JP4699317B2 - 光ピックアップ装置 - Google Patents

光ピックアップ装置 Download PDF

Info

Publication number
JP4699317B2
JP4699317B2 JP2006245994A JP2006245994A JP4699317B2 JP 4699317 B2 JP4699317 B2 JP 4699317B2 JP 2006245994 A JP2006245994 A JP 2006245994A JP 2006245994 A JP2006245994 A JP 2006245994A JP 4699317 B2 JP4699317 B2 JP 4699317B2
Authority
JP
Japan
Prior art keywords
light
light receiving
radial
incident
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006245994A
Other languages
English (en)
Other versions
JP2007004982A (ja
Inventor
啓至 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006245994A priority Critical patent/JP4699317B2/ja
Publication of JP2007004982A publication Critical patent/JP2007004982A/ja
Application granted granted Critical
Publication of JP4699317B2 publication Critical patent/JP4699317B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Description

本発明は、光ディスク等の情報記録媒体に光学的に情報を記録または再生する光ディスク装置に搭載される光ピックアップ装置に関する。詳しくは、複数の記録再生層を有する光ディスクに対して、正確な記録再生動作を可能な光ピックアップ装置に関する。
近年、光ディスクは、大量の情報信号を高密度で記録することができるため、オーディオ,ビデオ,コンピュータ等の多くの分野において利用が進められている。
現在広く市販されているコンパクトディスク(CD),ビデオディスク,ミニディスク(MD)やコンピュータ用の光磁気ディスクなどは厚さ1.2mmの基板を用いている。光ピックアップの対物レンズも厚さ1.2mmの基板によって発生する収差を補正するように設計されている。
一方、記録容量の増大を図っていくために様々な検討がなされている。その中には対物レンズの開口数(NA)を大きくして、光学的な分解能を向上させる方法や、記録層を多層に設ける方法などがある。
例えば、特開平5−151609号公報には、多重データ層を有する光ディスクから各層の記録データを個別に再生するための光ディスク装置が記載されている。ここでは、多層ディスクの記録再生層は透明基板と空気層を交互に重ねて構成されており、各記録再生層には、対物レンズをアクチュエータによって光軸方向にフォーカシングすることにより情報の記録再生を行う。
この例では、各層間の距離が十分離れているため、隣接する記録再生層からくる戻り光の影響がなく、例えば第n層におけるフォーカス誤差信号(FES)は第n+1または第n−1層では0となり、他層のFESにはオフセットなどの悪影響を及ぼさない。しかしながら、各層の間の距離が大きく離れているため、各層にフォーカスサーボをかける場合、合わせるべきディスク基板の全体の厚さが大きく変化することになる。したがって、別途、収差補償器によって各面で発生する球面収差を補正する必要があった。
上記問題を解決するものとして、基板の厚さに対して十分薄い層間距離(例えば40〜70μm程度の距離)でデータ層を重ねた2層構造のディスクがデジタルバーサタイルディスク(DVD)などで提案されている。この場合、基板厚さの違いによって発生する球面収差は十分小さいため、収差補償器は必要ではなくなる。
しかしながら、このような薄い層間距離で記録再生面が重ねられたディスクでは、光ビームがある1つの記録再生面に対してアクセスしている際に、その記録再生面からの反射光が隣接する記録再生面からの戻り光の影響を受けてしまう。したがって、光ビームのフォーカス調整のためのFESも上記影響を受けたものとなり、正確なフォーカス調整が行えなくなる。
特開平5−151609号公報(1993年6月18日公開)
上記した十分薄い層間距離で形成された多層構造のディスクに対する光学系として、本出願人は先に図14,図15に示す光学系を提案した(出願番号:特願平7−315642号)。
ここでは、図14に示すように、半導体レーザ1からの光を対物レンズ4で光ディスク5上に集光させ、その戻り光を3分割ホログラム素子2によって受光素子6に導く。半導体レーザ1、ホログラム素子2及び受光素子6は一体に構成されている。
図15に示すように、受光素子6はフォーカス誤差信号(FES)検出用の2分割した主受光領域6a,6bの他に、その外側両側にフォーカス誤差信号補正用の補助受光領域6e,6fを有している。主受光領域6a,6bはフォーカスの方向にしたがってそれぞれの戻り光を受光する。補助受光領域6e,6fはそれぞれ、デフォーカス状態になった場合に、主受光領域6a,6bからはみ出す戻り光を検出する位置に設けられている。そして、フォーカスによる戻り光の形状変化の方向に対して逆方向に変化する主受光領域6a,6bと補助受光領域6e,6fを一対として、フォーカス誤差信号を検出する。
具体的には、受光領域6a,6b,6e,6fの出力信号をそれぞれSa,Sb,Se,Sfとしたとき、フォーカス誤差信号FESを(Sa+Sf)−(Sb+Se)により算出する。このようにすると、ダイナミックレンジ外、すなわち大きくデフォーカス状態になり、光ビームが主受光領域6a(または6b)からはみ出した場合、その外側に配置された補助受光領域6e(または6f)における出力信号が増大し、フォーカス誤差信号FESは減少する。これにより、フォーカス誤差信号FESは、ジャストフォーカス位置から離れるに従い増加し、ある距離以上離れたら急激に減少する信号となる。したがって、主受光領域6a,6b、及び、補助受光領域6e,6fの大きさ及び配置を適当に設定しておけば、走査中の記録再生面からのフォーカス誤差信号だけを有効なものとして、隣接する記録再生層からの戻り光による影響を削除することができる。
以上のように、先に提案した光ピックアップ装置によれば、理想的には、正確なフォーカス誤差信号を得ることができ、記録再生動作を正確に行うことが可能となる。
しかしながら、ピックアップを組立てる際には、当然組立て誤差が存在する。このような誤差が発生した場合には、フォーカス動作させた場合の受光素子への戻り光の形状変化が異なり、フォーカス誤差信号の補正が過補正になったり、逆に補正不足になったりし、複数の記録再生層を有する光ディスクを記録再生する際に、良好なFESカーブを得ることが不可能となる。
また、同様に組立て誤差が発生した場合に、ラジアル誤差信号生成用の受光領域への戻り光は、理想位置からズレた位置に入射するため、すべての誤差を考慮して、最もズレた場合においても受光領域内に収まるように、受光部面積を大きくする必要がある。しかしながら、DVD等の光ディスクにおいては、大容量化に伴い受光素子の高帯域化が要求され、そのためには、受光部面積を小さくする必要があり、前記内容と相反する条件であるために、問題となる。
この発明は、上述の問題点を解決するためになされたもので、補助受光領域の形状を最適化することで、ピックアップ組立て時に組立て誤差が発生しても、複数の記録再生層を有する光ディスクに対して、正確な記録再生動作を可能な光ピックアップ装置を提供するものである。
本発明の光ピックアップ装置は、光源から光ビームを出射し、その光ビームを光記録媒体上に集光するとともに、光記録媒体からの戻り光を検出する光ピックアップ装置において、光ビームのフォーカスのずれに応じた戻り光が入射する少なくとも2つの受光領域を有し、各主受光領域への入射光量に応じたフォーカス誤差主信号を生成するフォーカス制御手段と、少なくとも2つの主受光領域を両側から挟むように配置され、光記録媒体からの戻り光が入射する2つのラジアル誤差検出用受光領域を有し、ラジアル誤差検出用受光領域への入射光量からラジアル誤差信号を検出するラジアル制御手段と、を有してなり、ラジアル誤差検出用受光領域は、前記光記録媒体のラジアル方向に対して傾斜した形状に形成されており、かつ、2つのラジアル誤差検出用受光領域の面積が略同一であるものである。
上記構成によれば、組立誤差等の配置誤差がある場合にも、ラジアル誤差信号検出用受光領域内に戻り光が入射するようになり、かつ、その受光領域の面積を必要最小限にできるため、受光素子の高帯域化の妨げにはならない。また、左右の受光部の各面積がほぼ同じであるため、複数の記録再生面を有する記録媒体にアクセスする場合に隣接記録再生面からの迷光が入射しても、オフセットの発生を抑えることが可能となる。
本発明によれば、ラジアル誤差信号生成用受光領域を、前記光記録媒体のラジアル方向に対して傾斜した形状に形成し、左右両側の受光部領域の面積を略同一とすることにより、上記誤差によらず戻り光が受光領域内に収まるように受光領域の形状を設定したとしても、受光領域面積を必要最小限にでき、受光素子の高帯域化を実現できる。また、左右の受光部の面積に差が発生しないので、隣接層からの迷光の入射に起因するオフセットの発生を抑制できる。
以下、本発明の実施の形態について図面に基づいて説明する。但し、図14,図15で示した構成要素と同じものは同一符号で示す。
(基本構成)図1,2,3は本発明のピックアップ装置の基本構成図である。図1において、光ディスク5は、基板の厚さに対して十分薄い層間距離、例えば40〜70μm程度の距離でデータ層を重ねた2層構造のデジタルバーサタイルディスク(DVD)などで提案されているディスクである。光源としての半導体レーザ1からの出射光は、ホログラム素子2により回折され、その内の0次回折光がコリメートレンズ3を介して対物レンズ4に入射し、光ディスク5上に集光される。光ディスク5からの戻り光は、対物レンズ4、コリメートレンズ3を介して、ホログラム素子2に導かれる。
ホログラム素子2は、図2に示すように、光ディスク5のラジアル方向に対応するy方向に延びる分割線2gと、この分割線2gの中心から光ディスク5のラジアル方向と直交するx方向、つまり光ディスク5のトラック方向に対応する方向に延びる分割線2hとにより、3つの分割領域2a,2b,2cに分割され、それぞれこれら各分割領域2a,2b,2cに対応して、別個の格子が形成されている。
受光素子7は、図3に示すように光デイスク5のトラック方向に対応するx方向に配列された6つの矩形状の受光領域7a,7b,7c,7d,7e,7fに分割された領域を有している。中央の受光領域7a,7bはフォーカス用の主受光領域であり、光ディスク5のラジアル方向に対応するy方向に延びる分割線7xにより分割される。その両側の7e,7fは、フォーカス用の補助受光領域であり、分割線7xに対して対称な位置に配置されている。そして、主受光領域7a,7bと補助受光領域7e,7fのx方向の幅W1,W2は、W1>W2に設計されている。一方、両側の受光領域7c,7dはラジアル誤差検出用受光領域であり、7e,7fとはx方向に所定の間隔を隔てて設けられ、また、各受光素子7a,7b,7c,7d,7e,7fは、ラジアル方向に対応するy方向に延びている。
次に、受光素子上における戻り光の状態を説明する。図4はその状態を説明する説明図である。
合焦状態の時、つまり、光ビームが光ディスク5の所望の記録再生面上にジャストフォーカス状態のとき、ホログラム素子2の分割領域2aで回折された戻り光は分割線7x上にビームP1を形成し、分割領域2b,2cで回折された戻り光はそれぞれ受光領域7d,7c上にビームP2,P3を形成する。これは、組立時において、分割領域2aで回折された戻り光は分割線7x上に形成するように調整されているためである。ビームP1,P2,P3は、受光素子の位置公差や光の波長ずれをホログラム素子2の位置調整によって吸収するために、各受光領域のy方向の中心位置から多少はずれた位置に集光される場合もある。このような合焦状態のときには、主受光領域7a,7b及び補助受光領域7e,7fの出力信号は0となる。
デフォーカスした場合は、主受光領域7a,7b及び補助受光領域7e,7fにおける出力信号が0とはならなくなる。ビームP1は、光ディスク5が遠ざかった場合には図4(b)、近づいた場合は図4(d)のように、スポット径が拡大し、いずれかの一方の受光領域7aまたは7bに拡がる。このとき、対物レンズ4のフォーカス方向への位置ずれがフォーカス誤差信号FESのダイナミックレンジDyの範囲内であれば、受光領域7a,7bの出力信号Sa,Sb基づいて、フォーカス誤差信号FES(=Sa−Sb)が生成される。
一方、対物レンズ4がダイナミックレンジDyを越えて、大きくデフォーカス状態になると、ビームP1は、図4(c),(e)のように、主受光領域7aまたは7bからはみ出し、それらの外側に設けた補助受光領域7eまたは7fにまで拡がる。この場合は、受光領域7a,7b及び補助受光領域7e,7fの出力Sa,Sb,Se,Sfに基づいて、フォーカス誤差信号FES(=(Sa+Sf)−(Sb+Se))が生成される。
以下、このような基本構成におけるフォーカス誤差信号FESの様子について詳細に説明するが、まず比較例として主受光領域7a,7bの幅W1が補助受光領域7e,7fの幅W2と同一幅である(主受光領域7a,7bの面積が補助受光領域7e,7fの面積と等しい)ものを取り上げ、これについて説明する。図5(a)において実線で示したのはこの比較例におけるFESカーブ(F)であり、点線で示したのが補助受光領域7e,7fが存在しない場合のFESカーブ(F’)である。光ビームスポットが主受光領域7aまたは7bからはみ出すまで、すなわちダイナミックレンジDy範囲内ではFESカーブFはF’と同様になるが、光ビームスポットが主受光領域7aまたは7bからはみ出しさらに補助受光領域7eまたは7fにその光が入射すると、SfまたはSeが増加して、FES=(Sa+Sf)−(Sb+Se)が急激に減少し0に収束する。すなわち、光ディスク5が合焦位置からダイナミックレンジDyを越えて遠ざかる場合は、主受光領域7b(出力Sb)に加えて補助受光領域7f(出力Sf)で受光が始まり、近づく場合は主受光領域7a(出力Sa)に加えて補助受光領域7e(出力Se)で受光が始まり、ダイナミックレンジDyを越えたデフォーカス状態では、補助受光領域7f,7eの受光により(Sa+Sf)と(Sb+Se)の差が小さくなる方向に急激に変化する。よって、(Sa+Sf)−(Sb+Se)の演算によるフォーカス誤差信号FESは、図5(a)の実線Fで示すように、ダイナミックレンジDyを越えた直後に急激に0に近づく。受光領域7e,7fの形状や受光領域7aと7eまたは7bと7fの距離を変化させることによって、ダイナミックレンジDyを越えた領域でのFESの減少の仕方が変化するので、これらを最適化することでFESカーブを急激に0に近づけることができる。
この比較例のピックアップ装置を、DVDの様な複数の記録再生層(2層)を持つ光ディスクの記録再生に適用した場合、図6(a)に示すように、両層においてフォーカスオフセットの発生の無い良好なFESカーブが得られていることがわかる。
ところが、この比較例のピックアップ装置において、組立時にホログラム素子2が半導体レーザ1とコリメータレンズ3で定められる光軸に対して、x方向にズレた場合、FESカーブは図6(b)に示すようなものとなる。通常、組立時の誤差やレーザの波長のズレを、ホログラム素子2の位置調整及び、光軸に対する回転調整により、合焦時のフォーカスオフセットが0となるよう調整しているため、図6(b)においても合焦位置ではフォーカスオフセットが生じない。しかしながら、光軸とホログラム素子2の分割線2gのズレが生じ、図5(b)に示すように、遠い側(図中右側)に大きなピークPkを生じてしまう。このような組立誤差の生じた比較例の光ピックアップ装置を複数の記録再生層を持つ光ディスクの記録再生に適用した場合、FESは図6(b)に示すように、大きなフォーカスオフセット△を発生するため、正しい合焦状態を得ることが困難になる。
上記した比較例におけるフォーカスオフセット△の発生原因について以下に説明する。図7,図8は、受光領域の各4素子、7a,7b,7e,7fへの戻り光の形状と各出力信号であるSa,Sb,Se,Sfを説明する図である。これらは分割線2gが+x方向にズレた場合であり、デフォーカスした状態での戻り光は、受光素子7a,7bの中心からはみ出している。特に、図7(a)に示すように光ディスク5が遠い側にずれた場合では、図7(b)に示すように光ディスク5が近い側にずれた場合よりも大きくはみ出している。つまり、例えば遠い側にデフォーカスした状態において、組立誤差が無ければ、受光素子7aには戻り光が入射しないものが、組立誤差により、デフォーカスするにつれて受光素子7aに戻り光が入射する。このため、Sb−Sfがゼロになるように、Sfで補正していたのに、これに、Saの信号分が付加されるため、過補正となり、FES信号としてはゼロにならない。
実際の出力信号で考えると、フォーカス誤差信号FESは(Sa+Sf)−Sb+Se)の演算で求めるが、これを変形して(Sa−Se)−(Sb−Sf)とする。まず、図8(a)はSb,Sfの出力信号を示したもので、遠い側(図の右側)での(Sb−Sf)は、ほぼゼロであるが、近い側(図の左側)では、緩やかにゼロに収束するものの、若干の数値をもつ。一方、下図はSa,Seの出力信号を示したもので、近い側での(Sa−Se)は、ほぼゼロであるが、遠い側では、10数μm程度デフォーカスした部分で大きなピークをもつ。
よって、比較例のような主受光領域7a,7bと補助受光領域7e,7fの面積が等しいものでは、(Sa−Se)−(Sb−Sf)で表されるFESが、遠い側で大きなピークをもち、近い側では緩やかではあるが若干の数値をもつことになる。以上のことより、過補正を防ぐには、
(1)補助受光部での補正量を少なくする。
(2)誤差が発生した場合に、主受光部の中心から戻り光がはみ出す量を少なくする。
という対策が考えられる。
基本構成では、上記したように補助受光領域7e,7fの面積を主受光領域7a,7bより小さくしているため、上記過補正を防ぐことができ、良好なFESカーブを得ることが可能となる。
図9は、補助受光部7e,7fの幅を変化させた場合のFESカーブの様子を示す図である。この図における左側は適当な組立誤差が発生した場合のFESカーブであり、右側は理想通りに組立られた場合のFESカーブである。また、上から順に補助受光部7e,7fの幅は小さくなっている。尚、ここにおいて主受光領域7a,7bの幅W1は25μmである。
図9から、組立誤差がある場合は、補助受光部の幅が小さいほど遠い側のピークは小さくなる。一方、理想通りに組み立てられた場合は20μm幅(主受光領域の幅の80%)前後が最適であることがわかる。20μmよりも小さくなると、デフォーカス域でのFESカーブの立ち下がりがゆるくなり、大きなピークは発生しないものの、層間隔が小さい場合は、若干ではあるがフォーカスオフセットを有することになる。そして、さらに小さくなり、7μmになると理想状態におけるオフセットがかなり大きくなり、特に主受光領域の幅の25%以下となるとそのオフセットが問題となる。
実際の光ピックアップ装置では、組立誤差は必ずあるものなので、誤差の範囲を考慮して、誤差が小さい場合(誤差無し)も含めて、総合的に最適な補助受光部の幅を決定する必要があり、0.25W1≦W2≦0.8W1(W1:主受光領域の幅,W2:補助受光領域の幅)を満たすことが望ましい。
図10は、補助受光領域の幅W2を主受光領域W1の約半分(W2=2×W1)の場合のFESカーブを示すものであり、(a)は理想状態で、(b)は組立誤差を含んだ状態(ピックアップへの搭載も含む)を示している。両者とも大きくデフォーカスした領域でのフォーカスオフセットの発生量が極力抑えられている。
尚、以上の例では、補助受光領域の幅を主受光領域の幅に比して小さくすることで、過補正の問題を解決しているが、本発明の光ピックアップ装置はこれに限るものではなく、例えば、
(1)補助受光領域からの出力信号のゲインを可変抵抗器等により調整する。
(2)FESの演算を例えば次式により行う。
FES=(Sa−K×Se)−(Sb−K×Sf),K:補償係数
(3)補助受光領域の感度自身を低下させる(PD形成時の拡散濃度や深さを変える)。
(4)補助受光領域にスリット等の遮蔽帯を施して有効受光面積を小さくする。
(5)補助受光領域の長さを短くする(補助受光領域に入射する光ビームはかなり大きいため、光ビームの受光位置が長さ方向にずれても、確実に受光できる)。
ことで、組立誤差等による戻り光形状の変化に対応するものでも良い。
(参考例)参考例の光ピックアップ装置では、上記基本構成における(2)誤差が発生した場合に主受光領域の中心から戻り光がはみ出す量を少なくする、を実現するものである。図11はその光ピックアップ装置の概略を示す断面図である。ここでは、半導体レーザ1、受光素子7とホログラム素子2及びコリメータレンズ3のみ記載している。
ホログラム素子2の回折角度は、光ディスクからの反射光のうち1次回折光が受光素子7に入射するように設計されるが、レーザ1からの往路の光ビームの一次回折光も同様に発生し、図の点線の様にコリメータレンズ3に向かう。
このような光学系を有する光ピックアップ装置において、前述した組立誤差等による受光素子7への戻り光の形状変化は、ホログラム素子2による回折角度θ1が大きいほど激しい。したがって、主受光領域の中心から戻り光がはみ出す量を小さくするには、ホログラム素子2による回折角度θ1を小さくすればよい。
しかしながら、あまり小さくしすぎると上記した往路の1次回折光がコリメータレンズ3に入射し、ディスク上に不要な光を発生するため好ましくない。よって、往路の1次回折光がコリーメータレンズ等のホログラム素子2の次段の光学素子に入射しない程度に回折角度を小さくすれば、両者を満足する良好なピックアップを構成することが可能となる。
以下に、具体的に説明する。図11において、r1はホログラム素子2の半径、r2はコリメータレンズ3の半径を示しており、また、θ1は戻り光のホログラム素子2による回折角度、θ2は受光素子7とホログラム素子2とを結ぶ線分のホログラム素子2の鉛直方向となす角度を示している。さらに、Lは受光素子7とコリメータレンズ2との間の距離(コリメータレンズ2に垂直な方向における距離)、lは受光素子7とホログラム素子2との間の距離(ホログラム素子に垂直な方向における距離)を示している。また、Dは受光素子7と半導体レーザ1との間の距離(ホログラム素子2に平行な方向の距離)を示している。
このとき、tanθ1=D/ltanθ2=(D−r1)/lよって、tanθ1=(D−r1)/l+r1/l=tanθ2+r1/lとなる。
ここで、往路の1次回折光がコリメータレンズ3内に入射しないための条件は、L×tanθ2≧D+r2よって、tanθ2≧(D+r2)/Lしたがって、tanθ1≧(D+r2)/L+r1/lとなる。したがって、この式を満足するように回折角度θ1を設定すれば、往路の1次光はコリメータレンズ3内に入射しない。
ここで、上記したように回折角度θ1はできるだけ小さい方が良いため、tanθ1=(D+r2)/L+r1/lとすることが望ましい。しかしながら実際には組立誤差等が存在するため、回折角度θ1としては、想定される組立誤差を△としたとき、(D+r2+△)/L+r1/l≧tanθ1≧(D+r2)/L+r1/lとすることがより望ましい。
図12に、ホログラム素子2の回折角度が約倍程度異なる場合の受光素子への戻り光の形状の差異を示す。(a)は回折角度が約15度(b)は回折角度が約30度程度であり、回折角度が小さい(a)場合の方が、主受光領域の中心からのシフト量が少ない、つまり、フォーカスオフセット量を抑圧でき、良好なFESカーブが得られることがわかる。
(実施形態)図13は、本発明の一実施形態に係る光ピックアップ装置の構成を示す要部概略図である。本実施の形態の光ピックアップ装置は、図1に示した基本構成の光ピックアップ装置と、ラジアル誤差生成用受光領域7c,7dの形状が異なっているものである。そこで、基本構成と同一部分に付いては同一符号を付し説明を省略する。
図13(a),(b)はそれぞれ、光学系の組立等の誤差により、戻り光が受光部上で+Y,−Y方向に最もズレた場合の戻り光形状を示したものである。また、これらの図は、一定のデフォーカスが存在する場合の戻り光の様子を示している。
この状態で、誤差によらずラジアル誤差信号生成用受光領域7c,7d内に戻り光が収まるようにする場合、受光領域7c,7dの形状は、分割線7gに平行な辺を有する矩形形状にすると図中に点線で示した形状になる。このような受光領域形状の場合、受光領域7c,7dの面積がフォーカス誤差信号生成用の受光領域7a,7b,7e,7fの面積と比べて、非常に大きくなり、周波数特性が悪くなる。また、左右両側に配置される受光領域間における受光部面積が異なっており、左右の受光素子の周波数特性に差が発生する。さらに、複数の記録再生ディスクを再生する場合は、隣接層からの迷光が入射するが、左右の面積が異なるためにラジアルオフセットが発生する。
上記した問題を解決するためには、図13中に実線で記載しているように、できるだけ受光部の面積を小さくし、かつ左右両側の受光領域7c,7dの面積を略同一としなければならない。つまり、ビームの移動方向に合わして、分割線7gに対して傾斜した形状にする必要がある。このように設定すれば、受光領域面積は点線の場合に比べて約半分以下となり、フォーカス誤差信号生成用の受光部の面積との差異を抑えることが可能であり、受光素子の高帯域化の障害にならない。また、左右の受光部面積も同じにできるため、受光素子の周波数特性に差が発生せず、複数の記録再生ディスクを再生する場合は、隣接層からの迷光が入射しても、左右の面積が同じであるためにラジアルオフセットは発生しない。
以上説明したように、本発明の光ピックアップ装置では、フォーカス誤差信号補正用の補助受光領域からの補助信号が調整されるため、組立誤差等により戻り光の形状が変化した場合にもFESにおけるオフセットの発生を抑制できる。
また、補助受光領域の面積を主受光領域の面積よりも小さく設定することにより、組立等による誤差が発生し、フォーカス動作させた場合の受光素子への戻り光の形状変化が異なっても、大きくデフォーカスした状態のフォーカス誤差信号の補正を過補正あるいは補正不足とすることを抑圧できる。
光検出器において、補助受光領域の面積を主受光領域の面積に対して、80%以下、25%以上とすることで、組立等による誤差が発生した場合でも、また、ほとんど誤差が発生しない場合においても、フォーカス動作させた場合の受光素子への戻り光の形状変化が異なって、大きくデフォーカスした状態のフォーカス誤差信号の補正が過補正になったり、逆に補正不足になったりすることをより抑圧できる。
ホログラム素子の回折角度を、往路の1次回折光が次のレンズ系(例えば、コリメータレンズとか対物レンズ)に入射しない程度に、回折角度を小さくしているため、組立等による誤差が発生した際に、フォーカス動作させた場合の受光素子への戻り光の形状変化が異なるが、その差異を小さくすることが可能となる。これにより、フォーカス誤差信号の補正が過補正になったり、逆に補正不足になったりすることを抑圧できるため、複数の記録再生層を有する光ディスクを記録再生する際に、良好なFESカーブを得ることが可能となる。
さらに、ラジアル誤差信号生成用受光領域を、組立等の誤差による戻り光の移動方向に沿って形成し、左右両側の受光部領域の面積を略同一とすることにより、上記誤差によらず戻り光が受光領域内に収まるように受光領域の形状を設定したとしても、受光領域面積を必要最小限にでき、受光素子の高帯域化を実現できる。また、左右の受光部の面積に差が発生しないので、隣接層からの迷光の入射に起因するオフセットの発生を抑制できる。
なお、本発明の光ピックアップ装置は、光源から光ビームを出射し、その光ビームを光記録媒体上に集光するとともに、光記録媒体からの戻り光を検出する光ピックアップ装置において、光ビームのフォーカスのずれに応じた戻り光が入射する少なくとも2つの主受光領域を有し、各主受光領域への入射光量に応じた主信号を生成する主受光手段と、少なくとも2つの主受光領域からはみ出した戻り光を受光する補助受光領域を有し、補助受光領域への入射光量に応じた補助信号を生成する補助受光手段と、補助信号を用いて、主信号を補正してフォーカス誤差信号を生成する誤差信号生成手段と、を有してなり、補助信号は、光学系の配置誤差に基づく、戻り光形状の変化に対応できるよう、調整されてなる構成であってもよい。
上記構成によれば、フォーカス誤差信号の主部分を生成する少なくとも2つの主受光領域と、デフォーカス状態になった場合にその主受光領域からはみ出した光を検出する補助受光領域とを有しており、補助受光領域からの補助信号によりフォーカス誤差信号の補正を行う。また、光学系に生じる組立誤差等の配置誤差により戻り光形状が変化した場合にも対応できるように補助信号が調整される。したがって、フォーカス誤差信号のオフセットを抑制できる。
また、本発明の光ピックアップ装置は、上記構成の光ピックアップ装置において、補助受光領域は、その面積が主受光領域の面積よりも小さく設定されてなる構成であってもよい。
上記構成によれば、補助受光領域の面積が主受光領域よりも小さく設定されているため、簡単な構成により上記補助信号を調整できる。また、受光素子の高帯域化の障害にならない。
また、本発明の光ピックアップ装置は、上記構成の光ピックアップ装置において、補助受光領域の面積は、主受光領域の面積の25%以上80%以下である構成であってもよい。
上記構成によれば、補助受光領域の面積を最適化したことにより、組立等による配置誤差が発生した場合、及び、ほとんど誤差が発生しない場合の両方において、大きくディフォーカスした状態のフォーカス誤差信号の補正が過補正になったり、逆に補正不足になったりすることをより抑圧できる。
また、本発明の光ピックアップ装置は、光源から光ビームを出射し、その光ビームをホログラム素子を透過させた後他の光学系を介して光記録媒体上に集光するとともに、光記録媒体からの戻り光をホログラム素子により回折して検出する光ピックアップ装置において、光ビームのフォーカスのずれに応じた戻り光が入射する少なくとも2つの主受光領域を有し、各主受光領域への入射光量に応じた主信号を生成する主受光手段と、少なくとも2つの主受光領域からはみ出した戻り光を受光する補助受光領域を有し、補助受光領域への入射光量に応じた補助信号を生成する補助受光手段と、補助信号を用いて、主信号を補正してフォーカス誤差信号を生成する誤差信号生成手段と、を有してなり、ホログラム素子による1次回折角が、光源からの光ビームのホログラム素子による1次回折光を他の光学系に入射させない限界角度と略同一角度である構成であってもよい。
上記構成の光ピックアップ装置は、ホログラム素子の回折角度を、往路の1次回折光が次のレンズ系(例えば、コリメータレンズとか対物レンズ)に入射しない程度に、回折角度を小さくしているため、組立て等による誤差が発生した際に、フォーカス動作させた場合の受光素子への戻り光の形状変化が異なるが、その差異を小さくすることが可能となる。フォーカス誤差信号の補正が過補正になったり、逆に補正不足になったりすることを抑圧できるため、複数の記録再生層を有する光ディスクを記録再生する際に、良好なFESカーブを得ることが可能となる。
尚、ホログラム素子による1次回折角が限界角度と略同一角度であるとは、組立誤差等を考慮して前記限界角度に組立誤差分の角度を加えたものも含むものである。
本発明によれば、受光素子の高帯域化を実現できる。また、左右の受光部の面積に差が発生しないので、隣接層からの迷光の入射に起因するオフセットの発生を抑制できる。
本発明の光ピックアップの概略構成図である。 図1におけるホログラム素子の構成を示す模式図である。 図1における受光素子の構成を示す概略図である。 光ディスクが近づいた状態及び遠ざかった状態における戻り光の様子を示す説明図である。 比較例の補助受光領域形状におけるFESカーブの説明図である。 比較例の補助受光領域形状の光ピックアップ装置により2層ディスクを記録再生する場合のFESカーブの説明図である。 比較例の補助受光領域形状におけるデフォーカス時の戻り光の形状を示す説明図である。 比較例における各受光領域の出力信号を示す説明図である。 補助受光領域の幅を変えた場合のFESカーブを説明する図である。 主受光領域の面積=2×補助受光領域の面積の場合のFESカーブの概略図である。 参考例の光ピックアップ装置の主要部の構成図である。 回折角度θが異なる場合のディスクからの戻り光の形状を示す概略図である。 本発明の実施形態における各受光領域の形状、及び、ディスクからの戻り光の形状を表す概略図である。 本出願人が先に提案したピックアップ装置の構成を示す概略図である。 図14における受光素子の構成を示す説明図である。
符号の説明
2 ホログラム素子
7 受光素子
7a,7b 主受光領域
7e,7f 補助受光領域
7c,7d ラジアル誤差信号生成用受光領域
7g 分割線

Claims (1)

  1. 光源から光ビームを出射し、その光ビームを光記録媒体上に集光するとともに、前記光記録媒体からの戻り光を検出する光ピックアップ装置において、
    前記光ビームのフォーカスのずれに応じた戻り光が入射する少なくとも2つの主受光領域を有し、各主受光領域への入射光量に応じたフォーカス誤差主信号を生成するフォーカス制御手段と、
    前記少なくとも2つの主受光領域を両側から挟むように配置され、前記光記録媒体からの戻り光が入射する2つのラジアル誤差検出用受光領域を有し、該ラジアル誤差検出用受光領域への入射光量からラジアル誤差信号を検出するラジアル制御手段と、
    前記光源から出射される光ビームをコリメートレンズ及び対物レンズを用いて前記光記録媒体上に集光するとともに、前記光記録媒体からの戻り光を前記対物レンズ、前記コリメートレンズ及びホログラム素子を用いて2つの分割光に分割し、前記2つのラジアル誤差検出用受光領域の各々に入射させるための光学系と、を有してなり、
    前記ホログラム素子は、前記光記録媒体のラジアル方向に直交する方向に2分割され、さらに、前記ラジアル方向に直交する方向に分割されたうちの一方の領域が前記ラジアル方向に2分割され、これら前記ラジアル方向に2分割された領域の各々に入射する前記光記録媒体からの戻り光が前記2つの分割光となっており、
    前記光源、前記コリメートレンズ、前記対物レンズ及び前記ホログラム素子は、前記光学系を構成するように、前記光源から出射される光ビームの光軸方向に沿って、配置されており
    記光源、前記コリメートレンズ、前記対物レンズ及び前記ホログラム素子が前記光学系を構成するように配置される際、前記ホログラム素子と前記2つのラジアル誤差検出用受光領域との前記光軸方向の間隔の誤差である配置誤差が生じた場合には、その配置誤差に起因して前記2つの分割光が各々のラジアル誤差検出用受光領域に入射する際における入射角度及び、各々のラジアル誤差検出用受光領域に入射するまでの光路長が変動することにより、前記2つのラジアル誤差検出用受光領域の各々における前記各分割光の入射位置は、前記各ラジアル誤差検出用受光領域を移動し、かつ、前記各分割光の入射位置が前記配置誤差に起因して移動する方向は、前記光記録媒体のラジアル方向に対して互いに異なる角度だけずれるものであり、
    前記2つのラジアル誤差検出用受光領域の各々は、自身に入射する前記分割光の入射位置が前記配置誤差に起因して移動する方向に沿うように前記光記録媒体のラジアル方向に対して傾斜した形状に形成されており、
    前記2つのラジアル誤差検出用受光領域の形状は互いに異なり、かつ、前記2つのラジアル誤差検出用受光領域の面積が略同一であることを特徴とする光ピックアップ装置。
JP2006245994A 2006-09-11 2006-09-11 光ピックアップ装置 Expired - Fee Related JP4699317B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006245994A JP4699317B2 (ja) 2006-09-11 2006-09-11 光ピックアップ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006245994A JP4699317B2 (ja) 2006-09-11 2006-09-11 光ピックアップ装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP02420397A Division JP3889104B2 (ja) 1997-02-07 1997-02-07 光ピックアップ装置

Publications (2)

Publication Number Publication Date
JP2007004982A JP2007004982A (ja) 2007-01-11
JP4699317B2 true JP4699317B2 (ja) 2011-06-08

Family

ID=37690411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006245994A Expired - Fee Related JP4699317B2 (ja) 2006-09-11 2006-09-11 光ピックアップ装置

Country Status (1)

Country Link
JP (1) JP4699317B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5386198B2 (ja) 2009-03-09 2014-01-15 株式会社日立メディアエレクトロニクス 光ピックアップ装置

Also Published As

Publication number Publication date
JP2007004982A (ja) 2007-01-11

Similar Documents

Publication Publication Date Title
JP3889104B2 (ja) 光ピックアップ装置
JP3372413B2 (ja) 光ピックアップ装置及び光記録再生装置
US7778140B2 (en) Optical head device and optical information device
JPWO2008053548A1 (ja) ピックアップ装置
JP2005085311A (ja) 光ディスク記録再生方法,光ディスク装置及び光ピックアップ
US7821902B2 (en) Aberration detection device and optical pickup device provided with same
EP1213714A2 (en) Optical information recording medium with multiple recording layers
US20070041287A1 (en) Optical pickup apparatus capable of detecting and compensating for spherical aberration caused by thickness variation of recording layer
JP4118869B2 (ja) 光ピックアップ装置
JP4699317B2 (ja) 光ピックアップ装置
JP3435067B2 (ja) 光ピックアップ装置
JP3836483B2 (ja) 光集積ユニットおよびそれを備えた光ピックアップ装置
US6975576B1 (en) Optical head device and disk drive system having first and second light sources for emitting light beams of different wavelengths
JP4654085B2 (ja) 光検出器、光ピックアップ及び光ディスク装置
JP4437806B2 (ja) 光集積ユニットおよびそれを備えた光ピックアップ装置
JP4177336B2 (ja) 光集積ユニットおよびそれを備える光ピックアップ装置
KR101727520B1 (ko) 회절 소자를 갖는 광 픽업 장치 및 이를 구비한 광 기록 및 재생 장치
JP2001028145A (ja) 光学ヘッド装置及びディスク録再装置
JP4319181B2 (ja) 光ピックアップ装置および情報記録再生装置
JP2005093008A (ja) 光ピックアップ装置および光ディスクドライブ装置
JP5409712B2 (ja) 光ピックアップ装置及びこれを備えた光ディスク装置
JP4501275B2 (ja) 光ヘッド、受発光素子、及び光記録媒体記録再生装置、ならびにトラック判別信号検出方法
JP2007102928A (ja) 光ピックアップ装置
WO2011065274A1 (ja) 光ピックアップ装置
JP2008052773A (ja) 光ピックアップ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090714

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

LAPS Cancellation because of no payment of annual fees