JP4712359B2 - 光ファイバの製造方法 - Google Patents

光ファイバの製造方法 Download PDF

Info

Publication number
JP4712359B2
JP4712359B2 JP2004344588A JP2004344588A JP4712359B2 JP 4712359 B2 JP4712359 B2 JP 4712359B2 JP 2004344588 A JP2004344588 A JP 2004344588A JP 2004344588 A JP2004344588 A JP 2004344588A JP 4712359 B2 JP4712359 B2 JP 4712359B2
Authority
JP
Japan
Prior art keywords
optical fiber
layer
glass
preform
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004344588A
Other languages
English (en)
Other versions
JP2006151747A (ja
Inventor
伸昭 折田
英也 森平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2004344588A priority Critical patent/JP4712359B2/ja
Priority to CN201110459276.2A priority patent/CN102583997B/zh
Priority to CN 200510126996 priority patent/CN1782756B/zh
Priority to US11/288,311 priority patent/US8789393B2/en
Publication of JP2006151747A publication Critical patent/JP2006151747A/ja
Application granted granted Critical
Publication of JP4712359B2 publication Critical patent/JP4712359B2/ja
Priority to US13/359,258 priority patent/US20120118018A1/en
Priority to US14/067,631 priority patent/US20140050450A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point

Description

本発明は、コア層とこのコア層を取り囲むクラッド層とを有し主に光通信に用いられる光ファイバの製造方法に関する。
昨今、光ファイバの光伝送特性の向上に加えて、光ファイバの価格低減に対する要求が益々高まっている。
光ファイバの製造方法としては、気相軸付け法(Vapor-phase Axial Deposition method:VAD法)、修正化学気相堆積法(Modified Chemical Vapor Deposition method:MCVD法)、外側気相堆積法(Outside Vapor Deposition method:OVD法)、プラズマ化学気相堆積法(Plasma Chemical Vapor Deposition method:PCVD法)、ゾル−ゲル法、ロッドインチューブ法(Rod-In-Tube method:RIT法)、及びこれらを組み合わせた製造方法が知られている。
しかし、これらの製造方法は既に成熟しており改良の余地が少ない。そのため、さらなる製造コストの削減を実現することは容易でない。さらに、西暦2000年前後に盛んに行われた設備投資によって設置された多くの光ファイバ製造装置の製造能力が余剰となっており、追加の投資や開発を行うことも極めて難しい状況となっている。そしてこれら旧式の生産設備が製造コスト低減に対する阻害要因となっている。
上述のOVD法により、コアロッドの外周にシリカガラス微粒子を堆積させて、後にクラッド層となる多孔質母材層を製造する方法においては、コアロッドの直径が太いほうがシリカガラス微粒子の堆積効率が良くなることが解っている。すなわち、コアロッドの直径を太くすればするほどコストダウンを図ることができる。しかしながら、現在保有するOVD装置を改造して製造可能な多孔質母材の外径を拡大することは、新たな設備を設置するのと同じくらいの費用がかかるので、コアロッドの外径を所定の太さより太くすることはできない。
一方、多孔質母材層の堆積密度を上げて、層の厚みを小さくする方法も有るが、脱水不良などの問題を起こす可能性が高くなるため実現に至らない。また、クラッド層を複数層に分け、層の形成を複数回繰り返して製造することも考えられるが、工程の増加によってむしろ製造コストの増加につながる。
また、上述のようにして形成した多孔質母材層を透明ガラス化する工程は、一般的に、最初に焼結の進まない例えば1200℃以下の温度で一度加熱して十分に脱水を行い、その後、例えば1500℃を越える高温な雰囲気に曝して透明化を行うという2段階の工程にて行う。しかし、この方法では、加熱に伴うエネルギーコストがかさむという問題がある。さらに、脱水・焼結炉の炉心管として石英系ガラス製のものを用いる場合には、この炉心管が高温に曝されることによって軟化し、変形したり、失透したり、或いは破損したりするという問題が発生する。
一方、クラッド層の一部、あるいは全部を石英系ガラス製の管、所謂ジャケット管と呼ばれるガラス管によって構成するRIT法は広く知られており、太径の光ファイバ母材を容易に作製できるといった効果を得ることができる(例えば、特許文献1、2参照)。また、コアロッドを挿入したガラス管を、両者を溶融一体化させつつ、同時に光ファイバに線引きする方法も知られている(例えば、特許文献3、4参照)。しかしながら、ガラス管は一般に高価であるため、光ファイバのガラス層に占める該ガラス管の割合を極力減らすことが製造コスト低減には効果的である。
そして、クラッド層を最終的に気泡が残っていない完全に透明なガラス層とするために、多孔質母材層を完全に焼結させ、透明なガラスにした後に線引き工程を行う手順が一般的である。これに対して、完全に透明化せずに気泡を残留させた状態のまま線引きを行う技術も提案されている(例えば、特許文献5参照)。しかし、この方法を用いた場合、線引き装置の加熱炉(以下、線引き炉と呼ぶ)の大きさから線引き可能な母材の直径は限られてしまうため、完全に透明化した場合に比べて、気泡を含有している分だけ線引きできる光ファイバの長さが短くなってしまうし、線引き後の光ファイバ中に気泡が残留するという危惧もある。また、クラッド層に外部に開放された気泡が存在した場合、線引き炉中の汚染物質が光ファイバのクラッド層に取り込まれ、光ファイバの強度不足、伝送損失悪化などの原因となるという危惧もある。
特開平7−109135号公報 特開平7−109141号公報 特開昭60−155542号公報 特開2001−287920号公報 特許第2565712号公報
現在の光ファイバの製造環境に関しては、上述のような状況であるので、現在有る製造設備を極力そのまま活用しつつ、従来からの技術をうまく組み合わせて製造コストを削減する光ファイバの製造方法が要望されている。
本発明は、上記に鑑みてなされたものであって、現在有る製造設備をそのまま流用しつつ、従来からの技術をうまく組み合わせ、これにより製造コストを削減することができる光ファイバの製造方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る光ファイバの製造方法は、1層以上のコア層と該コア層を取り囲む1層以上のクラッド層とを有する光ファイバの製造方法であって、前記コア層を有し棒状をなす透明ガラス化されたコアロッドの外周にガラス微粒子を堆積させて多孔質母材層を形成して第1プリフォームとする第1プリフォーム作製工程と、前記第1プリフォームに対して多孔質母材層が独立気泡を含む半透明ガラス母材層になるまで脱水処理及び焼結処理をする脱水・焼結工程と、前記脱水処理及び前記焼結処理をした前記第1プリフォームをガラス管に挿入して第2プリフォームとする第2プリフォーム作製工程と、前記第2プリフォームに対して熱を加えながら、前記半透明ガラス母材層と前記ガラス管とが溶融一体化するように且つ前記半透明ガラス母材層が透明ガラスでなる前記クラッド層となるように線引きする線引き工程とを有し、前記脱水・焼結工程は、前記脱水処理と前記焼結処理とが同時に行われ、前記脱水・焼結工程において、前記多孔質母材層を前記脱水処理及び前記焼結処理する際、温度が1250℃以上、1350℃以下の範囲内にあり、雰囲気が不活性ガスとハロゲンガス及び不活性ガスとハロゲン系化合物ガスの少なくともいずれか一方の組を含む。
また、本発明に係る第の光ファイバの製造方法は、前記不活性ガスがヘリウムであり、前記ハロゲンガスが塩素ガスであり、前記ハロゲン系化合物が塩素化合物及びフッ素化合物の少なくともいずれか一方である。
また、本発明に係る第の光ファイバの製造方法は、前記脱水・焼結工程において、前記半透明ガラス母材層の焼結度が、80%以上、97%以下の範囲内にある。
さらに、本発明に係る第4の光ファイバの製造方法は、前記脱水・焼結工程において、前記半透明ガラス母材層の焼結度が、95%以上、97%以下の範囲内にある。
さらに、本発明に係る第の光ファイバの製造方法は、前記ガラス管は、長手方向軸に対して同心円状に積層された複数のガラス管であり、該複数のガラス管は、フッ素を含有するガラス管と純粋なシリカガラスからなるガラス管とを含み、少なくとも最外層には前記純粋なシリカガラスからなるガラス管を使用する。
また、本発明に係る第の光ファイバの製造方法は、前記光ファイバに交差する方向から光線を投光し、前記光線の進行方向の前方に前記光ファイバから散乱 する前方散乱光をイメージセンサで受光し、その出力を信号処理部で処理して散乱光強度分布パターンを得、該散乱光強度分布パターンから前記光ファイバ内の 気泡の有無を判定する。
本発明によれば、コアロッドの外周にガラス微粒子を堆積させて多孔質母材層を形成して第1プリフォームとして、この第1プリフォームに対して、多孔質母材層が独立気泡を含む半透明ガラス母材層になるまで脱水及び焼結をして、さらにこの脱水及び焼結をした第1プリフォームをガラス管に挿入して第2プリフォームとして、この第2プリフォームに対して熱を加えながら、半透明ガラス母材層とガラス管とが溶融一体化するように且つ半透明ガラス母材層が透明ガラスでなるクラッド層となるように線引きするので、従来の製造設備をほぼそのまま流用しつつ、製造工程の省略及び製造条件の最適化によって、光ファイバの製造コストを低減できる。その結果、高品質で安価な光ファイバを大規模な追加開発や設備投資を行うことなしに提供することができる。
本発明に係る光ファイバの製造方法は、コア層とクラッド層とを有し種々の屈折率分布特性をもつ光ファイバの製造方法に適応されて有益なものであり、特に伝送損失が低く、広帯域WDM伝送に好適な光ファイバの製造方法に適応されて有益なものであり、具体的には、1.3μm帯に零分散波長を有する一般的なシングルモードファイバ(以下、SMFと呼ぶ)、1.55μm付近に零分散波長をシフトさせた所謂分散シフトファイバ(Dispersion-Shifted Fiber:以下、DSFと呼ぶ)、あるいは1.55μm波長付近から零分散波長をずらし、ある程度の分散を持たせたノンゼロ分散シフトファイバ(Non-Zero Dispersion-Shifted Fiber:以下、NZDSFと呼ぶ)等の光ファイバの製造方法に好適である。
以下に、本発明に係る光ファイバの製造方法の実施の形態を図面に基づいて詳細に説明する。尚、この実施の形態によりこの発明が限定されるものではない。以下では、本発明に係る光ファイバの製造方法の構成上の特徴の概略を実施の形態として説明し、その後に実際の光ファイバの製造方法に則したものを実施例として詳細に説明する。
[実施の形態]
図1は本発明に係る光ファイバの製造方法の一実施の形態の手順を示すフローチャートである。本実施の形態の光ファイバの製造方法は、第1プリフォーム作製工程(ステップS1)と、脱水・焼結工程(ステップS2)と、第2プリフォーム作製工程(ステップS3)と、線引き工程(ステップS4)とを含んでいる。
まず、第1プリフォーム作製工程においては、コア層3Aを有し棒状を成すコアロッド7Aの外周にガラス微粒子を堆積させて多孔質母材層9Cを形成したものを作製する。これを第1プリフォーム10と呼ぶ。
次の、脱水・焼結工程においては、この第1プリフォーム10を例えば脱水・焼結炉に入れ、第1プリフォーム10に対して脱水処理及び焼結処理をする。この脱水処理及び焼結処理は、所定の条件のもとで、多孔質母材層9Cを焼結して、独立気泡を含む半透明ガラス状態の半透明ガラス母材層9Bにする。つまり、多孔質母材層9Cが完全に透明になるまでは、脱水・焼結処理を行わない。ここで、「半透明ガラス状態」とは、全体的にほぼ均一に独立気泡を含んでいる状態で、外観上白濁しており不透明である状態をいう。これに対して、「透明ガラス状態」とは、一部の不良状態の部分に残る微少な独立気泡を除いて全体的にほぼ均一に独立気泡を含んでいない状態で、外観上透明である状態をいう。またここで、「独立気泡」とは、半透明ガラス母材層9Bの内部に形成され半透明ガラス母材を取り囲む雰囲気と物理的に隔離された気泡、あるいは空間をいう。
また、第2プリフォーム作製工程においては、上述の脱水・焼結工程において脱水処理及び焼結処理をした第1プリフォーム10をガラス管であるジャケット管13Bに挿入したものを作製する。これを第2プリフォーム20と呼ぶ。
さらに、線引き工程においては、第2プリフォーム20に対して熱を加えながら、半透明ガラス母材層9Bとジャケット管13Bとが溶融一体化するように、且つ半透明ガラス母材層9Bが透明ガラスでなるクラッド層9Aとなるように線引きして光ファイバ51を作製する。
本実施の形態の光ファイバの製造方法は、このような手順により光ファイバ51を作製することで、従来のOVD装置を流用しつつ、外径が太いコアロッド7Aを使用できるため、ガラス微粒子の堆積効率を向上させることができる。また、クラッド層において高価なジャケット管13Bの使用割合を低減できるため、従来のRIT法に比べ製造コストを低減することができる。さらに、第1プリフォーム10をジャケット管13Bに挿入して線引きするため、仮に、半透明ガラス母材層9Bの表面に開放した気孔があったり、凹凸があったりしても、線引き炉内の雰囲気に含まれる汚染物質の混入による強度劣化などの問題が起こることがない。
以下に、実施例を説明する。尚、内容を理解する上で問題無い程度に図面を記載しており、その形状は必ずしも実際の縮尺通りではない。尚、本実施例において、光ファイバの諸特性は特に断らない限りITU−T G.650に規定された定義に準拠することとする。
(実施例1)
図2−1は実施例1にて作製した光ファイバ51の屈折率プロファイルを示す図である。光ファイバ51は、図2−1に示すように、ステップインデックス型の屈折率分布を有するもので、1.3μm帯にゼロ分散波長を有しており、所謂SMFである。図2−1において、光ファイバ51は、断面同心円状に形成された積層構造をなし、中心軸線に沿って棒状のコア層3Aが形成され、このコア層3Aを中心に径方向外方に向かって、第1クラッド層5A、第2クラッド層9A及び第3クラッド層13Aの順で各層が形成されている。尚、第3クラッド層13Aの外側に施される被覆層は省略している。
コア層3Aと第1クラッド層5Aで成る部分は、後で述べるコアロッド7Aに対応する部分である。この、コアロッド7Aのみについて見ると、コア層3Aと第1クラッド層5Aとの外径比(以下、クラッド/コア比という)が4.8/1である。尚、本実施例においてコア層3Aの外径とは、第1クラッド層5Aの屈折率に対するコア層3Aの比屈折率差の最大値の1/2の部分の直径をいう。
コア層3A、第1クラッド層5A及び第2クラッド層9Aでなる部分、すなわち、コアロッド7Aに第2クラッド層9Aを加えた部分は、後で述べる第1プリフォーム10に対応する部分である。さらに、コア層3A、第1クラッド層5A、第2クラッド層9A及び第3クラッド層13Aでなる部分、すなわち、第1プリフォーム10に第3クラッド層13Aを加えた部分は、後で述べる第2プリフォーム20に対応する部分である。
・コアロッドの作製
本実施例においては、まず、後にコアロッド7Aとなるコアスート7BをVAD法にて作製した。図3は本実施例のVAD法によるコアスート7Bの作製過程を説明する模式図であり、コアスート7Bの部分を縦断面としている。図3において、VAD法では多重管構造からなるコアバーナ21を通じて、気化させた四塩化珪素(SiCl4)、四塩化ゲルマニウム(GeCl4)、酸素(O2)及び水素(H2)とで構成されるガス26を送り込み、これを点火燃焼させる。そして、火炎中で加水分解反応させて合成ガラス微粒子を得て、さらにこの合成ガラス微粒子を種棒11に吹き付けることにより種棒11に付着させる。
吹き付けられた合成ガラス微粒子は、種棒11に堆積し、後にコア層3Aとなるコア層スート3Bを形成する。このとき、種棒11は、回転しながらゆっくりと図3の上方向に引き上げられてゆく。
また、コアバーナ21の上部に類似のクラッドバーナ22を配置し、四塩化珪素(SiCl4)、酸素(O2)及び水素(H2)とで構成されるガス24を送り込み、反応させてコア層スート3Bの外周に、後に第1クラッド層5Aとなるクラッド層スート5Bを形成する。これにより、所定の直径を有する2層構造の棒状のコアスート7Bとなる。
ついで、このコアスート7Bに対して脱水処理と焼結処理を行う。これにより、コアスート7Bが透明ガラス化され、コア層3Aと第1クラッド層5Aから成るコアロッド7Aとなる。
・コアロッドの延伸
ついで、この透明ガラス化されたコア層3Aと第1クラッド層5Aとからなるコアロッド7Aを縦型の電気炉延伸装置を用いて外径約50mmになるように加熱・延伸した。尚、この加熱処理及び延伸処理に用いる熱源は、電気炉に限るものではなく、酸水素火炎等の火炎、或いはプラズマ火炎などでも良い。このとき、水酸(OH)基の汚染が問題となる場合には、酸水素火炎は望ましくなく、電気炉あるいはプラズマ火炎が望ましい。
・多孔質母材層の形成(第1プリフォーム作製工程)
ついで、延伸されたコアロッド7Aの外周に、OVD法を用いて合成ガラス微粒子を堆積させ、多孔質母材層9Cを形成して第1プリフォーム10を作製した。多孔質母材層9Cは、後に半透明ガラス母材層9Bとなり、さらに最終的には透明ガラス化されて第2クラッド層9Aになる部分である。
図4はOVD法により多孔質母材層9Cを形成する様子を説明する模式図であり、多孔質母材層9Cの部分を縦断面としている。図4において、OVD法ではバーナ31を通じて、気化させた四塩化珪素(SiCl4)、酸素(O2)及び水素(H2)で構成されるガス32を送り込み、点火燃焼させる。そして、火炎中で加水分解反応させて、合成ガラス微粒子を得る。この合成ガラス微粒子を、回転するコアロッド7Aに吹き付け、コアロッド7Aの周囲に堆積させてゆく。1回に堆積する合成ガラス微粒子の層の厚さはあまり厚くないので、バーナ31を繰り返し往復させながら、所定の厚さの多孔質母材層9Cが形成されるまでこれを繰り返す。
尚、この工程において、多孔質母材層9Cが最終的に完全に透明なガラスとなった第2クラッド層9Aの直径と、最終的なコア層3Aの直径との比が、図2−1に示す様に、約9/1となるように、堆積させるガラス微粒子の厚さを調整した。この厚さの調整には、堆積中の多孔質母材層9Cの外径と重量の変化を非接触のレーザ変位計及び重量計により測定し、所望のガラス量が堆積するまで吹き付けを継続させた。この段階で、多孔質母材層9Cの平均密度(つまり、全重量からコアロッド7Aの重量を差し引いた多孔質母材層9Cの重量を、全体積からコアロッド7Aの体積を引いた多孔質母材層9Cの体積で除した値)は約0.25g/cm3であった。この多孔質母材層9Cの密度に関しては、種々の密度にて作製を繰り返すことにより、多孔質母材層9Cの形状を維持することができる程度の固さがあり、また脱水を十分に行うことができ、さらにガラス原料の堆積効率を良好なものとするためには、平均密度として0.2〜0.4g/cm3程度が好ましいことが解った。
尚、この多孔質母材層9Cの平均密度の最適化は、多孔質母材層9Cの外径と重量の変化をモニタしつつ、合成ガラス微粒子の堆積を行う際の原料ガス、及び燃焼ガスの投入量、バーナー31の移動速度を変化させることによって行った。尚、この最適値を求めるに際し、多孔質母材層9Cの堆積面の温度を400℃〜600℃の範囲にすると良好に最適化が行えることも解った。
・半透明ガラス母材層への変化(脱水・焼結工程)
コアロッド7Aの周囲に堆積を完了した多孔質母材層9Cが形成されて構成された第1プリフォーム10を、図5に示す脱水・焼結炉30にて、表1の条件で脱水・焼結させて、多孔質母材層9Cを半透明ガラス母材層9Bに変化させた。
図5において、脱水・焼結炉30はシリカガラスで作製された炉心管35を有しており、炉心管35の内部は、ヘリウム(He)ガスと塩素(Cl2)ガスで満たされている。また、炉心管35の下方に設置されたガス導入口38から表1に示した流量でそれぞれのガスが導入されるとともに、適量のガスを炉心管35の上方に設置されたガス排出口39から排出することにより、炉心管35内の圧力は所定の値に保たれている。この炉心管35の中に第1のプリフォーム10を入れ、炉心管の側部に配設されたヒータ37により加熱して多孔質母材層9Cの脱水・焼結をおこなう。ここで、脱水・焼結とは、脱水処理と焼結処理とを指し、もちろんそれぞれ独立して実施しても良いが、製造工程の簡略化や製造コストの低減のために、本実施例においては、この脱水処理と焼結処理とが所定の条件下において同時に行われることを特徴の一つとしている。
Figure 0004712359
脱水・焼結の温度に関しては、本実施例の場合、実質的に純粋なシリカガラスで構成される多孔質母材層9Cを半透明ガラス状態となし得る程度の温度範囲で、且つ炉心管35に損傷を与えにくい温度範囲として、最高温度を1350℃として脱水・焼結処理を行った。
尚、塩素ガスの代わりに、塩化チオニルのような塩素化合物ガス、四フッ化珪素のようなフッ素化合物ガスを用いても、脱水作用を得ることができる。ただし、フッ素化合物ガスを使用する場合はシリカガラスの屈折率が低下するので、屈折率分布の変化を考慮して用いる必要がある。また、フッ素化合物を使用する場合は、ガラスの軟化温度が純粋なシリカガラスに比べて著しく低下するため、温度が低くても透明化し易くなり、半透明ガラス母材層9Bを得るためには、純粋なシリカガラスの場合よりも最高温度を低く設定する必要がある。
脱水・焼結工程が終了した段階で、半透明ガラス母材層9Bは、図6に模式的に示すように周囲雰囲気と物理的に隔離された独立気泡9aを多数含有する状態となっている。この状態を「半透明ガラス状態」とした。この「半透明ガラス状態」では、周囲雰囲気と物理的に隔離された気泡である独立気泡を、全体的にほぼ均一に含んでおり、外観上白濁しており不透明な状態であった。また、表面は滑らかで光沢を有していた。また、このときの半透明ガラス母材層9Bの密度は、前述の算術計算の結果、最終的に完全に透明なガラスとなった第2クラッド層9Aの密度(2.2グラム/cm3)の95%、すなわち、2.09グラム/cm3であった。
ガラス母材層の密度は、加熱温度、加熱時間及びガラス微粒子の組成に依存して変化する。加熱温度が高ければ、密度はより早く(つまり短時間で)高くなり、短時間に透明化が完了する。温度が低ければ、透明になるまでの時間が長くなり、さらにガラスの軟化温度より低い温度では、焼結は進行せず、従って透明化も起こらない。同一温度の場合は、加熱時間が長い方がガラス母材層の密度は高くなるが、完全に透明化してしまえばそれ以降の加熱は意味が無いので、透明化の進行度は主に温度要因が支配する。
ガラス微粒子の組成については、純粋なシリカガラスとフッ素が添加されたシリカガラスとでは軟化温度が異なり、純粋なシリカガラスの方が高い。従って、純粋なシリカガラス微粒子を透明化するためには、より高い温度を必要とする。本実施例においては、炉心管35を損傷することのない温度条件、すなわち、1350℃程度を上限とし、かつ製造コストの観点から製造時間が伸びない条件を設定する必要があるので、この温度範囲においてガラス母材の密度をできる限り向上させるようにした。
そして、様々な温度、加熱時間で多孔質母材層9Cを脱水焼結させた結果、半透明ガラス母材層9Bの密度範囲は、この後の線引き工程で気泡の残留を防止する観点を考慮すれば、完全に透明化したガラス母材の密度の80%〜97%(すなわち、平均密度では1.76〜2.13グラム/cm3)程度が好ましく、一方、線引き速度を上げるという生産性の観点を考慮すれば、90%〜97%(すなわち、平均密度では1.98〜2.13グラム/cm3)程度が好ましいことが判った。そして、80%以下だと、線引き速度を生産性の極めて悪い100m/分程度まで遅くしても光ファイバに気泡が残留してしまい、製品にすることができなかった。一方、平均密度が97%を超えるような状態は、上記の温度及び製造コストの観点から許容される加熱時間の範囲では実現できなかった。
・ジャケット管に挿入(第2プリフォーム作製工程)
次に、コアロッド7Aの周囲に半透明ガラス母材層9Bが形成されてなる第1プリフォーム10を、別に用意したガラス管であるジャケット管13Bに挿入して第2プリフォーム20を作製した。ここで用いたジャケット管13Bは、化学反応により合成されたシリカガラスからなる「無水合成石英」と呼ばれる材料で作製されたものであり、水酸(OH)基の含有量が1ppm以下とされている。例えば、市販の信越石英(株)製SUP−F300等がそれである。また、ジャケット管13Bのサイズは、第1プリフォーム10を挿入するのに十分な内径を有し、且つ線引き後に所望のコア径の光ファイバとなるような厚みを有するものを適宜選択して使用した。このとき、予め準備したジャケット管13Bの寸法から、コアロッド7Aの延伸外径及び多孔質母材層9Cの外径と密度を設定してもよい。尚、このジャケット管13Bは、フッ酸水溶液などにより予め洗浄し、清浄な状態にして使用した。
第1プリフォーム10のジャケット管13Bへの挿入は、図7に示す様に、鉛直方向に保持したジャケット管13Bに対して、上方から第1プリフォーム10をゆっくりと引き下げるようにして行った。この場合、図8に示すように、水平方向に保持したジャケット管13Bに横方向から第1プリフォーム10を挿入するようにしても良い。尚、挿入時にジャケット管13Bの内面を汚染しないよう、清浄な窒素ガス、清浄な空気等をジャケット管13Bと第1プリフォーム10との間に吹き流しながら挿入作業を実施すると異物の混入を防止することができる。
第1プリフォーム10の挿入完了後、図9に示すように、バーナ41から放射される酸水素火炎を、第2プリフォーム20の線引き方向側の端部に吹き付けて加熱溶融させて、ジャケット管13Bの端部開口を溶融封止するとともに、ジャケット管13Bの端部と第1プリフォーム10の端部を一体化させた。この処理を行う目的は以下の理由による。すなわち、ジャケット管13Bの開口の封止を線引き炉内で行うと、第2プリフォーム20が当該線引き炉内の雰囲気中に含まれる不純物をこの開口から取り込んでしまい、これによりジャケット管13Bの内面と半透明ガラス母材層9Bの表面を汚染する可能性があるので、線引き炉に投入する前に予めジャケット管13Bの溶融封止を行う。また、ジャケット管13Bの端部と第1プリフォーム10の端部が溶融一体化されていれば、線引き開始時から定常状態に移行するまでの時間を短くすることができるためでもある。
尚、第2プリフォーム20の端部開口を溶融する熱源として、本実施例においては、酸水素火炎の放射に行っているが、これに限定されることなく、プラズマ火炎の放射、或いは電気炉による加熱等であっても良い。
また、第1プリフォーム10をジャケット管13に挿入した後にジャケット管13Bの端部開口を封止するのではなく、図10に示すように、第1プリフォーム10の挿入前に予めジャケット管13Bの線引き方向側の端部を加熱溶断することにより溶融封止しておいてもよい。こうすることで、図9に示した方法と同様に不純物のコンタミネーションを防止することができる。尚、ジャケット管13Bを溶断するに際しては、図10に示すように、ジャケット管13Bの端部において、黒矢印のように引っ張り力を加えながら、バーナ41から放射される酸水素火炎により加熱して溶断した。
・線引き工程
次に、第2プリフォーム20を、上述の溶融封止した部分の側から線引き炉内に挿入し、ジャケット管13Bと半透明ガラス母材層9Bとの間の空間(図9参照)を大気圧に比べて減圧状態にしながら、半透明ガラス母材層9Bとジャケット管13Bとを溶融一体化するように且つ半透明ガラス母材層9Bが透明ガラス化するように線引きして外径約125μmのガラス光ファイバ61を作製した。これにより、半透明ガラス母材層9Bは第2クラッド層9Aに、ジャケット管13Bは第3クラッド層13Aに、つまり、それぞれ最終的なものに変化した。尚ここで、減圧状態は、ジャケット管13Bの溶融封止した側と反対側の開放端に図示しない真空吸引ポンプを繋ぎ、この真空吸引ポンプによりジャケット管13Bと半透明ガラス母材層9Bとの間の気体を吸引することによってつくった。
線引き工程においては、光ファイバ51の表面にUV硬化型樹脂を2層コ−ティングし、紫外線を照射してこの樹脂を硬化させて、被覆外径が約250μmの光ファイバとし、巻き取りキャプスタンを介してリールに巻き取った。線引き後の光ファイバ51に対して全長の約2%の伸びに相当する張力を付与しつつ、別のリ−ルに巻き移すテストを行い、光ファイバ51の強度を調査した。その結果、破断は起こらず、問題ない光ファイバであることを確認した。
また、線引き工程中のガラス光ファイバ61中に、半透明ガラス母材層9Bにおいて存在していた独立気泡が残留していないことを光ファイバ欠陥検出装置を用いて確認した。
具体的には、線引き工程中のガラス光ファイバの軸に対して横方向からレーザビーム等の光線を照射し、該ガラス光ファイバからの前方散乱光をイメージセンサにて受光し、その散乱光の強度分布パターンの異常を検出することにより、気泡等の空洞欠陥を検出し、ガラス光ファイバ中の気泡を監視した。
図11は光ファイバ欠陥検出装置の概略の構成を示す斜視図である。また、図12は図11に示す透光性長尺体欠陥検出装置のイメージセンサに入力される散乱光と該散乱光をもとに得られる散乱光強度分布パターンを示す説明図である。この光ファイバ欠陥検出装置は、図11に示すように、第2プリフォーム20から線引き直後で未コーティングの状態で走行中のガラス光ファイバ61に横方向から平行光線83を連続して照射し、その前方散乱光84をCCDラインセンサやフォトダイオードアレイ等の受光用イメージセンサ85で受光し、その出力を信号処理部86で処理し、該信号処理部86から得られる散乱光強度分布パターンを判定部87で判定すると共に処理部86の処理結果をモニタ部88で表示し、異常が判定されれば警報部89から警報を発し、判定結果を記録部90で記録する構造になっている。
このような光ファイバ欠陥検出装置では、受光用イメージセンサ5からの出力を信号処理部6で処理すると、図12の左部に示すような散乱光強度分布パターン91が得られる。ガラス光ファイバ61中に気泡等の周囲と屈折率の大きく異なる気泡があると、散乱光強度分布パターン91中に空洞欠陥による減光凹部が現れる。この減光凹部による変異を、信号処理部86から得られる散乱光強度分布パターン91を判断している判定部97において検知する。この結果、線引き工程後のガラス光ファイバ61中に、半透明ガラス母材層9Bにおいて存在した独立気泡が残留していないことを確認した。
本実施例に記載の条件で製造したSMFの伝送特性を測定した結果を、表2に示す。
Figure 0004712359
本実施例の光ファイバ51は、いずれもカットオフ波長λccが1310nm以下となっており、1310nm以上の波長領域で、シングルモード動作が保証されている。
尚、ここでいうカットオフ波長とは、ITU−T G.650.1規格で定義されるケーブルカットオフ波長λccのことである。
また、本実施例の光ファイバ51は、いずれも1385nmにおける損失が0.40dB/km以下であり、水酸基吸収損失が充分に小さい光ファイバになっている。
さらに、偏波分散(Polarization Mode Dispersion;以下、PMDと呼ぶ)についても、十分に小さい値となっている。
次に、光ファイバ51を水素に暴露するテストを行った。ここでの水素暴露テストの条件は、IEC−60793−2 B1.3に規定されている条件とした。すなわち、光ファイバ51を室温下において約0.01atmの水素分圧雰囲気中で水素に曝露し、波長1240nmの光信号における伝送損失が水素曝露前の伝送損失(初期値)に比べて0.03dB/km以上増加するまでその水素曝露状態を維持し、その後、大気中に取出して14日間以上放置し、伝送損失の測定を行うというものである。
水素暴露後の伝送損失と、水素暴露による伝送損失の変化量(b−a)を表3に示す。損失の増加が小さく、広帯域WDM伝送に好適な光ファイバとなっている。
Figure 0004712359
(実施例2)
図2−2は実施例2にて作製した光ファイバ52の屈折率プロファイルを示す図である。光ファイバ52は、図2−2に示すように、階段型の屈折率分布を有するもので、1.55μm帯にゼロ分散波長を有するDSFである。図2−2において、光ファイバ52は、断面同心円状に形成された積層構造をなし、中心軸線に沿ってコア層3Aが形成され、以降、中心部から径方向外方に向かって、サイドコア層4A、第1クラッド層5A、第2クラッド層9A、及び第3クラッド層13Aの順に形成された各層にて構成されている。尚、第3クラッド層13Aの外側に施される被覆層は省略している。
コア層3Aとサイドコア層4Aと第1クラッド層5Aでなる部分は、後で述べるコアロッド7Aに対応する部分である。コアロッド7Aの部分のみについて見ると、サイドコア層4Aと第1クラッド層5Aとの外径比(以下、クラッド/コア比という)が2.3/1であった。尚、本実施例においてサイドコア層4Aの外径とは、第1クラッド層5Aの屈折率に対するサイドコア層4Aの比屈折率差の最大値の1/2の部分の直径をいう。
コア層3A、サイドコア層4A、第1クラッド層5A及び第2クラッド層9Aでなる部分は、すなわち、コアロッド7Aに対応する部分に第2クラッド層9Aを加えた部分は、後で述べる第1プリフォーム10に対応する部分である。さらに、コア層3A、サイドコア層4A、第1クラッド層5A、第2クラッド層9A及び第3クラッド層13Aでなる部分は、すなわち、第1プリフォーム10に第3クラッド層13Aを加えた部分は、第2プリフォーム20に対応する部分である。
本実施例においては、まず、後にコアロッド7Aとなるコアスート7BをVAD法にて作製した。図13は本実施例のVAD法によるコアスート7Bの作製過程を説明する模式図であり、コアスート7Bの部分を縦断面としている。図13において、VAD法では多重管構造からなるコアバーナ21を通じて、気化させた四塩化珪素(SiCl4)、四塩化ゲルマニウム(GeCl4)、酸素(O2)及び水素(H2)とで構成されるガス26を送り込み、点火燃焼させる。そして、火炎中で加水分解反応させて合成ガラス微粒子を得る。この合成ガラス微粒子を図示しない種棒に吹き付けて付着させる。
吹き付けられた合成ガラス微粒子は、種棒11に堆積し、後にコア層3Aとなるコア層スート3Bを形成する、そして、種棒11は、回転しながらゆっくりと図13の上方向に引き上げられてゆく。
コアバーナ21の上部に類似のサイドコアバーナ23を配置し、四塩化珪素(SiCl4)、四塩化ゲルマニウム(GeCl4)、酸素(O2)及び水素(H2)とで構成されるガス28を送り込み、反応させてコア層スート3Bの外周に、後にサイドコア層4Aとなるサイドコア層スート4Bを形成する。
サイドコアバーナ23の上部に類似のクラッドバーナ22を配置し、四塩化珪素(SiCl4)、酸素(O2)及び水素(H2)とで構成されるガス27を送り込み、反応させてサイドコア層スート4Bの外周に、後に第1クラッド層5Aとなるクラッド層スート5Bを形成する。これにより、所定の太さの棒状をなすコアスート7Bとなる。
ついで、コアスート7Bに対して脱水処理と焼結処理を行う。これにより、コアスート7Bが透明ガラス化され、コアロッド7Aとなる。
ついで、このコアロッド7Aを縦型の電気炉延伸装置を用いて外径約50mmになるように加熱・延伸した。さらに加熱・延伸したコアロッド7Aの外周に、OVD法を用いてシリカガラス微粒子を堆積させ、多孔質母材層を形成して第1プリフォームを形成した。この段階で、多孔質母材層が完全に透明なガラスとなった場合の外径と、その状態におけるサイドコア層4Aの外径との比が、図2−2に示す約6/1の比となるように、堆積させるガラス微粒子の厚さを調整した。そして、コアロッド7Aの周囲に多孔質母材層の堆積を完了した第1プリフォームに対して、実施例1と同様に脱水・焼結させ、多孔質母材層を、半透明ガラス母材層に変化させた。
次に、第1プリフォームを、別に用意したガラス管としてのジャケット管に挿入して第2プリフォームを作製し、さらにジャケット管の先端を溶融封止した。ついで、半透明ガラス母材層とジャケット管との間の空間を大気圧に比べて減圧状態にしながら、半透明ガラス母材層を透明ガラス化しつつ、半透明ガラス母材層とジャケット管とを溶融一体化させながら外径約125μmのガラス光ファイバに線引きした。
また、実施例1と同様に、線引き中にコーティングを施し、被覆外径が約250μmの光ファイバ52を得た。実施例1と同様に、線引き中のガラス光ファイバ中に気泡の残留がないこと、及び強度に問題がないことを確認した。
本実施例に記載の条件で製造したDSFの伝送特性を測定した結果を、表4に示す。
Figure 0004712359
(実施例3)
図2−3は実施例3にて作製した光ファイバ53の屈折率プロファイルを示す図である。光ファイバ53は、図2−3に示すように、セグメント型の屈折率分布を有するもので、1.55μm帯の分散値が1.5〜8ps/nm/kmの範囲となるNZDSFである。図2−3において、光ファイバ53は、断面同心円状に形成された積層構造をなし、中心軸線に沿ってコアロッド7Aが形成され、以降、中心部から径方向外方に向かって、第1クラッド層9A、及び第2クラッド層13Aの順に形成された各層にて構成されている。尚、第3クラッド層13Aの外側に施される被覆層は省略している。
VAD法によって作製したコアロッド7Aを、外径約40mmに加熱・延伸し、さらに延伸したコアロッド7Aの外周に、OVD法を用いてシリカガラス微粒子を堆積させ、多孔質母材層(後に、半透明ガラス母材層となり、その後第1クラッド層9Aとなる部分)を形成して第1プリフォーム10を作製した。この段階で、多孔質母材層が完全に透明な透明ガラス層となった場合の外径と、その状態におけるコアロッドの外径との比が、図2−3に示す様に、約2.5/1となるように、堆積させるガラス微粒子の厚さを調整した。そして、第1プリフォーム10を、実施例1と同様に脱水・焼結させ、多孔質母材層を半透明ガラス母材層(後に、第1クラッド層9Aとなる部分)とした。
ついで、この第1プリフォーム10を、別に用意したガラス管であるジャケット管(後に、第2クラッド層13Aとなる部分)に挿入して第2プリフォーム20を作製した。
以降、実施例1と同様な処理を行い、所望の光ファイバ53を得た。そして、実施例1と同様に、線引き中のガラス光ファイバ中に気泡の残留がないこと、及び強度に問題がないことを確認した。本実施例に記載の条件で製造したNZDSFの伝送特性を測定した結果を、表5に示す。
Figure 0004712359
尚、コア層3Aの屈折率分布を最適化する事により、1550nmにおける分散値が、例えば−1.5〜−8ps/nm/kmとすることもできることは、当業者には容易に理解される。
(実施例4)
図2−4は実施例4にて作製した光ファイバ54の屈折率プロファイルを示す図である。光ファイバ54は、図2−4に示すように、階段型の屈折率を有するコア層の外周に、最外層のクラッド層より屈折率の低い領域を有する光ファイバである。図2−4において、光ファイバ54は、断面同心円状に形成された積層構造をなし、中心軸線に沿ってコアロッド7Aが形成され、以降、中心部から径方向外方に向かって、第1クラッド層9A、及び第2クラッド層13Aの順に形成された各層にて構成されている。尚、第3クラッド層13Aの外側に施される被覆層は省略している。
VAD法によって作製したコアロッド7Aを、外径約30mmに加熱・延伸し、さらに延伸したコアロッド7Aの外周に、OVD法を用いてシリカガラス微粒子を堆積させ、多孔質母材層(後に、半透明ガラス母材層となり、その後第1クラッド層9Aとなる部分)を形成して第1プリフォーム10を作製した。この段階で、多孔質母材層が完全に透明な透明ガラス層となった場合の外径と、その状態におけるコアロッドの外径との比が、図2−4に示す様に、6/1となるように、堆積させるガラス微粒子の厚さを調整した。そして、第1プリフォーム10の多孔質母材層を次に示す表6の条件により、脱水・焼結させ、多孔質母材層を半透明ガラス母材層(後に、第1クラッド層9Aとなる部分)とした。
Figure 0004712359
次に、この第1のプリフォーム10を、別に用意した予め先端を溶融封止したガラス管であるジャケット管(後に、第2クラッド層13Aとなる部分)に挿入して第2プリフォーム20を作製した。
ついで、半透明ガラス母材層とジャケット管との間の空間を大気圧に比べて減圧状態にしながら、半透明ガラス母材層を透明ガラス化しつつ、半透明ガラス母材層とジャケット管とを溶融一体化させながら外径約125μmのガラス光ファイバに線引きした。
以降、実施例1と同様な処理を行い、線引き中にコーティングを施し、線引き中のガラス光ファイバ中に気泡の残留がなく、強度にも問題がない被覆外径が約250μmの光ファイバ54を得た。本実施例のように、クラッド層の一部に屈折率の小さな領域を設ける事も可能である。
(実施例5)
図2−5は実施例5にて作製した光ファイバ55の屈折率プロファイルを示す図である。光ファイバ55は、図2−5に示すように、階段型の屈折率を有するコア層の外周に、最外層のクラッド層より屈折率の低い領域を有する光ファイバである。図2−5において、光ファイバ55は、断面同心円状に形成された積層構造をなし、中心軸線に沿ってコアロッド7Aが形成され、以降、中心部から径方向外方に向かって、第1クラッド層9A、第2クラッド層13A及び第3クラッド層14Aの順に形成された各層にて構成されている。尚、第3クラッド層14Aの外側に施される被覆層は省略している。
VAD法によって作製したコアロッド7Aを、外径約30mmに加熱・延伸し、さらに延伸したコアロッド7Aの外周に、OVD法を用いてシリカガラス微粒子を堆積させ、多孔質母材層(後に、半透明ガラス母材層となり、その後第1クラッド層9Aとなる部分)を形成して第1プリフォーム10を作製した。この段階で、多孔質母材層が完全に透明な透明ガラス層となった場合の外径と、その状態におけるコアロッドの外径7Aとの比が、図2−4に示す様に、6/1となるように、堆積させるガラス微粒子の厚さを調整した。そして、第1プリフォーム10の多孔質母材層を次に示す表6の条件により、脱水・焼結させ、多孔質母材層を半透明ガラス母材層とした。
次に、この第1のプリフォーム10とフッ素ドープジャケット管(後に、第2クラッド層13Aとなる部分)とを、別に用意した予め先端を溶融封止した純シリアガラスからなるジャケット管(後に、第3クラッド層14Aとなる部分)に挿入して第2プリフォーム20を作製した。
ついで、半透明ガラス母材層とフッ素ドープジャケット管、及びフッ素ドープジャケット管と純シリアガラスジャケット管との間の空間を大気圧に比べて減圧状態にしながら、半透明ガラス母材層を透明ガラス化しつつ、半透明ガラス母材層、フッ素ドープジャケット管及び純シリアガラスジャケット管とを溶融一体化させながら外径約125μmのガラス光ファイバに線引きした。
以降、実施例1と同様な処理を行い、線引き中にコーティングを施し、線引き中のガラス光ファイバ中に気泡の残留がなく、強度にも問題がない被覆外径が約250μmの光ファイバ55を得た。
本明細書に記載の実施例は、本発明を説明するための例示であり、様々な変形例、例えばより複雑な屈折率分布を持つ光ファイバや、様々なコアロッドの製造方法(例えばMCVD法、OVD法、PCVD法など)についても、本発明の範囲に含まれ得ることは当業者には充分に理解される。
本発明に係る光ファイバの製造方法の一実施の形態の手順を示すフローチャートである。 実施例1にて作製した光ファイバの屈折率プロファイルを示す図である。 実施例2にて作製した光ファイバの屈折率プロファイルを示す図である。 実施例3にて作製した光ファイバの屈折率プロファイルを示す図である。 実施例4にて作製した光ファイバの屈折率プロファイルを示す図である。 実施例5にて作製した光ファイバの屈折率プロファイルを示す図である。 実施例1のVAD法によるコアスートの作製過程を説明する模式図である。 OVD法による多孔質母材層の形成を説明する模式図である。 脱水・焼結工程にて多孔質母材層を半透明ガラス母材層にするために用いた脱水・焼結炉の縦断面図である。 半透明ガラス母材層の独立気泡を含有する状態を示す一部を拡大断面図とした側面図である。 概略鉛直方向に保持したジャケット管に第1プリフォームを挿入する様子を示すジャケット管を断面とする側面図である。 概略水平方向に保持したジャケット管に第1プリフォームを挿入する様子を示すジャケット管を断面とする側面図である。 第2プリフォームの線引き方向側の端部をバーナから放射される酸水素火炎により加熱溶融させてジャケット管の端部を溶融封止する様子を示す工程図である。 第2プリフォームの挿入に先立って、ジャケット管の線引き方向側の端部を加熱溶融させてジャケット管の端部を溶融封止する様子を示す工程図である。 光ファイバ欠陥検出装置の概略の構成を示す斜視図である。 図11の透光性長尺体欠陥検出装置のイメージセンサに入力される散乱光と該散乱光をもとに得られる散乱光強度分布パターンを示す説明図である。 実施例2のVAD法によるコアスートの作製過程を説明する模式図である。
符号の説明
3A コア層
3B コア層スート
4A サイドコア層
4B サイドコア層スート
5A クラッド層
5B クラッド層スート
7A コアロッド
7B コアスート
9A クラッド層
9B 半透明ガラス母材層
9C 多孔質母材層
9a 独立気泡
10 第1プリフォーム
11 種棒
13A クラッド層
13B ジャケット管(ガラス管)
14A クラッド層
20 第2プリフォーム
21 コアバーナ
22 クラッドバーナ
23 サイドコアバーナ
26〜28 ガス
30 脱水・焼結炉
31 バーナー
32 ガス
35 炉心管
37 ヒータ
38 ガス導入口
39 ガス排出口
41 バーナ
51〜55 光ファイバ
61 ガラス光ファイバ
83 平行光線
84 前方散乱光
85 イメージセンサ
86 信号処理部
87 判定部
88 モニタ部
89 警報部
90 記録部
91 散乱光強度分布パターン

Claims (6)

  1. 1層以上のコア層と該コア層を取り囲む1層以上のクラッド層とを有する光ファイバの製造方法であって、
    前記コア層を有し棒状をなす透明ガラス化されたコアロッドの外周にガラス微粒子を堆積させて多孔質母材層を形成して第1プリフォームとする第1プリフォーム作製工程と、
    前記第1プリフォームに対して多孔質母材層が独立気泡を含む半透明ガラス母材層になるまで脱水処理及び焼結処理をする脱水・焼結工程と、
    前記脱水処理及び前記焼結処理をした前記第1プリフォームをガラス管に挿入して第2プリフォームとする第2プリフォーム作製工程と、
    前記第2プリフォームに対して熱を加えながら、前記半透明ガラス母材層と前記ガラス管とが溶融一体化するように且つ前記半透明ガラス母材層が透明ガラスでなる前記クラッド層となるように線引きする線引き工程とを有し、
    前記脱水・焼結工程は、前記脱水処理と前記焼結処理とが同時に行われ、前記脱水・焼結工程において、前記多孔質母材層を前記脱水処理及び前記焼結処理する際、温度が1250℃以上、1350℃以下の範囲内にあり、雰囲気が不活性ガスとハロゲンガス及び不活性ガスとハロゲン系化合物ガスの少なくともいずれか一方の組を含む
    ことを特徴とする光ファイバの製造方法。
  2. 前記不活性ガスがヘリウムであり、前記ハロゲンガスが塩素ガスであり、前記ハロゲン系化合物が塩素化合物及びフッ素化合物の少なくともいずれか一方である
    ことを特徴とする請求項1に記載の光ファイバの製造方法。
  3. 前記脱水・焼結工程において、前記半透明ガラス母材層の焼結度が、80%以上、97%以下の範囲内にある
    ことを特徴とする請求項1に記載の光ファイバの製造方法。
  4. 前記脱水・焼結工程において、前記半透明ガラス母材層の焼結度が、95%以上、97%以下の範囲内にある
    ことを特徴とする請求項1に記載の光ファイバの製造方法。
  5. 前記ガラス管は、長手方向軸に対して同心円状に積層された複数のガラス管であり、該複数のガラス管は、フッ素を含有するガラス管と純粋なシリカガラスからなるガラス管とを含み、少なくとも最外層には前記純粋なシリカガラスからなるガラス管を使用する
    ことを特徴とする請求項1に記載の光ファイバの製造方法。
  6. 前記光ファイバに交差する方向から光線を投光して、前記光線の進行方向の前方に前記光ファイバから散乱する前方散乱光をイメージセンサで受光して、その出力を信号処理部で処理して散乱光強度分布パターンを得て、該散乱光強度分布パターンから前記光ファイバ内の気泡の有無を判定する
    ことを特徴とする請求項1に記載の光ファイバの製造方法。
JP2004344588A 2004-11-29 2004-11-29 光ファイバの製造方法 Active JP4712359B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004344588A JP4712359B2 (ja) 2004-11-29 2004-11-29 光ファイバの製造方法
CN201110459276.2A CN102583997B (zh) 2004-11-29 2005-11-29 光纤母材、光纤母材的制造方法以及光纤的制造方法
CN 200510126996 CN1782756B (zh) 2004-11-29 2005-11-29 光纤母材、光纤母材的制造方法以及光纤的制造方法
US11/288,311 US8789393B2 (en) 2004-11-29 2005-11-29 Optical fiber preform, method of manufacturing optical fiber preform, and method of manufacturing optical fiber
US13/359,258 US20120118018A1 (en) 2004-11-29 2012-01-26 Optical fiber preform, method of manufacturing optical fiber preform, and method of manufacturing optical fiber
US14/067,631 US20140050450A1 (en) 2004-11-29 2013-10-30 Optical fiber preform, method of manufacturing optical fiber preform, and method of manufacturing optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004344588A JP4712359B2 (ja) 2004-11-29 2004-11-29 光ファイバの製造方法

Publications (2)

Publication Number Publication Date
JP2006151747A JP2006151747A (ja) 2006-06-15
JP4712359B2 true JP4712359B2 (ja) 2011-06-29

Family

ID=36630483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004344588A Active JP4712359B2 (ja) 2004-11-29 2004-11-29 光ファイバの製造方法

Country Status (2)

Country Link
JP (1) JP4712359B2 (ja)
CN (1) CN1782756B (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8919153B2 (en) 2010-04-30 2014-12-30 Sumitomo Electric Industries, Ltd. Manufacturing method for glass base material
JP5778895B2 (ja) * 2010-04-30 2015-09-16 住友電気工業株式会社 ガラス母材製造方法
CN103382085A (zh) * 2013-05-09 2013-11-06 江苏亨通光纤科技有限公司 一种低损耗光纤的制造方法
WO2015107931A1 (ja) * 2014-01-16 2015-07-23 古河電気工業株式会社 光ファイバ母材の製造方法および光ファイバの製造方法
CN104445915B (zh) * 2014-12-01 2017-07-21 长飞光纤光缆股份有限公司 一种vad法制备光纤预制棒的装置及方法
JP2018016533A (ja) * 2016-07-29 2018-02-01 信越化学工業株式会社 光ファイバ用ガラス母材の製造方法
CN106430912A (zh) * 2016-08-31 2017-02-22 中国建筑材料科学研究总院 低羟基石英玻璃的制备方法及石英玻璃
CN109081576B (zh) * 2017-06-14 2021-05-14 中天科技精密材料有限公司 光纤预制棒及其制造方法
CN109081575A (zh) * 2017-06-14 2018-12-25 中天科技精密材料有限公司 光纤预制棒及其制造方法
WO2019031489A1 (ja) * 2017-08-09 2019-02-14 株式会社フジクラ 光ファイバ母材の製造方法、光ファイバ母材、光ファイバの製造方法
JP7068945B2 (ja) 2017-08-09 2022-05-17 株式会社フジクラ 光ファイバ母材の製造方法、光ファイバ母材、光ファイバの製造方法
CN108191224A (zh) * 2017-12-29 2018-06-22 武汉长盈通光电技术有限公司 一种基于玻璃管的多芯光纤制备方法
CN108046582B (zh) * 2017-12-29 2024-01-16 通鼎互联信息股份有限公司 一种连续制备光纤预制棒并拉丝的装置及方法
JP7205216B2 (ja) * 2018-12-25 2023-01-17 住友電気工業株式会社 光ファイバ用母材の製造方法
CN113924275B (zh) * 2019-06-06 2024-01-05 古河电气工业株式会社 加热装置及光纤母材的制造方法
CN113620589A (zh) * 2021-08-31 2021-11-09 杭州金星通光纤科技有限公司 一种大尺寸光纤预制棒的制造方法
TWI788076B (zh) * 2021-10-29 2022-12-21 財團法人工業技術研究院 光纖模組及其製法
CN113860722B (zh) * 2021-12-03 2022-02-11 武汉长盈通光电技术股份有限公司 光纤预制棒制造设备及方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286978A (en) * 1980-07-03 1981-09-01 Corning Glass Works Method for substantially continuously drying, consolidating and drawing an optical waveguide preform
JPS60145927A (ja) * 1984-01-09 1985-08-01 Shin Etsu Chem Co Ltd 光フアイバ−用母材の製造方法
JPS623032A (ja) * 1985-06-29 1987-01-09 Furukawa Electric Co Ltd:The 光フアイバ母材の製造方法
US4747861A (en) * 1983-07-07 1988-05-31 Siemens Aktiengesellschaft Method for the manufacture of glass by means of deposition from the vapor phase
JPH01145344A (ja) * 1987-12-02 1989-06-07 Fujikura Ltd ガラス物品の製造方法
JPH05163038A (ja) * 1991-12-16 1993-06-29 Sumitomo Electric Ind Ltd 光ファイバ用多孔質母材の加熱透明化方法
JPH07149534A (ja) * 1993-05-24 1995-06-13 Litespec Inc 光ファイバ−の製造方法
JPH07507034A (ja) * 1992-05-14 1995-08-03 サン‐ゴバン クオーツ パブリック リミティド カンパニー 合成ガラス質シリカ成形体の熱処理設備
JP2000281379A (ja) * 1999-03-31 2000-10-10 Mitsubishi Cable Ind Ltd 光ファイバの線引装置
JP2002187733A (ja) * 2000-12-14 2002-07-05 Furukawa Electric Co Ltd:The 光ファイバ母材の製造方法および光ファイバの製造方法
US20030059179A1 (en) * 2001-09-26 2003-03-27 Shibin Jiang Method of fusion splicing silica fiber with low-temperature multi-component glass fiber
JP2003327440A (ja) * 2002-05-09 2003-11-19 Furukawa Electric Co Ltd:The 光ファイバ用母材の製造方法
JP2006193408A (ja) * 2004-12-16 2006-07-27 Furukawa Electric Co Ltd:The 光ファイバ母材の製造方法及び光ファイバの製造方法
JP2006193409A (ja) * 2004-12-16 2006-07-27 Furukawa Electric Co Ltd:The 光ファイバの製造方法
JP2006290708A (ja) * 2005-04-14 2006-10-26 Furukawa Electric Co Ltd:The 光ファイバ母材およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2565712B2 (ja) * 1987-07-20 1996-12-18 株式会社フジクラ 光フアイバの製造方法
US5298047A (en) * 1992-08-03 1994-03-29 At&T Bell Laboratories Method of making a fiber having low polarization mode dispersion due to a permanent spin
CN1159246C (zh) * 1998-09-24 2004-07-28 住友电气工业株式会社 光纤的制造方法
FR2806401B1 (fr) * 2000-03-16 2003-01-17 Cit Alcatel Procede de fabrication d'une fibre optique a dispersion chromatique variable

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286978A (en) * 1980-07-03 1981-09-01 Corning Glass Works Method for substantially continuously drying, consolidating and drawing an optical waveguide preform
US4747861A (en) * 1983-07-07 1988-05-31 Siemens Aktiengesellschaft Method for the manufacture of glass by means of deposition from the vapor phase
JPS60145927A (ja) * 1984-01-09 1985-08-01 Shin Etsu Chem Co Ltd 光フアイバ−用母材の製造方法
JPS623032A (ja) * 1985-06-29 1987-01-09 Furukawa Electric Co Ltd:The 光フアイバ母材の製造方法
JPH01145344A (ja) * 1987-12-02 1989-06-07 Fujikura Ltd ガラス物品の製造方法
JPH05163038A (ja) * 1991-12-16 1993-06-29 Sumitomo Electric Ind Ltd 光ファイバ用多孔質母材の加熱透明化方法
JPH07507034A (ja) * 1992-05-14 1995-08-03 サン‐ゴバン クオーツ パブリック リミティド カンパニー 合成ガラス質シリカ成形体の熱処理設備
JPH07149534A (ja) * 1993-05-24 1995-06-13 Litespec Inc 光ファイバ−の製造方法
JP2000281379A (ja) * 1999-03-31 2000-10-10 Mitsubishi Cable Ind Ltd 光ファイバの線引装置
JP2002187733A (ja) * 2000-12-14 2002-07-05 Furukawa Electric Co Ltd:The 光ファイバ母材の製造方法および光ファイバの製造方法
US20030059179A1 (en) * 2001-09-26 2003-03-27 Shibin Jiang Method of fusion splicing silica fiber with low-temperature multi-component glass fiber
JP2003327440A (ja) * 2002-05-09 2003-11-19 Furukawa Electric Co Ltd:The 光ファイバ用母材の製造方法
JP2006193408A (ja) * 2004-12-16 2006-07-27 Furukawa Electric Co Ltd:The 光ファイバ母材の製造方法及び光ファイバの製造方法
JP2006193409A (ja) * 2004-12-16 2006-07-27 Furukawa Electric Co Ltd:The 光ファイバの製造方法
JP2006290708A (ja) * 2005-04-14 2006-10-26 Furukawa Electric Co Ltd:The 光ファイバ母材およびその製造方法

Also Published As

Publication number Publication date
JP2006151747A (ja) 2006-06-15
CN1782756B (zh) 2012-02-29
CN1782756A (zh) 2006-06-07

Similar Documents

Publication Publication Date Title
JP4712359B2 (ja) 光ファイバの製造方法
US8789393B2 (en) Optical fiber preform, method of manufacturing optical fiber preform, and method of manufacturing optical fiber
AU723038B2 (en) Optical fiber having low loss at 1385nm and method for making same
US6917740B2 (en) Optical fiber having reduced viscosity mismatch
EP0139348B1 (en) Optical fiber and method for its production
EP1663890B1 (en) Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same
US4157906A (en) Method of drawing glass optical waveguides
JP5489713B2 (ja) アルカリ金属酸化物を含有する光ファイバ
US4486212A (en) Devitrification resistant flame hydrolysis process
US8635889B2 (en) Refraction-sensitive optical fiber, quartz glass tube as a semi-finished product for the manufacture-thereof and method for the manufacture of the fiber
JPH11209141A (ja) セグメントコア光導波路プリフォームの製造方法
JP5242007B2 (ja) 光ファイバの製造方法
JP5242006B2 (ja) 光ファイバ母材の製造方法及び光ファイバの製造方法
EP0100174B1 (en) Method of making glass optical fiber
US10118854B2 (en) Tubular semifinished product for producing an optical fiber
JP5783712B2 (ja) 光ファイバ母材の製造方法及び光ファイバの製造方法
US7391946B2 (en) Low attenuation optical fiber and its producing method in MCVD
JPS63151639A (ja) 光フアイバ用ガラス母材の製造方法
JP4419339B2 (ja) 光ファイバ母材の製造方法
CN115010360A (zh) 一种光纤预制棒的制备方法、光纤预制棒及光纤
JPH0653589B2 (ja) 光フアイバ用プリフオ−ムの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110323

R151 Written notification of patent or utility model registration

Ref document number: 4712359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350