JP4705300B2 - 信号処理技術を組込んだ補聴器 - Google Patents

信号処理技術を組込んだ補聴器 Download PDF

Info

Publication number
JP4705300B2
JP4705300B2 JP2001540563A JP2001540563A JP4705300B2 JP 4705300 B2 JP4705300 B2 JP 4705300B2 JP 2001540563 A JP2001540563 A JP 2001540563A JP 2001540563 A JP2001540563 A JP 2001540563A JP 4705300 B2 JP4705300 B2 JP 4705300B2
Authority
JP
Japan
Prior art keywords
output
input
input coupled
coupled
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001540563A
Other languages
English (en)
Other versions
JP2003516003A (ja
Inventor
ダグラス エム チャブリーズ
リチャード ダブリュー クリスチャンセン
アーロン エム ハモンド
ウィリアム シー ボロー
Original Assignee
ブリガム ヤング ユニヴァーシティ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23767135&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP4705300(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ブリガム ヤング ユニヴァーシティ filed Critical ブリガム ヤング ユニヴァーシティ
Publication of JP2003516003A publication Critical patent/JP2003516003A/ja
Application granted granted Critical
Publication of JP4705300B2 publication Critical patent/JP4705300B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/45Prevention of acoustic reaction, i.e. acoustic oscillatory feedback
    • H04R25/453Prevention of acoustic reaction, i.e. acoustic oscillatory feedback electronically
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G9/00Combinations of two or more types of control, e.g. gain control and tone control
    • H03G9/005Combinations of two or more types of control, e.g. gain control and tone control of digital or coded signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G9/00Combinations of two or more types of control, e.g. gain control and tone control
    • H03G9/02Combinations of two or more types of control, e.g. gain control and tone control in untuned amplifiers
    • H03G9/025Combinations of two or more types of control, e.g. gain control and tone control in untuned amplifiers frequency-dependent volume compression or expansion, e.g. multiple-band systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/35Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using translation techniques
    • H04R25/356Amplitude, e.g. amplitude shift or compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/03Synergistic effects of band splitting and sub-band processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/502Customised settings for obtaining desired overall acoustical characteristics using analog signal processing

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Circuit For Audible Band Transducer (AREA)

Description

【0001】
【関連出願】
本出願は、アメリカ合衆国特許出願第09/169,547号、1998年9月9日提出の一部継続出願であり、それはアメリカ合衆国特許出願第08/697,412号、1996年8月22日提出の一部継続出願であり、それはアメリカ合衆国特許出願第08/585,481号、1996年1月12日提出の一部継続出願であり、それはアメリカ合衆国特許出願第08/272,927号、1994年7月8日提出、現在アメリカ合衆国特許第5,500,902号の継続出願である。
【0002】
【発明の属する技術分野】
本発明は、音声再生のための電子補聴装置および電子システムに関する。より特定的には、本発明は、電子補聴器および電子音声システムにおける信号のフィデリティ(fidelity)を保持するためのノイズ抑制に関する。本発明に従って、ノイズ抑制装置および方法は、アナログおよびデジタル信号処理技術の両方を利用する。
【0003】
【従来の技術】
補聴器の使用者による最も一般的な不満の一つは、雑音がある中では聞くことができないということである。従って、雑音の抑制は長い間、研究者たちの焦点となっており、ノイズ抑制問題を解決するための多くのアプローチが提案されてきた。一つのアプローチでは、ノイズの独立した計測が実施され、処理される信号から減算される。この技術は通常、以下のように表される信号に適用される:
s(t)=d(t)+n(t)
s(t)は処理される信号であり、d(t)は信号s(t)の所望の部分であり、およびn(t)は信号s(t)のノイズである。
【0004】
例えば、一つ以上のセンサが、干渉から独立したノイズの評価の計測ne(t)を形成するための適応した技術とともに採用されてもよい。ノイズ評価ne(t)を信号s(t)から減算することによって、向上したバージョンの所望の信号d(t)が得られる。ノイズ評価ne(t)の減算を強調するため、この技術は一般的に、“ノイズ・キャンセリング(noise canceling)”と称される。このノイズ・キャンセリング技術は、ソナー・システムと、医療用胎児用心電図の両方に応用されており、およびさらに、言語音声および干渉の両方を含む音響信号を処理するのにも有効であることがわかっている。例えば、Douglas M.Chabriesら、“適応デジタル信号処理の、聴力障害者のための言語音声強調への応用(Application of Adaptive Digital Signal Processing to Speech Enhancement)”、Journal of Rehabilita‐tion Research and Development、Vol.24、No.4,pp.65−75およびRobert H.Breyら、“健常および聴力障害の対象者に適応フィルタを採用することによる、雑音中での言語音声明瞭性の向上(Improvement in Speech Intelligibility in Noise Employing an Adaptive Filter with Normal and Hearing-Impaired Subjects)”、Journal of Rehabilitation Research and Development,Vol.,24,No.4,pp.75−86を参照。
【0005】
ノイズの独立したサンプルまたは評価が入手できない時は、ノイズ抑制を供給するための他の技術が採用されてきた。いくつかの例において、研究者は、音の明瞭性を強調するために、言語音声とノイズの時間的属性における差を利用した。これらの技術は、通常、ノイズ抑制または言語音声強調と称される。例えば、Graupeのアメリカ合衆国特許第4,025,721号、Graupeのアメリカ合衆国特許第4,185,168号、およびS.Boll、“スペクトル減算を用いた言語音声における音響ノイズの抑制(Suppression of Acoustic Noise in Speech Using Spectral Subtraction)”、IEEE Trans. on ASSP,Vol.ASSP−27,pp.113−120,1979年4月、H.Sheikhzadehら、“補聴器設計への応用を伴う、スペクトル減算およびHMMに基づく言語音声強調戦略の比較性能(Comparative Performance of Spectral Subtraction and HMM-Based Speech Enhancement Strategies with Application to Hearing Aid Design)”、Proc.IEEE ICASSP,pp.I−13乃至I−17、1994年、およびP.M Crozier,BMG Cheethan,C.Holt,ならびにE.Munday,“スペクトル減算および線形予測解析を用いた言語音声強調(Speech enhancement employing spectral subtraction and linear predictive analysis)”、Electronic Letters,29(12):1094−1095、1993年を参照。
【0006】
これらのアプローチは、ノイズとして定義された他の信号と比較して、特定の信号を強調するとして示されてきた。一人の研究者、Mead Killionは、これらのアプローチはどれも、言語音声明瞭性を強調しなかったことを指摘した。Mead Killion、Etymotic Update,Number 15,春、1997年を参照。しかしながら、低ノイズ環境では、抑制技術は、聴力不足を軽減するものとして示されてきた。
【0007】
Mead Killion,“SINリポート:回路は、雑音下での聴取問題を解決しなかった(The SIN report : Circuits haven't solved the hearing-in-noise problem)”、“The Hearing Journal,Vol.50,No.20,1997年10月、pp.28−34を参照。
【0008】
これらの技術で、研究者らは、一般的に、質または好みの計測が向上するという事実にもかかわらず、ノイズが混ざった言語音声が処理される時の言語音声明瞭性テストの低下を指摘した。通常は、ノイズ特性の明細または言語音声パラメータの定義は、ノイズ抑制の第二のカテゴリにおける様々な技術を、互いに区別する。ホワイト・ノイズまたは衝撃騒音(impulsive noise)が存在する場合に、有声音または母音を強調するためのこれらの技術に従って、音響信号はうまく処理されることができるが、しかしながら、これらの技術は、摩擦音や破裂音等の無声音を保持することについては、あまりうまくいかない。
【0009】
他のノイズ抑制技術は、言語音声が検出される場合において発展してきており、および様々に提案された方法が、言語音声が存在しない時に補聴器における増幅器のスイッチを切るため、または言語音声をカットし、それから検出可能な言語音声がない場合に、出力増幅器のスイッチを切るために採用される。例えば、Harry Teder,“雑音中での補聴器具および音節音声対ノイズ比(Hearing Instruments in Noise and the Syllabic Speech-to-Noise Ratio)”、Hearing Instruments,Vol.42,No.2,1991年を参照。音声の明瞭性を強調するための、ノイズを抑制することによるノイズ抑制へのアプローチのさらなる例が、Graupeのアメリカ合衆国特許第4,025,721号、Michaelsonの第4,405,831号、Graupeらの第4,185,168号、Graupeらの第4,188,667号、Graupeらの第4,025,721号、Gaulderの第4,135,590号、およびHeideらの第4,759,071号に見ることができる。
【0010】
他のアプローチは、明瞭性を向上させるために、帰還抑制および等化(Coxのアメリカ合衆国特許第4,602,337号、およびEngebretsonの第5,016,280号、およびLeland C.Best,“補聴器における音響帰還のデジタル抑制(Digital Suppression of Acoustic Feedback in Hearing Aids)”Thesis,University of Wyoming,1995年5月、およびRupert L.Goodings,Gideon A.Senensieb,Phillip H.Wilson,Roy S.Hansen、“音響帰還に対する補償を有する補聴器(Hearing Aid Having Compensation for Acoustic Feedback)”、1993年11月2日発行アメリカ合衆国特許第5,259,033号)に、二重マイク構成(dual microphone configurations)(Slavinのアメリカ合衆国特許第4,622,440号およびNakamuraらの第3,927,279号)に、または通常の方法(例えば、RFリンク、電気刺激等)での耳への結合に焦点を置いていた。これらのアプローチの例は、Engebretsonのアメリカ合衆国特許第4,545,082号、Shaferの第4,052,572号、Ambroseの第4,852,177号、およびLevittの第4,731,850号に見られる。
【0011】
さらに他のアプローチは、多数の圧縮およびフィルタリング体系を収容するデジタル・プログラミング制御実装を選択した。そのようなアプローチの例は、Kopkeらのアメリカ合衆国特許第4,471,171号、およびWilliamsonの第5,027,410号に見られる。Newtonのアメリカ合衆国特許第5,083,312号に開示されているようなアプローチは、補聴器によって遠隔的に受信される制御信号を受け入れることによって柔軟性を可能にする補聴器構造を利用する。
【0012】
Moserのアメリカ合衆国特許第4,187,413号は、アナログ−デジタル変換器およびデジタル−アナログ変換器を使用し、および固定伝達関数H(z)を実行するデジタル補聴器のアプローチを開示する。しかしながら、文献での神経心理学的モデルや、結果的にStevenおよびFechner法(S.S.Stevens,Psychophysics,Wiley 1975年;G.T.Fechner,Elemente der Psychophysik,Breitkopf u.Hartel,Leipzig,1960年参照)を生む多くの計測を概観することによって、最終的に、入力された音声に対する耳の反応は非線形であることが明らかになる。よって、完全に聴力を補償する固定された線形伝達関数H(z)は存在しない。
【0013】
Mansgoldらのアメリカ合衆国特許第4,425,481号は、市販されているものと類似の、または同一の特徴を有するが、3帯域(ローパス(lowpass)、バンドパス(bandpass)、およびハイパス(highpass))補聴器の実装における付加されたデジタル制御を有する、プログラム可能デジタル信号処理(DSP)装置を開示する。3つの周波数帯域の出力はそれぞれ、デジタル制御された可変減衰器、リミッタ(limiter)、および出力を供給するために合計される前に、デジタル制御された減衰の最終段階に委ねられる。減衰の制御は、外見上、異なる音響環境に応答して転換することによって達成される。
【0014】
Adelmanのアメリカ合衆国特許第4,366,349号および第4,419,544号は、人間の聴覚体系の過程を説明し、および追跡するが、入ってくる音を増幅し、および向上した基底膜変位を供給するための、耳の中の外有毛細胞の、筋肉としての役割の知識を反映していない。これらの参照は、聴力の悪化が、入ってくる刺激の周波数および増幅を変換することを望ましいものにし、それによって、聴覚反応の場所を、耳の悪化した部分から、十分な反応を有する(基底膜の)耳の中の他の領域に移す。
【0015】
Mead C.Killion,k−amp補聴器:聴覚障害者に高いフィデリティを与えるための試み(The k-amp hearing aid : an attempt to present high fidelity for persons with impaired hearing)、American Journal of Audiology,2(2):pp.52−74,1993年7月、は、線形利得および圧縮の両方で処理された音響データのための、主観的聴覚テストの結果に基づいて、どちらのアプローチも等しくうまくいく、と述べている。聴覚損失のある個人のために聴力を回復させることの重要な要素は、適切な利得を供給することである、ということが議論されている。前記利得の、数学的にモデル化された解析がない場合において、いくつかの圧縮技術が提案されており、それらは例えば、Cumminsのアメリカ合衆国特許第4,887,299号;Yanick,Jr.のアメリカ合衆国特許第3,920,931号;Yanick,Jr.のアメリカ合衆国特許第4,118,604号;Gregoryのアメリカ合衆国特許第4,052,571号;Yanick,Jr.のアメリカ合衆国特許第4,099,035号;およびWaldhauerのアメリカ合衆国特許第5,278,912号である。あるものは、弱い(soft)入力音声レベルでの線形固定高利得に関与し、および中程度の、または大きな音声レベルでのより低い利得に転換する。他に、弱い音声強度での一次利得、中程度の強度での変化する利得または圧縮、および高いまたは大きな強度での低減された固定線形利得を提案するものもある。さらに、ルックアップ・テーブル(look-up table)の形成に関して特定された詳細がまったくない、テーブル・ルックアップ・システムを提案するものもあれば、オペレーティング・パラメータに関する仕様のないプログラム可能利得を可能にするものもある。
【0016】
これらの音声強度領域の各々における利得メカニズムの間で転換することは、音声における、顕著な、悩ましいアーティファクト(artifacts)やひずみを取り込んできた。さらに、これらの利得転換体系は、通常、補聴器において、2または3周波数帯域で、またはプリエンファシス・フィルタリング(pre-emphasis filtering)を伴う単一の周波数帯域で処理される音声に応用されてきた。
【0017】
従来技術である利得転換体系に関する難点への見識は、人間の聴覚体系を調べることによって得られるかもしれない。聴力が通常の閾値から逸脱した各周波数帯域に関して、異なる音声圧縮は、通常の聴覚を与えるように求められる。そのため、単一の臨界帯域(すなわち、“Fundamentals of Hearing, An Introduction,”第三版、William A.Yost著、Academic Press,1994年、307ページで定義された臨界帯域)より広い周波数帯域を使用することを試みる利得体系の応用では、聴いている人の最適な聴覚を生むことができない。例えば、対応する臨界帯域幅の帯域幅よりも広い周波数帯域幅を使用することが望ましい場合、より広い帯域幅が、最適に聴力損失を補償するために、いくつかの条件に適合しなければならない。これらの条件は、より広い帯域幅が、より広い帯域幅の中に含まれる臨界帯域と同じ、通常の聴力閾値ならびに動的範囲を示さなければならず、および同じ矯正聴力利得を必要としなければならないことである。一般的に、これは、聴覚のいくつかの臨界帯域に対して、聴力損失が増幅において一定であっても、生じない。適応した、全範囲の圧縮を適切に占めること(account for)ができない結果、低下した聴力または同等に、聴力障害者によって知覚されるフィデリティおよび明瞭性の損失を生じるであろう。そのため、聴力損失を補償するのに十分な数の周波数帯域を供給しない、開示されたメカニズムは、質(ユーザの好み)および明瞭性に関して、聞いている人にあまり有益ではない音を生成するであろう。
【0018】
圧縮装置が後に続く、複数のバンドパス・フィルタを使用するいくつかの体系が提案されている(Andersonのアメリカ合衆国特許第4,396,806号、Stearnsらの第3,784,750号、およびRohrerの第3,989,904号を参照)。
【0019】
Chabriesのアメリカ合衆国特許第5,029,217号における従来技術の一例は、人間の聴覚モデルの高速フーリエ変換(FFT)周波数領域バージョンに焦点が絞られていた。当業者には公知のとおり、固定フィルタ帯域を供給する、効率的に計算された周波数領域フィルタ・バンク(efficiently-calculated frequency domain filter bank)を実装するために、FFTを使用することができる。ここに説明されているとおり、その独自の形状および構成により、耳で自然に生じる臨界帯域相当に近い帯域を使用することが好ましい。フィルタ・バンク設計のための臨界帯域の使用は、より高い周波数でより広い帯域幅を採用する一方で、完全な聴覚的利益を供給する補聴器の構築を可能にする。FFTフィルタ・バンクの分解能(resolution)は、補償されるべき臨界帯域の中からの、最小帯域幅の値に設定されなければならないので、FFTの有効性は、大部分において、多くの追加的フィルタ帯域が、同じ周波数スペクトルをカバーするためにFFTアプローチにおいて必要とされるという事実によって、減少する。このFFT実装は、複雑であり、低電力バッテリ応用にはおそらく適さないであろう。
【0020】
当業者には公知のとおり、従来技術のFFT実装は、FFTアルゴリズムへの挿入のために、サンプルのブロックを集め、および分類することによって、ブロック遅延を取り込む。このブロック遅延は、いらいらさせ、および人が話そうとする時に、どもりを招くほど長いかもしれない時間遅延を音声ストリーム(sound stream)に取り込む。難聴者に、低いレベルの補償が求められる時には、エコー(echo)のように聞こえる、さらに長い遅延が生じうる。
【0021】
聴覚閾値を下回る音響入力レベル(すなわち、いつも存在する弱い背景音)に関して、上述されたFFT実装は、過剰な利得を供給する。この結果、出力信号にノイズを付加するアーティファクトを生じる。60dBより大きい聴力補償レベルにおいて、処理された背景ノイズ・レベルは、強度に関して、所望の信号レベルに匹敵する可能性があり、それによってひずみを取り込み、および音声明瞭性を低減する。
【0022】
上述の通り、補聴器の文献は、聴力障害者の聴力補償の問題に対する数多くの解決を提案してきた。高フィデリティ、全範囲、適応圧縮システムを組み立てるために必要なコンポーネント・パーツは、1968年から知られている一方で、誰も今日まで、聴力損失を補償するために、聴覚のいくつかの帯域に相乗的AGCを適用することを提案してこなかった。
【0023】
通常の当業者には理解される通り、聴力障害者に対する高い有効性補助器具の実現に関する三つの特徴がある。第一は、音響エネルギの、電気信号への変換である。第二は、補聴器使用者に入力される音響信号からのノイズの抑制を含む一方で、音響信号の明瞭性を保持する、特定の個人の障害を補償するような、電気信号の処理である。最後に、処理された電気信号は、外耳において、音響エネルギに変換されなければならない。
【0024】
現代のエレクトレット技術は、大変高いフィデリティを有する大変小さいマイクの構築を可能にし、前記問題の第一の特徴に対する整備された解決法を供給する。音響エネルギの、電気信号への変換は、市販されている製品で実行することができる。特定の個人の障害を補償するための、電気信号の処理の問題に対する独自の解決法は、ここに、および親出願第08/272,927号、1994年7月8日提出、現在はアメリカ合衆国特許第5,500,902号で説明されている。しかしながら、第三の特徴は、問題があることがわかり、本発明によって取り組まれる。
【0025】
耳内補聴器は、大変低い電力で動作しなければならず、および外耳において利用できる空間のみを占めなければならない。聴力障害者は、健常者よりも、音響エネルギに対する感度が低いので、補聴器は、聞こえ、および理解されるのに十分大きい増幅を有する音響エネルギを、外耳へと運ばなければならない。これらの要件の組み合わせは、補聴器の出力トランスデューサ(output transducer)が、高い有効性を有しなければならないことを命じる。
【0026】
この要件に適合するために、Knowles等のトランスデューサ製造者は、高い有効性で、電気エネルギを音響エネルギに変換する、特殊な鉄電気子トランスデューサ(iron armature transducer)を設計した。今日まで、この高い有効性は、大変劣った周波数応答の犠牲によって達成されてきた。
【0027】
従来技術のトランスデューサの周波数応答は、聴力の周波数上限のずっと前に低下するだけでなく、人間の言語音声を理解するのに最も有用な情報を混乱させる周波数範囲において、約1乃至2kHzで始まる共鳴も示す。これらの共鳴は大いに、補聴器に共通して関連する帰還振動に寄与し、および共鳴周波数に近い信号を、より低い周波数信号と混ぜることによって、深刻な相互変調ひずみに委ねる。これらの共鳴は、鉄電気子の質量の直接的結果であり、低い周波数で十分な有効性を達成するのに必要とされる。実際に、トランスデューサ設計の業界における通常の当業者には、低周波数で高い有効性を有するトランスデューサは、中周波数域で共鳴を呈することがよく知られている。
【0028】
この問題と同等のものが、高フィデリティのラウドスピーカ(loudspeaker)設計において生じ、および一つは低周波で高い有効性のトランスダクション(transduction)を供給し(ウーファー(woofer))、もう一つは高周波数の高質のトランスダクションを供給する(ツイータ(tweeter))、二つのトランスデューサを導入することによって、普遍的な方法で解決される。可聴信号は、高周波エネルギをツイータに向け、低周波エネルギをウーファーに向けるクロスオーバー・ネットワーク(crossover network)に送られる。通常の当業者によって理解される通り、そのようなクロスオーバー・ネットワークは、電力増幅の前か後に挿入されることができる。
【0029】
上記の詳述から、聴力補償装置の使用者に入力される音響信号の明瞭性を向上させるため、聴力補償業界において多くのアプローチがなされてきたことが理解されるであろう。これらの技術は、様々な方法によって、聴力障害者の聴力不足を補償することと、および音響信号の明瞭性に望ましくない影響を生む、ノイズ等の音響信号の前記特徴を除去または抑制することの両方を含む。上述の通り、聴力障害者に向上した聴力補償を供給するために採用された多くのアプローチにもかかわらず、改良の余地は十分に残っている。
【0030】
【発明の開示】
本発明に従って、聴覚障害者のための聴力補償システムは、入力トランスデューサに接続された入力を有する複数のバンドパス・フィルタを具備し、各バンドパス・フィルタは、合計され、出力トランスデューサの入力に接続される出力を有する複数の相乗的AGC回路の一つの入力に接続された出力を有する。
【0031】
相乗的AGC回路は、明瞭性に寄与する言語音声信号の部分を除去することなく、一定の背景レベルを有する音響信号を減衰する。音響信号の、背景ノイズの部分の識別は、いくつかの周波数帯域の各々における、入力信号の包囲の定常性(constancy)によってなされる。本発明に従って抑制される背景ノイズの例は、複数話者の、言語音声のざわめき(babble)、ファン・ノイズ(fan noise)、帰還ホイッスル(feedback whistle)、蛍光灯ハム(florescent light hum)、およびホワイト・ノイズを含むと考えられている。
【0032】
【好ましい実施の形態の詳細な説明】
当業者であれば、本発明についての以下の説明がほんの例示であり、いかなる形であれ限定する意味がないことは了解できよう。本発明の他の実施例は、当業者であれば容易に思いつけよう。
【0033】
適切な高忠実度聴覚補償方法が、音響周波数スペクトルが大きい範囲の場合、1/3オクターブ未満である少なくとも臨界帯域幅に等しい分解能を有する周波数帯域に入力音声刺激を分離し、各帯域について固定あるいは可変、いずれかの指数ゲイン係数を持つ乗算AGCを適用することであるということが発見されている。
【0034】
本発明によれば、乗算AGC回路は、了解度に関与する音声信号部分を取り出すことのない一定の背景レベルを有する音響信号を減衰させる。音響信号の背景ノイズ部分を含む入力信号部分は、ひずみなしに振幅を減衰され、音響入力信号の了解度を保存する。音響信号の背景ノイズ部分の識別は、後述するように、いくつかの周波数帯域の各々における入力信号のエンベロプの定常性によって行われる。
【0035】
音量レベルにおけるかなり動的な変動中、そのノイズ抑制特徴による聴覚補償回路の出力信号は、このようなノイズ抑制特徴のない聴覚補償システムの出力とほとんど同じとなり、単語間の零入力期間中、出力信号は、本発明のノイズ抑制によりかなり静かな背景レベルを有することになる。本発明に従って抑制される背景ノイズの例としては、複数の話し手の音声バブル、送風機ノイズ、フィードバック・ホイッスル、蛍光灯ハム、他のカラード・ノイズ、ホワイト・ノイズがあると、現在のところ考えられる。
【0036】
当業者であれば、本発明の原理を、障害のある聴力を補償すること以外にもオーディオ用途に応用できることは了解できよう。本発明の他の用途の非限定的な例としては、高ノイズ・レベルの環境、たとえば、自動車環境、工場環境における音声システムでの音楽再生や、ステレオ音響システムにおいて使用されるようなグラフィック音響イコライザがある。
【0037】
当業者であれば理解できるように、本発明の聴覚補償装置の回路要素は、アナログ回路またはデジタル回路のいずれとしても導入可能であり、好ましくは、フィルタ、増幅器などの種々の構成要素のアナログ回路機能を模倣するようにデジタル信号処理(DSP)機能を実施するマイクロプロセッサその他コンピューティング・エンジンとして導入され得る。現在のところ、回路のDSPバージョンが本発明の好ましい実施例であると考えられるが、当業者であれば、単一の半導体基板に組み込めるようなアナログ具体例も本発明の範囲内に入るということは了解できよう。当業者であれば、また、DSP具体例において、入力オーディオ信号が普通のアナログ/デジタル変換技術を使用してタイム・サンプル採取され、デジタル化されなければならないであろうことは理解できよう。
【0038】
まず図1を参照して、ここには、本発明による現在のところ好ましい聴覚補償システム8のブロック図が示してある。本発明の現在のところ好ましい実施例による聴覚補償システム8は、音響エネルギ(参照符号12で概略的に示す)をそれに対応する電気信号に変換する入力トランスデューサ10を包含する。Knowles Electronics of Ithaca, Illinoisから入手可能な種々の公知の補聴器マイクロホン・トランスデューサ(たとえば、モデルEK3024)が、入力トランスデューサ10として使用するために利用できるし、または他のマイクロホン装置を使用してもよい。
【0039】
図1において、3つのオーディオ帯域フィルタが、参照符号14−1、14−2・・・14−nで示してあり、図面が複雑になり過ぎることを避けている。本発明の現在のところ好ましい実施例によれば、nは9〜15の整数であるが、当業者であれば、本発明はnが異なった整数であっても機能するであろうことは理解できよう。
【0040】
好ましくは、ほぼ1/2オクターブの帯域通過分解能を有するオーディオ帯域フィルタ14−1〜14−nが9個ある。帯域フィルタ14−1〜14−nは、好ましくは、通過帯域において滑らかな周波数応答性を、阻止帯域において約65dBの減衰を与える5次Chebychev帯域分割フィルタとして実現される。1/2オクターブ帯域フィルタの設計は、当業者の技術レベルに充分に入るものである。したがって、アナログ・フィルタとして、または、アナログ・フィルタのDSP表現として実施されるかどうかにかかわらず、任意特定の帯域フィルタの回路設計の詳細は、当業者にとって設計選択事項に過ぎないであろう。
【0041】
別の実施例において、オーディオ帯域フィルタ14−1〜14−nは、好ましくは、1/3オクターブ以下の帯域通過分解能を有するが、約125Hz未満の場合には、約200Hzから約10,000Hzまでの全オーディオ・スペクトルを通じて対数的に隔たった中心周波数を持つことはない。これらのオーディオ帯域フィルタは、1/3オクターブより広い帯域幅、すなわち、1オクターブそこらまでの帯域幅を有し得るが、性能の低下は免れない。この別の実施例において、帯域フィルタ14−1〜14−nは、通過帯域において約0.5dBリップルを有し、阻止帯域において約70dB阻止を有する8次楕円フィルタとして実現される。
【0042】
当業者であれば、いくつかの帯域フィルタ設計を認識できるであろう。限定するつもりはないが、他の楕円、バターワース、Chebyshevまたはベッセルなどのフィルタを使用し得る。さらに、たとえば、R. A. Gopinath, "Wavelets and Filter Banks- New Results and Applications", Ph. D Dissertation, Rice University, Houston, Texas, May 1993に開示されるようなウェーブレットを使用して設計されたフィルタ・バンクも或る程度の利点を与えることができる。これらの帯域フィルタ設計のいずれも、ここに開示した本発明の概念から逸脱することなく使用し得る。
【0043】
各個々の帯域フィルタ14−1〜14−nは、対応する乗法自動ゲイン制御(AGC)回路とカスケード接続される。このような装置の3つ16−1、16−2および16−nが図1に示してある。乗算AGC回路は本技術分野においては公知であり、典型的な構成を以下に詳しく開示する。
【0044】
乗算AGC回路の出力は合算され、出力トランスデューサ18に送られる。この出力トランスデューサは、電気信号を音響エネルギに変換する。当業者であれば理解できるように、出力トランスデューサ18は、指定した電気信号レベルを対応して指定した音響信号レベルに確実に変換する較正用増幅器と一緒に使用できる、Knowles Electronics of Ithaca, Illinoisから入手可能なモデルED1932のような様々な公知の市販補聴器イヤホン・トランスデューサのうちの1つであってもよい。あるいは、出力トランスデューサ18は、別のイアフォン状装置またはオーディオ・パワー増幅器・スピーカ・システムであってもよい。
【0045】
次ぎに図2Aを参照して、本発明に従って使用するのに適している代表的な乗算AGC回路16−nのより詳細な概念上のブロック図がここに示してある。上記したように、乗算AGC回路は、この技術分野において公知である。本発明において機能する乗算AGC回路の例としては、論文T. Stockham, Jr., The Application of Generalized Linearity to Automatic Gain Control, IEEE Transactions on Audio and Electroacoustics, AU-16(2): pp、 267-270, June 1968に開示されているものがある。このような乗法ACC回路の同様の例は、Oppenheimほかの米国特許第3,518,578号に見いだすことができる。
【0046】
概念的には、本発明において使用し得る乗算AGC回路16−nは、オーディオ帯域フィルタ14−nのうちの1つからの出力を増幅器20で入力信号として受け取る。増幅器20は、1/emaxのゲインを有するように設定される。ここで、emaxは、AGCゲインが適用されるオーディオ・エンベロプの最大許容値である(すなわち、emaxより上の入力レベルの場合、AGC減衰が生じる)。本発明装置における各帯域セグメント内においては、emax量はゲインが適用されるべき最大音響強度である。emaxについてのこのゲイン・レベル(患者の言語病理学検査によって決定される)は、しばしば、音響の上方快適音響レベルに一致する。本発明のアナログ具体例においては、増幅器20は、公知の演算増幅器回路であってもよく、そして、DSP具体例では、増幅器20は、1つの入力項として入力信号を、他の入力項として一定の1/emaxを有する乗算機能を持つものであってもよい。
【0047】
増幅器20の出力は、信号の対数を導くように「LOG」ブロック22で処理される。LOGブロック22は入力信号の複合対数を導く。1つの出力が、入力信号の符号を表し、他の出力が入力の絶対値の対数を表す。当業者であれば理解できるように、増幅器20のゲインを1/emaxに設定することによって、増幅器20の出力(入力がemax未満のとき)が1より大きくなることが決してなくなり、LOGブロック22からの対数項が常に0以下となる。
【0048】
DSP具体例において、LOGブロック22は、好ましくは、「ADSP-2100 Family Applications Handbook", Volume 1, published by Analog Devices, pp. 46-48に記載されている方法と一致する要領で二進数を浮動小数点フォーマットに変換する回路を使用することによって実現される。この具体例においては、対数についていくつかの異なったベースを使用してもよい。LOGブロック22は、この技術分野で周知のようなマイクロプロセッサまたは類似したコンピューティング・エンジン上で稼働するソフトウェア・サブルーチンとして実施してもよいし、あるいは、ルックアップ表のような他の等価手段から実施してもよい。このような具体例の例は、Knuth, Donald E., The Art of Computer Programming, Vol. 1, Fundamental Algorithms, Addison-Wesley Publishing 1968, pp. 21-26およびAbramowitz, M. and Stegun, LA., Handbook of Mathematical Functions, US Department of Commerce, National Bureau of Standards, Appl. Math Series 55, 1968に見いだされる。
【0049】
本発明のアナログ具体例において、LOGブロック22は、たとえば、対数変換曲線を有する増幅器または米国特許第3,518,578号の図8、9に示されるような回路であってもよい。
【0050】
その入力信号の符号情報を含むLOGブロック22の第1出力は、遅延ブロック24に与えられ、入力信号の絶対値の対数を表すLOGブロック22の第2出力は、好ましくは図3に示すような特性を有するフィルタ26に与えられる。概念的には、フィルタ26は、高域フィルタ28および低域フィルタ30ならびにその後にKに等しいゲインを有する増幅器32を包含し得る。ここで、図3に示すように、ゲイン係数Kは、fcより低い周波数で1より小さい値を有する。ここで、図3に示すゲイン係数Kは、乗算AGC回路16−1〜16−nの各々について異なった値を有するように選ぶことができるが、ひとたびそのチャネルについて選ばれたならば、Kの値は一定に留まることになることに注目されたい。当業者には明らかなように、高域フィルタ28は、その入力から低域フィルタ30の出力を減算することによって合成され得る。
【0051】
高域フィルタ28および低域フィルタ30は、共に、特定用途で決まる遮断周波数を有する。図2A−2Cに示す実施例による聴覚補償システム用途(LOG演算を低域演算の前に実施する)においては、約16Hzの公称遮断周波数を使用すると好ましい。しかしながら、他の遮断周波数を、本発明の概念から逸脱することなく処理されつつある周波数帯域と関連した臨界帯域幅の約1/8まで低域フィルタ30について選択することができることは了解されたい。当業者であれば、図3に示す以外の応答曲線を有するフィルタを本発明で使用し得ることは理解できよう。たとえば、本発明の他の非音声用途では、図3におけるfc=16Hzより高いかあるいは低い遮断周波数を必要とするかも知れない。
【0052】
遅延24を送るLOGブロック22が符号出力は、1または0のいずれかの値を有し、LOGブロック22に入力信号の符号を追従させ続けるのに使用される。遅延24は、入力信号の符号が、入力信号の大きさの絶対値を表しているデータと同時にEXPブロック34に送られ、出力に適正な符号を生じさせるようになっている。本発明において、遅延は、高域フィルタ28の遅延に等しいようにされる。
【0053】
当業者であれば、増幅器、能動的、受動的アナログ・フィルタならびにDSPフィルタ具体例に関して多くの設計が存在しており、ここに説明しているフィルタについての設計をこれらの利用可能な設計のうちから選ぶことができることは了解できよう。たとえば、本発明のアナログ具体例において、高域フィルタ28および低域フィルタ30は、公知設計の普通の高域フィルタおよび低域フィルタであってもよく、たとえば、いくつかの例がVan Valkenburg, M. E, Analog Filter Design, Holt, Rinehart and Winston, 1982, pp. 58-59に見いだされる。増幅器32は、普通の演算増幅器であってもよい。本発明のデジタル具体例においては、増幅器32は、1つの入力項として入力信号を、他の入力項として定数Kを有する乗算機能を持つものであってもよい。DSPフィルタ技術は、当業者によって充分に理解される。
【0054】
高域フィルタ28および増幅器32の出力は、結合され(すなわち、一緒に加算され)、LOGブロック22の無修正であるが遅延している出力と共にEXPブロック34の入力部に与えられる。EXPブロック34は、指数関数を与えるように信号を処理する。EXPブロック34からの出力の符号は、遅延Dブロック24からの出力で決まる。DSP具体例において、EXPブロック34は、「ADSP-2100 Family Applications Handbook", Volume 1, 1995, published by Analog Devices, pp. 52-67に記載されているように実現されると好ましい。EXPブロック34は、好ましくは、LOGブロック22で使用されるベースに対応するベースを有する。あるいは、EXPブロック34は、この技術分野で周知のようなソフトウェア・サブルーチンとして実施されてもよいし、ルックアップ表のような他の等価手段から実施されてもよい。この機能の公知の実行例の例は、KnuthおよびAbramowitz等の参考文献および先に引用した米国特許第3,518,578号に見いだされる。
【0055】
本発明のアナログ具体例において、EXPブロック34は、指数変換曲線を有する増幅器であってもよい。このような回路の例は、米国特許第3,518,578号の図8、9に見いだされる。
【0056】
音響は、2つの成分の積として概念化され得る。第1成分は、e(t)として書くことができる常時正のゆっくり変化するエンベロプであり、第2成分は、v(t)として書くことができる急速に変化するキャリアである。音響全体は、次のように表現され得る。すなわち、
s(t)=e(t)・v(t)
これは、図2Aのブロック20への入力である。
【0057】
オーディオ波形が常に正ではない(すなわち、v(t)が半分の時間について負である)ので、LOGブロック22の出力部での対数は実数部分と虚数部分を有することになる。LOGブロック22がs(t)掛けるemaxの絶対値を処理するように構成してある場合、その出力は、log[e(t)/emax]とlog|v(t)|の合計となる。log|v(t)|は、高周波を含むので、本質的に影響を受けない高域フィルタ28を通過することになる。成分log[e(t)/emax]は、低周波構成要素を含み、低域フィルタ30を通過し、Klog[e(t)/emax]として増幅器32から出る。したがって、EXPブロック34の出力は、次のようになる。すなわち、
(e(t)/emax)K・v(t)
EXPブロック34の出力は、emaxのゲインと共に増幅器36に送られ、信号と再び掛け合わされて、増幅器20において1/emaxと先に掛け合わされた入力レベルに適正に対応させる。増幅器20、36は、たったいま説明したようにゲインが異なっていることを除いては同じように構成される。
【0058】
K<1のとき、図2Aの乗算AGC回路16−nにおける処理は圧縮機能を実施することがわかる。当業者であれば、Kのこれらの値を使用している本発明の具体例が、また、聴覚補償以外の用途にも役立つことは理解できよう。
【0059】
聴覚補償システムとして使用される本発明のこのような具体例によれば、Kは0と1の間の値の変数であってもよい。Kの値は、各聴覚障害者に対して各周波数帯域について異なることになり、以下のように定義できる。
【0060】
K=[1−(HL/(UCL−NHT)]
ここで、HLは閾値(dB)での聴覚損失であり、UCLは上方快適レベル(dB)であり、NHTは正常聴覚閾値(dB)である。したがって、本発明の装置は、普通の言語病理学検査で決まるような着用者の個々の聴覚障害に合わせるようにカスタム化することができる。本発明における乗算AGC回路16−nは、上方音響快適レベルでの信号強度についてのゲインを与えないか、あるいは、その周波数帯域における正常聴覚閾値と関連した信号強度についての聴覚損失に等しいゲインを与えるかである。
【0061】
図2A−2Cに示すブロック図の実施例において、K>1のとき、AGC回路16−nはエキスパンダとなる。このような回路の有用な用途は、所望の信号を拡張させることによるノイズ低減を含む。
【0062】
対照的に、当業者であれば、Kの値が負である(代表的には、約0から−1までの有用範囲内にある)場合の図2A−2Cに示すブロック図の実施例において、弱い音が大きくなり、大きなサウンドが弱くなるということは理解できよう。このモードにおける本発明の有用な用途は、低ボリューム・オーディオ信号の了解度をより大きい音を持つ同じ信号ラインで向上させるシステムを含む。
【0063】
乗算AGCが1968年以降文献において利用でき、補聴器回路への潜在的な応用を有すると述べられてきたにもかかわらず、主として補聴器文献によって無視されてきた。しかしながら、研究者等は、或る種の周波数依存ゲインが適切な聴覚補償およびノイズ抑制を行うのに必要であることには同意していた。これは、聴覚損失も周波数依存であるからである。それでも、この同意は、かなり多くの周波数帯域が使用される場合に、AGCを有するフィルタのバンクが音声了解度を破壊することになるという認識によって後退している。たとえば、R. Plomp, The Negative Effect of Amplitude Compression in Hearing Aids in the Light of the Modulation-Transfer Function, Journal of the Acoustical Society of America, 83,6, June 1983, pp. 2322-2327を参照されたい。オーディオ・スペクトルを横切る複数のサブ帯域について個別に構成された乗算AGCを本発明に従って使用し得る方法は、この技術分野ではかなりの進歩である。
【0064】
図2Bは、図2Aに示す回路の変形例のブロック図である。当業者であれば、増幅器20を排除することができ、また、そのゲイン(1/emax)が減算器回路38において低域フィルタ30の出力からlog[emax]値を減算することによって同等に実施可能であることは了解できよう。同様に、図2Bにおいては、増幅器36が排除してしまってあり、そして、そのゲイン(emax)が、本発明の概念から逸脱することなく、加算器回路40において増幅器32からの出力に値log[emax]を加算することによって同等に実施されている。図2Bのデジタル実施例において、減算または加算は、単に量log[emax]を減算/加算することによって行われ得る。その反面、アナログ具体例においては、「Microelectronic Circuits」, by A.S. Sedra and K.C. Smith, Holt Rinehart and Winston, 1990, pp. 62-65に例示されたような加算増幅器を使用し得る。
【0065】
ノイズがあるとき、乗算システムに対する入力信号は、次のように特徴づけることができる。すなわち、
s(t) = [ed(t)xen(t)]v(t)
ここで、ed(t)は、エンベロプの動的部分であり、en(t)はエンベロプのほぼ静止している部分である。
【0066】
本発明の乗算AGC回路16の好ましい実施例によれば、図2Cは、エンベロプのほぼ静止している部分en(t)で実行されるノイズ抑制を例示している。図2Cにおいて、LOGブロック22の第2出力は、高域フィルタ28、帯域フィルタ42および低域フィルタ44に接続されている。高域フィルタ28は、好ましくは、上記したように16Hzに設定され、log|v(t)|と、log[ed(t)]+log[en(t)]に均等であるlog[ed(t)xen(t)]とを分離する。ここで、ed(t)およびen(t)は正の量である。
【0067】
好ましい実施例において、帯域通過フィルタ42は、エンベロプ振幅のlog[ed(t)]信号およびlog[en(t)]信号を分離する所望演算と一致する16HzおよびD.C.(この応答性を与える帯域通過フィルタ伝達関数の好ましい具体例の1例が図4Bに示してある)でのゼロ(すなわちゼロ応答)でシングル・オーダー・ポールを備える。本発明によれば、6秒より長い間エンベロプ振幅においてほぼ一定に留まる音は静止状態と特徴づけられる。したがって、帯域フィルタ42についてより低い遮断周波数が1/6Hzであるという仕様は、6秒持続時間を有する信号に対応する。ここで、当業者であれば、他の遮断周波数およびフィルタ次数が、本発明によるエンベロプのlog[ed(t)]、log[en(t)]信号部分を分離する所望仕様を実施するように選ぶことができることは了解できよう。
【0068】
図4A〜4Cは、それぞれ、高域フィルタ28、帯域通過フィルタ42および低域フィルタ44の伝達関数を示している。図4Aにおいて、高域フィルタ28の出力は、log|v(t)|である。図4Bにおいて、帯域通過フィルタ42の出力は、log[ed(t)]のような音声としばしば関連する動的あるいは急速変化時間エンベロプの対数である。図4Cにおいて、低域フィルタ44の出力は、ほぼ静止している、あるいは、ゆっくり変化する時間エンベロプlog[en(t)]の対数である。ほぼ静止しているエンベロプは、一定のディン(din)、一定の出力ハム・レベルを有するファン、あるいは、一定のパワー・レベルを有するホワイト・ノイズまたはカラード・ノイズを与える多数話し手音声のようなノイズと最も頻繁に関連する。
【0069】
本発明によれば、ノイズen(t)は、線形減衰係数attenによって低減され得る。ここで、振幅は、オリジナル振幅掛けるatten係数に等しくなるように変化させられる。一定の音響成分(すなわち、ほぼ静止しているエンベロプ)のレベルの低減は、減衰の対数をlog[en(t)]に加えることによって得られる。次に図2Cを参照して、log[atten](この値は1より小さいatten値について負である)が増幅器32の出力に加算される。ここで、図2Bに示すノード38に関して教示されるように増幅器20の代わりに−log[emax]のIF-THEN演算が行われることを了解されたい。
【0070】
なお図2Cを参照して、増幅器32、33の出力は、高域フィルタ28の出力と共に、べき算ブロック34に接続された出力部を有する合算ノード48でlog[atten]係数と加算される。
【0071】
増幅器ブロック33について選ばれたゲインGの値は、動的音声部分に適用されるべき所望の強化量で決まる。本発明において、Gの値は、以下の範囲内にあるように選ばれる。
【数1】
Figure 0004705300
【0072】
ここで、edmaxは、あたかもノイズ減衰がないかのように、デザイナーが信号レベルに戻すのを好む動的または音声部分のレベルである。好ましい実施例において、edmaxは、快適な傾聴レベルの値であるように設定され、そして、減衰値は0.1に設定される。それ故、この変数選択の場合、出力信号は0.1倍だけ減衰するが、エンベロプの動的部分はG倍に増幅され、強化される。当業者であれば、Gの他の値を選んで、本発明の教示から逸脱することなく、BPF42の出力の短期平均(または同等にlog[ed(t)])に基づいてGの値について時間変化計算を含む、信号エンベロプの動的部分について特定の所望出力レベルを得ることができることは理解できよう。
【0073】
合算ジャンクション48の出力部は、指数ブロック34の第2入力部に接続される。指数ブロック34の第1入力部は、v(t)の符号情報を含み、指数ブロック34の第2入力部で入力と結合されたとき、次のような指数ブロック34の出力を形成する。
【数2】
Figure 0004705300
【0074】
したがって、図2Cに示す乗算AGC回路16は、ほぼ6秒より長い相対的に一定の振幅を有する音響信号を減衰させることになるが、動的、音声信号へのゲインを増大させる(G一定による)ことになる。好ましくは、attenの値(その対数が合算ジャンクション・ブロック48に加えられる)は、補聴器のユーザの管理の下にあってもよい。こうして、補聴器のユーザは、ボリューム制御によるボリュームの選択に類似する要領で背景ノイズ減衰を設定することができる。ここで、当業者であれば、補聴器またはステレオ・サウンド・システムにおいて代表的に使用される種々の公知ボリューム制御装置を使用してデジタル・システムあるいはアナログ・システムにおいて背景ノイズ減衰レベルを調整することができる理解できよう。
【0075】
次に図5Aを参照して、ここには、本発明の乗算AGC回路16−nの別の実施例のブロック図が示してある。ここでは、対数機能が低域フィルタ機能に続く。当業者であれば、図2Aの回路の対応するブロックと同じ機能を有する図5Aの回路の個々のブロックが図2Aのブロックの対応するものと同じ要素から構成され得ることは理解できよう。
【0076】
図2Aの乗算AGC回路16−nと同様に、図5Aの乗算AGC回路16−nは、図1に示すオーディオ帯域フィルタ14−nのうちの1つからの出力を増幅器20での入力信号として受け入れる。なお図5Aを参照して、増幅器20は、1/emaxのゲインを有するように設定される。ここで、emaxは、AGCゲインを適用しようとしているオーディオ・エンベロプの最大許容値である。
【0077】
増幅器20の出力は、絶対値回路60に通される。アナログ具体例において、絶対値回路60を実装する公知方法は無数にある。たとえば、A. S. Sedra and K. C. Smith, Microelectronic Circuits, Holt, Rinehart and Winston Publishing Co., 2nd ed. 1987を参照されたい。デジタル具体例において、当業者であれば、絶対値回路が単に回路の入力部でデジタル数の大きさを獲得するだけで実施し得ることは理解できよう。
【0078】
絶対値回路60の出力は、低域フィルタ3Dに通される。低域フィルタ30は図2Aに関して開示したと同じ要領で構成され得る。当業者であれば、絶対値回路60と低域フィルタ30の組み合わせがエンベロプe(t)の評価を与え、それ故、エンベロプ検出器として知られていることは理解できよう。エンベロプ検出器のいくつかの具体例がこの技術分野で周知であり、本発明の教示から逸脱することなく使用し得る。図5Aの実施例では、低域フィルタ30がLOGブロック22に先行しているので、遮断周波数がその臨界帯域幅の1/8までであることが好ましい。しかしながら、16Hzの公称遮断周波数も使用し得ることは了解されたい。
【0079】
現在のところ好ましい実施例において、低域フィルタ30の出力は、LOGブロック22において処理され、信号の対数を導く。LOGブロック22への入力は、絶対値ブロック60の作用により常に正である。それ故、LOGブロック22からの位相項または符号項は使用されない。ここで再び、増幅器20のゲインが1/emaxに設定されるため、emax未満の入力についての増幅器20の出力は決して1より大きくなることはなく、LOGブロック22からの対数項は常に0以下となる。
【0080】
図5Aにおいて、図2Aに関して行われた説明からLOGブロック22の別の具体例を得ることができる。これは、図5AのLOGブロック22では精度が低くてもよいからである。ここで、許容できないほど高いノイズ・レベルが不正確さから生じるので、この別具体例は図2AのLOGブロック22の具体例で使用するには適するとは考えられないことは了解されたい。LOGブロック22のこの別実施例においては、LOGブロック22への入力を表す浮動小数点表現の仮数部の指数、分数部分を互いに加算してLOGブロックの出力を形成する。たとえば、IEEE標準754―1985フォーマットに準拠する数12の浮動小数点表現は、1.5×23である。LOGブロック22の別の具体例によれば、log212の値は3.5とみなされる。これは、23の指数と1.5の分数部分の合計が3+0.5=3.5として算出されるからである。log212の真の値は3.58496である。ほぼ2%のエラーは許容できると考えられる。
【0081】
LOGブロック22の対数出力信号は、(K―1)に等しいゲインを有する増幅器62に与えられる。図2Aの増幅器32と異なるそのゲイン以外には、増幅器32、62は同様に構成されていてもよい。増幅器62の出力は、EXPブロック34の入力部に与えられ、このEXPブロック34は、信号を処理して指数(真数)関数を提供する。
【0082】
EXPブロック34の出力は、乗算器64における増幅器20への入力の遅延バージョンと組み合わせられる。ここで、遅延要素66は適切な遅延量を与えるように機能する。乗算器64を実現する公知方法は多数存在する。デジタル具体例においては、これは、単に、2つのデジタル値の乗算である。アナログ具体例においては、A. S. Sedra and K. C. Smith, Microelectronic Circuits, Holt, Rinehart and Winston Publishing Co., 3rd ed. 1991(特に900ページ参照)に示されるようなアナログ乗算器が必要である。
【0083】
図2Aに示す実施例と同様に、図5Aの実施例の増幅器20への入力は、乗算器64の入力部への付与に先立って遅延される。遅延ブロック66は、低域フィルタ30のグループ遅延に等しい遅延を有する。
【0084】
図5Bは、図5Aに示す回路の変形例である回路のブロック図である。当業者であれば、増幅器20を排除でき、そのゲイン、1/emaxが、本発明の概念から逸脱することなく、図5Bに示すように、合算回路68においてLOGブロック22の出力から値log[emax]を減算することによって同等に実施され得ることは理解できよう。
【0085】
図5Cは、本発明によるノイズ抑制を含む乗算AGC回路16の好ましい実施例を示している。この乗算AGC回路16は、図5A、5Bに示す乗算AGC回路16−nと類似している。但し、本発明のノイズ抑制構成要素が含まれている。したがって、図5Cに示す付加的な回路要素のみをここに説明する。
【0086】
本発明によれば、LOGブロック22の出力でのlog[e(t)]は、高域フィルタ70および低域フィルタ72に接続されている。低域フィルタ72の具体例は、1/6Hzでコーナを有する単純な1次低域フィルタ特性で作られ得る。この実施例は、当業者には周知のものである。高域フィルタは、1次高域フィルタ伝達関数が、1から減算される低域フィルタ関数であるという理解から実現され得る。このように実現された高域フィルタ70が図6に示してあり、これは当業者には周知のものである。高域フィルタ70および低域フィルタ72についての伝達関数は、それぞれ、図7A、7Bに示してある。ここで、説明したもの以外のフィルタ次数および遮断周波数を本発明に従って設計選択事項として選ぶことができることは了解されたい。
【0087】
あるいは、図5Cの高域フィルタ70および低域フィルタ72は、図8に示す要領でノイズ除去器と取り替えることもできる。ノイズ除去器の種々の具体例は、当業者にとっては周知である。ノイズ除去器の適当な具体例が、先に引用したHarry Tederの論文、「Hearing Instruments in Noise and the Syllabic Speech-to-Noise Ratio」、Hearing Instruments, Vol. 42, No.2, 1991に示唆されている。この実施例においては、音声が存在するときのノイズ評価と音声なしのときのノイズ評価との間でノイズ除去器が切り替わるときに切り替え人為構造が生成される。
【0088】
図5Cに再び目を転じて、高域フィルタ70の出力は、音響信号エンベロプの動的部分を表すlog[ed(t)]である。低域フィルタ72の出力は、信号エンベロプのほぼ静止している部分を表すlog[en(t)]である。合算ジャンクション38で、値log[emax]は、図5Bにおける合算ジャンクション68で値log[emax]が減算されたと同様に低域フィルタ72の出力から減算される。HPF2ブロック70からの出力である信号の対数の動的部分は、ゲイン(G−1)によって増幅される。本発明によれば、次に、値log[atten]も、合算ジャンクション74で増幅器ブロック61、62の出力に加算される。
【0089】
合算ジャンクション74からの出力は、べき算ブロック34への入力である。べき算ブロック34の出力は、乗算器64によって遅延ブロック66を介して入力信号の値を掛けられる。上記したようなKの選択は、減衰値attenの選択と共に、乗算AGC回路16のうちの2以上において行われ、チャネルのいくつかを横切って背景ノイズの同様の減衰を行い得る。減衰値attenは、上記の要領でボリューム制御回路によって制御され得る。
【0090】
図5Dは、本発明によるノイズ抑制の別の実施例を示している。図5Dにおいて、LOGブロック22の出力は、2つの経路に分割される。LOGブロック22からの1つの出力は、合算ジャンクション75に送られ、「a」で示す量が加算される。「a」の値は、それぞれのAGC帯域16−nについての音響閾値の対数(ブロック22のlogと同じベースに対する)である。先に述べたように、ノイズ除去器ブロック45は、エンベロプの対数の静止部分log[en(t)]の評価を行うのに用いる。エンベロプの対数の動的部分log[ed(t)]の評価は、ノイズ除去器ブロック45の出力に合算ジャンクション75の出力を加算することによって合算ジャンクション76の出力部のところで得られる。合算ジャンクション76からのこの出力は、次に、ゲインG'を掛けられる。すなわち、
【数3】
Figure 0004705300
ここで、
【数4】
Figure 0004705300
そして、
【数5】
Figure 0004705300
【0091】
適応ゲインG'の選択は、3つの仕様から得られる。すなわち、(1)最大所望音声レベルを快適な傾聴レベルに復元するようにゲインに対応する最大ゲインKmax;(2)所望の減衰量atten;そして、(3)統一ゲインが望まれるk=log[ed(t)]の値である。
【0092】
なお図5Dを参照して、ノイズ除去器ブロック45の出力は、また、合算ジャンクション79のところでlog[atten]と組み合わせられる。この合算ジャンクション79および増幅器G'の出力はジャンクション77で合算され、そして、それ以降の出力はブロック32においてKに掛け合わされる。次に、LOGブロック22からの出力が、乗算器K(Kの選択は先に記載した)の出力から減算され、次いで、ユーザ「b」についての閾値の対数と、ジャンクション74で合算される。
【0093】
図5Eは、本発明のノイズ低減の別の実施例を示している。
【0094】
図2A−2Cおよび図5A-5Cに示す乗算AGC回路16−nは異なって実行されるが、図2A−2Cのログ・ローパス具体例から生じる出力および図5A-5Cのローパス・ログ具体例から生じる出力はほぼ等しく、一方の出力が他方よりも望ましいとは言えないことがわかった。実際、これらの出力は、両方についてのいずれか良好な表現の出力と看做すに充分に類似していると思われる。ログ・ローパスおよびローパス・ログが等価であることが人間の聴覚乗算AGC構成にとって適切であるかどうかを決定するのに音声データについて実施したテストの傾聴結果は了解度を示し、そして、両方の構成における忠実度はほとんど見分けがつかなかった。
【0095】
了解度および忠実度は両方の構成において等価であるが、特定の正弦波トーンについてのシステムのキャリブレーション中の出力レベルの分析では、ログ・ローパス・システムがキャリブレーションから僅かにそれると共に、ローパス・ログがキャリブレーションを維持したことが分かった。いずれの構成も均等な傾聴結果を与えるように見えるが、キャリブレーション問題は図5A-5Cのローパス・ログ具体例を支持する。
【0096】
本発明のマルチ帯域乗算AGC適応圧縮法は、明確なフィードバックまたはフィードフォアワードを持たない。修正ソフト・リミッタの乗算AGC回路16−nへの追加によって、安定した過渡期応答および低いノイズ・フロアが保証される。本発明で用いるための乗算AGC回路のこのような実施例が図9Aに示してある。
【0097】
図9Aの実施例は、図5Aに示す実施例と類似しているが、絶対値回路60を送る代わりに、増幅器20が低域フィルタ30に続く。それに加えて、修正ソフト・リミッタ86が、EXPブロック34と乗算器64との間に挿入される。アナログ具体例においては、ソフト・リミッタ86は、たとえば、A. S. Sedra and K. C. Smith, Microelectronic Circuits, Holt, Rinehart and Winston Publishing Co., 2nd ed. 1987(特に230―239ページ参照)と同様に設計することができ、ゼロに漸近する飽和領域の勾配を有する。ブロック86の出力は、システムのゲインである。図9Aの回路におけるソフト・リミッタ・ブロック86の挿入は、ゲインを最大値に制限する。この最大値は、閾値での聴覚損失を補正するのに必要なゲインとなるように設定される。
【0098】
デジタル具体例において、ソフト・リミッタ86は、サブルーチンとして実現できる。このサブルーチンは、閾値での聴覚損失を補正するのに必要な、乗算器64によって実現されるべきゲインの値よりも小さい全入力値についてソフト・リミッタ86への入力に等しい出力を乗算器64へ与え、この値より大きい全ての入力についての閾値での聴覚損失を補正するのに必要なゲインの値に等しい出力を乗算器64へ与える。当業者であれば、乗算器64が、そのゲインがソフト・リミッタ86の出力によって制限される可変ゲイン増幅器として機能することは理解できよう。それは、閾値より下のソフト音についてのゲインを、閾値での聴覚補正のために必要なゲインに等しいか、あるいは、それより小さい値に制限するためにソフト・リミッタを修正するのにさらに便利であるが、必ず必要というわけではない。ソフト・リミッタ86がこのように修正された場合、聴覚の閾値より下のゲインが入力レベルにおける小変化に関して確実に不連続とならないように注意しなければならない。
【0099】
修正ソフト・リミッタ86の使用は、無音から不快なほど大きな強ささまでの移行を急速になす音声刺激に対するシステム応答における移行性オーバーシュートを排除することによって別の有益な効果を与える。ソフト・リミッタ86の安定化効果は、また、システムに適切な遅延を導入することによって達成され得るが、これは損傷性の副作用を有する可能性がある。自分自身の声が過剰に遅れて耳に伝送されることで、吃音を誘発する可能性のあるフィードバック遅延が生じる。修正ソフト・リミッタ86の使用は、他の技術によって使用される音響遅延を排除し、同時に、安定性を与えると共に信号対雑音比を強化する。
【0100】
図9Bは、図9Aに示す回路の変形例のブロック図である。当業者であれば、増幅器20を排除することができ、そして、そのゲイン機能が、本発明の概念から逸脱することなく、図9Bに示すように合算回路88において値log[emax]をLOGブロック22の出力から減算することによって、同等に実現され得ることは理解できよう。
【0101】
次に図10に目を転じて、本発明に従って3つの勾配ゲイン曲線を備える乗算AGC回路16の好ましい実施例が、ここには示してある。図10において、LOGブロック22の出力は、第1、第2のコンパレータ回路90−1、90−2に接続される。これらのコンパレータ回路は、図11における3つのゲイン領域のうちどれが適用されるかについて決定するために、LOGブロック22の出力を所定の入力レベルと比較する。第1、第2のコンパレータ回路の出力は、ゲイン・マルチプレクサ92および正規化マルチプレクサ94の第1、第2の選択入力に接続される。ゲイン・マルチプレクサ92に対する第1、第2、第3の入力K0’、K1’およびK2’は、増幅器42における(K−1)の値を与える。正規化マルチプレクサ94に対する第1、第2、第3の入力A0’、A1’、A2’は、合算ノード96によって増幅器42の出力に値(K−1)log[emax]を加算することによって図2A、5Aおよび9Aの増幅器20によって実行される正規化を与える。正規化が増幅器42の演算の後に生じるので、Kの値が正規化マルチプレクサ94へ3つの入力の各々に含まれることは了解されたい。さらに、3つの入力の各々に含まれるKの値は、ゲイン・マルチプレクサ92からの出力に応答して増幅器42によって使用されるKの値と一致する。
【0102】
本発明のこの実施例によれば、コンパレータ回路90−1および90−2は、LOGブロック22からの出力の振幅を展開、圧縮、飽和領域に分ける。3つの領域において入力部に与えられるゲインの典型的なグラフが図11に示してある。展開領域の上限は、ユーザに補聴器の装着したときに決まる閾値聴覚損失によって設定される。LOGブロック22からの出力の振幅が閾値聴覚損失より下にあるとき、入力K0’およびA0’が選ばれ、増幅器42のゲインが入力部に対して展開性ゲインを与えると好ましい。望ましくないノイズの原因となる低レベルでの入力信号エネルギについては、展開は、これらの低レベル信号までゲインを減らすことによって有用である。
【0103】
圧縮領域の下限は閾値聴覚損失により設定される。そして、上限は圧縮領域において信号に与えられる圧縮および飽和領域における圧縮によって設定される。LOGブロック22からの出力の振幅が閾値聴覚損失より上で、圧縮領域の上限の下にあるとき、入力K1’およびA1’が選ばれ、増幅器42のゲインは、好ましくは、入力への圧縮ゲインを与えることになる。各チャネルにおいて行われる圧縮は、補聴器の着用時に決定されることになる。
【0104】
LOGブロック22からの出力の振幅が圧縮領域の上限より上にあるときには、入力K2’およびA2’が選ばれる。そして、増幅器42のゲインは、好ましくは、入力に圧縮ゲインを与えることになる。飽和領域における圧縮は、代表的には、圧縮領域における圧縮より大きい。飽和領域において、出力は出力トランスデューサの最大出力能力より低いレベルに限定される。これは、他のタイプの出力制限、たとえば、ピーク・クリッピングより好ましい。
【0105】
安定性を達成する代替方法としては、オーディオ帯域フィルタ14−1〜14−nへの入力に低レベルのノイズ(すなわち、聴覚閾値レベルより低い強度を有するノイズ)を加算する方法がある。このノイズは、そのスペクトル形状が通常の聴覚個人についての聴覚閾値曲線に周波数の関数として追従するように重み付けされなければならない。これは、図1においてノイズ発生器100によって概略的に示してある。ノイズ発生器100は、オーディオ帯域フィルタ14−1〜14−nの各々へ低レベルのノイズを注入するものとして示してある。数多くのノイズ生成用の回路および方法が、この技術分野では良く知られている。
【0106】
図5A−5D、図9A、9Bおよび図10の実施例においては、低域フィルタ30の前にある絶対値回路60からなるサブ回路がエンベロプ検出器として機能する。絶対値回路60は、適切なスケーリング調節を行いながら、半波整流器、全波整流器または出力が入力のRMS値である回路として機能し得る。このエンベロプ検出器サブ回路の出力は比較的低い帯域幅を有するので、この回路のデジタル実現におけるエンベロプ更新は、エンベロプ帯域幅についてのナイキスト・レート(500Hz未満のレート)でのみ行われる必要がある。当業者であれば、これが低パワー・デジタル具体例を可能にすることは理解できよう。
【0107】
聴覚補償のための乗算AGC全範囲適応圧縮は、いくつかの重要な方法で以前のFFT作業と異なる。本発明のマルチバンド乗算適応圧縮技術は、周波数領域処理を使用しないが、その代わりに、必要な臨界帯域幅に基づく類似した、あるいは、等価のQを持つ時間領域フィルタを使用する。それに加えて、FFT方法とは対照的に、乗算AGC適応圧縮を使用する本発明のシステムは、最小限の遅延で実施することができ、明確なフィードフォアワードやフィードバックはない。
【0108】
従来技術のFFT具体例においては、この従来技術を使用して測定されるパラメータは、フォン空間において識別された。マルチバンド乗算AGC適応圧縮を組み入れている本発明の現在のところ好しいシステムは、本来的に漸増を含んでおり、図2A−2C、図5A−5Eおよび図9A、9Bに示した実施例において周波数の関数として、閾値聴覚損失および上方快適レベルの測度だけを必要とする。
【0109】
最後に、本発明のマルチバンド乗算AGC適応圧縮技術は、修正ソフト・リミッタ86、あるいは、従来技術の処理によって導入される付加的なノイズ人為構造を排除し、音響忠実度を維持する低レベル・ノイズ発生器100を利用する。しかしながら、より重要なことであるが、適切な時間遅延が使用されない場合、従来技術のFFT方法は、無音から大きい音への移行中に不安定になる。本発明の現在のところ好ましい乗算AGC実施例は、最小限の遅延で安定する。
【0110】
本発明のマルチバンド乗算AGC適応圧縮方法は、いくつかの利点を有する。図2A―2C、図5A-5Eおよび図9A、9Bに関して説明した実施例の場合、着用した人間についての閾値および上方快適レベルのみを測定するだけでよい。同じ低域フィルタ設計を使用して、処理されつつある周波数帯域の各々について、音響刺激s(t)のエンベロプe(t)または同等にlog[e(t)]を抽出する。さらに、この同じフィルタ設計を使用し、単に上記のように低域フィルタの遮断周波数を変えることによって、無音から大きい音までの急速な移行が予期される場合を含む他の用途を達成できる。
【0111】
本発明のマルチバンド乗算AGC適応圧縮方法は時間遅延が最小である。これは、個人が発言し、脳への直接経路応答として自身の声を聴き、補聴器システムを通して処理された遅延エコーを受け取るときに生じる聴覚混乱を排除する。
【0112】
係数emaxでの正規化は、補聴器について、所定の上方快適レベルより上の出力レベルで増大し、過度の音響強度から耳が損傷を受けることを防ぐゲインを提供することを数学的に不可能にする。emaxより大きい音響入力レベルの場合、装置は、それを増幅するよりはむしろ音響を減衰させる。当業者であれば、本発明の概念から逸脱することなく最大安全レベルに出力を制限することによってさらに耳を保護することができることは理解できよう。
【0113】
個別の指数定数Kが各周波数帯域に使用され、すべての入力強度レベルについて正しいゲインを正確に与える。それ故、線形範囲、圧縮範囲間の切り替えが生じることはない。したがって、切り替え人為構造が排除される。
【0114】
本発明のマルチバンド乗算AGC適応圧縮方法は、明確なフィードバックまたはフィードフォワードを持たない。修正ソフト・リミッタの追加の場合、安定した過渡期応答および低ノイズ・フロアーが保証される。遅延が最小であり、乗算AGCにおける明確なフィードフォワードまたはフィードバックの欠如の結果として本発明による、従来技術を超えた重要な付加的な利点は、耳に密着する補聴器マイクロホンおよびスピーカの両方を有する補聴器で代表的なうっとうしいオーディオ・フィードバックまたは再生の改善である。
【0115】
乗算AGCは、その単純さにより、デジタル、アナログいずれの回路でも実施可能である。低パワー実施が可能である。先に述べたように、デジタル実現においては、エンベロプ更新(すなわち、増幅器20、LOGブロック22、増幅器42によって示される動作)は、エンベロプ帯域幅についてナイキスト・レート(500Hz未満のレート)でのみ実施する必要があり、それによって、パワー需要をかなり減らすことができる。
【0116】
本発明のマルチバンド乗算AGC適応圧縮システムは、また、他のオーディオ問題にも適用できる。たとえば、ステレオ・システムおよび自動車オーディオ装置において代表的に使用される音響イコライザは、唯一のユーザ調節が各周波数帯域における所望の閾値ゲインであるから、マルチバンド乗算AGC方法の利点を獲得することができる。これは、現在のグラフィック・イコライザに対する調節手順と同じであるが、AGCは、現在のシステムで生じるような異常音量増大を招くことなく所望の周波数ブーストを行える。
【0117】
本発明の別の態様によれば、耳内聴覚補償システムは、電気信号を音響エネルギに変換する2つのトランスデューサを使用する。2つの最近の開発が、二重受信器補聴器を可能にした。最初の開発は、小型化した可動コイル・トランスデューサの開発であり、次の開発は、本願で開示した臨界帯域圧縮技術であって、これは、1994年7月8日出願の親出願通し番号08/272927(現在は、米国特許第5,500,902号)にも開示され、クレームに記載されている。
【0118】
次に図12を参照して、ここには、電気信号を音響エネルギに変換する2つのトランスデューサを使用する耳内聴覚補償システム110のブロック図が示してある。第1のトランスデューサ112(たとえば、普通の鉄製アーマチャ式補聴器レシーバ)は低周波数(たとえば、1kHzより低い周波数)に対して使用され、第2のトランスデューサ114は高周波数(たとえば、1kHzより高い周波数)に対して使用される。
【0119】
携帯式電子装置のためのハイファイ・ヘッドフォンの需要は、全オーディオ範囲(20〜20,000Hz)にわたって平坦な応答を行う1/2インチ直径未満の可動コイル・トランスデューサの開発を刺激した。耳管に装着するために、トランスデューサは、直径1/4インチ未満でなければならない。したがって、市販のトランスデューサは適用できない。3/16直径までの市販の可動コイル・ヘッドフォンのスケーリングで得たトランスデューサは、1kHzから優れた効率を有し、人間の聴覚の上方周波数限度を充分に超えている。本発明のシステムは、このようなスケールド可動コイル・トランスデューサ114をツィータとして使用し、標準のKnowles(または類似した)鉄製アーマチャ式補聴器トランスデューサ112をウーハとして使用する。これらの装置は、共に、耳管に容易に装着することができる。
【0120】
図12に示す聴覚補償システムは、概念的には親発明と同じであるが、それぞれ、帯域フィルタおよび乗算AGCゲイン制御器を含む処理チャネルを2つのグループに分けている点で異なる。第1のグループは、帯域フィルタ14−10、14−11、14−12および乗算AGC回路16−10、16−11、16−12からなり、鉄製アーマチャ式トランスデューサ112の共鳴より下の周波数を持つ信号を処理する。第2のグループは、帯域フィルタ14−20、14−21、14−22および乗算AGC回路16−20、16−21、16−22からなり、鉄製アーマチャ式トランスデューサ114の共鳴より上の信号を処理する。第1グループの処理チャネルの出力は、合算要素116−1で合算され、パワー増幅器118−1に送られる。このパワー増幅器が鉄製アーマチャ式トランスデューサ112を駆動する。第2グループの処理チャネルの出力は、合算要素116−2で合算され、パワー増幅器118−2に送られる。このパワー増幅器は、高周波可動コイル・トランスデューサ114を駆動する。両方の処理チャネルへの入力は、エレクトレット・マイクロホン120およびプリアンプ122によって供給される。
【0121】
高低成分への周波数分離が帯域フィルタを使用して達成される図12に示す配置を用いると、クロスオーバー・ネットワークが不要となり、それによって、システム全体を簡略化できる。当業者であれば、第1グループにおける処理要素、増幅要素をそれらが作動する周波数帯域よりも高い周波数帯域に対して特殊化することができる。これは第2グループでも可能である。この特殊化は、実際問題としてかなりのパワー消散を減じることができる。このような特殊化の例としては、特別なトランスデューサについて設計を最適化するパワー増幅器を使用すること、各グループの帯域幅に対して適切にサンプリング・レートを使用することおよび他の周知の設計最適化がある。
【0122】
高周波トランスデューサ114のための小型可動コイル・トランスデューサの別の実施例も本出願人によって成功裏に実行された。現代のエレクトレットは、高周波出力トランスデューサとして役立つのに充分に高い電子機械変換効率を得るのに充分な安定した高い分極を有する。このようなトランスデューサは、超音波用途において長く使われてきたが、聴覚補償用途には適用されたことはなかった。これらのエレクトレット装置を高周波トランスデューサ114として使用するとき、当業者であれば、上記の設計特殊化を採用しなければならず、パワー増幅器について特別な改善を行い、これを特殊化して、可動コイル・トランスデューサによって要求されるよりもかなり高い電圧を供給しなければならないことは理解できるであろう。
【0123】
本発明の実施例および応用を図示し、説明してきたが、上記よりも多くの修正が、本発明の概念から逸脱することなく可能であることは当業者には明らかであろう。したがって、本発明は、添付の特許請求の範囲を除いて限定されることはない。
【図面の簡単な説明】
【図1】 図1は、本発明に従った聴力補償システムのブロック図を示す。
【図2A】 図2Aは、本発明に従った使用に適した相乗的AGC回路の第一の実施例のブロック図を示す。
【図2B】 図2Bは、本発明に従った使用に適した図2Aに記載の相乗的AGC回路の代替的実施例のブロック図を示す。
【図2C】 図2Cは、本発明に従ったノイズ抑制を伴う、相乗的AGC回路の第一の実施例のブロック図を示す。
【図3】 図3は、図2Aに記載の相乗的AGC回路に採用されたフィルタの応答特性のプロットである。
【図4A】 図4Aは、本発明に従った図2Cの相乗的AGC回路に採用されたフィルタの応答特性のプロットを示す。
【図4B】 図4Bは、本発明に従った図2Cの相乗的AGC回路に採用されたフィルタの応答特性のプロットを示す。
【図4C】 図4Cは、本発明に従った図2Cの相乗的AGC回路に採用されたフィルタの応答特性のプロットを示す。
【図5A】 図5Aは、本発明に従った使用に適した相乗的AGC回路の第二の実施例のブロック図を示す。
【図5B】 図5Bは、本発明に従った使用に適した図5Aに記載の相乗的AGC回路の代替的実施例のブロック図を示す。
【図5C】 図5Cは、本発明に従ったノイズ抑制を伴う、相乗的AGC回路の第二の実施例のブロック図を示す。
【図5D】 図5Dは、本発明に従ったノイズ抑制を伴う、相乗的AGC回路の第三の実施例のブロック図を示す。
【図5E】 図5Eは、本発明に従ったノイズ抑制を伴う、相乗的AGC回路の第四の実施例のブロック図を示す。
【図6】 図6は、本発明に従った使用に適したハイパス・フィルタの実装を示す。
【図7A】 図7Aは、本発明に従った、図5C、5D、および5Eの相乗的AGC回路で採用されたフィルタの応答特性のプロットを示す。
【図7B】 図7Bは、本発明に従った、図5C、5D、および5Eの相乗的AGC回路で採用されたフィルタの応答特性のプロットを示す。
【図8】 図8は、本発明に従って図5Cおよび5Dに記載されたフィルタと置き換えるのに適したノイズ評価装置を示す。
【図9A】 図9Aは、本発明に従った使用に適した相乗的AGC回路の第三の実施例のブロック図を示す。
【図9B】 図9Bは、本発明に従った使用に適した、図9Aに記載の相乗的AGC回路の代替的実施例のブロック図を示す。
【図10】 図10は、本発明に従った相乗的AGC回路の、現在好ましい実施例のブロック図を示す。
【図11】 図11は、本発明に従った図10に記載の相乗的AGC回路の3の傾斜利得領域のプロットを示す。
【図12】 図12は、電気信号を音響信号に変換する二つのトランスデューサを採用している、本発明に従った耳内の聴力補償システムのブロック図である。

Claims (5)

  1. オーディオ信号処理装置のための相乗的自動利得制御(AGC)回路であって、前記装置が音響エネルギー(12)を該音響エネルギーに対応した電気エネルギーに変換する入力変換器(10)と、前記入力変換器の出力に結合された複数のオーディオ帯域パスフィルター(14)と、雑音抑圧回路を含み各々が前記オーディオ帯域パスフィルターの一つの出力に結合された複数の前記相乗的AGC回路(16)と、前記相乗的AGC回路の出力に結合された第1加算ジャンクションと、該第1加算ジャンクションの出力に結合された第1増幅器と、電気エネルギーを音響エネルギーに変換するための出力変換器(18)とを含むものにおいて、前記AGC回路が、
    前記オーディオ帯域パスフィルターの一つの出力に結合された入力を有する対数素子であって、該対数素子の前記入力における信号の符号を示す信号を伝える第1出力と、前記対数素子の前記入力における前記信号の絶対値の対数に比例する信号を伝える第2出力とを有する前記対数素子(22)と、
    前記対数素子の前記第2出力に結合された入力を有するフィルター素子であって、該フィルター素子が
    前記対数素子の前記第2出力へ結合された入力を有する低パスフィルター(44)、
    前記対数素子の前記第2出力へまた結合された入力を有する帯域パスフィルター(42)、
    前記対数素子の前記第2出力へまた結合された入力を有する高パスフィルター(28)、
    前記低パスフィルターの出力へ結合された第1入力と、−log[emax]に等しい第2入力とを有する第2加算ジャンクションであって、ここで、emaxはAGC利得が適用されるオーディオ・エンベロープの最大許容値である、前記第2加算ジャンクション(38)、
    前記第2加算ジャンクションの出力に結合された入力を有する第2増幅器(32)、
    前記帯域パスフィルターの出力に結合された入力を有する第3増幅器(33)、及び
    前記高パスフィルターの出力へ結合された第1入力と、前記第2増幅器の出力に結合された第2入力と、前記第3増幅器の出力へ結合された第3入力と、log[atten]に等しい第4入力とを有する第3加算ジャンクションであって、該第3加算ジャンクションはその4つの入力に等しい出力を与えるものであり、ここで、attenは線形減衰ファクターであり、前記線形減衰ファクターは信号のノイズ・エンベロープのオリジナル振幅と乗算される値である前記第3加算ジャンクション(48)、を有する前記フィルター素子と、
    前記対数素子の第1出力に結合された入力を有する遅延素子であって、前記フィルター素子による遅延を補償するものである前記遅延素子(24)と、
    前記遅延素子の出力に結合された第1入力と前記フィルター素子の出力に結合された第2入力とを有する指数素子(34)と、
    該指数素子の出力に結合された第4増幅器素子であって、(emax)に等しい利得を有し、ここで、emaxはAGC利得が適用されるオーディオ・エンベロープの最大許容値である、第4増幅器素子(36)と、
    を含む相乗的AGC回路。
  2. オーディオ信号処理装置のための相乗的自動利得制御(AGC)回路であって、前記装置が音響エネルギー(12)を該音響エネルギーに対応した電気エネルギーに変換する入力変換器(10)と、前記入力変換器の出力に結合された複数のオーディオ帯域パスフィルター(14)と、雑音抑圧回路を含み各々が前記オーディオ帯域パスフィルターの一つの出力に結合された複数の前記相乗的AGC回路(16)と、前記相乗的AGC回路の出力に結合された第1加算ジャンクションと、該第1加算ジャンクションの出力に結合された第1増幅器と、電気エネルギーを音響エネルギーに変換するための出力変換器(18)とを含むものにおいて、前記AGC回路が、
    前記オーディオ帯域パスフィルタの一つの出力に結合された入力を有する絶対値回路(60)と、
    該絶対値回路の出力に結合された入力を有する低パスフィルター(30)と、
    該低パスフィルターの出力に結合された入力を有する対数素子(22)と、
    該対数素子の出力に結合された入力を有するフィルター素子と、
    該フィルター素子の出力に結合された入力を有する指数素子(34)と、
    前記絶対値回路の入力に結合された入力を有し、前記フィルター素子による遅延を補償する遅延素子(66)と、
    前記指数素子の出力に結合された第1入力と前記遅延素子の出力に結合された第2入力とを有する乗算器(64)と、を含み、
    前記フィルター素子がさらに、
    前記対数素子の出力に結合された入力を有する高パスフィルター(70)と、
    該高パスフィルターの出力に結合された入力を有し、(G−1)に等しい利得を有する第2増幅器であって、(G)は前記第2増幅器の利得を表す値である第2増幅器と、
    前記対数素子の出力にまた結合された入力を有する第2低パスフィルター(72)と、
    前記第2低パス・フィルターの出力に結合された第1出力と−log[e max ]に等しい第2入力とを有し、ここで、e max はAGC利得が適用されるオーディオ・エンベロープの最大許容可能値である第2加算ジャンクション(38)と、
    前記第1加算ジャンクションの出力に結合された入力を有し、(K−1)に等しい利得を有する第3増幅器(62)であって、(K)は前記第3増幅器の利得を表す値である第3増幅器と、
    前記第2増幅器の出力に結合された第1入力と、前記第3増幅器の出力に結合された第2入力と、log[atten]に等しい第3入力とを有し、ここでattenは線形減衰ファクターであり、該線形減衰ファクターは信号のノイズ・エンベロープのオリジナル振幅と乗算される値である第3加算ジャンクションと、
    を有する相乗的AGC回路。
  3. オーディオ信号処理装置のための相乗的自動利得制御(AGC)回路であって、前記装置が音響エネルギー(12)を該音響エネルギーに対応した電気エネルギーに変換する入力変換器(10)と、前記入力変換器の出力に結合された複数のオーディオ帯域パスフィルター(14)と、雑音抑圧回路を含み各々が前記オーディオ帯域パスフィルターの一つの出力に結合された複数の前記相乗的AGC回路(16)と、前記相乗的AGC回路の出力に結合された第1加算ジャンクションと、該第1加算ジャンクションの出力に結合された第1増幅器と、電気エネルギーを音響エネルギーに変換するための出力変換器(18)とを含むものにおいて、前記AGC回路が、
    前記オーディオ帯域パスフィルタの一つの出力に結合された入力を有する絶対値回路(60)と、
    該絶対値回路の出力に結合された入力を有する低パスフィルター(30)と、
    該低パスフィルターの出力に結合された入力を有する対数素子(22)と、
    該対数素子の出力に結合された第1入力と前記相乗的AGC回路に対する音の閾値の対数に等しい第2入力とを有する第2加算ジャンクション(75)と、
    前記第2加算ジャンクションの出力に結合された入力を有する雑音評価器(45)と、
    前記第2加算ジャンクションの出力に結合された第1入力と前記雑音評価器の反転出力に結合された第2入力とを有する第3加算ジャンクション(76)と、
    前記第3加算ジャンクションに結合された入力を有し、Gの利得を有する第2増幅器(43)と、
    前記第2増幅器の出力に結合された第1入力を有する第4加算ジャンクション(77)と、
    前記雑音評価器の出力に結合された入力とlog[atten]に等しい第2入力とを有し、ここでattenは線形減衰ファクターであり、該線形減衰ファクターは信号のノイズ・エンベロープのオリジナル振幅と乗算される値である第5加算ジャンクション(79)と、
    前記第4加算ジャンクションの出力に結合された入力を有する第3増幅器(32)と、
    該第3増幅器の出力と結合する第1入力と、前記対数素子の出力と結合する第2入力と、前記相乗的AGC回路に対する音の閾値の対数と等しい第3入力とを有する第6加算ジャンクション(74)と、
    該第6加算ジャンクションの出力に結合された入力を有する指数素子(34)と、
    該指数素子の出力に結合された第1入力と前記オーディオ帯域パスフィルターの一つの出力に結合された第2入力とを有する乗算器(64)と、
    を含む相乗的AGC回路。
  4. オーディオ信号処理装置のための相乗的自動利得制御(AGC)回路であって、前記装置が音響エネルギー(12)を該音響エネルギーに対応した電気エネルギーに変換する入力変換器(10)と、前記入力変換器の出力に結合された複数のオーディオ帯域パスフィルター(14)と、雑音抑圧回路を含み各々が前記オーディオ帯域パスフィルターの一つの出力に結合された複数の前記相乗的AGC回路(16)と、前記相乗的AGC回路の出力に結合された第1加算ジャンクションと、該第1加算ジャンクションの出力に結合された第1増幅器と、電気エネルギーを音響エネルギーに変換するための出力変換器(18)とを含むものにおいて、前記AGC回路が、
    前記オーディオ帯域パスフィルタの一つの出力に結合された入力を有する絶対値回路(60)と、
    前記オーディオ帯域パスフィルターの一つの出力に結合された入力を有する対数素子であって、該対数素子は前記入力における信号の符号を示す信号を伝える第1出力と前記入力における前記信号の絶対値の対数に比例した信号を伝える第2出力とを有する前記対数素子(22)と、
    該対数素子の第2出力に結合された入力を有するフィルター素子であって、該フィルター素子が、
    前記対数素子の出力へ結合された入力を有する高パスフィルター(28)、
    前記対数素子の出力へ結合された入力を有する低パスフィルター(30)、
    前記低パスフィルターの出力へ結合された第1入力と、前記相乗的AGC回路に対する音の閾値の対数に等しい値に結合された第2入力とを有する第2加算ジャンクション(75)、
    該第2加算ジャンクションの出力に結合された入力を有する雑音評価器(45)、
    前記第2加算ジャンクションの出力に結合された第1入力と前記雑音評価器の反転された出力に結合された第2入力とを有する第3加算ジャンクション(76)、
    該第3加算ジャンクションの出力に結合された入力を有する第2増幅器(45)、
    前記雑音評価器の出力に結合された入力と、log[atten]に等しい第2入力とを有し、ここでattenは線形減衰ファクターであり、該線形減衰ファクターは信号のノイズ・エンベロープのオリジナル振幅と乗算される値である、第4加算ジャンクション(77)、
    前記第2増幅器の出力に結合された第1入力と前記第4加算ジャンクションの出力に結合された第2入力とを有する第5加算ジャンクション(79)と、
    前記第5加算ジャンクションの出力に結合された入力を有する第3増幅器(32)、及び
    該第3増幅器の出力へ結合された第1入力と、前記高パスフィルターの出力に結合された第2入力と、前記相乗的AGC回路に対する音の閾値の対数に等しい第3入力とを有し、これら3入力の和に等しい出力を与える第6加算ジャンクション(74)、を有する前記フィルター素子と、
    前記対数素子の第1出力に結合された入力を有し、前記フィルター素子による遅延を補償する遅延素子(24)と、
    該遅延素子の出力に結合された第1入力と前記フィルター素子の出力に結合された第2入力とを有する指数素子(34)と、
    を含む相乗的AGC回路。
  5. 前記相乗的AGC回路の各々がさらに、
    前記オーディオ帯域パスフィルタの一つの出力に結合された入力を有し、(1/emax)の利得を有し、ここでemaxはAGC利得が適用されるオーディオ・エンベロープに対する最大許容値である、第2増幅器と、
    前記第1増幅器の出力に結合された入力を有する絶対値回路と、
    該絶対値回路の出力に結合された入力を有する低パスフィルタと、
    前記絶対値回路の出力に結合された入力を有する対数素子と、
    前記低パスフィルタの出力に結合された入力を有する対数素子と、
    前記対数素子の出力に結合された入力を有する第3増幅器であって、前記第2増幅器が(K−1)の利得を有する、前記第2増幅器と、
    該第3増幅器の出力に結合された入力を有する指数素子と、
    を有する請求項1に記載の装置。
JP2001540563A 1999-11-22 2000-05-04 信号処理技術を組込んだ補聴器 Expired - Fee Related JP4705300B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/444,972 US6885752B1 (en) 1994-07-08 1999-11-22 Hearing aid device incorporating signal processing techniques
US09/444,972 1999-11-22
PCT/US2000/012413 WO2001039546A1 (en) 1999-11-22 2000-05-04 Hearing aid device incorporating signal processing techniques

Publications (2)

Publication Number Publication Date
JP2003516003A JP2003516003A (ja) 2003-05-07
JP4705300B2 true JP4705300B2 (ja) 2011-06-22

Family

ID=23767135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001540563A Expired - Fee Related JP4705300B2 (ja) 1999-11-22 2000-05-04 信号処理技術を組込んだ補聴器

Country Status (8)

Country Link
US (1) US6885752B1 (ja)
EP (1) EP1236377B1 (ja)
JP (1) JP4705300B2 (ja)
CN (1) CN1391780A (ja)
AU (1) AU781062B2 (ja)
DE (1) DE60037034T2 (ja)
DK (1) DK1236377T3 (ja)
WO (1) WO2001039546A1 (ja)

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1006472C2 (nl) 1997-07-04 1999-01-05 Oce Tech Bv Kopieerinrichting met instelbare gradatie.
AU4323800A (en) * 2000-05-06 2001-11-20 Nanyang Technological University System for noise suppression, transceiver and method for noise suppression
DE10052906A1 (de) * 2000-10-25 2002-05-08 Siemens Ag Tragbares elektronisches Gerät
GB2373975B (en) * 2001-03-30 2005-04-13 Sony Uk Ltd Digital audio signal processing
US6707865B2 (en) 2001-07-16 2004-03-16 Qualcomm Incorporated Digital voltage gain amplifier for zero IF architecture
US7340069B2 (en) * 2001-09-14 2008-03-04 Intel Corporation System and method for split automatic gain control
CN1274184C (zh) * 2001-09-21 2006-09-06 西门子公司 在电声变换器中控制音频信号的低音放音的方法和装置
US7650004B2 (en) * 2001-11-15 2010-01-19 Starkey Laboratories, Inc. Hearing aids and methods and apparatus for audio fitting thereof
US7835530B2 (en) * 2001-11-26 2010-11-16 Cristiano Avigni Systems and methods for determining sound of a moving object
US7155385B2 (en) 2002-05-16 2006-12-26 Comerica Bank, As Administrative Agent Automatic gain control for adjusting gain during non-speech portions
DE10225145A1 (de) * 2002-06-06 2003-12-18 Bosch Gmbh Robert Verfahren zur gehörrichtigen Baßpegelanhebung und zugeordnetes Wiedergabesystem
DE10225146A1 (de) * 2002-06-06 2003-12-18 Bosch Gmbh Robert Verfahren zum Einstellen von Filterparametern und zugeordnetes Wiedergabesystem
US7151838B2 (en) * 2002-08-21 2006-12-19 Galler Bernard A Digital hearing aid battery conservation method and apparatus
US7123732B2 (en) * 2002-09-10 2006-10-17 Phonak Ag Process to adapt the signal amplification in a hearing device as well as a hearing device
US7092532B2 (en) * 2003-03-31 2006-08-15 Unitron Hearing Ltd. Adaptive feedback canceller
WO2004097799A1 (en) * 2003-04-24 2004-11-11 Massachusetts Institute Of Technology System and method for spectral enhancement employing compression and expansion
JPWO2004109661A1 (ja) * 2003-06-05 2006-07-20 松下電器産業株式会社 音質調整装置および音質調整方法
CN1879449B (zh) * 2003-11-24 2011-09-28 唯听助听器公司 助听器和减少噪声的方法
WO2005052911A1 (en) * 2003-11-26 2005-06-09 Oticon A/S Hearing aid with active noise canceling
US8023673B2 (en) 2004-09-28 2011-09-20 Hearworks Pty. Limited Pitch perception in an auditory prosthesis
AU2004242561B2 (en) * 2003-12-31 2011-05-12 Hearworks Pty Ltd Modulation Depth Enhancement for Tone Perception
US7561709B2 (en) * 2003-12-31 2009-07-14 Hearworks Pty Limited Modulation depth enhancement for tone perception
KR20050072990A (ko) * 2004-01-08 2005-07-13 황인덕 전기 임피던스 측정 장치
US20060020454A1 (en) * 2004-07-21 2006-01-26 Phonak Ag Method and system for noise suppression in inductive receivers
US7406136B2 (en) * 2004-08-05 2008-07-29 Broadcom Corporation Channel select filter and applications thereof
US10158337B2 (en) 2004-08-10 2018-12-18 Bongiovi Acoustics Llc System and method for digital signal processing
US8284955B2 (en) 2006-02-07 2012-10-09 Bongiovi Acoustics Llc System and method for digital signal processing
US10848118B2 (en) 2004-08-10 2020-11-24 Bongiovi Acoustics Llc System and method for digital signal processing
US11431312B2 (en) 2004-08-10 2022-08-30 Bongiovi Acoustics Llc System and method for digital signal processing
US8543390B2 (en) * 2004-10-26 2013-09-24 Qnx Software Systems Limited Multi-channel periodic signal enhancement system
US8306821B2 (en) * 2004-10-26 2012-11-06 Qnx Software Systems Limited Sub-band periodic signal enhancement system
US7822212B2 (en) * 2004-11-05 2010-10-26 Phonic Ear Inc. Method and system for amplifying auditory sounds
JP4395772B2 (ja) * 2005-06-17 2010-01-13 日本電気株式会社 ノイズ除去方法及び装置
EP1920633B1 (en) 2005-08-23 2011-08-10 Widex A/S Hearing aid with increased acoustic bandwidth
US7634820B2 (en) * 2006-01-20 2009-12-22 Sport Maska Inc. Adjustment mechanism for a helmet
US10848867B2 (en) 2006-02-07 2020-11-24 Bongiovi Acoustics Llc System and method for digital signal processing
US10701505B2 (en) 2006-02-07 2020-06-30 Bongiovi Acoustics Llc. System, method, and apparatus for generating and digitally processing a head related audio transfer function
US10069471B2 (en) 2006-02-07 2018-09-04 Bongiovi Acoustics Llc System and method for digital signal processing
US9615189B2 (en) * 2014-08-08 2017-04-04 Bongiovi Acoustics Llc Artificial ear apparatus and associated methods for generating a head related audio transfer function
US7986790B2 (en) * 2006-03-14 2011-07-26 Starkey Laboratories, Inc. System for evaluating hearing assistance device settings using detected sound environment
EP2080408B1 (en) * 2006-10-23 2012-08-15 Starkey Laboratories, Inc. Entrainment avoidance with an auto regressive filter
DK1921746T4 (da) 2006-11-08 2013-09-23 Siemens Audiologische Technik Høreapparat med en koblingsanordning til indstilling af udgangseffekten og/eller frekvensgangen af en udgangsforstærker af høreapparatet
US7920708B2 (en) * 2006-11-16 2011-04-05 Texas Instruments Incorporated Low computation mono to stereo conversion using intra-aural differences
EP2119313A2 (en) * 2007-01-03 2009-11-18 Biosecurity Technologies, Inc. Ultrasonic and multimodality assisted hearing
FR2911961B1 (fr) 2007-01-26 2012-04-06 Electricite De France Capteur acoustique de mesure de la pression et/ou de la masse molaire d'un gaz dans une enceinte cylindrique et procede de mesure correspondant
US8904400B2 (en) * 2007-09-11 2014-12-02 2236008 Ontario Inc. Processing system having a partitioning component for resource partitioning
US8850154B2 (en) * 2007-09-11 2014-09-30 2236008 Ontario Inc. Processing system having memory partitioning
US20090076825A1 (en) * 2007-09-13 2009-03-19 Bionica Corporation Method of enhancing sound for hearing impaired individuals
US20090074203A1 (en) * 2007-09-13 2009-03-19 Bionica Corporation Method of enhancing sound for hearing impaired individuals
US20090074206A1 (en) * 2007-09-13 2009-03-19 Bionica Corporation Method of enhancing sound for hearing impaired individuals
US20090074216A1 (en) * 2007-09-13 2009-03-19 Bionica Corporation Assistive listening system with programmable hearing aid and wireless handheld programmable digital signal processing device
US20090076816A1 (en) * 2007-09-13 2009-03-19 Bionica Corporation Assistive listening system with display and selective visual indicators for sound sources
US20090074214A1 (en) * 2007-09-13 2009-03-19 Bionica Corporation Assistive listening system with plug in enhancement platform and communication port to download user preferred processing algorithms
US20090076804A1 (en) * 2007-09-13 2009-03-19 Bionica Corporation Assistive listening system with memory buffer for instant replay and speech to text conversion
US20090076636A1 (en) * 2007-09-13 2009-03-19 Bionica Corporation Method of enhancing sound for hearing impaired individuals
WO2009047858A1 (ja) * 2007-10-12 2009-04-16 Fujitsu Limited エコー抑圧システム、エコー抑圧方法、エコー抑圧プログラム、エコー抑圧装置、音出力装置、オーディオシステム、ナビゲーションシステム及び移動体
US9031242B2 (en) 2007-11-06 2015-05-12 Starkey Laboratories, Inc. Simulated surround sound hearing aid fitting system
US8718288B2 (en) 2007-12-14 2014-05-06 Starkey Laboratories, Inc. System for customizing hearing assistance devices
WO2009087968A1 (ja) * 2008-01-10 2009-07-16 Panasonic Corporation 補聴処理装置、調整装置、補聴処理システム、補聴処理方法、プログラム、及び集積回路
US8209514B2 (en) * 2008-02-04 2012-06-26 Qnx Software Systems Limited Media processing system having resource partitioning
US8571244B2 (en) 2008-03-25 2013-10-29 Starkey Laboratories, Inc. Apparatus and method for dynamic detection and attenuation of periodic acoustic feedback
US8094809B2 (en) * 2008-05-12 2012-01-10 Visteon Global Technologies, Inc. Frame-based level feedback calibration system for sample-based predictive clipping
US8831936B2 (en) * 2008-05-29 2014-09-09 Qualcomm Incorporated Systems, methods, apparatus, and computer program products for speech signal processing using spectral contrast enhancement
US8705751B2 (en) 2008-06-02 2014-04-22 Starkey Laboratories, Inc. Compression and mixing for hearing assistance devices
US9185500B2 (en) 2008-06-02 2015-11-10 Starkey Laboratories, Inc. Compression of spaced sources for hearing assistance devices
US9485589B2 (en) 2008-06-02 2016-11-01 Starkey Laboratories, Inc. Enhanced dynamics processing of streaming audio by source separation and remixing
US8538749B2 (en) 2008-07-18 2013-09-17 Qualcomm Incorporated Systems, methods, apparatus, and computer program products for enhanced intelligibility
KR100941936B1 (ko) * 2008-09-25 2010-02-11 포항공과대학교 산학협력단 프리엠퍼시스 방식으로 누화잡음의 영향을 보상하는 송신단회로
US9202456B2 (en) * 2009-04-23 2015-12-01 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for automatic control of active noise cancellation
US8553897B2 (en) * 2009-06-09 2013-10-08 Dean Robert Gary Anderson Method and apparatus for directional acoustic fitting of hearing aids
WO2010146711A1 (ja) * 2009-06-19 2010-12-23 富士通株式会社 音声信号処理装置及び音声信号処理方法
US8995688B1 (en) 2009-07-23 2015-03-31 Helen Jeanne Chemtob Portable hearing-assistive sound unit system
US8879745B2 (en) * 2009-07-23 2014-11-04 Dean Robert Gary Anderson As Trustee Of The D/L Anderson Family Trust Method of deriving individualized gain compensation curves for hearing aid fitting
US9101299B2 (en) * 2009-07-23 2015-08-11 Dean Robert Gary Anderson As Trustee Of The D/L Anderson Family Trust Hearing aids configured for directional acoustic fitting
US8359283B2 (en) * 2009-08-31 2013-01-22 Starkey Laboratories, Inc. Genetic algorithms with robust rank estimation for hearing assistance devices
US20120278087A1 (en) * 2009-10-07 2012-11-01 Nec Corporation Multiband compressor and method of adjusting the same
US9729976B2 (en) * 2009-12-22 2017-08-08 Starkey Laboratories, Inc. Acoustic feedback event monitoring system for hearing assistance devices
US9654885B2 (en) 2010-04-13 2017-05-16 Starkey Laboratories, Inc. Methods and apparatus for allocating feedback cancellation resources for hearing assistance devices
US9053697B2 (en) 2010-06-01 2015-06-09 Qualcomm Incorporated Systems, methods, devices, apparatus, and computer program products for audio equalization
AU2010365366B2 (en) * 2010-12-08 2014-10-02 Widex A/S Hearing aid and a method of enhancing speech reproduction
US9338555B1 (en) * 2011-02-16 2016-05-10 J. Craig Oxford Earphones and hearing aids with equalization
JP5715910B2 (ja) * 2011-09-01 2015-05-13 クラリオン株式会社 ダイナミックレンジ拡張装置
US8942397B2 (en) 2011-11-16 2015-01-27 Dean Robert Gary Anderson Method and apparatus for adding audible noise with time varying volume to audio devices
JP6015146B2 (ja) * 2012-06-06 2016-10-26 オンキヨー株式会社 チャンネルデバイダおよびこれを含む音声再生システム
WO2014168777A1 (en) * 2013-04-10 2014-10-16 Dolby Laboratories Licensing Corporation Speech dereverberation methods, devices and systems
US9883318B2 (en) 2013-06-12 2018-01-30 Bongiovi Acoustics Llc System and method for stereo field enhancement in two-channel audio systems
EP2858381A1 (en) * 2013-10-03 2015-04-08 Oticon A/s Hearing aid specialised as a supplement to lip reading
US9906858B2 (en) 2013-10-22 2018-02-27 Bongiovi Acoustics Llc System and method for digital signal processing
DK2874409T3 (en) * 2013-11-15 2018-12-10 Oticon As Hearing aid with adaptive feedback path estimation
US10639000B2 (en) 2014-04-16 2020-05-05 Bongiovi Acoustics Llc Device for wide-band auscultation
US10820883B2 (en) 2014-04-16 2020-11-03 Bongiovi Acoustics Llc Noise reduction assembly for auscultation of a body
JP5980263B2 (ja) * 2014-05-02 2016-08-31 キヤノン株式会社 静電容量型の電気機械変換装置を含む装置
FR3038485B1 (fr) * 2015-07-02 2018-10-12 Swiss Acoustic Laboratoire De Correction Auditive Procede et systeme permettant de fournir une assistance auditive
JP6603725B2 (ja) * 2015-09-30 2019-11-06 パイオニア株式会社 音声信号生成装置、音声信号生成方法、及び、プログラム
US10142743B2 (en) 2016-01-01 2018-11-27 Dean Robert Gary Anderson Parametrically formulated noise and audio systems, devices, and methods thereof
CN105592394A (zh) * 2016-03-04 2016-05-18 南京迈宸科技有限公司 一种高灵敏拾音及定向扩音装置及其方法
TWI623234B (zh) * 2016-09-26 2018-05-01 宏碁股份有限公司 助聽器及其自動分頻濾波增益控制方法
CN107920320A (zh) * 2016-10-11 2018-04-17 宏碁股份有限公司 助听器及其自动分频滤波增益控制方法
CN108024178A (zh) * 2016-10-28 2018-05-11 宏碁股份有限公司 电子装置及其分频滤波增益优化方法
CN108024185B (zh) * 2016-11-02 2020-02-14 宏碁股份有限公司 电子装置及特定频段补偿增益方法
US10778172B2 (en) * 2017-03-10 2020-09-15 Clifford Maag Audio compressor with parallel equalizer circuit
US10542354B2 (en) * 2017-06-23 2020-01-21 Gn Hearing A/S Hearing device with suppression of comb filtering effect
CA3096877A1 (en) 2018-04-11 2019-10-17 Bongiovi Acoustics Llc Audio enhanced hearing protection system
WO2020028833A1 (en) 2018-08-02 2020-02-06 Bongiovi Acoustics Llc System, method, and apparatus for generating and digitally processing a head related audio transfer function
CN109889954A (zh) * 2019-03-26 2019-06-14 苏州全频智能科技有限公司 全频多级校正网络补偿器
EP3984248A4 (en) * 2019-06-13 2023-07-05 Soundtrack Outdoors, LLC HEARING ENHANCEMENT AND PROTECTION DEVICE
CN110769337B (zh) * 2019-10-24 2021-06-01 上海易和声学科技有限公司 一种有源阵列音柱及音响设备系统
CN110931033B (zh) * 2019-11-27 2022-02-18 深圳市悦尔声学有限公司 一种麦克风内置耳机的语音聚焦增强方法
CN111328008B (zh) * 2020-02-24 2021-11-05 广州市迪士普音响科技有限公司 一种基于扩声系统的声压级智能控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028943A1 (en) * 1996-12-20 1998-07-02 Sonix Technologies, Inc. A digital hearing aid using differential signal representations

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3784750A (en) 1972-02-25 1974-01-08 Shalako Resource Systems Apparatus and prosthetic device for providing electronic correction of auditory deficiencies for aurally handicapped persons
JPS5250646B2 (ja) 1972-10-16 1977-12-26
US3920931A (en) 1974-09-25 1975-11-18 Jr Paul Yanick Hearing aid amplifiers employing selective gain control circuits
US3989904A (en) 1974-12-30 1976-11-02 John L. Holmes Method and apparatus for setting an aural prosthesis to provide specific auditory deficiency corrections
GB1541004A (en) 1975-11-07 1979-02-21 Nat Res Dev Hearing aid
JPS52125251A (en) 1976-02-23 1977-10-20 Bio Communication Res Electric filter and method of designing same
US4052572A (en) 1976-04-29 1977-10-04 Electro-Physical Research, Inc. Hearing aid
US4185168A (en) 1976-05-04 1980-01-22 Causey G Donald Method and means for adaptively filtering near-stationary noise from an information bearing signal
US4025721A (en) 1976-05-04 1977-05-24 Biocommunications Research Corporation Method of and means for adaptively filtering near-stationary noise from speech
US4099035A (en) 1976-07-20 1978-07-04 Paul Yanick Hearing aid with recruitment compensation
US4135590A (en) 1976-07-26 1979-01-23 Gaulder Clifford F Noise suppressor system
DE2716336B1 (de) 1977-04-13 1978-07-06 Siemens Ag Verfahren und Hoergeraet zur Kompensation von Gehoerdefekten
US4118604A (en) 1977-09-06 1978-10-03 Paul Yanick Loudness contour compensated hearing aid having ganged volume, bandpass filter, and compressor control
US4419544A (en) 1982-04-26 1983-12-06 Adelman Roger A Signal processing apparatus
US4366349A (en) 1980-04-28 1982-12-28 Adelman Roger A Generalized signal processing hearing aid
JPS5744338A (en) 1980-08-29 1982-03-12 Victor Co Of Japan Ltd Noise reduction device
US4396806B2 (en) 1980-10-20 1998-06-02 A & L Ventures I Hearing aid amplifier
US4405831A (en) 1980-12-22 1983-09-20 The Regents Of The University Of California Apparatus for selective noise suppression for hearing aids
SE428167B (sv) 1981-04-16 1983-06-06 Mangold Stephan Programmerbar signalbehandlingsanordning, huvudsakligen avsedd for personer med nedsatt horsel
DE3205685A1 (de) 1982-02-17 1983-08-25 Robert Bosch Gmbh, 7000 Stuttgart Hoergeraet
US4602337A (en) 1983-02-24 1986-07-22 Cox James R Analog signal translating system with automatic frequency selective signal gain adjustment
GB8317086D0 (en) 1983-06-23 1983-07-27 Swinbanks M A Attenuation of sound waves
US4548082A (en) 1984-08-28 1985-10-22 Central Institute For The Deaf Hearing aids, signal supplying apparatus, systems for compensating hearing deficiencies, and methods
US4589137A (en) 1985-01-03 1986-05-13 The United States Of America As Represented By The Secretary Of The Navy Electronic noise-reducing system
US4628529A (en) 1985-07-01 1986-12-09 Motorola, Inc. Noise suppression system
US5029217A (en) 1986-01-21 1991-07-02 Harold Antin Digital hearing enhancement apparatus
US4731850A (en) 1986-06-26 1988-03-15 Audimax, Inc. Programmable digital hearing aid system
US4759071A (en) 1986-08-14 1988-07-19 Richards Medical Company Automatic noise eliminator for hearing aids
US4852177A (en) 1986-08-28 1989-07-25 Sensesonics, Inc. High fidelity earphone and hearing aid
US4802227A (en) 1987-04-03 1989-01-31 American Telephone And Telegraph Company Noise reduction processing arrangement for microphone arrays
US4887299A (en) 1987-11-12 1989-12-12 Nicolet Instrument Corporation Adaptive, programmable signal processing hearing aid
US4882762A (en) 1988-02-23 1989-11-21 Resound Corporation Multi-band programmable compression system
US5016280A (en) 1988-03-23 1991-05-14 Central Institute For The Deaf Electronic filters, hearing aids and methods
US4972487A (en) 1988-03-30 1990-11-20 Diphon Development Ab Auditory prosthesis with datalogging capability
US4989251A (en) 1988-05-10 1991-01-29 Diaphon Development Ab Hearing aid programming interface and method
US5027410A (en) 1988-11-10 1991-06-25 Wisconsin Alumni Research Foundation Adaptive, programmable signal processing and filtering for hearing aids
US5083312A (en) 1989-08-01 1992-01-21 Argosy Electronics, Inc. Programmable multichannel hearing aid with adaptive filter
US5259033A (en) 1989-08-30 1993-11-02 Gn Danavox As Hearing aid having compensation for acoustic feedback
US5097510A (en) 1989-11-07 1992-03-17 Gs Systems, Inc. Artificial intelligence pattern-recognition-based noise reduction system for speech processing
US5278912A (en) 1991-06-28 1994-01-11 Resound Corporation Multiband programmable compression system
DE4308157A1 (de) 1993-03-15 1994-09-22 Toepholm & Westermann Fernsteuerbares, insbesondere programmierbares Hörgerätesystem
US5651071A (en) 1993-09-17 1997-07-22 Audiologic, Inc. Noise reduction system for binaural hearing aid
EP0676909A1 (de) 1994-03-31 1995-10-11 Siemens Audiologische Technik GmbH Programmierbares Hörgerät
US5473684A (en) 1994-04-21 1995-12-05 At&T Corp. Noise-canceling differential microphone assembly
US6072885A (en) * 1994-07-08 2000-06-06 Sonic Innovations, Inc. Hearing aid device incorporating signal processing techniques
US5500902A (en) 1994-07-08 1996-03-19 Stockham, Jr.; Thomas G. Hearing aid device incorporating signal processing techniques
US5867581A (en) 1994-10-14 1999-02-02 Matsushita Electric Industrial Co., Ltd. Hearing aid
US5581747A (en) 1994-11-25 1996-12-03 Starkey Labs., Inc. Communication system for programmable devices employing a circuit shift register
US5721783A (en) 1995-06-07 1998-02-24 Anderson; James C. Hearing aid with wireless remote processor
US5687242A (en) 1995-08-11 1997-11-11 Resistance Technology, Inc. Hearing aid controls operable with battery door
US6072884A (en) 1997-11-18 2000-06-06 Audiologic Hearing Systems Lp Feedback cancellation apparatus and methods
US5825898A (en) 1996-06-27 1998-10-20 Lamar Signal Processing Ltd. System and method for adaptive interference cancelling
JP3165044B2 (ja) 1996-10-21 2001-05-14 日本電気株式会社 ディジタル補聴器
JP2001520821A (ja) 1997-04-14 2001-10-30 レイマー シグナル プロセシング リミテッド 複式処理妨害雑音キャンセル装置および方法
WO2000015001A2 (en) * 1998-09-09 2000-03-16 Sonic Innovations, Inc. Hearing aid device incorporating signal processing techniques
US6163287A (en) 1999-04-05 2000-12-19 Sonic Innovations, Inc. Hybrid low-pass sigma-delta modulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028943A1 (en) * 1996-12-20 1998-07-02 Sonix Technologies, Inc. A digital hearing aid using differential signal representations

Also Published As

Publication number Publication date
US6885752B1 (en) 2005-04-26
DE60037034T2 (de) 2008-08-21
EP1236377A1 (en) 2002-09-04
AU4704900A (en) 2001-06-04
EP1236377B1 (en) 2007-11-07
WO2001039546A1 (en) 2001-05-31
JP2003516003A (ja) 2003-05-07
CN1391780A (zh) 2003-01-15
DK1236377T3 (da) 2008-02-11
DE60037034D1 (de) 2007-12-20
AU781062B2 (en) 2005-05-05

Similar Documents

Publication Publication Date Title
JP4705300B2 (ja) 信号処理技術を組込んだ補聴器
US8085959B2 (en) Hearing compensation system incorporating signal processing techniques
US6072885A (en) Hearing aid device incorporating signal processing techniques
US5848171A (en) Hearing aid device incorporating signal processing techniques
US6970570B2 (en) Hearing aids based on models of cochlear compression using adaptive compression thresholds
US5091952A (en) Feedback suppression in digital signal processing hearing aids
US7978868B2 (en) Adaptive dynamic range optimization sound processor
US6044162A (en) Digital hearing aid using differential signal representations
EP2560410B1 (en) Control of output modulation in a hearing instrument
JPH02502151A (ja) 適合形プログラマブル信号処理補聴器
US9408001B2 (en) Separate inner and outer hair cell loss compensation
AU2011226820B2 (en) Method for frequency compression with harmonic correction and device
WO2000015001A2 (en) Hearing aid device incorporating signal processing techniques
AU2005203487B2 (en) Hearing aid device incorporating signal processing techniques
McDermott et al. Control of hearing-aid saturated sound pressure level by frequency-shaped output compression limiting
Sonawane et al. Signal Processing Techniques Used in Digital Hearing-Aid Devices: A Review.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100715

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101015

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110311

LAPS Cancellation because of no payment of annual fees