JP4698305B2 - 電源装置及びこれを用いた磁気共鳴イメージング装置 - Google Patents

電源装置及びこれを用いた磁気共鳴イメージング装置 Download PDF

Info

Publication number
JP4698305B2
JP4698305B2 JP2005195646A JP2005195646A JP4698305B2 JP 4698305 B2 JP4698305 B2 JP 4698305B2 JP 2005195646 A JP2005195646 A JP 2005195646A JP 2005195646 A JP2005195646 A JP 2005195646A JP 4698305 B2 JP4698305 B2 JP 4698305B2
Authority
JP
Japan
Prior art keywords
pwm
signal
carrier
output
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005195646A
Other languages
English (en)
Other versions
JP2007014361A (ja
Inventor
拓也 堂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2005195646A priority Critical patent/JP4698305B2/ja
Publication of JP2007014361A publication Critical patent/JP2007014361A/ja
Application granted granted Critical
Publication of JP4698305B2 publication Critical patent/JP4698305B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Inverter Devices (AREA)

Description

本発明は電源装置に係わり、特に大電力を要求される静磁場,傾斜磁場,高周波磁場の発生に必要な各種電源に好適な電源装置及びこれを用いた磁気共鳴イメージング装置(以下、MRI装置という)に関する。
MRI装置は、静磁場中に置かれた検査対象に高周波磁場をパルス状に印加し、検査対象から発生する核磁気共鳴信号を検出し、この検出信号をもとにスペクトルや画像を形成するものである。
このMRI装置には、磁場発生コイルとして、静磁場を発生する超電導コイル,静磁場に重畳される傾斜磁場を発生するための傾斜磁場コイル、さらに高周波磁場を発生するための高周波コイルが備えられている。
これら磁場発生コイルは所定の磁場強度の磁場を発生するために印加電流の大きさとタイミングを制御するための電源装置を備えている。
このようなMRI装置では、静磁場や傾斜磁場や高周波磁場の磁場強度が最終的に得られる画像上のノイズや撮影時間に大きく影響する。
また、短時間で診断に有用な画像を得るためにMRI装置の磁場電源として、該磁場を発生する磁場コイルに流す電流は、立ち上がり、立ち下がり時間が短く、立ち上がり後に該電流のリップルや変動のない高安定、高精度の電源装置が要求される。
このような大電流、高精度の電源装置として、マルチレベルPWM(Pulse Width Modulation;パルス幅変調)インバータでスイッチング電源を構成し、このスイッチング電源の負荷をMRI装置の磁場発生用コイルとする特許文献1に開示されているものがある。
特開2004-266884号公報
MRI装置用電源装置に適用する上で重要なことは出力電圧の高精度化であり、特に安定した直流電流を供給するための零付近での出力電圧の高精度化である。
すなわち、磁場コイルに流れる電流を該コイルの電流指令値に一致させ、かつ低リップルの電流とする必要があり、特に出力電圧の零及び該零付近でのリップルを小さくする必要がある。
上記特許文献1のマルチレベルPWMインバータによる電源装置には、出力電圧レベルの切り替えが存在する。
この切り替え点において、電位の低いレベルから電位の高いレベルへの切り替え時には、電位の低いレベルの電圧を制御するPWM制御パルス幅は最大となり、電位の高いレベルの電圧を制御するPWM制御パルス幅は最小となる。
逆に電位の高いレベルから電位の低いレベルへの切り替え時には、電位の高いレベルの電圧を制御するPWM制御パルス幅は最小となり、電位の低いレベルの電圧を制御するPWM制御パルス幅は最大となる。
これらの最小パルス幅及び最大パルス幅は、デッドタイムの存在によってハードウェアで制限され、この制限によって上記レベル切り替え付近では平均出力電圧に不連続となる領域(不感帯領域)が発生して出力電流を高精度に制御できなくなる。
なお、デッドタイムとは、スイッチング素子のスイッチング速度のばらつき等によって、上下アームのスイッチング素子が同時に導通してマルチレベルPWMインバータの直流電源短絡を防ぐために、上下アームの双方が非導通となる時間を設けており、この時間をデッドタイムと呼んでいる.。
上記マルチレベルPWMインバータにおいて、一般に耐電圧の確保、ノイズ低減および漏れ電流の抑制などの観点から、直流電圧源の中間電位をグランド(アース)に接地することができる3レベルや5レベルなどの奇数レベルのマルチレベルPWMインバータが多用される。
しかし、上記奇数レベルのマルチレベルPWMインバータは、レベル数−1の数の同一電圧を持つ直流電圧を直列に接続して直流電圧源を構成するために、前記同一の電圧を持つ直流電圧数は偶数となり、該直流電圧の接続点における電圧は電圧レベルの切り替え電圧となる。
この出力電圧レベルの切り替えによって、上記デッドタイムの存在、最小パルス幅及び最大パルス幅の制限の影響により、マルチレベルPWMインバータの半導体スイッチの導通比率と出力電圧の関係に不連続となる期間が生じ、また発生する電流リップルも無視できないものとなる。なお、不連続となる期間は、デッドタイムによって直接発生するものではなく、該デットタイムの存在がPWM制御パルスの最小パルス幅、最大パルス幅に制限をかけ、その影響が大きくなっていることから、間接的にデッドタイムがレベル切り替え付近での不感帯領域発生の要因となるものである。
このように、マルチレベルPWMインバータにはレベル切り替え付近で不感帯領域および電流リップルの問題が発生し、特に出力電圧の零付近では上記最小パルス幅の制限の影響が大きく、これによって出力電流のリップルが増大する。この電源装置をMRI装置の傾斜磁場発生用電源装置に用いた場合、前記電流リップルはMRI画像の画質低下の要因となるが、この問題に関しては上記特許文献1では配慮されていなかった。
そこで、本発明の目的は、PWM制御の最小パルス幅の制限によって発生する出力電圧の零付近におけるマルチレベルPWMインバータの半導体スイッチの導通比率と出力電圧の関係の改善と出力電流リップルを低減することができる電源装置及びそれを用いた磁気共鳴イメージング装置を提供することにある。
本発明の電源装置は、マルチレベルPWMインバータを用いてスイッチング電源を構成し、このスイッチング電源のPWM制御に多相搬送波方式を用いると共に多相搬送波間の位相をずらすことによって上記目的を達成し、また、本発明の磁気共鳴イメージング装置は、磁場発生用電源装置に前記電源装置を用いることによって上記目的を達成するもので、具体的には以下の手段によって達成される。
(1)本発明の電源装置は、パルス幅変調制御マルチレベルインバータ(マルチレベルPWMインバータ)と、このマルチレベルPWMインバータの負荷への出力電流を検出する電流検出手段と、この電流検出手段による検出値と電流指令値との差が零になるように制御する制御信号により前記マルチレベルPWMインバータを駆動制御するスイッチング制御手段とを備えた電源装置において、前記スイッチング制御手段は、多相の搬送波を発生する多相搬送波発生手段と、前記多相の搬送波の位相をずらす搬送波位相シフト手段と、前記多相搬送波発生手段及び前記搬送波位相シフト手段で生成された搬送波と前記制御信号とに基づいて前記マルチレベルPWMインバータを駆動制御する駆動信号生成手段とを備えたものである。
前記多相搬送波発生手段及び搬送波位相シフト手段は、基準となる搬送波と、この搬送波から所定の位相をずらした搬送波を生成する手段であって、前記駆動信号生成手段は、前記基準搬送波及び前記位相をずらした搬送波と前記制御信号とを比較する第1の比較手段と、この第1の比較手段の出力を加算する手段と、この加算手段の出力と複数の基準比較値とを比較する第2の比較手段とを備えて構成する。
(2)前記マルチレベルPWMインバータは、複数の並列接続された同一レベル数のマルチレベルPWMインバータであって、前記複数のマルチレベルインバータ間のスイッチング位相をずらす並列インバータ間位相シフト手段をさらに備えた。
(3)また、本発明の磁気共鳴イメージング装置は、パルス幅変調制御マルチレベルPWMインバータと、このマルチレベルPWMインバータの負荷への出力電流を検出する電流検出手段と、この電流検出手段による検出値と電流指令値との差が零になるように制御する制御信号により前記マルチレベルインバータを駆動制御するスイッチング制御手段とを備えた電源装置を有する磁気共鳴イメージング装置であって、前記負荷は磁場発生用コイルとし、この磁場発生用電源装置に上記(1)の電源装置を用いたものである。
さらにまた、本発明の磁気共鳴イメージング装置は、複数の並列接続された同一レベル数のマルチレベルPWMインバータと、これらの各マルチレベルPWMインバータの負荷への出力電流を検出する電流検出手段と、この電流検出手段による検出値と電流指令値との差が零になるように制御する制御信号により前記マルチレベルPWMインバータを駆動制御するスイッチング制御手段とを備えた電源装置を有する磁気共鳴イメージング装置であって、前記負荷は磁場発生用コイルとし、この磁場発生用電源装置に前記複数のマルチレベルPWMインバータ間のスイッチング位相をずらす並列インバータ間位相シフト手段を備えたものである。
このように、マルチレベルPWMインバータの搬送波に多相搬送波発生手段による多相の搬送波を用い、これら多相の搬送波間の位相を搬送波位相シフト手段で任意の位相にシフトし、前記多相搬送波発生手段及び前記搬送波位相シフト手段で生成された搬送波と負荷電流制御信号(マルチレベルPWMインバータの負荷への出力電流と電流指令値との差が零になるように制御する信号) とに基づいて前記マルチレベルPWMインバータを駆動制御するようにしたので、動作PWM制御信号(実施形態のPWM Upper、PWM Lower、PWM 1 Upper、PWM 1 Lower、PWM 2 Upper、PWM 2 Lower及びPWM 1 Upper、PWM 1 MID Upper、PWM 1 MID Lower、PWM 1 Lower等の信号)の最小パルス幅を出力電圧の零付近から遠ざけることができる。
これによって、出力電圧の零付近での不連続性は改善され、マルチレベルPWMインバータの半導体スイッチの導通比率Dutyと出力電圧との関係は不感帯のない連続した特性となる。
したがって、出力電圧の零及び該零付近での負荷に流れる電流リップルを小さくすることができ、上記電源装置を用いた磁気共鳴イメージング装置の画質は格段に向上したものとなる。
また、上記動作PWM信号の周波数も従来の半分になるので、半導体スイッチのスイッチング損失も大幅に低減し、同じ出力を得るには、より小さな電流容量の半導体スイッチを使用できるので、マルチレベルPWMインバータ回路を用いた電源装置及びこれを用いた磁気共鳴イメージング装置を小形、安価なものにすることが可能となる。
さらに、同一レベル数のマルチレベルPWMインバータを複数並列接続し、これら複数のマルチレベルPWMインバータ間のスイッチング位相をずらす並列インバータ間位相シフト手段を備えたので、各マルチレベルPWMインバータ間で該インバータの出力電流のリップルが互いに打ち消し合うように動作し、これによって負荷に流れる電流のリップルは大幅に低減する。
したがって、この電源装置を磁気共鳴イメージング装置に用いることによって、該磁気共鳴イメージング装置の画質はさらに向上するものとなる。
以上、本発明によれば、マルチレベルPWMインバータのPWM制御に多相搬送波方式を用いる共に多相搬送波間の位相をずらす構成の電源装置としたので、PWM制御の最小パルス幅の制限によって発生する出力電圧の零付近におけるマルチレベルPWMインバータの半導体スイッチの導通比率と出力電圧の関係は改善されて出力電流のリップルを小さくすることができる。したがって、この電源装置を用いた磁気共鳴イメージング装置の画質は格段に向上したものとなる。
さらに、同一レベル数のマルチレベルPWMインバータを複数並列接続し、これら複数のマルチレベルPWMインバータ間のスイッチング位相をずらす並列インバータ間位相シフト手段を備えたので、出力電流の負荷に流れる電流のリップルは大幅に低減し、この電源装置を用いた磁気共鳴イメージング装置の画質はさらに向上するものとなる。
以下、本発明に係る電源装置及びそれを用いた磁気共鳴イメージング装置の好ましい実施の形態について添付図面を用いて詳細に説明する。
図1は、本発明の第1の実施形態による電源装置としてのMRI装置の傾斜磁場電源装置を示すブロック構成図である。
この傾斜磁場電源装置2は、三相交流電源3から電力を供給し、負荷である傾斜磁場コイル1に接続して電流を供給するように構成され、三相交流電源3に接続して三相交流電圧を直流電圧に変換する交流-直流変換器4と、この交流−直流変換器4の出力側に接続して直流電圧を平滑化する平滑コンデンサ5と、この平滑コンデンサ5に接続して平滑化された直流電圧を受電し、傾斜磁場コイル1のX軸コイル6、Y軸コイル7及びZ軸コイル8にそれぞれ電流を供給する電流増幅器9〜11とを備えている。
電流増幅器9は、入力の直流電圧源である平滑コンデンサ5に並列に接続されたマルチレベルPWMインバータ12と、このマルチレベルPWMインバータ12の出力を負荷である傾斜磁場コイル1のX軸コイル6に供給し、このX軸コイルに流れる電流を検出する電流検出手段18と、MRI装置のシーケンサ20からの電流指令値と前記電流検出手段18の出力である電流検出値とを入力し、両者の差が零となるようにマルチレベルPWMインバータ12を駆動制御するスイッチング制御回路19と、このスイッチング制御回路19に設けられて前記マルチレベルPWMインバータ12のPWM制御に多相の搬送波(以下、搬送波をキャリアと呼ぶ場合がある)方式を用い、前記多数キャリア間の位相をずらす制御手段とを備えて構成している。
電流増幅器10も同一構成で、マルチレベルPWMインバータ12の出力側にY軸コイル7が接続され、MRI装置のシーケンサ20からの電流指令値と負荷である前記Y軸コイル7に流れる電流を検出する電流検出手段18の電流検出値とを入力し、両者の差が零となるようにマルチレベルPWMインバータ12を駆動制御するスイッチング制御回路19と、このスイッチング制御回路19に設けられて前記マルチレベルPWMインバータ12のPWM制御に多相キャリア方式を用い、前記多相キャリア間の位相をずらす制御手段とを備えて構成している。
また電流増幅器11も同一構成で、マルチレベルPWMインバータ回路12の出力側にZ軸コイル8が接続され、MRI装置のシーケンサ20からの電流指令値と前記Z軸コイルに流れる電流を検出する電流検出手段18の電流検出値とを入力し、両者の差が零となるようにマルチレベルPWMインバータ12を駆動制御するスイッチング制御回路19と、このスイッチング制御回路19に設けられて前記マルチレベルPWMインバータ12のPWM制御に多相キャリア方式を用い、前記多相キャリア間の位相をずらす制御手段とを備えて構成している。
図2は、マルチレベルPWMインバータ12として、3レベルPWMインバータの回路図である。
3レベルPWMインバータは、その入力に直流電圧源E,E0を接続し、その出力端子A,Bに任意の電圧波形を出力するように構成している。
また、この3レベルPWMインバータは、直流電圧源E-E0間に分圧コンデンサ21,22を接続して直流電圧を2分割(E/2)しており、逆並列接続した2対のMOSFET(Metal Oxide Semiconductor Field Effet Transistor;MOS型電界効果トランジスタ)による半導体スイッチ23,24およびダイオード25,26を直列に接続した4組のアーム27〜30を有し、前記4組のアームをフルブリッジ接続している。
そして、分圧コンデンサ21と22の接続点(レベル2の電位)とフルブリッジ構成の各アーム27〜30の半導体スイッチの接続点との間にダイオード31,32,33,34を接続している。
すなわち、アーム27の半導体スイッチ23と24の接続点と前記分圧コンデンサ21と22の接続点との間に図示のようにダイオード31を、アーム28の半導体スイッチ23と24の接続点と前記分圧コンデンサ21と22の接続点との間にダイオード32を、アーム29の半導体スイッチ23と24の接続点と前記分圧コンデンサ21と22の接続点との間にダイオード33を、アーム30の半導体スイッチ21と22の接続点と前記分圧コンデンサ21と22の接続点との間にダイオード34を接続している。
ここで、アーム27の半導体スイッチ23,24を導通させることによって出力端Aに+Eの電圧を出力することができ、アーム27の半導体スイッチ23,24およびアーム28の半導体スイッチ23を導通させることによって出力端Aに+E/2の電圧を出力することができ、さらにアーム28の半導体スイッチ23,24を導通させることによって出力端Aに0の電圧を出力することができ、このようにして、3レベルの電圧を出力することができる。
また、出力端Bについても同様であり、結局、出力A,B間の電圧として、-Eから+Eまでの5通りの電圧(-E,-E/2,0,+E/2,E)を出力することができる。
さらに、これらをPWM制御することによって、出力電流のリップルが非常に小さい、-Eから+Eまでの間で任意の電圧を出力することができる。
ここで、本発明の電源装置に用いる上記図1のマルチレベルPWMインバータの動作を説明する前に、本発明で用いる多相キャリア方式について説明する。
多相キャリア方式とは、レベル数よりも一つ少ない数nの2π/nづつ位相をずらした三角波のキャリア(Carrier;搬送波)を用い、それぞれのキャリア信号と比較信号とから求めたPWM信号から動作PWM信号を求め、この動作PWM信号によりマルチレベルPWMインバータの半導体スイッチをスイッチング制御するものである。
3レベルインバータの場合は、図3に示すように、前記三角波のキャリアには(a)のCarrier AとCarrier Bの二つのキャリアを用い、これらのCarrier AとCarrier Bを180度づつ位相をずらし、それぞれのキャリアと電圧指令(Voltage Command)とを比較して求めた(b)のPWM AとPWM Bとから(c)のPWM Upper(PWM A AND PWM B)とPWM Lower(PWM A OR PWM B)とにより3レベルPWMインバータの半導体スイッチをスイッチング制御するもので、図2の場合は、前記PWM Upper信号を反転した信号でアーム27の半導体スイッチ23を、前記PWM Upper信号でアーム28の半導体スイッチ23を、前記PWM Lower信号を反転した信号でアーム27の半導体スイッチ24を、前記PWM Lower信号でアーム28の半導体スイッチ24をそれぞれスイッチング制御する。
この方式を用いると、図3(a)の丸の実線に示すように、出力電圧の零付近でPWM Upper、PWM Lowerは最小のパルス幅に制限され(これ以下のパルス幅よりも狭くすることができないハードウェアで制限されるパルス幅)、図4に示すように、マルチレベルPWMインバータの半導体スイッチの導通比率Dutyと出力電圧との関係は零電圧付近で不連続となる。
このように、三角波キャリアに多相キャリア方式を用いただけでは出力電圧の零付近での不連続性の問題は残る。
そこで、本発明では、前記多相キャリアの位相をずらすことによって上記問題を解決するもである。
図5は、多相キャリアの位相をずらした本発明の第1の実施形態における本発明の要部であるスイッチング制御回路19の構成図で、マルチレベルPWMインバータ12(図1,図2参照)の各アームの半導体スイッチのうち、出力端A側のアーム27,28の半導体スイッチ23,24をスイッチング制御する回路を示しており、出力端B側のアーム29,30の半導体スイッチ23,24も同様の構成でスイッチング制御できるので、省略してある。
なお、マルチレベルPWMインバータ12の23a,24a及び23b,24bは半導体スイッチ23,24を駆動する回路である。
前記図5のスイッチング制御回路19と図6の各部の波形図を用いて本発明の第1の実施形態の動作について説明する。
図5において、スイッチング制御回路19は、マルチレベルPWMインバータの動作周波数の1周期間に複数のキャリア信号を発生させてPWM制御信号を発生する回路で、キャリア信号を発生する三角波発生部40と、MRIシーケンサ20(図1参照)から出力される電流指令値を入力し、この電流指令値と前記負荷電流である傾斜磁場コイル電流を検出する電流検出手段18による検出値との差が零になるように制御するための電流制御信号を出力する電流制御部41と、マルチレベルPWMインバータ12のアーム27,28の上段の半導体スイッチ23と前記マルチレベルPWMインバータ12のアーム27,28の下段の半導体スイッチ24のゲート信号を発生する第1のゲート信号発生回路42とで構成される。
前記第1のゲート信号発生回路42において、三角波発生部40で発生した図6(a)に示す三角波のキャリア信号Carrier Aは比較部42bに入力され、このCarrier Aを第2の位相シフト部42aに入力して前記Carrier A から90度遅らせ、この遅らせた信号Carrier B(図6(a))を比較部42cに入力する。
これらのCarrier AとCarrier Bは、電流制御部41から出力される電圧指令信号(図6(a)のVoltage Command)と前記比較部42bと42cで比較されて、前記電圧指令信号が前記Carrier Aよりも大きい期間は、論理信号“High”を“1”とし、前記電圧指令信号が前記Carrier Aよりも小さいい期間は、論理信号“Low”を“0”とする図6(b)に示すPWM Aを比較部42bより出力し、前記電圧指令信号が前記Carrier Bよりも大きい期間は、論理信号“High”を“1”とし、前記電圧指令信号が前記Carrier Bよりも小さいい期間は、論理信号“Low”を“0”とする図6(b)に示すPWM Bを比較部42cより出力する。
前記比較部42b,42cから出力されたPWM AとPWM B信号は、図5に示すように、加算部42dで加算され、この加算値と比較値1、比較値0とを比較部42e,42fで比較する。
そして、前記加算値が比較値1よりも大きいときは、論理信号“High”となる図6(c)に示すPWM Upper信号を前記比較部42eから出力し、前記加算値が比較値0よりも大きいときは、論理信号“High”となる図6(c)に示すPWM Lower信号を前記比較部42fから出力する。
このようにして生成したPWM Upper信号を信号反転部42gで反転し、この信号を駆動回路23aで増幅してアーム27の半導体スイッチ23をスイッチング駆動し、前記PWM Upper信号はそのまま駆動回路23bで増幅してアーム28の半導体スイッチ23をスイッチング駆動する。
一方、PWM Lower信号は、信号反転部42hで反転され、この信号を駆動回路24aで増幅してアーム27の半導体スイッチ24をスイッチング駆動し、反転されない前記PWM Lower信号はそのまま駆動回路24bで増幅してアーム28の半導体スイッチ24をスイッチング駆動する。
このように、Carrier BをCarrier Aから90度遅らせることによって、図6(a)の丸の実線に示すように、PWM Upper信号、PWM Lower信号の最小パルス幅を出力電圧の零付近から25%付近 (出力電圧が零となるタイミングから最初にCarrier A≦Carrier Bとなるタイミング)、75%付近(出力電圧が零となるタイミングからCarrier A≧Carrier Bとなるタイミング)付近に移動させることができる。
これらのPWM Upper信号、PWM Lower信号の最小パルス幅の出力電圧方向への移動量は、Carrier Bの位相によって変化するもので、このCarrier Bの位相を調整することによって前記最小パルス幅のタイミングを任意に調整することができ、前記Carrier Bの位相を適切な値に設定することによって出力電圧の零付近での不連続性は改善され、マルチレベルPWMインバータの半導体スイッチの導通比率Dutyと出力電圧との関係は不感帯のない連続した特性となる。
図7は、本発明の第2の実施形態による電源装置としてのMRI装置の傾斜磁場電源装置を示すブロック構成図である。
この傾斜磁場電源装置2は、前記図2で説明した3レベルPWMインバータを二組(後述のマルチレベPWMインバータ12,13)並列に接続し、これらの並列インバータ間の動作位相をずらしてスイッチング制御することによって、電流増幅器の電流容量の増大及び負荷に流れる電流リップルの低減を図るもので、三相交流電源3から電力を供給し、負荷である傾斜磁場コイル1に接続して電流を供給するように構成され、三相交流電源3に接続して三相交流電圧を直流電圧に変換する交流-直流変換器4と、この交流−直流変換器4の出力側に接続して直流電圧を平滑化する平滑コンデンサ5と、この平滑コンデンサ5に接続して平滑化された直流電圧を受電し、傾斜磁場コイル1のX軸コイル6、Y軸コイル7及びZ軸コイル8にそれぞれ電流を供給する電流増幅器9〜11とを備えている。
電流増幅器9は、それぞれ入力の直流電圧源である平滑コンデンサ5に並列に接続された二つのマルチレベルPWMインバータ12,13と、このマルチレベルPWMインバータ12,13の出力側にそれぞれ接続されてその出力を負荷である傾斜磁場コイル1のX軸コイル6に並列に接続された電流制限手段14〜17と、電流増幅器9の出力電流を検出する電流検出手段18と、MRI装置のシーケンサ20からの電流指令値と電流検出手段18の出力である電流検出値とを入力し、両者の差が零となるようにマルチレベルPWMインバータ12,13を駆動制御するスイッチング制御回路19’と、このスイッチング制御回路19’に設けられて並列に接続された二つのマルチレベルPWMインバータ12,13のPWM制御に多相の搬送波方式を用い、前記並列のマルチレベルPWMインバータ間のスイッチング位相をずらすと共に前記多数キャリア間の位相をずらして電流リップルを打ち消し合う制御手段とを備えて構成している。
電流増幅器10も同一構成で、並列接続した二つのマルチレベルPWMインバータ12,13の出力側に電流制限手段14〜17を介してY軸コイル7が接続され、MRI装置のシーケンサ20からの電流指令値と電流増幅器10の出力電流を検出する電流検出手段18の電流検出値とを入力し、両者の差が零となるようにマルチレベルPWMインバータ12,13を駆動制御するスイッチング制御回路19’と、このスイッチング制御回路19’に設けられて並列に接続された二つのマルチレベルPWMインバータ12,13のPWM制御に多相キャリア方式を用い、前記並列のマルチレベルPWMインバータ間のスイッチング位相をずらすと共に前記多相キャリア間の位相をずらして電流リップルを打ち消し合う制御手段とを備えて構成している。
また電流増幅器11も同一構成で、並列接続した二つのマルチレベルPWMインバータ12,13の出力側に電流制限手段14〜17を介してZ軸コイル8が接続され、MRI装置のシーケンサ20からの電流指令値と電流増幅器10の出力電流を検出する電流検出手段18の電流検出値とを入力し、両者の差が零となるようにマルチレベルPWMインバータ12,13を駆動制御するスイッチング制御回路19’と、このスイッチング制御回路19’に設けられて並列に接続された二つのマルチレベルPWMインバータ12,13のPWM制御に多相キャリア方式を用い、前記並列のマルチレベルPWMインバータ間のスイッチング位相をずらすと共に前記多相キャリア間の位相をずらして電流リップルを打ち消し合う制御手段とを備えて構成している。
ここで、上記図3で説明した多相キャリア方式のマルチレベルPWMインバータを二組並列に接続した場合のPWM制御信号生成法の一例として、前記並列接続されたPWMインバータ間の動作位相を90度ずらした場合について図8の動作波形図を用いて説明する。
図8において、(a)に示すCarrier 1A とCarrier 1Bは並列接続した一方のマルチレベルPWMインバータのキャリア三角波で、これらは180度の位相差を有し、Carrier 2A とCarrier 2Bは並列接続した他方のマルチレベルPWMインバータのキャリア三角波で、これらは180度の位相差を有し、そしてCarrier 1A とCarrier 2A及びCarrier 1B とCarrier 2Bはそれぞれ90度の位相差を有している。
前記Carrier 1Aと1B及び2Aと2Bは、それぞれのキャリアと電圧指令(Voltage Command)とを比較して求めた(b)に示すPWM 1AとPWM 1Bから(c)に示すPWM 1 Upper(PWM 1A AND PWM 1B)と、PWM 1 Lower(PWM 1A OR PWM 1B)と、同じく(b)に示すPWM 2AとPWM 2Bから(c)に示すPWM 2 Upper(PWM 2A AND PWM 2B)と、PWM 2 Lower(PWM 2A OR PWM 2B)とを求め、これらのPWM Upper及びPWM Lower信号により3レベルPWMインバータの半導体スイッチをスイッチング制御する。
この結果、二組の3レベルインバータを並列に接続しているため、出力電圧は、それぞれのインバータの出力電圧の和として表され、その出力電圧波形は(d)に示すように5通り (+E,E/2,0,-E/2,-E)のレベルの電圧となるが、この場合も図3と同様、図8(a)の丸の実線に示すように、出力電圧の零付近で動作PWM信号は最小パルス幅となるため、マルチレベルインバータの半導体スイッチの導通比率Dutyと出力電圧との関係は零電圧付近で不連続となる。
このように、三角波キャリアに多相キャリア方式を用い、並列接続したマルチレベルPWMインバータ間の動作位相をずらしただけでは、図1の並列接続しない場合と同様、出力電圧の零付近での不連続性の問題が生じる。
そこで、本発明の第2の実施形態では、並列接続したマルチレベルPWMインバータ同士の動作位相をずらすと共に前記多相キャリアの位相もずらすことによって上記問題を解決するもである。
図9は、並列接続した3レベルPWMインバータ同士の動作位相をずらすと共に多相キャリアの位相もずらした本発明の第2の実施形態における本発明の要部であるスイッチング制御回路19’の構成図で、並列接続した二つのマルチレベルPWMインバータ12,13(図7,図2参照)の各アームの半導体スイッチのうち、出力端A側のアーム27,28の半導体スイッチ23,24をスイッチング制御する回路を示しており、出力端B側のアーム29,30の半導体スイッチ23,24も同様の構成でスイッチング制御できるので、省略してある。
なお、マルチレベルPWMインバータ12,13の23a,24a及び23b,24bは半導体スイッチ23,24を駆動する回路である。
この図9のスイッチング制御回路19’と図10の各部の波形図を用いて本発明の第2の実施形態の動作について説明する。ただし、図10には並列接続マルチレベルPWMインバータのうちの一方の波形図を示し、他方のマルチレベルPWMインバータは前記一方のマルチレベルPWMインバータよりも位相が180度ずれているだけで、その動作は同じであるので省略してある。
図9において、スイッチング制御回路19’は、マルチレベルPWMインバータの動作周波数の1周期間に複数のキャリア信号を発生させてPWM制御信号を発生する回路で、キャリア信号を発生する三角波発生部40と、MRIシーケンサ20から出力される電流指令値を入力し、この電流指令値と前記負荷電流である傾斜磁場コイル電流を検出する電流検出手段18による検出値との差が零になるように制御するための電流制御信号を出力する電流制御部41と、マルチレベルPWMインバータ12のアーム27,28の上段の半導体スイッチ23と前記マルチレベルPWMインバータ12のアーム27,28の下段の半導体スイッチ24のゲート信号を発生する第1のゲート信号発生回路42と、マルチレベルPWMインバータ13のアーム27,28の上段の半導体スイッチ23と前記マルチレベルPWMインバータ13のアーム27,28の下段の半導体スイッチ24のゲート信号を発生する第2のゲート信号発生回路43と、前記並列接続されたマルチレベルPWMインバータ12と13の動作位相をずらす第1の位相シフト部44とで構成される。
前記第1のゲート信号発生回路42は、前記3レベルPWMインバータ12の半導体スイッチをスイッチング駆動する信号を発生する回路で、三角波発生部40で発生した図10(a)に示す三角波のキャリア信号 Carrier 1Aは比較部42bに入力され、このCarrier 1Aを第2の位相シフト部42aに入力して前記Carrier 1A から90度遅らせ、この遅らせた信号Carrier 1Bを比較部42cに入力する。
これらのCarrier 1AとCarrier 1Bは、電流制御部41から出力される電圧指令信号(図10(a)のVoltage Command)と前記比較部42bと42cで比較されて、前記電圧指令信号が前記Carrier 1Aよりも大きい期間は、論理信号“High”を“1”とし、前記電圧指令信号が前記Carrier 1Aよりも小さいい期間は、論理信号“Low”を“0”とする図10(b)に示すPWM 1Aを比較部42bより出力し、前記電圧指令信号が前記Carrier 1Bよりも大きい期間は、論理信号“High”を“1”とし、前記電圧指令信号が前記Carrier 1Bよりも小さいい期間は、論理信号“Low”を“0”とする図10(b)に示すPWM 1Bを比較部42cより出力する。
前記比較部42b,42cから出力されたPWM 1AとPWM 1B信号は、図9に示すように、加算部42dで加算され、この加算値と比較値1、比較値0とを比較部42e、42fで比較する。
そして、前記加算値が比較値1よりも大きいときは、論理信号“High”となる図10(c)に示すPWM 1 Upper信号を前記比較部42eから出力し、前記加算値が比較値0よりも大きいときは、論理信号“High”となる図10(c)に示すPWM 1 Lower信号を前記比較部42fから出力する。
このようにして生成したPWM 1 Upper信号を信号反転部42gで反転し、この信号を駆動回路23aで増幅してアーム27の半導体スイッチ23をスイッチング駆動し、前記PWM 1 Upper信号はそのまま駆動回路23bで増幅してアーム28の半導体スイッチ23をスイッチング駆動する。
一方、PWM 1 Lower信号は、信号反転部42hで反転され、この信号を駆動回路24aで増幅してアーム27の半導体スイッチ24をスイッチング駆動し、反転されない前記PWM 1 Lower信号はそのまま駆動回路24bで増幅してアーム28の半導体スイッチ24をスイッチング駆動する。
前記第2のゲート信号発生回路43は、前記3レベルPWMインバータ13の半導体スイッチをスイッチング駆動する信号を発生する回路で、前記三角波発生部40で発生した三角波のCarrier 1Aを第1の位相シフト部44で180度遅らせ、この遅らせた図10(a)に示すCarrier 2Aを用いてPWM制御信号を発生するもので、前記Carrier 2Aを比較部43bに入力し、このCarrier 2Aを第3の位相シフト部43aに入力して前記Carrier 2A から90度遅らせ、この遅らせた図10(a)に示す信号Carrier 2Bを比較部43cに入力する。
これらのCarrier 2AとCarrier 2Bは、電流制御部41から出力される電圧指令信号(図10(a)のVoltage Command)と前記比較部43b、43cで比較されて、前記電圧指令信号が前記Carrier 2Aよりも大きい期間は、論理信号“High”を“1”とし、前記電圧指令信号が前記Carrier 2Aよりも小さいい期間は、論理信号“Low”を“0”とする図10(b)に示すPWM 2Aを比較部43bより出力し、前記電圧指令信号が前記Carrier 2Bよりも大きい期間は、論理信号“High”を“1”とし、前記電圧指令信号が前記Carrier 2Bよりも小さいい期間は、論理信号“Low”を“0”とする図10(b)に示すPWM 2Bを比較部43cより出力する。
前記比較部43b、43cから出力されたPWM 2 AとPWM 2 B信号は、図9に示すように、加算部43dで加算され、この加算値と比較値1、比較値0とを比較部43e、43fで比較する。
そして、前記加算値が比較値1よりも大きいときは、論理信号“High”となる図10(c)に示すPWM 2 Upper信号を前記比較部43eから出力し、前記加算値が比較値0よりも大きいときは、論理信号“High”となる図10(c)に示すPWM 2 Lower信号を前記比較部43fから出力する。
このようにして生成したPWM 2 Upper信号を信号反転部43gで反転し、この信号を駆動回路23aで増幅してアーム27の半導体スイッチ23をスイッチング駆動し、前記PWM 2 Upper信号はそのまま駆動回路23bで増幅してアーム28の半導体スイッチ23をスイッチング駆動する。
一方、PWM 2 Lower信号は、信号反転部43hで反転され、この信号を駆動回路24aで増幅してアーム27の半導体スイッチ24をスイッチング駆動し、反転されない前記PWM 2 Lower信号はそのまま駆動回路24bで増幅してアーム28の半導体スイッチ24をスイッチング駆動する。
このように、Carrier 1BをCarrier 1Aから90度遅らせ、Carrier 2BをCarrier 2Aから90度遅らせることによって、図10(a)の丸の実線に示すように、PWM 1 Upper、PWM 1 Lower、PWM 2 Upper、PWM 2 Lowerの各信号の最小パルス幅を出力電圧の零付近から遠ざけることができる。
これらのPWM 1 Upper、PWM 1 Lower、PWM 2 Upper、PWM 2 Lower信号の最小パルス幅の出力電圧方向への移動量は、Carrier 1B及びCarrier 2Bの位相によって変化するもので、これらのCarrier 1B及びCarrier 2B の位相を調整することによって前記最小パルス幅のタイミングを任意に調整することができ、前記Carrier 1B及びCarrier 2Bの位相を適切な値に設定することによって出力電圧の零付近での不連続性は改善され、マルチレベルPWMインバータの半導体スイッチの導通比率Dutyと出力電圧との関係は不感帯のない連続した特性となる。
また、図8(d)と図10(d)の出力電圧波形に着目すると、動作PWM信号(PWM 1 Upper、PWM 2 Upper及びPWM 1 Lower、PWM 2 Lower)が全く異なるにもかかわらず、それぞれ全く同じ波形が得られている。
さらに、図10の動作PWM信号の周波数は図8の半分になっているので、本発明の第2の実施形態によるPWM制御では、半導体スイッチのスイッチング損失は大幅に低減する。
この結果、同じ出力を得るには、より小さな電流容量の半導体スイッチを使用できるので、マルチレベルPWMインバータ回路を用いた電源装置を小形、安価なものにすることが可能となる。
次に、マルチレベルPWMインバータとして、5レベルPWMインバータを用いた場合の本発明の実施形態について説明する。
図11は、5レベルPWMインバータの回路図である。
図11において、5レベルPWMインバータは、その入力に直流電圧源E、E0を接続し、その出力端A,Bに任意の電圧波形を出力するように構成しており、逆並列接続した4対のMOSFETによる半導体スイッチ55,56,57,58およびダイオード59,60,61,62を直列に接続した4組のアーム63〜66を有し、前記4組のアームをフルブリッジ接続している。
そして、分圧コンデンサ51と52の接続点(レベル4の電位3E/4)とフルブリッジ構成の各アーム63〜66における半導体スイッチ55と半導体スイッチ56との接続点との間にダイオード67〜70をそれぞれ接続し、分圧コンデンサ52と53の接続点(レベル3の電位2E/4)と各アーム63〜66における半導体スイッチ56と半導体スイッチ57との接続点との間にダイオード71〜74をそれぞれ接続し、同様に、分圧コンデンサ53と54の接続点(レベル2の電位E/4)と各アーム63〜66における半導体スイッチ57と半導体スイッチ58との接続点との間にダイオード75〜78をそれぞれ接続している。
ここで、アーム63の半導体スイッチ55〜58を導通させることによって出力端Aに+Eの電圧を出力することができ、アーム63の半導体スイッチ56〜58およびアーム64の半導体スイッチ55を導通させることによって出力端Aに+3E/4の電圧を出力することができ、アーム63の半導体スイッチ57、58およびアーム64の半導体スイッチ55,56を導通させることによって出力端Aに+2E/4(=E/2)の電圧を出力することができ、アーム63の半導体スイッチ58およびアーム64の半導体スイッチ55〜57を導通させることによって出力端Aに+E/4の電圧を出力することができ、さらにアーム63の半導体スイッチ55〜58を導通させることによって出力端Aに0の電圧を出力することができ、このようにして、5レベルの電圧を出力することができる。
また、出力端Bについても同様であり、結局出力A、B間の電圧として、-Eから+Eまでの9通りの電圧(-E、-3E/4、-2E/4、-E/4、0、+E/4、+2E/4、+3E/4、+E)を出力することができる。
さらに、これらをPWM制御することによって、出力電流のリップルが非常に小さい、-Eから+Eまでの間で任意の電圧を出力することができる。
このように、5レベルPWMインバータにおいては、直流電圧源E-E0を分圧コンデンサ51〜54で等分割し、各アーム63〜66の半導体スイッチ55〜58も同様に分割して、それぞれをダイオード67〜78で接続することによって、各々の半導体スイッチ63〜66には分割された直流電圧分の直流電圧しか印加されないため、直流電圧E-E0が同じ場合、3レベルPWMインバータよりも耐電圧の低い半導体スイッチを用いることができる。
上記図1(第1の実施形態)のマルチレベルPWMインバータ12に上記5レベルPWMインバータを用いて傾斜磁場電源装置を構成し、これを多相キャリア方式で制御すると、3レベルPWMインバータを多相キャリア方式で制御した場合と同様に、以下のように出力電圧の零付近での不連続性の問題が発生する。
5レベルPWMインバータの場合は、図12に示すように、三角波のキャリアには同図(a)のCarrier 1A、Carrier 1B、Carrier 1C、Carrier 1Dの四つのキャリアを用い、これらのCarrier 1A 、Carrier 1B、Carrier 1C、Carrier 1D間の位相をそれぞれ90度づつずらし、それぞれのキャリアと電圧指令(Voltage Command)とを比較する。
そして、前記電圧指令がそれぞれのキャリア信号よりも大きいときに論理信号“High”を“1”とし、前記電圧指令がそれぞれのキャリア信号よりも小さいときに論理信号“Low”を“0”とする図12(b)のPWM 1A、PWM 1B、PWM 1C、PWM 1Dを生成する。
このようにして生成したPWM 1A、PWM 1B、PWM 1C、PWM 1Dの加算値を比較値と比較して、図12(c)のPWM 1 Upper(PWM 1A+PWM 1B+PWM 1C+PWM 1D>3)、PWM 1 MID Upper(PWM 1A+PWM 1B+PWM 1C+PWM 1D>2)、PWM 1 MID Lower(PWM 1A+PWM 1B+PWM 1C+PWM 1D>1)、PWM 1 Lower(PWM 1A+PWM 1B+PWM 1C+PWM 1D>0)とにより5レベルインバータの半導体スイッチをスイッチング制御するものである。
図11の場合は、前記PWM 1 Upperを反転した信号でアーム63の半導体スイッチ55を、前記PWM 1 Upperでアーム64の半導体スイッチ55を、前記PWM 1 MID Upperを反転した信号でアーム63の半導体スイッチ56を、前記PWM 1 MID Upperでアーム64の半導体スイッチ56を、前記PWM 1 MID Lowerを反転した信号でアーム63の半導体スイッチ57を、前記PWM 1 MID Lowerでアーム64の半導体スイッチ57を、そして前記PWM 1 Lowerを反転した信号でアーム63の半導体スイッチ58を、前記PWM 1 Lowerでアーム64の半導体スイッチ58をそれぞれスイッチング制御する。
この方式を用いると、図12(a)の丸の実線に示すように、出力電圧の零付近でPWM 1 Upper、PWM 1 MID Upper、PWM 1 MID Lower、PWM 1 Lowerは最小のパルス幅に制限され(これ以下のパルス幅よりも狭くすることができないハードウェアで制限されるパルス幅)、マルチレベルインバータの半導体スイッチの導通比率Dutyと出力電圧との関係は零電圧付近で不連続となる。
このように、5レベルPWMインバータに多相キャリア方式を用いただけでは出力電圧の零付近での不連続性の問題は残る。
そこで、本発明の第3の実施形態は、上記図1(第1の実施形態)のマルチレベルPWMインバータ12に上記5レベルPWMインバータを用いて傾斜磁場電源装置を構成し、これを多相キャリア方式でPWM制御し、かつ前記多相キャリア間の位相をずらして制御することによって上記問題を解決するもである。
図13は、本発明の第3の実施形態における本発明の要部であるスイッチング制御回路80の構成図で、5レベルPWMインバータ回路12(図1,図11参照)の各アームの半導体スイッチのうち、出力端A側のアーム63,64の半導体スイッチ55〜58をスイッチング制御する回路を示しており、出力端B側のアーム65,66の半導体スイッチ55〜58も同様の構成でスイッチング制御できるので、省略してある。
なお、5レベルPWMインバータ12の55a,56a,57a,58a及び55b,56b,57b,58bは半導体スイッチ55〜58を駆動する回路である。
以下、この図13のスイッチング制御回路80と図14の各部の波形図を用いて本発明による第3の実施形態の動作について説明する。
図13において、スイッチング制御回路80は、マルチレベルPWMインバータの動作周波数の1周期間に複数のキャリア信号を発生させてPWM制御信号を発生する回路で、キャリア信号を発生する三角波発生部81と、MRIシーケンサ20から出力される電流指令値を入力し、この電流指令値と前記負荷電流である傾斜磁場コイル電流を検出する電流検出手段18による検出値との差が零になるように制御するための電流制御信号を出力する電流制御部82と、マルチレベルPWMインバータ12の半導体スイッチ55〜58のゲート信号を発生する第1のゲート信号発生回路83とで構成される。
前記第1のゲート信号発生回路83は、前記5レベルPWMインバータ12の半導体スイッチをスイッチング駆動する信号を発生する回路で、三角波発生部81で発生した図14(a)に示す三角波のキャリア信号Carrier 1Aは比較部83aに入力され、このCarrier 1Aを第2の位相シフト部83bに入力して前記Carrier 1A から90度遅らせ、この遅らせた信号Carrier 1Bを比較部83cに入力する。
さらに、前記Carrier 1Bを第3の位相シフト部83dに入力して前記Carrier 1Bから45度遅らせた信号Carrier 1Cを比較部83eに入力し、そして、前記Carrier 1Cを第4の位相シフト部83fに入力して前記Carrier 1Cから90度遅らせた信号Carrier 1Dを比較部83gに入力する。
これらのCarrier 1A、Carrier 1B、Carrier 1C、Carrier 1Dは、電流制御部82から出力される電圧指令信号(図14(a)のVoltage Command)と前記比較部83a,83c,83e,83gで比較されて、前記電圧指令信号が前記Carrier 1Aよりも大きい期間は、論理信号“High”を“1”とし、前記電圧指令信号が前記Carrier 1Aよりも小さいい期間は、論理信号“Low”を“0”とする図14(b)に示すPWM 1Aを比較部83aより出力し、同様に、前記電圧指令信号が前記Carrier 1Bよりも大きい期間は、論理信号“High”を“1”とし、前記電圧指令信号が前記Carrier 1Bよりも小さいい期間は、論理信号“Low”を“0”とするPWM 1Bを比較部83cより出力し、前記電圧指令信号が前記Carrier 1Cよりも大きい期間は、論理信号“High”を“1”とし、前記電圧指令信号が前記Carrier 1Cよりも小さいい期間は、論理信号“Low”を“0”とするPWM 1Cを比較部83eより出力し、そして前記電圧指令信号が前記Carrier 1Dよりも大きい期間は、論理信号“High”を“1”とし、前記電圧指令信号が前記Carrier 1Dよりも小さいい期間は、論理信号“Low”を“0”とするPWM 1Dを比較部83gより出力する。
前記比較部83a,83c,83e,83gから出力されたPWM 1A〜PWM 1D信号は、図13に示すように、加算部83hで加算され、この加算値と比較値3、比較値2比較値1、比較値0とを比較部83i,83j,83k,83lで比較する。
そして、前記加算値が比較値3よりも大きいときは、論理信号“High”となる図14(c)に示すPWM 1 Upper信号を前記比較部83iから出力し、前記加算値が比較値2よりも大きいときは、論理信号“High”となるPWM 1 MID Upper信号を前記比較部83jから出力し、前記加算値が比較値1よりも大きいときは、論理信号“High”となるPWM 1 MID Lower信号を前記比較部83kから出力し、前記加算値が比較値0よりも大きいときは、論理信号“High”となるPWM 1 Lower信号を前記比較部83lから出力する
このようにして生成したPWM 1 Upper信号を信号反転部83mで反転し、この信号を駆動回路55aで増幅してアーム63の半導体スイッチ55をスイッチング駆動し、前記PWM 1 Upper信号はそのまま駆動回路55bで増幅してアーム64の半導体スイッチ55をスイッチング駆動する。
前記PWM 1 MID Upper信号は信号反転部83nで反転され、この信号を駆動回路56aで増幅してアーム63の半導体スイッチ56をスイッチング駆動し、前記PWM 1 MID Upper信号はそのまま駆動回路56bで増幅してアーム64の半導体スイッチ56をスイッチング駆動する。
同様に、前記PWM 1 MID Lower信号は信号反転部83oで反転され、この信号を駆動回路57aで増幅してアーム63の半導体スイッチ57をスイッチング駆動し、前記PWM 1 MID Lower信号はそのまま駆動回路57bで増幅してアーム64の半導体スイッチ57をスイッチング駆動する。
そして、前記PWM 1 Lower信号は信号反転部83pで反転され、この信号を駆動回路58aで増幅してアーム63の半導体スイッチ58をスイッチング駆動し、前記PWM 1 Lower信号はそのまま駆動回路58bで増幅してアーム64の半導体スイッチ58をスイッチング駆動する。
このように、Carrier 1BをCarrier 1Aから90度遅らせ、Carrier 1CをCarrier 1Bから45度遅らせ、さらにCarrier 1DをCarrier 1Cから90度遅らせることによって、PWM 1 Upper、PWM 1 MID Upper、PWM 1 MID Lower、PWM 1 Lower信号の最小パルス幅を出力電圧の零付近から遠ざけることができる。
これらのPWM 1 Upper、PWM 1 MID Upper、PWM 1 MID Lower、PWM 1 Lower信号の最小パルス幅の出力電圧方向への移動量は、Carrier 1B、Carrier 1C及びCarrier 1Dの位相によって変化するもので、これらのCarrier信号の位相を調整することによって前記最小パルス幅のタイミングを任意に調整することができる。
したがって、前記Carrier信号の位相を適切な値に設定することによって出力電圧の零付近での不連続性は改善され、マルチレベルPWMインバータの半導体スイッチの導通比率Dutyと出力電圧との関係は不感帯のない連続した特性となる。
図15及び図16は、両方で並列接続された5レベルPWMインバータ構成図であって、(a)(b)(c)によって接続される。
次に、図7に示した本発明の第2の実施形態のマルチレベルPWMインバータ12,13に5レベルPWMインバータを用い、並列接続したマルチレベルPWMインバータ同士の動作位相をずらすと共に多相キャリアの位相もずらす本発明の第4の実施形態について説明する。
図15及び図16は、本発明の第4の実施形態における本発明の要部であるスイッチング制御回路80’の構成図で、5レベルPWMインバータ回路12,13(図7,図11参照)の各アームの半導体スイッチのうち、出力端A側のアーム63,64の半導体スイッチ55〜58をスイッチング制御する回路を示しており、出力端B側のアーム65,66の半導体スイッチ55〜58も同様の構成でスイッチング制御できるので、省略してある。
なお、5レベルPWMインバータ12,13の55a,56a,57a,58a及び55b,56b,57b,58bは半導体スイッチ55〜58を駆動する回路である。
図15及び図16において、スイッチング制御回路80’は、マルチレベルPWMインバータの動作周波数の1周期間に複数のキャリア信号を発生させてPWM制御信号を発生する回路で、キャリア信号を発生する三角波発生部81と、MRI装置のシーケンサ20から出力される電流指令値を入力し、この電流指令値と前記負荷電流である傾斜磁場コイル電流を検出する電流検出手段18による検出値との差が零になるように制御するための電流制御信号を出力する電流制御部82と、5レベルPWMインバータ12のアーム63,64の半導体スイッチMOSFET55〜58のゲート信号を発生する第1のゲート信号発生回路83と、5レベルPWMインバータ13のアーム63,64の半導体スイッチMOSFET55〜58のゲート信号を発生する第2のゲート信号発生回路84と、前記並列接続された5レベルPWMインバータ12と13の動作位相をずらす第1の位相シフト部85とで構成される。
前記第1のゲート信号発生回路83は、前記5レベルPWMインバータ12の半導体スイッチをスイッチング駆動する信号を発生する回路で、三角波発生部81で発生した三角波のキャリア信号1A’(図14(a)のキャリア信号1Aと同じ)は比較部83aに入力され、このキャリア信号1A’を第2の位相シフト部83bに入力して前記キャリア信号1A’から90度遅らせ、この遅らせたキャリア信号1B’(図14(a)のキャリア信号1Bと同じ)を比較部83cに入力し、前記キャリア信号1B’を第3の位相シフト部83dに入力して前記キャリア信号1B’から45度遅らせ、この遅らせたキャリア信号1C’(図14(a)のキャリア信号1Cと同じ)を比較部83eに入力し、そして前記キャリア信号1C’を第4の位相シフト部83fに入力して前記キャリア信号1C’ から90度遅らせ、この遅らせたキャリア信号1D’(図14(a)のキャリア信号1Dと同じ)を比較部83gに入力する。
これらのキャリア信号1A’,1B’,1C’,1D’は、電流制御部82から出力される電圧指令信号と前記比較部83a,83c,83e,83gで比較されて、前記電圧指令信号が前記キャリア1A’よりも大きい期間は、論理信号“High”を“1”とし、前記電圧指令信号が前記キャリア信号 1A’よりも小さいい期間は、論理信号“Low”を“0”とするPWM 1A’信号(図14(b)のPWM 1Aと同じ)を比較部83aより出力し、前記電圧指令信号が前記キャリア信号1B’よりも大きい期間は、論理信号“High”を“1”とし、前記電圧指令信号が前記キャリア信号1B’よりも小さいい期間は、論理信号“Low”を“0”とするPWM 1B’信号(図14(b)のPWM 1Bと同じ)を比較部83cより出力し、前記電圧指令信号が前記キャリア信号1C’よりも大きい期間は、論理信号“High”を“1”とし、前記電圧指令信号が前記キャリア信号 1C’よりも小さいい期間は、論理信号“Low”を“0”とするPWM 1C’信号(図14(b)のPWM 1Cと同じ)を比較部83eより出力し、そして前記電圧指令信号が前記キャリア信号1D’よりも大きい期間は、論理信号“High”を“1”とし、前記電圧指令信号が前記キャリア信号1D’よりも小さいい期間は、論理信号“Low”を“0”とするPWM 1D’信号(図14(b)のPWM 1Dと同じ)を比較部83gより出力する。
前記比較部部83a,83c,83e,83fから出力されたPWM 1A’,PWM 1B’,PWM 1C’,PWM 1D’は、図15及び図16に示すように、加算部83hで加算され、この加算値と比較値3、比較値2、比較値1、比較値0とを比較部83i,83j,83k,83lで比較する。
そして、前記加算値が比較値3よりも大きいときは、論理信号“High”となるPWM 1 Upper’信号(図14(c)のPWM 1 Upperと同じ)を前記比較部83iから出力し、前記加算値が比較値2よりも大きいときは、論理信号“High”となるPWM 1 MID Upper’信号(図14(c)のPWM 1 MID Upperと同じ)を前記比較部83jから出力し、前記加算値が比較値1よりも大きいときは、論理信号“High”となるPWM 1 MID Lower’信号(図14(c)のPWM 1 MID Lowerと同じ)を前記比較部83kから出力し、前記加算値が比較値0よりも大きいときは、論理信号“High”となるPWM 1 Lower’信号(図14(c)のPWM 1 Lowerと同じ)を前記比較部83lから出力する。
このようにして生成したPWM 1 Upper’信号を信号反転部83mで反転し、この信号を駆動回路55aで増幅してアーム63の半導体スイッチ55をスイッチング駆動し、前記PWM 1 Upper’信号はそのまま駆動回路55bで増幅してアーム64の半導体スイッチ55をスイッチング駆動する。
前記PWM 1 MID Upper’信号は信号反転部83nで反転され、この信号を駆動回路56aで増幅してアーム63の半導体スイッチ56をスイッチング駆動し、前記PWM 1 MID Upper’信号はそのまま駆動回路56bで増幅してアーム64の半導体スイッチ56をスイッチング駆動する。
同様に、前記PWM 1 MID Lower’信号は信号反転部83oで反転され、この信号を駆動回路57aで増幅してアーム63の半導体スイッチ57をスイッチング駆動し、前記PWM 1 MID Lower’信号はそのまま駆動回路57bで増幅してアーム64の半導体スイッチ57をスイッチング駆動する。
そして、前記PWM 1 Lower’信号は信号反転部83pで反転され、この信号を駆動回路58aで増幅してアーム63の半導体スイッチ58をスイッチング駆動し、前記PWM 1 Lower’信号はそのまま駆動回路58bで増幅してアーム64の半導体スイッチ58をスイッチング駆動する。
前記5レベルPWMインバータ13のアーム63、64の半導体スイッチMOSFET55〜58のゲート信号を発生する第2のゲート信号発生回路84は、前記並列接続されたマルチレベルPWMインバータ12と13の動作位相差を180度とするために、前記三角波発生部81から出力されるキャリア信号1A’から180度遅れたキャリア信号2A’を前記第1の位相シフト部85により生成し、このキャリア信号2A’を比較部84aに入力する。
そして、前記キャリア信号2A’を第5の位相シフト部84bに入力して前記キャリア信号2A’から90度遅らせ、この遅らせたキャリア信号2B’(図示省略)を比較部84cに入力し、前記キャリア信号2B’を第6の位相シフト部84dに入力して前記キャリア信号2B’から45度遅らせ、この遅らせたキャリア信号2C’(図示省略)を比較部84eに入力し、さらに前記キャリア信号2C’を第7の位相シフト部84fに入力して前記キャリア信号2C’から90度遅らせ、この遅らせたキャリア信号2D’(図示省略)を比較部84gに入力する。
これらのキャリア信号2A’,2B’,2C’,2D’は、電流制御部82から出力される電圧指令信号と前記比較部84a,84c,84e,84gで比較されて、前記電圧指令信号が前記キャリア2A’よりも大きい期間は、論理信号“High”を“1”とし、前記電圧指令信号が前記キャリア信号 2A’よりも小さいい期間は、論理信号“Low”を“0”とするPWM 2A’信号(図示省略)を比較部84aより出力し、前記電圧指令信号が前記キャリア信号2B’よりも大きい期間は、論理信号“High”を“1”とし、前記電圧指令信号が前記キャリア信号1B’よりも小さいい期間は、論理信号“Low”を“0”とするPWM 2B’信号(図示省略)を比較部84cより出力し、前記電圧指令信号が前記キャリア2C’よりも大きい期間は、論理信号“High”を“1”とし、前記電圧指令信号が前記キャリア信号 2C’よりも小さいい期間は、論理信号“Low”を“0”とするPWM 2C’信号(図示省略)を比較部84eより出力し、そして前記電圧指令信号が前記キャリア信号2D’よりも大きい期間は、論理信号“High”を“1”とし、前記電圧指令信号が前記キャリア信号2D’よりも小さいい期間は、論理信号“Low”を“0”とするPWM 2D’信号(図示省略)を比較部84gより出力する。
前記比較部部84a,84c,84e,84fから出力されたPWM 2A’,PWM 2B’,PWM 2C’,PWM 2D’は、図15及び図16に示すように、加算部84hで加算され、この加算値と比較値3、比較値2、比較値1、比較値0とを比較部84i,84j,84k,84lで比較する。
そして、前記加算値が比較値3よりも大きいときは、論理信号“High”となるPWM 2 Upper’信号(図示省略)を前記比較部84iから出力し、前記加算値が比較値2よりも大きいときは、論理信号“High”となるPWM 2 MID Upper’信号(図示省略)を前記比較部84jから出力し、前記加算値が比較値1よりも大きいときは、論理信号“High”となるPWM 2 MID Lower’信号(図示省略)を前記比較部84kから出力し、前記加算値が比較値0よりも大きいときは、論理信号“High”となるPWM 2 Lower’信号(図示省略)を前記比較部84lから出力する。
このようにして生成したPWM 2 Upper’信号を信号反転部84mで反転し、この信号を駆動回路55aで増幅してアーム63の半導体スイッチ55をスイッチング駆動し、前記PWM 2 Upper’信号はそのまま駆動回路55bで増幅してアーム64の半導体スイッチ55をスイッチング駆動する。
前記PWM 2 MID Upper’信号は信号反転部84nで反転され、この信号を駆動回路56aで増幅してアーム63の半導体スイッチ56をスイッチング駆動し、前記PWM 2 MID Upper’信号はそのまま駆動回路56bで増幅してアーム64の半導体スイッチ56をスイッチング駆動する。
同様に、前記PWM 2 MID Lower’信号は信号反転部84oで反転され、この信号を駆動回路57aで増幅してアーム63の半導体スイッチ57をスイッチング駆動し、前記PWM 2 MID Lower’信号はそのまま駆動回路57bで増幅してアーム64の半導体スイッチ57をスイッチング駆動する。
そして、前記PWM 2 Lower’信号は信号反転部84pで反転され、この信号を駆動回路58aで増幅してアーム63の半導体スイッチ58をスイッチング駆動し、前記PWM 2 Lower’信号はそのまま駆動回路58bで増幅してアーム64の半導体スイッチ58をスイッチング駆動する。
このように、並列接続した5レベルPWMインバータ同士の動作位相を180度ずらすと共にそれぞれの5レベルPWMインバータの多数キャリア信号の位相をずらして制御することにより、前記並列接続による5レベルPWMインバータ同士の出力電流リップルの打ち消し合いによる負荷に流れる電流のリップル低減効果に加えて、前記3レベルPWMインバータと同様に、動作PWM制御信号(PWM 1 Upper’、PWM 1 MID Upper’、PWM 1 MID Lower’、PWM 1 Lower’及びPWM 2 Upper’、PWM 2 MID Upper’、PWM 2 MID Lower’、PWM 2 Lower’信号)の最小パルス幅を出力電圧の零付近から遠ざけることができるので、出力電圧の零付近での不連続性は改善され、マルチレベルインバータの半導体スイッチの導通比率Dutyと出力電圧との関係は不感帯のない連続した特性となる。
また、動作PWM信号の周波数も低くなるので、半導体スイッチのスイッチング損失も大幅に低減し、同じ出力を得るには、より小さな電流容量の半導体スイッチを使用できるので、マルチレベルPWMインバータ回路を用いた電源装置を小形、安価なものにすることが可能となる。
なお、上述した実施の形態では、半導体スイッチにMOSFETを用いたが、これに限らず、IGBT(Insulated Gate Bipolar Transistor; 絶縁ゲート型バイポーラトランジスタ)やバイポーラトランジスタなどの半導体スイッチを用途に応じて用いれば良い。
さらに、上述実施形態における多相の搬送波を発生する多相搬送波発生手段と前記多相の搬送波の位相をずらす搬送波位相シフト手段に、三角波発生部から基準となる三角波を発生し、この三角波と該三角波の位相をシフトする手段による構成例を用いたが、本発明はこれに限定するものではなく、三角波発生部から多相の搬送波を発生し、これらの多相の搬送波の位相をシフトする構成でも良い。
さらにまた、3レベル及び5レベルのマルチレベルPWMインバータ回路の例をあげたが、これに限らず、前記マルチレベルPWMインバータはnレベルのPWMインバータであって、前記多相キャリアの位相シフト電気角を適切に設定すれば5レベル以上のマルチレベルPWMインバータに適用できる。
さらにまた、負荷として傾斜磁場コイルを接続したMRI装置について説明したが、静磁場もしくは高周波磁場を発生させるコイルを負荷として接続して用いることもできる。
さらにまた、動作PWM制御信号を生成するスイッチング制御回路19,19’,80,80’をハードウェアで構成する例を用いたが、これはディジタルシグナルプロセッサとマイクロコンピュータとを組合せた構成等のハードウェアを用いてソフトウェアで動作PWM制御信号を生成する方法でも可能である。
本発明の第1の実施形態である3レベルPWMインバータによる電源装置を用いたMRI装置の傾斜磁場電源装置を示すブロック図。 3レベルPWMインバータの回路図。 多相キャリア方式による3レベルPWMインバータの動作説明図。 3レベルPWMインバータにおける半導体スイッチの導通比率と出力電圧との関係を示す図。 3レベルPWMインバータの多相キャリアの位相をずらした本発明の第1の実施形態におけるスイッチング制御回路構成図。 図5のスイッチング制御回路の各部の波形図。 本発明の第2の実施形態である並列接続3レベルPWMインバータによる電源装置を用いたMRI装置の傾斜磁場電源装置を示すブロック構成図。 多相キャリア方式の3レベルPWMインバータを2組並列に接続した場合のPWM制御信号生成法の説明図。 並列接続した3レベルPWMインバータ同士の動作位相をずらすと共に多相キャリアの位相もずらした本発明の第2の実施形態におけるスイッチング制御回路構成図。 図9のスイッチング制御回路の各部の波形図。 5レベルPWMインバータの回路図。 5レベルPWMインバータに多相キャリア方式を用いた場合の動作説明図。 5レベルPWMインバータの多相キャリアの位相をずらした本発明の第3の実施形態におけるスイッチング制御回路構成図。 図13のスイッチング制御回路の各部の波形図。 並列接続した5レベルPWMインバータ同士の動作位相をずらすと共に多相キャリアの位相もずらした本発明の第4の実施形態におけるスイッチング制御回路構成図。 並列接続した5レベルPWMインバータ同士の動作位相をずらすと共に多相キャリアの位相もずらした本発明の第4の実施形態におけるスイッチング制御回路構成図。
符号の説明
1 傾斜磁場コイル、2 傾斜磁場電源装置、6 X軸コイル、7 Y軸コイル、8 Z軸コイル、9〜11 電流増幅器、12,13 マルチレベルPWMインバータ、18 電流検出手段、19、19’ 3レベルPWMインバータのスイッチング制御回路、20 MRI装置のシーケンサ、23,24 3レベルPWMインバータの半導体スイッチ、40 三角波発生部、41 電流制御部、42 3レベルPWMインバータの第1のゲート信号発生回路、42a 第2の位相シフト部、42b,42c 比較部、42d 加算部、42e,42f 比較部、43 3レベルPWMインバータの第2のゲート信号発生回路、43a 第3の位相シフト部、43b,43c 比較部、43d 加算部、43e,43f 比較部、44 第1の位相シフト部、55〜58 5レベルPWMインバータの半導体スイッチ、80、80’ 5レベルPWMインバータのスイッチング制御回路、81 三角波発生部、82 電流制御部、83 5レベルPWMインバータの第1のゲート信号発生回路、84 5レベルPWMインバータの第2のゲート信号発生回路、85 第2のゲート信号発生回路の第1の位相シフト部

Claims (5)

  1. パルス幅変調制御マルチレベルインバータと、このマルチレベルインバータの負荷への出力電流を検出する電流検出手段と、この電流検出手段による検出値と電流指令値との差が零になるように制御する制御信号により前記マルチレベルインバータを駆動制御するスイッチング制御手段とを備えた電源装置において、前記スイッチング制御手段は、多相の搬送波を発生する多相搬送波発生手段と、前記多相の搬送波の位相をずらす搬送波位相シフト手段と、前記多相搬送波発生手段及び前記搬送波位相シフト手段で生成された搬送波と前記制御信号とに基づいて前記マルチレベルインバータを駆動制御する駆動信号生成手段とを備えたことを特徴とする電源装置。
  2. 請求項1において、前記多相搬送波発生手段及び搬送波位相シフト手段は、基準となる搬送波と、この搬送波から所定の位相をずらした搬送波を生成する手段であって、前記駆動信号生成手段は、前記基準搬送波及び前記位相をずらした搬送波と前記制御信号とを比較する第1の比較手段と、この第1の比較手段の出力を加算する手段と、この加算手段の出力と複数の基準比較値とを比較する第2の比較手段とを備えたことを特徴とする電源装置。
  3. 請求項1または2において、前記マルチレベルインバータは、複数の並列接続された同一レベル数のパルス幅変調制御マルチレベルインバータであって、前記複数のマルチレベルインバータ間のスイッチング位相をずらす並列インバータ間位相シフト手段をさらに備えたことを特徴とする電源装置。
  4. 幅変調制御マルチレベルインバータと、このマルチレベルインバータの負荷への出力電流を検出する電流検出手段と、この電流検出手段による検出値と電流指令値との差が零になるように制御する制御信号により前記マルチレベルインバータを駆動制御するスイッチング制御手段とを備えた電源装置を有する磁気共鳴イメージング装置であって、前記負荷は磁場発生用コイルとし、前記電源装置に請求項1または2のいずれか一項に記載の電源装置を用いたことを特徴とする磁気共鳴イメージング装置。
  5. 複数の並列接続された同一レベル数のパルス幅変調制御マルチレベルインバータと、このマルチレベルインバータの負荷への出力電流を検出する電流検出手段と、この電流検出手段による検出値と電流指令値との差が零になるように制御する制御信号により前記マルチレベルインバータを駆動制御するスイッチング制御手段とを備えた電源装置を有する磁気共鳴イメージング装置であって、前記負荷は磁場発生用コイルとし、前記電源装置に請求項3に記載の電源装置を用いたことを特徴とする磁気共鳴イメージング装置。
JP2005195646A 2005-07-05 2005-07-05 電源装置及びこれを用いた磁気共鳴イメージング装置 Expired - Fee Related JP4698305B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005195646A JP4698305B2 (ja) 2005-07-05 2005-07-05 電源装置及びこれを用いた磁気共鳴イメージング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005195646A JP4698305B2 (ja) 2005-07-05 2005-07-05 電源装置及びこれを用いた磁気共鳴イメージング装置

Publications (2)

Publication Number Publication Date
JP2007014361A JP2007014361A (ja) 2007-01-25
JP4698305B2 true JP4698305B2 (ja) 2011-06-08

Family

ID=37752040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005195646A Expired - Fee Related JP4698305B2 (ja) 2005-07-05 2005-07-05 電源装置及びこれを用いた磁気共鳴イメージング装置

Country Status (1)

Country Link
JP (1) JP4698305B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5216260B2 (ja) * 2007-07-03 2013-06-19 株式会社日立メディコ マルチレベルインバータ及びこれを用いた磁気共鳴イメージング装置
JPWO2011083788A1 (ja) * 2010-01-06 2013-05-13 株式会社日立メディコ 傾斜磁場電源装置およびこの制御方法、並びにこれを用いた核磁気共鳴イメージング装置
JP5691272B2 (ja) * 2010-07-13 2015-04-01 日産自動車株式会社 電力変換システム
US20150130464A1 (en) * 2012-03-12 2015-05-14 Koninklijke Philips N.V. Power converter for powering an mri gradient coil and method of operating a power converter
WO2015020317A1 (ko) * 2013-08-05 2015-02-12 주식회사 루비 전력소자 구동모듈, 그리고 이를 이용한 전력 변환 시스템
US9787217B2 (en) 2013-08-30 2017-10-10 Huawei Technologies Co., Ltd. Power conversion circuit and power conversion system
CN103475248B (zh) * 2013-08-30 2016-12-07 华为技术有限公司 功率变换电路和功率变换系统
KR101521546B1 (ko) * 2013-11-05 2015-05-28 한국전기연구원 모둘라 멀티 레벨 컨버터의 변조 방법
EP3093976B1 (en) * 2014-01-06 2019-04-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Electric power conversion system
JP6207796B2 (ja) * 2015-03-17 2017-10-04 三菱電機株式会社 電力変換装置
JP6556407B1 (ja) * 2018-09-13 2019-08-07 三菱電機株式会社 スイッチング電源装置及びそれを用いた核磁気共鳴イメージング装置用電源装置
WO2020079745A1 (ja) * 2018-10-16 2020-04-23 三菱電機株式会社 電力変換装置および磁気共鳴イメージング装置用電源装置
CN109756133B (zh) * 2019-03-14 2021-05-04 青岛贝斯克电子有限公司 一种随载可变pwm控制器
CN115642783B (zh) * 2022-12-06 2023-03-31 眉山博雅新材料股份有限公司 一种高频电源及用于高频电源的功率器件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266884A (ja) * 2003-02-12 2004-09-24 Hitachi Medical Corp スイッチング電源式電源装置およびそれを用いた核磁気共鳴イメージング装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201243A (ja) * 1988-02-08 1989-08-14 Fuji Electric Co Ltd コイル磁界変動抑制方法
JP2983256B2 (ja) * 1990-06-19 1999-11-29 株式会社東芝 Mri装置
JP3741507B2 (ja) * 1997-01-17 2006-02-01 株式会社日立メディコ 電源装置及びこれを用いた磁気共鳴イメージング装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266884A (ja) * 2003-02-12 2004-09-24 Hitachi Medical Corp スイッチング電源式電源装置およびそれを用いた核磁気共鳴イメージング装置

Also Published As

Publication number Publication date
JP2007014361A (ja) 2007-01-25

Similar Documents

Publication Publication Date Title
JP4698305B2 (ja) 電源装置及びこれを用いた磁気共鳴イメージング装置
EP2950440B1 (en) Pulse-width modulation control of paralleled inverters
US20060114623A1 (en) Switching type power source device and magnetio resonance imaging device using the same
US9130481B2 (en) Power converting appartatus
EP2546973A2 (en) DC to AC converter
EP2472708B1 (en) Power conversion device and control method therefor
Cho et al. Analysis of the phase current measurement boundary of three shunt sensing PWM inverters and an expansion method
US20190334454A1 (en) Three-phase inverter
JP2014176281A (ja) 3レベルt型npc電力変換装置の制御装置および制御方法
JP5216260B2 (ja) マルチレベルインバータ及びこれを用いた磁気共鳴イメージング装置
JPWO2014073247A1 (ja) 電力変換装置
CN110546874B (zh) 电力转换系统
JP2017093077A (ja) オープン巻線システムの制御装置および制御方法
JPWO2019167244A1 (ja) 電力変換装置および電動機システム
CN110692186B (zh) 电力变换装置
JP6636223B1 (ja) 傾斜磁場電源装置およびそれを備えた磁気共鳴画像診断装置
JP4765539B2 (ja) 電圧駆動型半導体素子のゲート駆動回路及びこれを用いた電力変換装置
WO2017034028A1 (ja) インバータの制御方法及び制御装置、並びにインバータ装置
JP7274713B1 (ja) スイッチング回路、電流検出回路、スイッチングタイミング制御方法及び制御プログラム
US9748829B2 (en) Power module
JP3557009B2 (ja) 電源装置及びそれを用いた磁気共鳴イメージング装置
JP2009095082A (ja) 電力変換装置
JP6772740B2 (ja) 単相インバータ
JP6546131B2 (ja) 電流形電力変換装置の制御装置
WO2020079745A1 (ja) 電力変換装置および磁気共鳴イメージング装置用電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

R150 Certificate of patent or registration of utility model

Ref document number: 4698305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees