011-04-27 2014-01-15 富士フイルム株式会社 木構造抽出装置および方法ならびにプログラム
JP5395868B2 (ja) * 2011-09-26 2014-01-22 富士フイルム株式会社 画像処理装置および方法ならびにプログラム
JP5748636B2 (ja) * 2011-10-26 2015-07-15 富士フイルム株式会社 画像処理装置および方法並びにプログラム
JP5814853B2 (ja) 2012-04-18 2015-11-17 富士フイルム株式会社 立体モデルデータ生成装置および方法並びにプログラム
JP5946127B2 (ja) 2012-05-11 2016-07-05 富士通株式会社 シミュレーション方法、シミュレーション装置、およびシミュレーションプログラム
JP5858475B2 (ja) * 2012-07-17 2016-02-10 富士通株式会社 表示処理プログラム、表示処理方法及び表示処理装置
JP6080249B2 (ja) 2012-09-13 2017-02-15 富士フイルム株式会社 3次元画像表示装置および方法並びにプログラム
JP6080248B2 (ja) 2012-09-13 2017-02-15 富士フイルム株式会社 3次元画像表示装置および方法並びにプログラム
JP5833994B2 (ja) 2012-09-20 2015-12-16 富士フイルム株式会社 画像処理装置および方法ならびにプログラム
JP5934070B2 (ja) 2012-09-26 2016-06-15 富士フイルム株式会社 仮想内視鏡画像生成装置およびその作動方法並びにプログラム
JP5961504B2 (ja) 2012-09-26 2016-08-02 富士フイルム株式会社 仮想内視鏡画像生成装置およびその作動方法並びにプログラム
JP6030435B2 (ja) 2012-12-25 2016-11-24 富士フイルム株式会社 画像処理装置および画像処理方法、並びに画像処理プログラム
KR101514795B1 (ko) 2013-08-19 2015-04-23 재단법인 아산사회복지재단 혈관의 정량화 방법
WO2014168350A1 (ko) 2013-04-10 2014-10-16 재단법인 아산사회복지재단 폐동맥과 폐정맥을 구분하는 방법 및 이를 이용한 혈관의 정량화 방법
JP6358590B2 (ja) 2013-08-09 2018-07-18 富士通株式会社 血管データ生成装置、血管データ生成方法、および血管データ生成プログラム
JP6080267B2 (ja) 2014-09-12 2017-02-15 富士フイルム株式会社 3次元オブジェクト分割出力装置およびその応用
JP6053736B2 (ja) 2014-09-12 2016-12-27 富士フイルム株式会社 3次元オブジェクト分割出力装置およびその応用
KR101625955B1 (ko) * 2014-11-03 2016-06-01 재단법인 아산사회복지재단 장기의 동맥 및 정맥의 구분 방법
JP6594133B2 (ja) 2015-09-16 2019-10-23 富士フイルム株式会社 内視鏡位置特定装置、内視鏡位置特定装置の作動方法および内視鏡位置特定プログラム
JP6570460B2 (ja) 2016-02-25 2019-09-04 富士フイルム株式会社 評価装置、方法およびプログラム
JP6671482B2 (ja) * 2016-08-31 2020-03-25 富士フイルム株式会社 Cpr画像生成装置、方法およびプログラム
JP6608111B2 (ja) 2016-09-28 2019-11-20 富士フイルム株式会社 医用画像保存再生装置および方法並びにプログラム
EP3462373A1 (en) * 2017-10-02 2019-04-03 Promaton Holding B.V. Automated classification and taxonomy of 3d teeth data using deep learning methods
EP3503038A1 (en) * 2017-12-22 2019-06-26 Promaton Holding B.V. Automated 3d root shape prediction using deep learning methods
EP3561778A1 (en) 2018-04-26 2019-10-30 Promaton Holding B.V. Automated correction of metal affected voxel representations of x-ray data using deep learning techniques
EP3591616A1 (en) * 2018-07-03 2020-01-08 Promaton Holding B.V. Automated determination of a canonical pose of a 3d dental structure and superimposition of 3d dental structures using deep learning
WO2020217758A1 (ja) * 2019-04-25 2020-10-29 富士フイルム株式会社 疑似アンギオ画像生成装置、方法およびプログラム
DE112020002679T5 (de) 2019-06-06 2022-03-03 Fujifilm Corporation Erzeugungsvorrichtung für dreidimensionales Ultraschallbild, Erzeugungsverfahren für dreidimensionales Ultraschallbild und Erzeugungsprogramm für dreidimensionales Ultraschallbild
US11200976B2 (en) * 2019-08-23 2021-12-14 Canon Medical Systems Corporation Tracking method and apparatus
EP3889882B1 (en) * 2020-03-31 2023-06-07 Siemens Healthcare GmbH Image normalization increasing robustness of machine learning applications for medical images
JP2023165364A (ja) 2022-05-02 2023-11-15 富士フイルム株式会社 画像処理装置、方法およびプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230086A (ja) * 2003-01-31 2004-08-19 Toshiba Corp 画像処理装置、画像データ処理方法、及びプログラム
JP2006346094A (ja) * 2005-06-15 2006-12-28 Konica Minolta Medical & Graphic Inc 検出情報の出力方法及び医用画像処理システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230086A (ja) * 2003-01-31 2004-08-19 Toshiba Corp 画像処理装置、画像データ処理方法、及びプログラム
JP2006346094A (ja) * 2005-06-15 2006-12-28 Konica Minolta Medical & Graphic Inc 検出情報の出力方法及び医用画像処理システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136786A1 (ja) 2012-03-15 2013-09-19 富士フイルム株式会社 医用画像表示装置、医用画像表示方法および医用画像表示プログラム
US9536346B2 (en) 2012-03-15 2017-01-03 Fujifilm Corporation Medical image display apparatus, medical image display method, and medical image display program
US9965698B2 (en) 2013-03-27 2018-05-08 Fujifilm Corporation Image processing apparatus, non-transitory computer-readable recording medium having stored therein image processing program, and operation method of image processing apparatus

Also Published As

Publication number Publication date
JP2010220742A (ja) 2010-10-07

Similar Documents

Publication Publication Date Title
JP4717935B2 (ja) 画像処理装置および方法並びにプログラム
WO2010100858A1 (ja) 画像処理装置および方法並びにプログラム
JP4999163B2 (ja) 画像処理方法および装置ならびにプログラム
US8244012B2 (en) Computer aided detection of pulmonary embolism with local characteristic features in CT angiography
Diciotti et al. Automated segmentation refinement of small lung nodules in CT scans by local shape analysis
JP4708362B2 (ja) コンピュータで実施される方法
US6609021B1 (en) Pulmonary nodule detection using cartwheel projection analysis
Bouma et al. Automatic detection of pulmonary embolism in CTA images
US20120183193A1 (en) Method and System for Automatic Detection of Spinal Bone Lesions in 3D Medical Image Data
JP2015528372A (ja) 医用画像中の肺結節を自動検出するためのシステム及び方法
JP6273291B2 (ja) 画像処理装置および方法
EP1747532A2 (en) Nodule boundary detection
JP4964171B2 (ja) 対象領域抽出方法および装置ならびにプログラム
Vukadinovic et al. Segmentation of the outer vessel wall of the common carotid artery in CTA
Pock et al. Multiscale medialness for robust segmentation of 3d tubular structures
JP2020532376A (ja) 肺の画像内の高密度肺組織の領域の決定
Jerman et al. Computer-aided detection and quantification of intracranial aneurysms
Novo et al. 3D lung nodule candidate detection in multiple scales
JP5364009B2 (ja) 画像生成装置、画像生成方法、及びそのプログラム
JP4709290B2 (ja) 画像処理装置および方法並びにプログラム
JP2022117177A (ja) 情報処理装置、情報処理方法及び情報処理プログラム
Chen et al. Virtual blood vessels in complex background using stereo x-ray images
Shahzad et al. Automatic detection of calcified lesions in the descending aorta using contrast enhanced CT scans
Truc et al. A new approach to vessel enhancement in angiography images
JP2009502430A (ja) 胸部磁気共鳴シーケンスにおいて血管を自動的にセグメント化するシステムおよび方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101208

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20101208

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Ref document number: 4717935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250