JP4707614B2 - 平面導波路素子 - Google Patents

平面導波路素子 Download PDF

Info

Publication number
JP4707614B2
JP4707614B2 JP2006163920A JP2006163920A JP4707614B2 JP 4707614 B2 JP4707614 B2 JP 4707614B2 JP 2006163920 A JP2006163920 A JP 2006163920A JP 2006163920 A JP2006163920 A JP 2006163920A JP 4707614 B2 JP4707614 B2 JP 4707614B2
Authority
JP
Japan
Prior art keywords
waveguide
incident
light
planar
planar waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006163920A
Other languages
English (en)
Other versions
JP2007333894A (ja
Inventor
哲生 深谷
敏之 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006163920A priority Critical patent/JP4707614B2/ja
Publication of JP2007333894A publication Critical patent/JP2007333894A/ja
Application granted granted Critical
Publication of JP4707614B2 publication Critical patent/JP4707614B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

この発明は、光スイッチおよび分波器として利用される平面導波路素子に関する。
近年、インターネットの普及による通信需要の爆発的な増加にともなって、ネットワークの伝送速度が飛躍的に増大している。この速度増加に対応するため、銅線によるネットワークが構築されてきた加入者系においても、光によるネットワークの構築が進んでいる。
加入者系での光によるネットワーク構築には、通信機器のコスト低減や小型化のために、通信機器内部で用いられる光部品の小型化および高集積化が求められている。光部品には、発光素子や受光素子、光スイッチ、分波器などがある。そのうち、光スイッチおよび分波器として光学的ブロッホ振動(Optical Bloch Oscillation, OBO)を利用した平面導波路素子が提案されている。
OBOとは、導波路アレイの各導波路の実効屈折率を順に増加させたときに、導波路アレイに入射した光が、導波路を伝播しながら導波路とは垂直な方向に伝播方向を変え、導波路アレイ内を振動しながら伝播する現象である。これにより、入射した導波路とは違う導波路から、光線を出射することが可能となる。
OBOは、入射光の波長、実効屈折率の増加量、隣接導波路間のモードの結合定数のうちの少なくともひとつを変化させることにより、光が出射される位置が変わる。そのため、OBOを利用した平面導波路素子は分波器および光スイッチとなる。以上のようなOBOを用いた平面導波路素子は、非特許文献1および2に示されている。
非特許文献1では、ポリマーで作製したストリップ型構造の導波路による導波路アレイにおいて、導波路が伸びる方向と垂直方向に温度勾配を形成することで、OBOを用いた平面導波路素子を作製している。
図20は非特許文献1における平面導波路素子の平面図である。図20に示す平面導波路素子は、無機有機コポリマーで作製されたコア51、無機有機コポリマーで作製されたクラッド52、ヒーター53、クーラー54を有している。
図21は図20のXXI−XXI線における断面図である。コア51およびクラッド52は、酸化シリコン基板55上に設けられている。この平面導波路素子においては、コア51を等間隔で並べることで導波路アレイを形成している。その導波路アレイの両端には、ヒーター53とクーラー54が設けられている。ヒーター53とクーラー54により導波路アレイに温度勾配が形成される。
非特許文献1に記載の平面導波路素子においては、温度上昇によりポリマーの屈折率が減少する熱光学効果により、導波路アレイにおけるヒーター53からの距離に比例して、導波路の屈折率が線形に増加することを利用して、OBOを引き起こしている。非特許文献1には、導波路に入射する入射光に関しては、入射角度や、入射光の波面などの位相についてはなんら記載されていない。
また、非特許文献2では、AlGaAs(アルミニウムガリウムヒ素)のリッジ構造からなる導波路を基本構成として、導波路アレイを作製している。この導波路アレイは、導波路と垂直な方向に、各導波路のリッジ幅を順番に増すことで、導波路の実効屈折率が線形に増加する構成である。このような構造はチャープ型導波路アレイと呼ばれる。
この非特許文献2に記載の平面導波路素子では、チャープ型導波路アレイによる、各導波路の実効屈折率の線形増加を利用して、OBOを引き起こしている。非特許文献2でも、導波路に入射する入射光に関しては、入射角度や、入射光の波面などの位相については何ら記載されていない。
T.Pertsch, P.Dannberg, W.Elflein, A.Brauer, and F.Lederer, "Optical Bloch Oscillations in Temperature Tuned Waveguide Arrays", Physical Review Letters, vol.83, No.23, pp.4752-4755(1999) R.Morandotti, U.Peschel, J.S.Aitchison, H.S.Eisenberg, and Y.Silberberg, "Experimental Observation of Linear and Nonlinear Optical Bloch Oscillations", Physical Review Letters, vol.83, No.23, pp.4756-4759(1999)
しかしながら、OBOを用いた従来の平面導波路素子では次のような課題があった。従来の平面導波路素子で出射光を観測したところ、その出射位置が素子ごとに大きく変化してしまった。すなわち、特性の再現性が十分でなかった。また、得られた出射光の強度も、素子ごとに変化してしまい、再現性がないという問題があった。
この出射光の位置、および、出射光の強度に再現性がないことは、素子の歩留まりの低下につながる。
本発明は、このような問題点を解決するためになされたものであり、その目的は、出射光の位置や強度が再現よく得られるOBOを用いた平面導波路素子を提供することである。
この発明に基づいた平面導波路素子のある局面に従えば、導波路の実効屈折率が順に増加する導波路アレイからなる平面導波路素子であって、導波路アレイ中の複数の導波路に入射する入射光は、隣接導波路間の位相差が−π/8+2mπ以上、π/8+2mπ以下(mは整数)となるように入射する。
上記平面導波路素子において、上記平面導波路素子への入射光は、平面導波路素子を構成する導波路に対して平行に入射させてもよい。
上記平面導波路素子において、上記平面導波路素子を構成する導波路は、入射端面に対して垂直に形成してもよい。
上記平面導波路素子において、上記平面導波路素子を構成する導波路は、へき開面に対して垂直または平行となるように形成されていてもよい。
上記平面導波路素子において、上記導波路アレイと入射端面の間に、少なくとも入射光の広がり幅よりも広い導波路アレイからなる入射導波路領域が設けられ、上記入射導波路領域には、導波路の屈折率を変化させることで光の位相を調整する位相調整領域が設けられていてもよい。
この発明に基づいた平面導波路素子の他の局面に従えば、導波路の実効屈折率が順に増加する導波路アレイからなる平面導波路素子であって、いずれかひとつの上記導波路に入射する入射光は、上記導波路の入射端面の一方の端部と他方の端部との間における位相差が−π/8以上、π/8以下となるように入射される。
上記平面導波路素子において、上記平面導波路素子への入射光は、上記平面導波路素子を構成する導波路に対して平行に入射させてもよい。
上記平面導波路素子において、上記平面導波路素子を構成する導波路は、入射端面に対して垂直に形成してもよい。
上記平面導波路素子において、上記平面導波路素子を構成する導波路は、へき開面に対して垂直または平行となるように形成されていてもよい。
上記平面導波路素子において、上記導波路アレイと入射端面の間にテーパー型入射導波路領域が設けられていてもよい。
本発明によれば、出射光の位置や強度の再現性に優れた平面導波路素子を構成することができ、歩留まりを向上させることができる。
発明者らは鋭意研究を行なうことで、平面導波路素子への入射モードが複数の導波路にわたって広がっている場合、出射光の位置は、入射時の隣接導波路間の光の位相差の影響を受けることを見出した。
この位相差は、導波路へ光が入射する際に、導波路が延びる方向と入射光の入射方向とが平行からずれることによって生じる入射角に起因している。つまり、入射角により隣接導波路との間に光路長の差ができ、光路長の差が隣接導波路間での位相差として現れ、OBOの出射位置を変えることを見出した。
したがって、隣接導波路間の位相差を十分小さくすることにより平面導波路素子の出射位置の再現性が向上する。
一方、平面導波路素子の出射光の強度も、入射角が影響していることを見出した。入射角が生じることにより、ある導波路の入射端面において光路長の分布が生じる。この光路長の分布が導波路断面における両端での位相差として現れる。この位相差が、OBOによる伝播方向の振動成分以外の光の成分を生じさせ、この光が素子の外へもれ、平面導波路素子の出射強度が低下する。
したがって、導波路の両端の位相差を十分小さくすることにより平面導波路素子の出射強度が向上し、再現性が向上する。
以下、上記の全く新しい知見に基づいてなされた本発明に係る各実施の形態について、図面を参照して説明する。なお、以下に示す各実施の形態においては、同一または相当する構成には同一の参照番号を付し、その説明は繰り返さない。
(実施の形態1)
図1は、実施の形態1に係るAlGaAsを用いたチャープ型導波路アレイからなる平面導波路素子の平面図である。
図1に示す平面導波路素子は、上部クラッド層1、導波路間の溝部2、入射端面3を有している。図1には、併せて入射光4、出射光5、伝播光6を示す。
上部クラッド層1はストライプ状に形成されて、導波路となり、その幅は、導波路番号が大きくなるにしたがって広くなっている。この導波路の幅の増加は、隣接導波路との実効屈折率の差が一定値で増加するように設定されている。
また、導波路の中心間距離は、導波路番号が大きくなるにしたがって短くなり、これは隣接導波路との結合定数が一定となるように設定されている。なお、本実施の形態では、導波路番号(1)の上部クラッド層1の幅は2.0μm、導波路番号(25)の上部クラッド層1の幅は3.4μmである。
一方、導波路番号(1)から(2)の間では、導波路の中心間距離は5.5μmであり、導波路番号(24)から(25)の間では導波路の中心間距離は5.1μmとなっている。この平面導波路素子の導波路が延びる方向の長さは6000μmであり、導波路の延びる方向に垂直方向の幅は130μmである。
図1に示される平面導波路素子に入射した入射光4は、導波路アレイ内を伝播光6で示されるように伝播し、出射光5として出射する。
図2は図1のII−II線における断面図である。図2に示す平面導波路素子は、さらにコア層7、下部クラッド層8、基板9を有する。上部クラッド層1および下部クラッド層8はAl0.3Ga0.7As、コア層7はAl0.2Ga0.8As、基板9はGaAs(ガリウムヒ素)で構成されている。
基板9に対して、下部クラッド層8、コア層7、上部クラッド層1の順に積層されている。それぞれの層の厚さは、あくまでも一例であるが、下部クラッド層8が4.0μm、コア層7が1.5μm、上部クラッド層1が1.5μmである。導波路間の溝部2の深さは1.5μmである。
本実施の形態での入射光4は、波長が1.55μmであり、導波路番号(11)から(14)の4本の導波路にわたって広がって、入射端面3から入射している。
本実施の形態における平面導波路素子では、入射光4が入射する入射端面3に対して、導波路が垂直に延びる導波路アレイ構造を用いる。入射光4を入射端面3に対して垂直に入射させることで、入射光4は導波路に対して平行となる。
なお、入射端面3と導波路とを垂直にするために、へき開面に対して垂直もしくは平行となるように導波路を作製し、へき開面を入射端面3として用いる。この構成で入射角は0°となり、隣接導波路間の位相差は0となる。
次に、図3から図8を参照して図1および2における平面導波路素子の作製方法を説明する。図3から図8は、実施の形態1に係るチャープ型導波路アレイからなる平面導波路素子の作製工程を示す図である。
まず、図3に示すように下部クラッド層8、コア層7、上部クラッド層1を基板9上に順に積層したウェハーを、ウェハー端面10,11の近傍でへき開させ、互いに直交するへき開面12,13を形成する。
次に、図4に示すように、下部クラッド層8、コア層7および、上部クラッド層1が順番に積層された基板9の上部クラッド層1の上にレジスト14を塗布する。
続いて、図5に示すように、通常のフォトリソグラフィーを用いて、導波路を形成するためのパターンをレジスト14に形成する。このとき、レジストパターンは、図1に示される上部クラッド層1のパターンとなるようにストライプ状に形成する。ここで、このストライプはへき開面12に垂直かつ、へき開面13と平行となるように形成される。
続いて、図6に示すように、上述のレジストパターンが形成されたレジスト14をエッチングマスクとして用いて、上部クラッド層1を通常のドライエッチングにより除去する。
最後に、残ったレジスト14を剥離液で除去することにより、図7に示される断面を有し、図8で示される平面構造を有する導波路アレイウェハーが完成する。
このウェハーを、へき開面12と平行となるように、一定間隔でへき開し、このへき開面を入射端面3とすることで、平面導波路素子が完成する。
図9は、平面導波路素子に入射する入射光の隣接導波路間の位相差と出射導波路番号との関係を示す図である。ここでは入射角を0°からずらすことで位相差を設けており、π/8の位相差は1.05°、π/4の位相差は2.10°の入射角に相当する。
なお、入射角を0°からずらすことにより、隣接導波路間に光路長の差が生じる。ここでは、この光路長の差により位相差を発生させている。
図9より、隣接導波路間の位相差の絶対値がπ/8以下であれば、導波路番号(13)の導波路に入射した光の出射光は、導波路番号(20)の導波路から出射し一定である。しかし、隣接導波路間の位相差が±π/4のときは、導波路番号(13)の導波路に入射した光の出射光は、導波路番号(17)の導波路から出射し、隣接導波路間の位相差が±π/2のときは、出射光は、光が入射された導波路と同じ導波路番号(13)の導波路から出射する。図9に示すグラフの形状は位相差に関して2πの周期で繰り返される。
以上の結果から、平面導波路素子から出射光を再現よく出射させるためには、光を入射させるときの隣接導波路との位相差が、−π/8+2mπ以上、π/8+2mπ以下(mは整数)であることが好ましい条件となる。より理想的には位相差が−π/8からπ/8となることである。
本実施の形態における平面導波路素子は、へき開により形成された入射端面3と導波路を垂直に形成し、導波路に平行に光を入射することを特徴としている。これにより導波路に対して光の入射角を0°(入射端面3に直角)とすることができる。これにより隣接導波路間に光路長差が生じず、入射時の隣接導波路との位相差を0としている。
隣接導波路間の光路長差は、入射光の入射角が0°であっても、入射端面3と導波路が垂直からずれている場合、光路長に差が生じ、入射光の隣接導波路間の位相差は0とならない。そのため、導波路を入射面と垂直に形成し、入射光の入射角を0°とすることで、隣接導波路間の位相差が0となり、所定の導波路番号からの出射光を再現よく得ることができる。
なお、本実施の形態では、OBOを引き起こす導波路の構造として、チャープ型導波路アレイを用いた。OBOを引き起こす構造であれば本実施の形態の形式のものに限らず、たとえば均一な導波路幅と導波路間隔を有する導波路アレイに屈折率勾配を形成した構造であってもかまわない。この屈折率勾配は、温度勾配により形成できる。
本実施の形態では、導波路部の高さと幅、および導波路の間隔を例示して説明したが、OBOが発生するのであればこれに限られるものではない。
さらに平面導波路素子は左右反転して、導波路番号の小さい側が大きい側よりも導波路の幅が広い構造としてもかまわない。
本実施の形態では、素子を作製するとき、2つのへき開面12,13を形成したが、へき開面は1つでもかまわない。へき開面が1つのときは、導波路がへき開面に対して平行もしくは垂直のどちらか一方となるようにストライプの方向を設定すればよい。
また、本実施の形態ではコア層やクラッド層の材料をAlGaAsとしたが、入射光に対して透明な材料であれば、ポリマー、Si(シリコン)、InGaAsP(インジウムガリウムヒ素リン)を用いてもかまわない。また、クラッド層は空気でもよい。
さらに、入射光の広がり幅は、導波路4本分に限るものではない。
(実施の形態2)
図10は本発明の実施の形態2に係るAlGaAsを用いたチャープ型導波路アレイからなる平面導波路素子の平面図である。図11は図10のXI−XI線における断面図、図12は図10のXII−XII線における断面図である。
本実施の形態のチャープ型導波路アレイは、本実施の形態1と同じであるが、この導波路アレイと入射端面3との間に入射導波路領域21a〜21dを設けた点が実施の形態1とは異なる。
本実施の形態では実施の形態1と同様に、チャープ型導波路アレイによりOBOを発生させている。その前面に設けられた4本の入射導波路領域21a〜21dの幅は2.5μmであり、入射導波路の中心間距離は5.3μmである。また、入射導波路領域21b〜21dの3本の導波路には、位相差調整領域22a〜22cが設けられている。
また、図11および図12に示されるように入射導波路領域21a〜21dの外側では、下部クラッド層8までエッチングされている。
本実施の形態において、入射光23はチャープ型導波路アレイの4本の導波路に相当する広がりを有している。入射導波路領域21a〜21dに入射された入射光23は、4本の導波路をそれぞれ伝播する4本の光に分かれる。入射光23は、伝播光26として平面導波路素子内を伝播し、出射光25となる。このとき、入射光23の入射角に依存して、それぞれの入射導波路領域21a〜21dを伝播する光の間には位相差が生じる。
ここで、入射導波路領域21aを伝播する光の位相と一致するように、位相差調整領域22a〜22cにより、位相差調整領域つき入射導波路領域21b〜21dを伝播する光の位相が調整される。その結果、図12で示される入射導波路領域と導波路アレイとの接続部の光24a〜24dの間の位相差は0となる。なお、位相差調整領域22a〜22cでの位相差調整手段は、可視領域のレーザー光照射により媒質の屈折率が変化する熱光学効果を利用している。
以上により、本実施の形態では入射導波路領域をチャープ型導波路アレイの前面に設けることで、入射端面3への入射光の入射時に位相差が存在しても、位相差調整領域にて位相を調整することができる。これにより入射光を導波路に対して厳密に平行にあわせる必要はなく、チャープ型導波路アレイに位相差0で光を入射することが可能となる。
なお、本実施の形態では位相差の調整を、レーザー光照射によって屈折率が変化することで実現したが、本実施の形態に限らず、たとえばヒーターによる温度変化や、電圧印加による導波路内部でのキャリア濃度の変化などで屈折率を変化させてもかまわない。
さらに、本実施の形態では、下部クラッド層までエッチングすることで、4本の入射導波路へ入射光を分けているが、各入射導波路領域に入射光を分けることができれば、エッチングの深さは、本実施の形態の構成に限らない。
また、本実施の形態では、入射導波路領域は4本としたが、入射光の幅に合わせて本数を増減してもかまわない。
本実施の形態では、位相差調整領域を設けない入射導波路領域は21aとした。位相差調整領域を設けない入射導波路領域が1本あれば、その位置は、本実施例の構成に限らない。また、すべての入射導波路領域に、位相差調整領域を設けてもよい。
(実施の形態3)
図13は本発明の実施の形態3に係るAlGaAsを用いたチャープ型導波路アレイからなる平面導波路素子の平面図である。図14は図13のXIV−XIV線における断面図であり、図15は図13のXV−XV線における断面図である。
本実施の形態で用いたチャープ型導波路アレイは、実施の形態1と同じであるが、入射光31の広がり幅が実施の形態1の入射光4より狭く、導波路1本分の広がりを持つことが、実施の形態1と異なっている。この場合、平面導波路素子に入射する入射光31は、チャープ型導波路アレイを伝播光33a,33bとして伝播し、出射光32a,32bとなって2つに分岐して出射される。
本実施の形態における平面導波路素子では、実施の形態1と同様に、まず各導波路が、入射光4が入射する入射端面3に対して垂直である導波路アレイ構造を用いる。さらに入射光4は、導波路に対して平行に入射している。この構成により入射角は0°となる。
ここで、入射光が入射する1本の導波路の、入射端面の両端(図15にE1およびE2で示す)の間の位相差による、出射光への影響を調べた。図16は、ある導波路の入射端面における一方の端部と他方の端部との間の、位相差と出射光強度比との関係を示す図である。
図16に示されるように、ある導波路の入射端面の両端での位相差の絶対値がπ/8以下であれば、出射光の強度は低下しないが、両端での位相差の絶対値がπ/8以上では光の伝播方向に垂直な方向に光が漏れて、出射光の強度が低下することがわかった。なお、ここでの位相差は入射角を0°からずらして、入射端面の両端の光路長差を設けることで発生させている。
以上の結果から、出射光の強度を低下させないためには、ある導波路の入射端面の両端の位相差の絶対値が、π/8以下であることが好ましい。
本実施の形態における平面導波路素子は、入射端面3と導波路を垂直にし、導波路に平行に光が入射することを特徴としている。これにより導波路に対して光の入射角を0°とすることができ、導波路の両端で位相差がつかないようになっている。
導波路の両端の光路長差は、入射光の入射角が0°であっても、入射端面3と導波路が垂直からずれている場合、光路長に差が生じ、導波路の両端における光の位相差は0とならない。そのため、導波路を入射端面3と垂直に形成し、入射光を導波路に平行に入射することで、光の伝播方向に垂直な方向に漏れる光が消えて、光を効率的に出射することができる。
なお、本実施の形態では、OBOを発生させる導波路の構造として、チャープ型導波路アレイを用いたが、OBOを発生させる構造であれば本実施の形態で示したものに限定されない。たとえば均一な導波路幅と導波路間隔を有する導波路アレイに屈折率勾配を形成した構造であってもかまわない。
(実施の形態4)
図17は本発明の実施の形態4に係るAlGaAsを用いたチャープ型導波路アレイからなる平面導波路素子の平面図である。図18は図17のXVIII−XVIII線における断面図、図19は図17のXIX−XIX線における断面図である。
本実施の形態で用いたチャープ型導波路アレイは実施の形態3と同じであるが、この導波路アレイと入射端面3との間に、テーパー型入射導波路領域41を設けた点が実施の形態3とは異なる。このテーパー型入射導波路領域41は、導波路の中心線がチャープ型導波路アレイの各導波路と平行となるように形成されている。
本実施の形態では実施の形態3と同様に、チャープ型導波路アレイによりOBOを発生させている。その前面に設けられたテーパー型入射導波路領域41は、光の伝播方向の長さが1000μm、入射端面3での幅は10μmであり、テーパー角度θは0.573°である。
テーパー型入射導波路領域41は、導波路アレイに近づくにつれ、幅が狭くなって、図19のテーパー型入射導波路領域41と導波路アレイの接続部の幅は、導波路と同じ2.5μmである。また、図18および図19に示されるように、テーパー型入射導波路領域41の外側では、下部クラッド層8までエッチングされている。
本実施の形態においてテーパー型入射導波路領域41に入射された入射光42の広がりは、テーパー型導波路の幅にしたがって狭くなる。その結果、図19に示されるように入射導波路領域と導波路アレイとの接続部の光43は、1本の導波路幅と同じとなり、1本の導波路に光を導波路と平行に入射することができる。
本実施の形態では、入射光42の広がりをテーパー型入射導波路領域41の幅程度に広げて入射できるので、実施の形態3に比べて、入射光を狭くして、入射端面3に入射するための光学系の調整が容易になるというメリットがある。
テーパー型入射導波路領域41への入射光の入射角が0°でない場合、テーパー型入射導波路領域41内で位相差のない光のみが伝播するため、入射導波路領域と導波路アレイとの接続部では入射角の影響がなくなり、導波路の両端で位相差のない入射が可能となる。また、テーパー型入射導波路領域41のテーパー角度は0.573°であり、十分小さいため、テーパーによる光強度の低下も起こらない。
以上により、テーパー型入射導波路領域41をチャープ型導波路アレイの前面に設けることで、入射光を1本の導波路に入射することができ、光を効率的に出射することができる。
なお、本実施の形態では、下部クラッド層8までエッチングすることで、テーパー型入射導波路領域41を作製しているが、入射導波路領域と導波路アレイとの接続部の光43が導波路アレイの1本の導波路の幅となれば、エッチングの深さは本実施の形態の構成に限らない。
また、テーパー型入射導波路領域41の長さと幅を例示したが、光強度が低下せず、位相差が0で、1本の導波路に入射できる構造であれば、本実施の形態に限らず、他の大きさやテーパー角度でもかまわない。
なお、今回開示した上記実施の形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施の形態のみによって解釈されるのではなく、特許請求の範囲の記載に基づいて画定される。また、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
この発明に基づいた実施の形態1におけるAlGaAsを用いたチャープ型導波路アレイからなる平面導波路素子の平面図である。 この発明に基づいた実施の形態1における平面導波路素子の図1のII−II線における断面図である。 この発明に基づいた実施の形態1におけるチャープ型導波路アレイからなる平面導波路素子の作製工程を示す平面図である。 この発明に基づいた実施の形態1におけるチャープ型導波路アレイからなる平面導波路素子の作製工程を示す断面図である。 この発明に基づいた実施の形態1におけるチャープ型導波路アレイからなる平面導波路素子の作製工程を示す断面図である。 この発明に基づいた実施の形態1におけるチャープ型導波路アレイからなる平面導波路素子の作製工程を示す断面図である。 この発明に基づいた実施の形態1におけるチャープ型導波路アレイからなる平面導波路素子の作製工程を示す断面図である。 この発明に基づいた実施の形態1におけるチャープ型導波路アレイからなる平面導波路素子の作製工程を示す導波路アレイウェハーの平面図である。 この発明に基づいた実施の形態1における平面導波路素子に入射する入射光の隣接導波路間の位相差と出射導波路番号との関係を示す図である。 この発明に基づいた実施の形態2におけるAlGaAsを用いたチャープ型導波路アレイからなる平面導波路素子の平面図である。 この発明に基づいた実施の形態2における平面導波路素子の図10のXI−XI線における断面図である。 この発明に基づいた実施の形態2における平面導波路素子の図10のXII−XII線における断面図である。 この発明に基づいた実施の形態3におけるAlGaAsを用いたチャープ型導波路アレイからなる平面導波路素子の平面図である この発明に基づいた実施の形態3における平面導波路素子の図13のXIV−XIV線における断面図である。 この発明に基づいた実施の形態3における平面導波路素子の図13のXV−XV線における断面図である。 この発明に基づいた実施の形態3における、ある導波路の入射端面における一方の端部と他方の端部との間の、位相差と出射光強度比との関係を示す図である。 この発明に基づいた実施の形態4におけるAlGaAsを用いたチャープ型導波路アレイからなる平面導波路素子の平面図である この発明に基づいた実施の形態4における平面導波路素子の図17のXVIII−XVIII線における断面図である。 この発明に基づいた実施の形態4における平面導波路素子の図17のXIX−XIX線における断面図である。 従来の平面導波路素子を示す平面図である。 従来の平面導波路素子を示す図20のXXI−XXI線における断面図である。
符号の説明
1 上部クラッド層、2 溝部、3 入射端面、4 入射光、5 出射光、6 伝播光、7 コア層、8 下部クラッド層、9 基板、10,11 ウェハー端面、12,13 へき開面、14 レジスト、21a〜21d 入射導波路領域、22a〜22d 位相差調整領域、23 入射光、24a〜24d 入射導波路領域と導波路アレイとの接続部の光、31 入射光、32a,32b 出射光、33a,33b 伝播光、41 テーパー型入射導波路領域、42 入射光、43 入射導波路領域と導波路アレイとの接続部の光、51 コア、52 クラッド、53 ヒーター、54 クーラー、55 基板。

Claims (4)

  1. 導波路の実効屈折率が順に増加する導波路アレイからなる平面導波路素子であって、
    導波路アレイ中の複数の導波路に入射する入射光は、隣接導波路間の位相差が−π/8+2mπ以上、π/8+2mπ以下(mは整数)となるように入射し、
    前記導波路アレイと入射端面の間に、少なくとも入射光の広がり幅よりも広い導波路アレイからなる入射導波路領域が設けられ、
    前記入射導波路領域には、導波路の屈折率を変化させることで光の位相を調整する位相調整領域が設けられており、
    前記位相調整領域は、入射導波路領域に設けられた隣接導波路間の光の位相差が0となるように補正する、平面導波路素子。
  2. 前記平面導波路素子への入射光は、平面導波路素子を構成する導波路に対して平行に入射される、請求項1に記載の平面導波路素子。
  3. 前記平面導波路素子を構成する導波路は、入射端面に対して垂直に形成されている、請求項1または2に記載の平面導波路素子。
  4. 前記平面導波路素子を構成する導波路は、へき開面に対して垂直または平行となるように形成されている、請求項3に記載の平面導波路素子。
JP2006163920A 2006-06-13 2006-06-13 平面導波路素子 Expired - Fee Related JP4707614B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006163920A JP4707614B2 (ja) 2006-06-13 2006-06-13 平面導波路素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006163920A JP4707614B2 (ja) 2006-06-13 2006-06-13 平面導波路素子

Publications (2)

Publication Number Publication Date
JP2007333894A JP2007333894A (ja) 2007-12-27
JP4707614B2 true JP4707614B2 (ja) 2011-06-22

Family

ID=38933448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006163920A Expired - Fee Related JP4707614B2 (ja) 2006-06-13 2006-06-13 平面導波路素子

Country Status (1)

Country Link
JP (1) JP4707614B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266820A (ja) * 2009-05-18 2010-11-25 Sharp Corp 平面導波路素子
JP7386072B2 (ja) * 2019-12-20 2023-11-24 日本放送協会 光偏向装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006018120A (ja) * 2004-07-02 2006-01-19 Nippon Telegr & Teleph Corp <Ntt> 光導波路デバイス

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006018120A (ja) * 2004-07-02 2006-01-19 Nippon Telegr & Teleph Corp <Ntt> 光導波路デバイス

Also Published As

Publication number Publication date
JP2007333894A (ja) 2007-12-27

Similar Documents

Publication Publication Date Title
KR100578683B1 (ko) 광학장치와 그 제조 방법
JP4936313B2 (ja) 光変調素子
US6873777B2 (en) Two-dimensional photonic crystal device
JP3349950B2 (ja) 波長分波回路
JP2006251063A (ja) 光コネクタ、光結合方法及び光素子
JP4406023B2 (ja) 光集積素子
JP4327064B2 (ja) 光制御素子
JP4707614B2 (ja) 平面導波路素子
KR101165526B1 (ko) 자기조준 광결정을 기반으로 한 편광 빔스플리터, 이 편광 빔스플리터를 포함하는 편광 빔스플리터 슬랩 및 이 편광 빔스플리터를 이용하여 광파를 직교편광시키는 방법
US20170160471A1 (en) Optical waveguide and arrayed waveguide grating
JP4560479B2 (ja) 多モード光干渉デバイスの製造方法
JP2003279762A (ja) 光偏向素子
US9075191B2 (en) Optical waveguide and arrayed waveguide grating
KR100563489B1 (ko) 실리카/폴리머 하이브리드 광도파로를 이용한 광소자
JP5030095B2 (ja) 平面導波路素子
JP2001337236A (ja) フォトニック結晶
JP6590012B2 (ja) 光導波路及び光導波路製造方法
JP2005345729A (ja) 平面導波路素子および波長多重光通信装置
JP3409605B2 (ja) 半導体偏波回転素子
JP2005250398A (ja) フォトニック結晶光導波路およびこれを利用した光回路
JP2001350044A (ja) 光導波路デバイス
JP6685548B2 (ja) スポットサイズ変換器
JP2005202073A (ja) 光分岐素子
JP3409606B2 (ja) 半導体偏波回転素子
Pottier et al. Photonic crystal continuous taper for efficient coupling into 2D photonic crystal channel waveguides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110315

LAPS Cancellation because of no payment of annual fees