JP2005250398A - フォトニック結晶光導波路およびこれを利用した光回路 - Google Patents

フォトニック結晶光導波路およびこれを利用した光回路 Download PDF

Info

Publication number
JP2005250398A
JP2005250398A JP2004064604A JP2004064604A JP2005250398A JP 2005250398 A JP2005250398 A JP 2005250398A JP 2004064604 A JP2004064604 A JP 2004064604A JP 2004064604 A JP2004064604 A JP 2004064604A JP 2005250398 A JP2005250398 A JP 2005250398A
Authority
JP
Japan
Prior art keywords
photonic crystal
optical waveguide
crystal optical
waveguide
group velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004064604A
Other languages
English (en)
Inventor
Hitoshi Nakamura
均 中村
Tamotsu Tanaka
有 田中
Yoshimasa Sugimoto
喜正 杉本
Kiyoshi Asakawa
潔 浅川
Naoki Ikeda
直樹 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2004064604A priority Critical patent/JP2005250398A/ja
Publication of JP2005250398A publication Critical patent/JP2005250398A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】低群速度域で光の入出力の損失を低減するフォトニック結晶光導波路を提供する。
【解決手段】低群速度を有するフォトニック結晶光導波路4の両端に通常の群速度を有するフォトニック結晶光導波路3、5を連結した構成のフォトニック結晶光導であって、使用する所望の光に対してそれぞれのフォトニック結晶光導波路の欠陥バンドが形成されている。その際、それぞれのフォトニック結晶の格子定数を一定とし、かつ各々の界面での格子位相を連続にする。
【選択図】 図1A

Description

本発明は、光通信に用いる光素子に関係し、特に将来の超高速光信号処理に用いる光制御素子、あるいは光集積回路に適用する基本光回路に関する。
近年、高速時分割多重、波長分割多重光通信システムへの適用をめざした光制御素子実現への要望が高まっている。しかし、これまでの技術では素子の消費電力が大きい、あるいは素子寸法が大きい等の課題があり、現在実用化に課題を残している。その中で、フォトニック結晶は強い光で綴じ込め、及び群速度の遅延/制御、それに伴う光非線形効果の増強が可能であるため、それを用いた光制御素子の開発が期待されている(例えば、非特許文献1参照)。
野田進、馬場俊彦、納富雅也、小野裕一編"フォトニック結晶研究の現状と将来展望−−−テクノロジーロードマップを目指して(改訂版)"光産業技術振興協会、2002年)
上記、群速度制御(低群速度の利用)、光非線形効果の増強はフォトニック結晶を利用する上で、極めて大きな利点である。しかし、これらの低い群速度を持つ光導波路に効率よく信号光、あるいは制御光を外部から入射、あるいは外部に出射するためには何らかの対策が必要である。これは、外部の屈折率が空気、半導体光導波路の場合、それぞれ1、3程度であるのに対し、対象とするフォトニック結晶光導波路中の低群速度域の群屈折率は10−100と不整合が極めて大きいため、必然的に界面での反射損失を生じるためである。加えて、フォトニック結晶光導波路中の低群速度域では、伝搬する光の場が進行方向に垂直なフォトニック結晶面内に大きく広がり、外部伝搬光との間にモードの形状不整合を生じ、反射損失を増大させる。
フォトニック結晶導入の理由の1つが、光制御素子の消費電力(動作光エネルギー)の低減であることを考えると、反射損失はまさに必須の課題である。この本発明の目的は、この反射損失を低減させ、効率よく外部から光を入射させ、また、効率よく外部に光を取り出す構造を提供することである。
この課題は、フォトニック結晶の実用化に関わる重大なものであり、これまでにも検討が成されてきた。代表的な対策例として、準連続的に屈折率を変化させた導波路をフォトニック結晶に接続する方法が提案されている(S. Johnson et.al., Physcal Review E, 66、 66608-66623(2002)、エス.ジョンソン他、フィジカルレビュー、イー、2002年66巻66608頁−66623頁)。
しかし、実用上準連続的に屈折率を変化させることは困難が伴う。上記課題を解決するため、本発明では、低群速度を持つフォトニック結晶に高い光結合を実現する作製が容易な方法を提供する。
上記課題を解決するため、本発明では、フォトニック結晶に特有な群速度遅延、及び/または、それに伴う光非線形増強効果を利用した光素子における反射損失の低減、透過効率の向上を目的として、群速度の異なる複数のフォトニック結晶光導波路を接続する所謂異種接続フォトニック結晶光導波路構造を提供する。本異種フォトニック結晶光導波路構造では、それぞれのフォトニック結晶の格子定数を一定とし、かつ各々の界面での格子位相を連続にすることを特徴とし、異種フォトニック結晶光導波路構造を構成要素の1部とする光回路を実現する。
本発明によれば、異種フォトニック結晶光導波路に於いて、フォトニック結晶特有の低群速度による光非線形効果の増強を損なうことなく、その欠点である光入出力の劣化を3倍程度向上することができる。
図1Aは、本発明の異種接続フォトニック結晶光導波路構造の1例を示す断面図である。両端に設けられたバルク光導波路1,2に挟まれた領域が、上記異種接続フォトニック結晶光導波路である。異種接続フォトニック結晶構造光導波路は、3種類の異なる構造、すなわち、通常郡速度PC導波路3、低郡速度PC導波路4および通常郡速度PC導波路5を持つGaAs半導体材料を母体としたフォトニック結晶光導波路を直列に接続することにより構成される。
図1Bは、通常郡速度PC導波路3,5のフォトニック結晶光導波路に対応する計算により求めた分散図(波数kと周波数 Frequency の関係)を示す図である。また、図1Cは、低郡速度PC導波路4のフォトニック結晶光導波路に対応する計算により求めた分散図(波数kと周波数の関係)を示す図である。それぞれ、一点鎖線で示した規格化周波数0.28の入射光に対しそれぞれ伝搬モードが存在する。同分散図において、規格化周波数0.28を示す一点鎖線と実線で示した分散曲線の交点が、規格化周波数0.28の光に対応する規格化された波数を与える。また、その点での傾き(規格化周波数を規格化波数で微分したもの)が規格化周波数0.28の光に対応する群速度を与える。両分散図を比較することにより、低郡速度PC導波路4の群速度は通常郡速度PC導波路3,5(に比べ、小さいことがわかる。また、以下に述べるFDTD計算(Finite Differential Time Domain, 有限差分時間領域法)により、低郡速度PC導波路4の群速度は、光速cの1/60、また、通常郡速度PC導波路3,5の群速度は、光速cの1/4であることが確認できた。すなわち、図1Aの構成により、通常郡速度PC導波路3、低郡速度PC導波路4および通常郡速度PC導波路5よりなる連続する3種類のフォトニック結晶光導波路の直列構成の異種接続フォトニック結晶光導波路構造光導波路が実現でき、連続するフォトニック結晶光導波路の群速度に関し、中央のフォトニック結晶光導波路の群速度が両側のフォトニック結晶光導波路の群速度より小さいものとされている。
ここで、各光導波路は、図1Aに示したとおり、3角格子状に周期配置した円形の空気孔を1列取り除いて構成されており、低郡速度PC導波路4の空気孔の半径rは0.35a(a;格子定数360nm)、通常郡速度PC導波路3,5では0.30aである。すなわち、各々のフォトニック結晶光導波路のフォトニック結晶部を周期的に配置された等しい形状の空気孔により形成し、低郡速度PC導波路4の空気孔の断面積の大きさを、通常郡速度PC導波路3,5の空気孔の断面積の大きさより大きくしている。
ここで、通常郡速度PC導波路3,5および低郡速度PC導波路4は、それぞれのフォトニック結晶の格子定数を一定とし、かつ各々の界面での格子位相を連続にするように接続されている。このことは、各PC導波路の空気孔の中心に着目した場合、導波路進行方向での空気孔の中心の間隔が、全PC導波路にわたって一定の値、すなわち格子定数になっていることを意味する。
次に、前述の課題に対する本発明の改善効果を、図2Aおよび図2Bに示すFDTD計算 Finite Differential Time Domain, 有限差分時間領域法)の結果より説明する。図2Aは、上段部にフォトニック結晶光導波路を模式的に示し、横軸に入射光の入力位置からの距離を、縦軸に、フォトニック結晶光導波路中での透過率を示した図である。入射光には、図1Bおよび図1Cで示した規格化周波数0.28、すなわち波長1.31μmのパルス光を用いた。ここで、図1Aで説明した本発明の実施例の構造をCとし、比較のためのフォトニック結晶導波路の構造をA,Bで示した。本発明の実施例の構造Cは、両端部に通常郡速度PC導波路3,5のフォトニック結晶導波路が設けられ、中央部に低郡速度PC導波路4のフォトニック結晶導波路が設けられた構造である。両端部の通常郡速度PC導波路3,5のフォトニック結晶導波路は空気孔半径はr=0.30a、a=360nm(群速度vg=c/4相当)である。また、低郡速度PC導波路4のフォトニック結晶導波路の空気孔半径はr=0.35a、a=360nm(群速度vg=c/60相当)である。比較のためのフォトニック結晶導波路構造AおよびBは、それぞれ、単一の三角格子フォトニック結晶より構成されていて、構造Aの空気孔半径はr=0.30a、a=360nm(群速度vg=c/4相当)のみより構成され、構造Bの空気孔半径はr=0.35a、a=360nm(群速度vg=c/60相当)のみより構成されるものとした。この場合、入射光は、図2Aのバルク導波路中に配置した2psのパルスソース11により与えられるものとした。
図2Aより求めた最終透過率は、本発明の実施例の構造Cのフォトニック結晶導波路の場合、参照符号100で示すように76%であった。構造Aのフォトニック結晶導波路の場合、参照符号200で示すように85%であり、構造Bのフォトニック結晶導波路では参照符号300で示すように28%であった。構造Bのフォトニック結晶導波路の透過率が、本発明の実施例の構造Cのフォトニック結晶導波路の透過率に比べて小さいことは、本発明の解決すべき課題である群速度の小さなフォトニック結晶光導波路への光結合が劣ることを示すものである。このことは、図の距離が20a及び80a(a格子定数、ここでは360nm)の位置、すなわち、バルク導波路/フォトニック結晶導波路界面で透過率が劣っていることに表れている。これは、先に述べたように、バルク導波路と低群速度を有するフォトニック結晶導波路の低群速度域の群屈折率の不整合が極めて大きいこと、加えて、進行方向に直交する面内での両者のモードの形状不整合が大きいことにより、反射損失を増大させるためである。
本発明の実施例の構造Cによる場合、構造Bのフォトニック結晶導波路と同じ低群速度領域を持つにもかかわらず、低群速度領域を持たない構造Aのフォトニック結晶導波路にほぼ匹敵する透過率が得られた。この結果は、本発明の通常郡速度PC導波路3,5と低郡速度PC導波路4よりなる構成が、それぞれのフォトニック結晶導波路の単独での透過率に関し、両側のフォトニック結晶光導波路の透過率より小さいことにより実現されていることを示している。
本発明によって得られた効果、すなわち異種フォトニック結晶界面での損失(反射損失)は、2%以下と極めて小さい。これは、それぞれのフォトニック結晶の格子定数を一定とし、かつ各々の界面での格子位相を連続にするように接続したことによるものである。すなわち、各PC導波路の空気孔の中心に着目した場合、導波路進行方向での空気孔の中心の間隔が、全PC導波路にわたって一定の値(すなわち格子定数)になるように、接続部(界面)の間隔を調整した。
次に、本発明によって得られる光学特性の増強結果を示す。図2Bは異種フォトニック結晶の母体となるGaAs半導体に吸収を持たせた場合のFDTD計算による導波路内での伝搬パルスエネルギーの減衰を示す図である。異種フォトニック結晶は、2種類のフォトニック結晶PC1、PC2を接続して構成され、両者での格子定数a=360nmは一定とし、それぞれの空気孔径はr=0.30a、r=0.35a、(図2Aと同一)、として、新たに母体全体に吸収係数α=0.1/μmを導入した。黒丸は、パルス強度(左軸)を、白丸は群屈折率(右軸)を示す(図中矢印参照)。群屈折率nは、光速/群速度で表され、群速度に逆比例する。PC1、PC2の群屈折率はそれぞれngPC1=4、ngPC2=60であった。両者の母体材料の吸収係数は、各フォトニック結晶導波路内での吸収は増強されている。光の減衰より求めた実効的な吸収係数は、αPC1=0.12/μm、αPC2=1.17/μmであった。低群速度導波路PC2で増強が顕著であることがわかる。これらの値はそれぞれの群屈折率に比例、すなわち群速度に反比例しており、光子密度の増強を反映している。ここでは、低群速度による線形吸収の増強を示したが、本減少が光子密度の増強に起因していることを考えると、非線形光学効果の増強をも可能にする。また、図2Bに示したとおり、PC2の群屈折率は60、すなわち群速度は光速の1/60である。従って、光パルス遅延素子にも適用が可能である。
上述したように、図1Aに実施例を示したフォトニック結晶導波路は、低群速度による光学特性の増強、光パルス遅延を可能とし、その欠点である入射光の結合、出射光の取り出しを通常の群速度を持つフォトニック結晶導波路とほぼ同等のレベルまで改善することが可能である。
次に、本発明の効果を示すため、請求項1の条件から外れた場合の特性を述べる。同一の計算によると、異種フォトニック結晶界面での反射損失は、格子定数を一定とした場合でも界面での格子位相を70程度(Δa=0.2a)ずらすと40%程度まで増加した。また、低群速度と通常の群速度を得る異種フォトニック結晶構造として、本発明では隣接するフォトニック結晶の格子定数を一定として、空気孔径を変化させるが、空気孔径と格子定数の比を一定として、格子定数を変化させる方法が考えられる。後者の指針で図2Aと同程度の群速度差を得た場合、反射損失は増大する。例えば、通常郡速度PC導波路3,5と低郡速度PC導波路4での空気孔径、格子定数比r/a=0.30、格子定数a1=360nm、a2=340nmの場合、群速度vg1=c/25、vg2=c/4が得られるが、界面反射は10%と大きい。上記透過率とフォトニック結晶構造の関係は、フォトニック結晶内部での周期構造に起因する伝搬波、すなわちブロッホ波の界面透過特性の解析から説明できる理論的に妥当な結果である。これらの結果は、請求項1の条件の有効性を示すものである。
次に、本発明の拡張性について述べる。図2の説明では、具体的な例としてPC1/PC2/PC1より構成される異種フォトニック結晶光導波路を取り上げた。請求項1、及びこれまでの説明から明らかなように、PC1/PC2の間に請求項1の条件を満たす第3のフォトニック結晶光導波路PC3を導入しても本発明の効果は十分発現する。また、請求項1の条件を満たす場合、PC1/PC2/PC3、すなわち両側のフォトニック結晶光導波路が等しくない場合でも、本発明の効果は十分発現される。この場合、請求項2−5に記載ように、PC2では、PC1、PC3に比べ、群速度が遅いこと、透過率が低いこと、空気孔の面積が大きいこと、空気孔の半径が大きいことが本発明の主張するところである。
次に、実際の作製工程における作製精度と本発明の請求項1との関係について述べる。以下、本発明の要点である請求項1記載の「それぞれのフォトニック結晶の格子定数を一定とし、かつ各々の界面での格子位相を連続にする」ことに対するずれの影響を検討した。両者の格子定数を2%変えた場合、界面反射率は上述の2%以下から、5%に上昇した。この値は、応用する素子により十分仕様に耐える値であり、実際の作製行程でのバラツキを考えた場合でも、本発明の効果は大きい。また、界面での格子位相については、±20度での反射率は3%に上昇した。この結果は、実際の作製行程でのバラツキを考えた場合でも、本発明の効果は十分発現できることを示している。
次に、上述した異種接続フォトニック結晶光導波路構造光導波路を用いた光遅延素子、光制御素子、光スイッチ等の光部品の構成例を示す。
図3は、本発明の応用例であるマッハツェンダ型全光スイッチを平面図で示す模式図である。初めに、おおまかな構成を述べる。本素子の基本構成は、フォトニック結晶光導波路を用いたエアーブリッジ型の所謂対象マッハツェンダ型全光スイッチである(例えば、K. Tajima, Jpn. J. Appl. Phys., 32, L1746-1749(1993)田島、ジャパン ジャーナル・オブ アプライド フィジクス、1993年32巻1746頁−1749頁参照)。
本スイッチは、InAs量子ドットを選択的に形成した2つの非線形導波路部15,16を素子中央に配し、その両側に3つの光入力端となる3dB結合器導波路構造を持つ入力用導波路部17、2つの出力端と3dB結合器導波路構造を持つ出力用導波路部18より構成されるマッハツェンダ干渉計構造である。各光導波路には本発明の特徴である空気孔三角格の空気孔を1本除去したGaAsを母体とする異種フォトニック結晶を用いた。すなわち、非線形導波路部15,16には群速度の小さなフォトニック結晶光導波路PC2(格子定数a=360nm、空気孔径rPC1=0.35a)を、その他の部分17,18には通常の群速度を持つフォトニック結晶光導波路PC1(格子定数a=360nm空気孔径、rPC1=0.30a)を用いた。両者は界面での格子位相が連続となるよう接続した。
また、実施例の光部品の特性を評価するために、フォトニック結晶光導波路全体を単一のフォトニック結晶光導波路PC1(格子定数a=360nm、空気孔径rPC1=0.30a)、フォトニック結晶光導波路PC2(格子定数a=360nm空気孔径、rPC1=0.35a)で構成した2種類の比較素子を作製した。
次に実施例のスイッチの動作原理を述べる。信号光入力用端子より入射した信号光は、入力用導波路部の3dB結合器で分波され、それぞれ別の非線形導波路15,16を通過した後、出力用導波路部の3dB結合器で合波される。制御光入力端から制御光の入力がない場合には、合波される2つの光の位相は一致しているため、下側の信号光出力用端子より出射される。一方、ON制御光入力端から入射した制御光は、上側の非線形導波路15の屈折率を変化させる。この状態で信号光を入射すると、出力用導波路部の3dB結合器で合波される2つの信号光の位相に違いが生じる。両者の位相差がπになると、合波された信号光は、出力用導波路部の2つの出力端のうちの上側のポートより出射される。一方、OFF制御光入力端から入射した制御光は下側の非線形導波路16の屈折率を変化させるため、2つの信号光の位相差を打ち消すことができ、信号光はONパルス照射前と同様に下側の信号光出力用端子より出射される。従って、ON制御光入力による上側の非線形導波路15の屈折率の変化が持続している間でも、OFF制御光を入力することにより、OFF状態を実現できる。この切り替え時間はON/OFF制御光を入力する時間間隔で決まるため、極めて高速なスイッチ動作を行うことができる。ここで、非線形導波路部15,16の屈折率の変化には選択的に形成された量子ドットの吸収飽和を用いた。素子の寸法は、非線形導波路部15,16は300μm、全素子長さ600μm、素子幅600μmである。
次に実施例のスイッチの作製手順を述べる。結晶成長にはMBE結晶成長法を用いた。半絶縁性GaAs基板の上にGaAlAs犠牲層(GaAs混晶比=0.8、膜厚2μm)、GaAs(膜厚50nm)/InGaAs(5nm)を中間層としてInAs量子ドットを3層(全膜厚220nm)積層した。量子ドットの選択形成にはMBE中でのマスク成長を行った。GaAlAs犠牲層の成長温度、砒素圧力は560℃、1x10−5Torr、量子ドットを含む層の成長温度、砒素圧力は450℃、3x10−6Torrとした。フォトニック結晶の空気孔の形成には、電子ビーム露光、塩素系のドライエッチングを、また、エアーブリッジ構造の形成にはフッ酸系のウェットエッチングを用いた。ドライエッチングのパタン形成用のマスクには、Niと電子線レジストの2層膜を用い、主なドライエッチング条件は、基板温度50℃、加速電圧500V、ガス圧力1x10−3Torrとした。その後、ウエハの裏面を膜厚150μmまで研摩し、所望の大きさに劈開して上記素子を作製した。ここで、フォトニック結晶のパタン形成には電子線描画法を用いているため、空気孔の直径、格子位相を十分の精度で形成することができた。
次にスイッチ特性の評価結果を述べる。信号光、制御光の光源には、光パラメトリック発振器を装備したモードロックチタンサファイヤパルスレーザ(パルス幅2ps)を2台準備して、それらを電気的に同期させて使用した。信号光の透過波形の測定には非線形結晶を用いた自己相関法用いた。スイッチング時間は遅延回路を用いたポンププローブ法で測定した。制御光パルスピーク波長1290nm、信号光パルスピーク波長1310nmで測定したスイッチ特性を以下に示す。
実施例の異種フォトニック結晶光導波路を用いたスイッチでは、制御光パルスエネルギー1pJで上側の信号光出力端での信号光消光比12dBが得られた。その際の、信号光の挿入損失は12dBであった。一方、特性比較のためのフォトニック結晶光導波路全体を低群速度フォトニック結晶光導波路PC2で構成した素子では、制御光パルスエネルギー3pJで上側の信号光出力端での信号光消光比10dBが得られた。その際の、信号光の挿入損失は16dBであった。また、特性比較のためのフォトニック結晶光導波路全体を通常の群速度を持つフォトニック結晶光導波路PC1で構成した素子では、制御光パルスエネルギー13pJで上側の信号光出力端での信号光消光比7dBが得られた。その祭の、信号光の挿入損失は10dBであった。また、いずれの素子においても、ON及びOFF制御光間隔6psでスイッチ動作を確認することができた。
以上の結果から、実施例の構造に比べ、低群速度PC2より構成される比較素子では、制御光パルスエネルギーが3倍大きく、信号光の挿入損失が6dB大きい。これは、図2Aの比較構造Bでの透過率の劣化から理解できる。また、通常の群速度を持つPC1より構成される比較素子では、制御光パルスエネルギーが10倍以上大きく、信号光の消光比が5dBほど小さい。この結果は、図2Bに示したように、本発明の低群速度を使った場合の光学特性増強効果として理解できる。この場合、光学特性増強効果は、制御光による効率的に量子ドットを励起することと合わせ、信号光の位相変化を増強する効果がある。
従って、本実施例の結果は、前述の計算結果を裏付けるものと考えられ、本実施例の有効性を示すものである。
本発明の異種接続フォトニック結晶光導波路構造の1例を示す上面図である。 通常郡速度PC導波路3,5のフォトニック結晶光導波路に対応する計算により求めた分散図(波数kと周波数の関係)を示す図である。 低郡速度PC導波路4のフォトニック結晶光導波路に対応する計算により求めた分散図(波数kと周波数の関係)を示す図である。 上段部にフォトニック結晶光導波路を模式的に示し、横軸に入射光の入力位置からの距離を、縦軸に、フォトニック結晶光導波路中での透過率を示した図である。 異種フォトニック結晶の母体となるGaAs半導体に吸収を持たせた場合のFDTD計算による導波路内での伝搬パルスエネルギーの減衰(左軸)、及び群屈折率(右軸)を示す図である。 本発明の応用例であるマッハツェンダ型全光スイッチを平面図で示す模式図である。
符号の説明
1,2…両端に設けられたバルク光導波路、3,5…通常郡速度PC導波路、4…低郡速度PC導波路、11…パルスソース、15,16…InAs量子ドットを選択的に形成した2つの非線形導波路部、17…3つの光入力端となる3dB結合器導波路構造を持つ入力用導波路部、18…2つの出力端と3dB結合器導波路構造を持つ出力用導波路部、100…実施例の構造Cのフォトニック結晶導波路の透過率を示す線、200…構造Aのフォトニック結晶導波路の透過率を示す線、300…構造Bのフォトニック結晶導波路の透過率を示す線。

Claims (7)

  1. ある群速度を持つフォトニック結晶光導波路の両端に他の群速度を持つフォトニック結晶光導波路を連結したフォトニック結晶光導波路であって、使用する所望の光に対してそれぞれのフォトニック結晶光導波路の欠陥バンドが形成され、かつそれぞれのフォトニック結晶の格子定数を一定とし、かつ各々の界面での格子位相を連続にしたことを特徴とする異種フォトニック結晶光導波路。
  2. 前記両端に設けられるフォトニック結晶光導波路の群速度が、中央に設けられるフォトニック結晶光導波路の群速度より大きい請求項1記載のフォトニック結晶光導波路。
  3. 前記両端に設けられるフォトニック結晶光導波路の所望の入射光に対する透過率が、中央に設けられるフォトニック結晶光導波路の透過率より大きい請求項1記載のフォトニック結晶光導波路。
  4. 前記各々のフォトニック結晶光導波路のフォトニック結晶部が周期的に配置された等しい形状の空気孔を持つように形成され、前記両端に設けられるフォトニック結晶光導波路のフォトニック結晶部の空気孔の断面積が、中央に設けられるフォトニック結晶光導波路のフォトニック結晶部の空気孔の断面積より小さい請求項1記載のフォトニック結晶光導波路。
  5. 前記フォトニック結晶部に周期的に配置された等しい形状の空気孔が三角格子に配置された円形の空気孔である請求項4記載のフォトニック結晶光導波路。
  6. 構成要素の1部にフォトニック結晶光導波路を含む光遅延素子、光制御素子あるいは光スイッチ等の光回路であって、前記フォトニック結晶光導波路は、ある群速度を持つフォトニック結晶光導波路の両端に他の群速度を持つフォトニック結晶光導波路を連結したフォトニック結晶光導波路であって、それぞれのフォトニック結晶の格子定数を一定とし、かつ各々の界面での格子位相を連続にしたものであることを特徴とする光回路。
  7. 前記フォトニック結晶光導波路が、前記請求項2ないし5のいずれかに記載されたものである請求項6記載の光回路。
JP2004064604A 2004-03-08 2004-03-08 フォトニック結晶光導波路およびこれを利用した光回路 Withdrawn JP2005250398A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004064604A JP2005250398A (ja) 2004-03-08 2004-03-08 フォトニック結晶光導波路およびこれを利用した光回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004064604A JP2005250398A (ja) 2004-03-08 2004-03-08 フォトニック結晶光導波路およびこれを利用した光回路

Publications (1)

Publication Number Publication Date
JP2005250398A true JP2005250398A (ja) 2005-09-15

Family

ID=35030899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004064604A Withdrawn JP2005250398A (ja) 2004-03-08 2004-03-08 フォトニック結晶光導波路およびこれを利用した光回路

Country Status (1)

Country Link
JP (1) JP2005250398A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104211A (ja) * 2006-02-14 2009-05-14 Coveytech Llc 光学回路を製造する方法
US20110002581A1 (en) * 2008-02-07 2011-01-06 Masatoshi Tokushima Optical switch and method of manufacturing the same
US20110008000A1 (en) * 2008-03-07 2011-01-13 Nec Corporation Optical switch and manufacturing method thereof
US9703172B2 (en) 2006-02-14 2017-07-11 John Luther Covey All-optical logic gates using nonlinear elements—claim set V
US20220131035A1 (en) * 2019-12-27 2022-04-28 University-Industry Cooperation Group Of Kyung Hee University Light source using photonic crystal structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104211A (ja) * 2006-02-14 2009-05-14 Coveytech Llc 光学回路を製造する方法
JP2011103008A (ja) * 2006-02-14 2011-05-26 Coveytech Llc 光学回路を製造する方法
JP2014006548A (ja) * 2006-02-14 2014-01-16 Coveytech Llc 光学回路を製造する方法
US9703172B2 (en) 2006-02-14 2017-07-11 John Luther Covey All-optical logic gates using nonlinear elements—claim set V
US20110002581A1 (en) * 2008-02-07 2011-01-06 Masatoshi Tokushima Optical switch and method of manufacturing the same
US20110008000A1 (en) * 2008-03-07 2011-01-13 Nec Corporation Optical switch and manufacturing method thereof
US8478088B2 (en) * 2008-03-07 2013-07-02 Nec Corporation Optical switch and manufacturing method thereof
US20220131035A1 (en) * 2019-12-27 2022-04-28 University-Industry Cooperation Group Of Kyung Hee University Light source using photonic crystal structure

Similar Documents

Publication Publication Date Title
US6937781B2 (en) Optical switch having photonic crystal structure
US8600204B2 (en) Optical control device
US6853791B2 (en) Waveguide bends and splitters in slab photonic crystals with noncircular holes
JP4936313B2 (ja) 光変調素子
US8478088B2 (en) Optical switch and manufacturing method thereof
JP2005274840A (ja) 光遅延素子
US20100316342A1 (en) Photonic crystal based optical modulator integrated for use in electronic circuits
JP4971045B2 (ja) 光制御素子
JP3923244B2 (ja) 光素子
CN107592915A (zh) 慢光生成光学装置以及产生低损耗慢光的方法
JP5494216B2 (ja) 導波路型光デバイス
JP5574006B2 (ja) 光スイッチ
CN110426772B (zh) 一种可实现椭圆偏振光单向传输的光子晶体异质结构
JP2005250398A (ja) フォトニック結晶光導波路およびこれを利用した光回路
US20230103702A1 (en) Optical scanning element
CN109449756B (zh) 一种半导体激光器及其制备方法
JP4707614B2 (ja) 平面導波路素子
JP2001174659A (ja) モード分離方法及びモード分離器
JP5349781B2 (ja) 光変調器とその製造方法
JP2009086042A (ja) 光共振器構造
US20240142852A1 (en) Waveguide device, optical scanning device and optical modulation device
JP2003185864A (ja) フォトニック結晶光機能素子
Shinya et al. Ultrasmall resonant tunneling/dropping devices in 2D photonic crystal slabs
WO2009107427A1 (ja) 光導波路
Watanabe et al. Si wire waveguide devices

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605