JP4696760B2 - センサ特性較正装置 - Google Patents

センサ特性較正装置 Download PDF

Info

Publication number
JP4696760B2
JP4696760B2 JP2005221012A JP2005221012A JP4696760B2 JP 4696760 B2 JP4696760 B2 JP 4696760B2 JP 2005221012 A JP2005221012 A JP 2005221012A JP 2005221012 A JP2005221012 A JP 2005221012A JP 4696760 B2 JP4696760 B2 JP 4696760B2
Authority
JP
Japan
Prior art keywords
sensor
output
concentration
gas
excess air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005221012A
Other languages
English (en)
Other versions
JP2007033394A (ja
Inventor
圭一郎 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005221012A priority Critical patent/JP4696760B2/ja
Publication of JP2007033394A publication Critical patent/JP2007033394A/ja
Application granted granted Critical
Publication of JP4696760B2 publication Critical patent/JP4696760B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

この発明は、センサ特性較正装置に関する。更に具体的には、排気ガスの酸素濃度に応じた出力を発するセンサの出力特性を較正するセンサ特性較正装置に関するものである。
従来、特開平5−312092号公報には、酸素濃度センサの出力に基づいて内燃機関の空燃比を制御する制御装置が開示されている。この制御装置において、酸素濃度センサは内燃機関の排気管に配置され、排気管内に流れる排気ガスの酸素濃度に応じた出力を発する。制御装置は、酸素濃度センサの出力が制御目標値となるように制御することにより空燃比制御を行う。
また、上記従来技術の制御装置は予め、大気の酸素濃度に対する酸素濃度センサの出力を基準出力値として記憶している。一方、この制御装置は内燃機関の駆動が停止すると、排気管から排気ガスが全て排出された時点でセンサ出力を検出する。ここで検出されるセンサ出力は、大気の酸素濃度に対応する出力である。この制御装置は、予め記憶された基準出力値に対する検出されたセンサ出力の値を求めて、この値を較正値として記憶する。この制御装置において内燃機関の駆動中は、記憶された較正値をセンサ出力に乗ずることによりセンサ出力が較正される。このような手法によれば、内燃機関停止の度に較正値が求められて、これに基づいて酸素濃度センサの出力が較正される。従って、上記従来技術によれば、酸素濃度センサ個体間でのばらつきや、経時劣化によるセンサ出力特性の変化が適切に較正され、正確な空燃比制御を行うことができるものとしている。
特開平5−312092号公報
空燃比制御をより正確に実行するため、三元触媒上流側に空燃比センサを配置し、三元触媒の下流側に酸素センサを配置したシステムがある。このようなシステムにおいては、下流側の酸素センサの出力と上流側の空燃比センサの出力とに基づいて空燃比制御が行われる。酸素センサは、電極とこれを覆う拡散防止層を有している。排気通路中の排気ガスは、その拡散防止層を通って電極に達する。電極には触媒層が設けられており、僅かに残った燃料成分は、この触媒層で最後の燃焼に付される。そして、酸素センサは、このような過程を経て、最終的に電極周辺に残った成分に基づいて、酸素濃度に応じた出力を発する。
このようなシステム内で三元触媒下流側に配置される酸素ガスセンサは、三元触媒により浄化された後の排気ガスを、その検出対象とする。三元触媒による浄化後の排気ガスは極低濃度のガスであるが、そのガス中の還元ガス成分中ではCHの割合が大きく、酸化ガス成分中ではNOの割合が大きい。ここでCHは、排気ガス中の他のガスに比して拡散速度が速い。このため、酸素センサの電極に到達した排気ガス中の各成分ガスの割合は、実際の排気ガス、つまり排気通路を流れる排気ガス中の割合とは、僅かにずれていることがある。また、CHは、排気ガスセンサの触媒中で完全に燃焼させることができない場合がある。このため、電極周辺に残る成分は、排ガス中の各成分が完全に反応した結果として残る成分とは、必ずしも一致しない。三元触媒下流側のガスのように極低濃度のガスの中では、このようなずれの影響が大きく、従って三元触媒下流側の酸素センサのセンサ出力に、ばらつきが生じやすい。
一方、NOは酸素よりも緩やかな酸化反応を示す。このため、NOを主な酸化ガスとして含むガスを検出対象とするセンサは、酸化ガス成分として大きな割合で酸素が含まれている場合の排気ガスセンサの出力特性とは、異なるセンサ出力特性を示すことが考えられる。従って、三元触媒下流側で用いる酸素センサのように、特にその出力特性に影響を及ぼしやすいガス成分の割合が多いガスを検出対象とする排気ガスセンサの場合、上記従来技術のように大気に対するセンサ出力を検出し、これに基づいて算出された較正値によりセンサ出力を較正することとしても、必ずしも正確な較正を行うことができない場合がある。
この発明は、上述のような課題を解決するためになされたもので、排気ガスセンサの較正値を、使用環境に応じた環境下で求められるように改良したセンサ特性較正装置を提供することを目的とする。
第1の発明は、上記の目的を達成するため、評価ガスの酸素濃度に応じた出力を発する排気ガスセンサのセンサ特性を較正するセンサ特性較正装置であって、
前記評価ガスは、所定の濃度の還元ガスと所定の濃度の酸化ガスとを含み、
前記酸化ガスは、主としてNOにより構成され、
前記還元ガスの濃度および前記酸化ガスの濃度に対する、前記排気ガスセンサのセンサ出力を検出するセンサ出力検出手段と、
前記センサ出力に基づいて、前記排気ガスセンサの出力を較正する較正手段と、
を備えることを特徴とする。
また、第2の発明は、第1の発明において、
NOの供給量を変化させて、前記酸化ガスの濃度を変化させるNO供給手段を備え、
前記センサ出力検出手段は、前記酸化ガスの濃度に応じた値として、前記排気ガスセンサのセンサ出力を検出することを特徴とする。
また、第3の発明は、第2の発明において、前記NO供給手段は、前記NOの供給量をリッチ側からリーン側に変化させて供給することを特徴とする。
また、第4の発明は、第1から3のいずれかの発明において、前記還元ガスは、少なくともCHを含むガスであることを特徴とする。
また、第5の発明は、第1から第4のいずれかの発明において、
任意の空気過剰率における基準センサ出力を記憶する基準センサ出力記憶手段と、
前記還元ガスの濃度および前記NOの濃度に応じて、前記評価ガスの空気過剰率を算出する空気過剰率算出手段と、を備え、
前記センサ出力検出手段は、前記センサ出力を、前記空気過剰率算出手段により算出された空気過剰率に応じた値として検出し、
前記較正手段は、前記任意の空気過剰率におけるセンサ出力と、前記基準センサ出力とに基づいて、前記センサ出力を較正することを特徴とする。
また、第6の発明は、第1から第5のいずれかの発明において、前記排気ガスセンサは、内燃機関の三元触媒下流に配置されるサブOセンサであって、
前記基準センサ出力記憶手段は、空気過剰率が1の場合における基準センサ出力を記憶し、
前記較正手段は、前記空気過剰率算出手段により算出された空気過剰率が1の場合におけるセンサ出力と、前記基準センサ出力とに基づいて、前記センサ出力を較正することを特徴とする。
また、第7の発明は、上記目的を達成するため、
内燃機関の排気ガスの酸素濃度に応じた出力を発する排気ガスセンサのセンサ特性を較正するセンサ特性較正装置であって、
前記排気ガスセンサの出力目標値を設定する出力目標値設定手段と、
前記排気ガスセンサのセンサ出力が、前記出力目標値になったか否かを判定する出力判定手段と、
前記センサ出力が、前記出力目標値になったと判定された場合に、前記排気ガス中の還元ガスの濃度およびNOの濃度を検出する濃度検出手段と、
前記還元ガスの濃度および前記NOの濃度と、前記出力目標値とに基づいて、前記排気ガスセンサのセンサ出力を較正する較正手段と、
を備えることを特徴とする。
また、第8の発明は、第7の発明において、前記濃度検出手段は、前記還元ガスの濃度として、CHの濃度を検出することを特徴とする。
また、第9の発明は、第7または第8の発明において、前記濃度検出手段は、前記還元ガスの濃度として、COの濃度を検出することを特徴とする。
また、第10の発明は、第7から第9のいずれかの発明において、
前記出力目標値設定手段は、前記出力目標値を変化させて設定し、
前記濃度検出手段は、前記出力目標値に応じて、前記還元ガスおよび前記NOの濃度をそれぞれ検出することを特徴とする。
また、第11の発明は、第10の発明において、
任意の空気過剰率における基準センサ出力を記憶する基準センサ出力記憶手段と、
前記還元ガスの濃度および前記NOの濃度に応じて、前記排気ガスの空気過剰率を算出する空気過剰率算出手段と、を備え、
前記較正手段は、前記任意の空気過剰率における前記出力目標値と、前記基準センサ出力とに基づいて、前記センサ出力を較正することを特徴とする。
また、第12の発明は、第7から第11のいずれかの発明において、前記排気ガスセンサは、内燃機関の三元触媒下流に配置されるサブOセンサであって、
前記基準センサ出力記憶手段は、空気過剰率が1の場合における基準センサ出力を記憶し、
前記較正手段は、前記空気過剰率算出手段により算出された空気過剰率が1の場合におけるセンサ出力と、前記基準センサ出力とに基づいて、前記センサ出力を較正することを特徴とする。
第1の発明によれば、評価ガス中の還元ガスの濃度およびNOの濃度に対する排気ガスセンサのセンサ出力を求め、このセンサ出力に基づいて、排気ガスセンサの出力が較正される。従って、その排気ガスセンサが使用される環境に基づいて、センサ出力の較正値を求めることができ、より正確なセンサ出力を得ることができる。
第2の発明によれば、評価ガス中のNOの供給量を変化させて供給し、センサ出力検出手段は、NOの供給量に応じた値として、排気ガスセンサのセンサ出力を検出する。従って、酸化ガスとしてNOを多く含む場合の評価ガスに対する、排気ガスセンサの出力特性を検出することができる。
第3の発明によれば、NOは、その供給量をリッチ側からリーン側に変化させて供給される。従って、内燃機関の空燃比がリッチからリーン側に変化する場合のセンサ出力特性に基づいて、センサ出力を正確に較正することができる。
第4の発明によれば、評価ガス中の還元ガスは、少なくともCHを含むガスである。従って、他のガス成分に比して拡散速度が早く、センサ出力特性に影響を与えるCHが含まれるガスを検出対象とする排気ガスセンサについても、より正確に出力を較正することができる。
第5の発明によれば、空気過剰率を算出することができ、空気過剰率に応じたセンサ出力を検出することができる。従って、空気過剰率に応じてセンサ出力の較正を行うことができ、正確な空燃比制御を行うことができる。
第6の発明によれば、特に、検出対象となるガスが希薄となる三元触媒下流側に用いられるサブOセンサについて、その使用環境に合わせて、より正確な出力の較正を行うことができる。
第7から第9の発明によれば、排気ガスの出力目標値を設定し、その出力目標値に対する還元ガス濃度およびNO濃度を検出する。これにより、排気ガス中の還元ガス濃度およびNO濃度に対する出力目標値に基づいて、センサ出力を較正することができる。従って、排気ガスセンサを実際の使用環境に対応させて較正することができ、より正確な空燃比制御を行うことができる。
第10および第11の発明によれば、出力目標値を変化させて設定し、各出力特性に応じて、排気ガス中の還元ガス濃度およびNOガス濃度をそれぞれ検出する。従って、より広い範囲に渡って、空燃比センサの出力特性を求めることができる。
第12の発明によれば、特に、検出対象となるガスが希薄となる三元触媒下流側に用いられるサブOセンサについて、その使用環境に合わせて、より正確な出力の較正を行うことができる。
以下、図面を参照して本発明の実施の形態について説明する。なお、各図において、同一または相当する部分には同一符号を付してその説明を簡略化ないし省略する。
実施の形態1.
図1は、実施の形態1のシステムにおいて用いる酸素センサについて説明するための模式図である。図1に示す酸素センサ10は、カバー12を備えている。カバー12にはその内部に排気ガスを導くための複数の通気穴14が設けられている。カバー12内には、センサ素子16が配置されている。センサ素子16は、一端が閉じられた管状の構造を有している。管状構造の外側表面は、触媒層18が設けられている。触媒層18の内側には、コーティング層20が設けられている。コーティング層20は、耐熱性の多孔質のセラミックス、例えば、アルミナを用いたスピネル型化合物(MgO・Al)により構成され、センサ素子16の表面における排気ガスの拡散速度を律する働きを有している。
コーティング層20の内側には、排気側電極22が配置されている。排気側電極22は、コーティング層20を通過した排気ガスに晒される状態となっている。排気側電極22の、コーティング層20と接する面とは反対側の面には、固体電解質層24が配置されている。固体電解質層24の、排気側電極22とは反対側の面には、大気側電極26が配置されている。排気側電極22及び大気側電極26は、Ptのように触媒作用の高い金属で構成された電極である。
センサ素子16の内側には、大気室28が形成されている。大気室28内には、大気が導かれ、大気側電極26が大気に晒される構造となっている。大気室28内には、ヒータ30が配置されている。ヒータ30は、ヒータ制御回路(図示せず)と電気的に接続されており、その制御回路に制御されることにより、センサ素子16を適切な温度に加熱する。なお、センサ素子16は、700℃程度の活性温度に加熱されることにより、安定した出力特性を示す。
以上のように構成された酸素センサ10は、内燃機関の三元触媒下流側に配置され、サブOセンサとして用いられる。三元触媒下流にサブOセンサを備えるシステムにおける内燃機関の空燃比制御においては、まず、サブOセンサの出力により、三元触媒上流側に配置された空燃比センサの出力に対する補正値が算出される。次に、この補正値に基づいて、上流側の空燃比センサの出力が補正され、この補正されたセンサ出力により空燃比が制御される。
酸素センサ10は、サブOセンサとして用いられる場合、カバー12が排気ガスに晒されるようにして、三元触媒下流側の配管内に組み付けられる。酸素センサ10のカバー12内には通気穴14から排気ガスが流入し、排気側電極22が三元触媒下流の排気ガスに晒された状態となる。その結果、大気側電極24付近の大気と、排気側電極22付近に導かれた排気ガスとの酸素濃度差により、固体電解質層24中を酸素イオンが移動し、排気側電極22と大気側電極26との間に起電力が発生する。この起電力を検出することにより、排気ガスの空燃比を検出することができる。
酸素センサ10の出力は、排気ガス中の酸素濃度差が大きくリッチな状態においては高い電圧を出力し、一方、酸素濃度差が小さくリーンな状態においては、ほぼ一定の低い電圧を出力する。また、この高い電圧の出力から低い電圧の出力への変化は急激である。通常、出力が急激に変化する出力急変点における排気ガスは、空気過剰率λ=1、すなわち、ストイキ付近のガスである。しかし、酸素センサのセンサ出力特性には、個別の酸素センサごとに公差として認められるばらつきが含まれている。また、酸素センサ10が使用により劣化し、その出力特性に変動が生じる場合がある。このため、酸素センサ10の出力特性の変動による酸素センサ10の出力ずれを較正する必要がある。
排気ガスセンサの出力を較正する手法としては、例えば、内燃機関の停止後に大気の酸素濃度を測定することにより較正値を求めて、これによりセンサ出力を較正するものがある。より具体的には、まず、大気酸素濃度に対するセンサ出力を検出する。その後、予め記憶された大気酸素濃度における基準出力に対する、検出した出力の割合として、較正値を求める。内燃機関駆動中は、この較正値をセンサ出力に乗じることにより、センサ出力の較正を行う。
しかし、酸素センサ10の検知対象となる排気ガスは、三元触媒16により浄化された排気ガスとなる場合がある。三元触媒下流の排気ガスは、極低濃度のガスであるが、その排気ガス中の還元ガス、すなわちリッチガス成分中では、CH(メタン)やCO(一酸化炭素)が占める割合が大きい。ここで特にCHは、排気ガス中の各成分ガスの中で、Hを除き最も拡散速度が速い。また、酸素センサ10のように触媒層18を有するセンサであっても、触媒層18においてCHを完全に燃焼させることは難しい。従って、CHが他のガスと拡散速度が異なることや燃焼されないことによって、酸素センサ10の排気側電極22の付近に到達する排気ガス中のCHの割合は、実際の排気ガス中の割合とは異なるもとなることが考えられる。また、この割合の変化は、特に三元触媒下流側の排気ガスのような希薄なガスにおいては、大きなものとなりやすいと考えられる。
ところで、酸素センサ10は、ストイキ近傍においては、排ガスの各成分ガスの僅かな割合の変化の範囲内で、出力が急変する特性を有する。このため、排気側電極22に到達する排気ガス中において各成分ガスの割合の変化すると、例え、その変化が僅かなものであっても、センサ出力に大きな影響を与えることとなる。このため、CHが三元触媒下流側の酸素センサ10の出力に与える影響は、大きいものと考えられる。従って、三元触媒下流側で用いられる酸素センサ10については、CHの影響を考慮してその出力を較正することが好ましい。
また、三元触媒下流側においては、排気ガスがストイキ付近の場合、排気ガス中の酸化ガス、すなわちリーンガスの成分中では、Oの割合が非常に小さく、NOの割合が大きい。従って酸素センサ10の出力に強く影響を与えるリーンガスは、NOであると考えられる。NOは、酸化物質としての反応が酸素に比べて非常に緩やかである。このため、酸素をリーンガスと考えた場合のセンサ出力特性とは、異なる出力特性を生じることが考えられる。また、空燃比の制御におけるエミッション規制の観点から、NOに対して感度の高いセンサが要求される。従って、三元触媒下流側で用いられる酸素センサ10については、NOの影響を考慮してその出力を較正することが好ましい。
以上より、三元触媒下流で用いる酸素センサ10の出力に対する較正値を算出する際、この実施の形態1においては、三元触媒下流側に特有の排気ガス雰囲気を準備する。つまり、三元触媒下流側の酸素センサ10が検出する排気ガスは非常に希薄であり、また、その排気ガス中のリッチガス成分としてはCHが多く、リーンガス成分としてはNOが多いことを考慮して、以下のような環境で酸素センサ10の出力較正値を求める。
図2は、酸素センサのセンサ特性較正に用いる較正装置を示す。図2に示すように、この較正装置は、ガス室32を備えている。ガス室32内には、評価ガスを流入させる供給管34が接続されている。供給管34には、評価ガスを供給する供給源36が接続されている。供給源36は、CH、COおよびNOを、それぞれ要求される供給量で供給することができる。一方、ガス室32には、内部のガスを排気する排気管38が接続されている。
酸素センサ10の出力較正値を求める際には、ガス室32内には、酸素センサ10のカバー12が組み込まれるようにして組み付けられ、通気穴14から流入するガス室内の評価ガスにセンサ素子16が晒されるように酸素センサ10が配置される。また、較正装置は、制御装置40を備えている。制御装置40には、供給源36および酸素センサ10が接続されている。制御装置40は、供給源36からの各ガスの供給量を制御し、また、酸素センサ10の出力を受けて評価ガスに応じた空燃比を検出することができる。
酸素センサ10の出力較正値を求める際には、ガス室32内に供給源36から評価ガスが供給される。評価ガスには、リッチガスとしてCHとCOとが混入されている。リッチガスの濃度は、例えば触媒暖気後のアイドル中における、三元触媒下流の排気ガス中のリッチガスと同じ濃度および流速になるように設定される。具体的には評価ガス中のCH濃度は200ppm以下、CO濃度は500ppm以下程度である。アイドル中においては、排気ガスの流量が最も遅く、かつ排気ガスの各成分の濃度が最も低濃度になっていると考えられる。このように、低濃度、低流速の領域では、CH、NOによる影響が顕著に出やすいため、この領域における正確な較正値を求めることができるようにする。
また、リッチガスとしてCH、COを所定の流速、所定の濃度で供給しながら、同時に、リーンガスとしてNOを供給源36から供給する。NO供給の際の流速は、上記同様、アイドル時における流量、すなわち内燃機関の運転において想定される最も低速度の流速に設定する。また、NOの供給量は徐々に変化して供給されるように設定する。下流側の酸素センサ30の較正のための評価ガスの場合、NOの評価ガス中の供給濃度は最大で500ppm程度である。
図3は、上記のように設定された条件で、NOの供給量を徐々に変化させて場合に得られる、空気過剰率λとセンサ出力および各ガスの濃度との関係を表すグラフである。図3において、横軸は空気過剰率λを表し、縦軸は、センサ出力および各ガスの濃度を表す。図3に示すように、NOは、供給量Qminから徐々にΔQずつ、Qmaxまで増加して供給される。すなわち、NOは、リッチからリーンにSWEEPさせて供給される。ただし、リーンガスの全体の供給量は一定になるように、NOの供給量QNOに応じてNを混入させて、バランスをとる。この状態で酸素センサ10の出力は、NOの濃度がΔQずつ増加する度に検出される。また、供給されたNOの濃度、CHの濃度、およびCOの濃度から、空気過剰率λが算出される。その結果、図3に示すような空気過剰率λに対する酸素センサ10の出力特性のグラフを得ることができる。
制御装置40は、空気過剰率λ=1、すなわち空燃比が理論空燃比となる場合のセンサ出力を検出し、この値を較正制御目標値として記憶する。更に、予め記憶されたλ=1に対するセンサ出力の基準値である制御目標値に対する較正制御目標値の割合を算出してこれを較正値として記憶する。酸素センサ10をサブOセンサとして用いて、実際に内燃機関の空燃比制御を行う場合には、上記のように算出された較正値を予め内燃機関の空燃比制御装置に記憶しておいて、得られたセンサ出力に、例えば上記較正値を乗ずることにより、センサ出力を補正して、補正したセンサ出力を用いて空燃比制御を行う。
図4は、この発明の実施の形態1において、制御装置40が実行する制御のルーチンである。図4のルーチンにおいて、まず、出力較正値算出の対象となる酸素センサ10がガス室32内の所定の位置にセットされる(ステップS102)。次に、評価ガスのうち、まずリッチガスがガス室32内に供給される(ステップS104)。制御装置40は、供給源36からのリッチガスを、触媒暖気後のアイドル中に排出されるストイキ付近の排気ガスの流速および濃度に基づいて予め設定された、流速およびCHとCOの濃度で供給するように制御する。
次に、リーンガス中のNOの供給量QNOが、Qminに設定される(ステップS106)。NO供給量Qminは、酸素センサ10の出力較正のため、その出力を検出すべき評価ガスの中で、最もリッチな状態の評価ガス中のNO濃度に応じた量である。供給量Qminは、予め制御装置40に記憶されている。次に、設定されたNOの供給量QNOでリーンガスが供給される(ステップS108)。制御装置40は、設定された量のNOがガス室32内に供給されるように、供給源36からのNO供給量を制御する。
次に、酸素センサ10のセンサ素子16が加熱される(ステップS110)。制御装置40は、酸素センサ10のヒータ30の制御回路に制御信号を送ることにより、所定の大きさの電圧を印加して、センサ素子16を加熱する。次にセンサ素子16が所定の活性温度に達したか否かが判定される(ステップS112)。具体的には、センサ素子16の素子インピーダンスを検出し、この素子インピーダンスが活性判定値にまで低下したか否かにより活性判定が行われる。なお、制御装置40は、センサ素子16が活性温度に達した時の素子インピーダンスを予め活性判定値として記憶している。ステップS112において、センサ素子16の活性が認められない場合には、正確なセンサ出力を得ることができないため、引き続きセンサ素子16の加熱が継続される(ステップS110)。
一方、ステップS112において、センサ素子16の活性が認められると、次に、リーンガスの供給開始後、5分以上の過ぎたか否かが判定される(ステップS114)。リーンガスの供給後5分以上経過することにより、ガス室32内における各ガスの濃度が安定して平衡状態となっているものと判定される。ステップS114において5分以上の経過が認められない場合には、引き続きリーンガスの供給が継続される。
一方、リーンガスの供給開始後5分以上の経過が認められた場合、酸素センサ10の出力が検出される(ステップS116)。このセンサ出力は、現在のガス室32の評価ガスに対応する出力であり、つまり、CH、COを含むリッチガスを所定の流速および濃度で供給し、NOを含むリーンガスをQNO供給した場合の評価ガスに対応する出力である。
次に、現在の供給量QNOに対応する空気過剰率λが算出される(ステップS118)。空気過剰率λは、NOの濃度、CHの濃度およびCOの濃度に基づいて算出される。次に、ステップS116において検出されたセンサ出力が、ステップS118において算出された空気過剰率λにおけるセンサ出力として記憶される(ステップS120)。
次に、リッチからリーンの必要な全領域について、センサ出力の検出が終了したか否かが判定される(ステップS122)。制御装置40は、出力較正値算出のためセンサ出力を検出すべき最もリーンな状態の場合のNO供給量をQmaxとして記憶している。ここでは、現在設定されているNO供給量QNOがQmax以上であるか否かが判定される。
ステップS122において、QNO≧Qmaxの成立が認められない場合には、現在の供給量QNOにΔQを加算した値が、次回のNO供給量QNOとして設定される(ステップS124)。制御装置40は、1回のNO供給量の増加分ΔQを予め記憶している。ここでは、ストイキ付近のセンサ出力特性を正確に検出するため、NO供給量QNOの変化量ΔQは極小さな値に設定されている。ステップS124において、供給量QNOが再設定されると、再びセンサ素子の活性が確認された後(ステップS112)、ステップS114〜S116を同様に実行することにより、現在の供給量QNOにおけるセンサ出力が検出される。その後、空気過剰率λが算出され(ステップS118)、検出されたセンサ出力は、この空気過剰率λに対するセンサ出力として記憶される(ステップS120)。
一方、ステップS122においてQNO≧Qmaxの成立が認められた場合、リッチからリーンの全領域の検出が完了したと判断され、空気過剰率λ=1におけるセンサ出力が、この酸素センサ10の較正制御目標値として読み出される(ステップS126)。次に、読み出された較正制御目標値と、空気過剰率λにおける基準出力として予め記憶された基準制御目標値とに基づいて、較正値が算出される(ステップS128)。具体的に、較正値は、較正制御目標値の、基準制御目標値に対する割合として算出される。次に、求められた較正値が、この酸素センサ10の較正値として記憶される(ステップS130)。
以上のようにして記憶された較正値は、例えば、内燃機関の駆動中に、センサ出力に乗ずることによりセンサ出力を補正する。一方、ステップS120において記憶されたセンサ出力に基づいて、図3に示すような空気過剰率λに対するセンサ出力特性のグラフを得ることができる。これにより、実際の酸素センサ10の使用環境における酸素センサ10の出力特性を予測することができ、より確実な空燃比制御に利用される。
このように、実施の形態1においては、CHやCOを含むガスにNOを流入させた評価ガスを用いてセンサ出力を検出し、更に、理論空燃比(空気過剰率λ=1)におけるセンサ出力に基づいてセンサ出力の較正値を設定する。これにより、酸素センサ10がサブOセンサとして用いられる場合に、その検出の対象となるガスに含まれる成分を考慮して、酸素センサ10の出力に対する較正を行うことができる。従って、サブOセンサの使用環境に合わせた出力の較正を行うことができ、より正確に空燃比センサの出力を補正することができる。
また、実施の形態1においては、NOをリッチからリーンにSWEEPさせて、各段階でのセンサ出力を検出している。この結果から図3に示すような空気過剰率λに対するセンサ出力特性のグラフを得ることができる。従って、酸素センサ10の使用環境に合わせたセンサの出力特性を得ることができ、センサの出力特性の評価に用いることができる。ただし、この発明はこれに限るものではなく、評価ガス中の酸素ガス成分としてNOを用いるものであれば、逆に、NOの量を一定にして、CHをリッチからリーンになるように、CHの供給量を所定の割合ずつ減少させるようにSWEEPさせて、各供給量におけるセンサ出力を検出するものであってもよい。
また、実施の形態1においては、NOを、リッチからリーンに徐々にSWEEPさせて供給する場合について説明した。センサ出力にはヒステリシスが存在し、評価ガスがリッチからリーン側に変化する場合と、リーンからリッチ側に変化する場合とにより、センサ出力に僅かなずれがあるものと考えられる。そこで、実際の酸素センサ10の使用環境を考慮すると、例えば、内燃機関の加速時など、一旦リッチの状態になり、その後にリーン状態になるような使用状況が多くなると考えられる。このため、実施の形態1においては、このような実際の使用環境に即して、リッチからリーン状態にSWEEPした場合のセンサ出力に基づいて較正値を算出した。しかし、この発明はこれに限るものではなく、リーンからリッチにSWEEPさせていくものであってもよい。このようにリーンからリッチに変化させていくものであっても、ある程度正確な較正値を設定することができる。
また、実施の形態1においては、NO供給量をQminからQmaxまでSWEEPさせて供給し、較正制御目標値の算出と共に、センサ出力の出力特性のグラフを求める場合について説明した。このグラフの算出により、センサの出力特性をより確実に把握することができる。しかし、この発明はこれに限るものではなく、例えば、空気過剰率λ=1となる状態のCH、CO、NOの濃度に固定して、その1点でのみ酸素センサ10のセンサ出力を検出し、この出力に基づいて較正値を算出するものであってもよい。
また、実施の形態1においては、評価ガス中の酸化ガスとしてNOのみを用いる場合について説明した。しかしこの発明において酸化ガスは、NOにより生じるセンサの出力ずれを較正することができるものであればよく、したがって、NOを主とするガスであれば、NO以外に多少の酸素等が含まれるガスであってもよい。
また、実施の形態1においては、還元ガスとしてCHとCOとを所定の割合で含むものを用いる場合について説明した。しかし、この発明はこれに限るものではなく、例えば、還元ガスとして、C等を用いるものであってもよい。
また、実施の形態1において較正値の算出のために検出するセンサ出力は、λ=1の場合に限定するものではなく、他の空気過剰率に対応する値に基づいて算出するものであってもよい。また、空気過剰率を基に較正値を算出するものに限るものでもない。例えば、あるCH、CO、NOの濃度における基準となるセンサ出力が既知の値として求められていれば、この濃度において検出されたセンサ出力に基づいて、較正値を求めることができる。
また、この実施の形態1においては、較正制御目標値の、基準制御目標値に対する割合を求めることにより較正値を算出した。しかし、この発明はこのような較正値の算出方法は、センサ出力の較正の一例であって、この発明はこれに限るものではない。較正値の算出は、上記のような評価ガスに対するセンサ出力結果から、適切な算出手法により求めるものであればよい。
なお、例えば、実施の形態1において、ステップS116を実行することにより、この発明の「センサ出力検出手段」が実現し、ステップS128〜S130を実行することにより、「較正手段」が実現する。また、ステップS124を実行することにより、この発明の「NO供給手段」が実現する。また、ステップS128を実行することにより、この発明の「基準センサ出力記憶手段」および「較正手段」が実現し、ステップS118を実行することにより、「空気過剰率算出手段」が実現する。
実施の形態2.
実施の形態2においては、実際の排気ガスをモデルとして、較正値を算出する。図5は、実施の形態2において酸素センサ10を用いる内燃機関の制御装置を表す。図5に示すように、実施の形態2のシステムは、内燃機関50を備えている。内燃機関50は複数の気筒を有するが、図5においては、1の気筒の断面のみを表している。内燃機関50の各気筒の吸気ポート52には吸気枝管54が接続されている。吸気枝管54には、燃料噴射弁56が設けられている。一方、内燃機関50の各気筒の排気ポート58は、共通の排気マニホルド60に接続されている。排気マニホルド60は、三元触媒62を内蔵する触媒コンバータ64に接続されている。触媒コンバータ64は、排気管66に接続されている。
排気マニホルド60、即ち、三元触媒62の上流には、上流側の空燃比センサ68が配置されている。上流側空燃比センサ68は、広い空燃比領域に渡って、空燃比に対応した出力電圧を発生するいわゆる全域空燃比センサである。また、排気管66、即ち三元触媒62の下流には、サブOセンサ70が組み付けられている。サブOセンサ70は、図1に示すような酸素センサ10と同一のものであり、その出力値が理論空燃比付近でステップ状に変化する特性を有する。また、排気管66には、CH濃度センサ72、CO濃度センサ74、NO濃度センサ76がそれぞれ組み付けられている。CH濃度センサ72、CO濃度センサ74、NO濃度センサ76は、それぞれ、CH、CO、NOの濃度に応じた出力を発するセンサである。
また、このシステムは、制御装置78を有している。制御装置78は、燃料噴射弁56、空燃比センサ68、サブOセンサ70、CH濃度センサ72、CO濃度センサ74、NO濃度センサ76にそれぞれ接続されている。制御装置78は、空燃比センサ68、サブOセンサ70の出力を、出力目標値にSWEEPさせるため、燃料噴射弁56からの燃料噴射量を制御することができる。また、制御装置78は、このときに排出されるガス中の、CH、CO、NOの濃度を各濃度センサ72〜76からの出力により検出することができる。
サブOセンサ70の較正値算出の際には、以下のように環境を設定する。まず、内燃機関50をアイドル状態とする。アイドル中のように、排気ガス濃度が非常に薄くCHやNOのガスがセンサ出力に大きく影響する環境において、センサ出力の較正値を求めるためである。この状態で、空燃比センサ68およびサブOセンサ70の出力目標値Vtgtをリッチ側(0.8V)からリーン側(0.2V)に少しずつ変化させるようにする。つまり、出力目標値Vtgtのセンサ出力が得られるように、その都度フィードバック制御を行い、燃料噴射量を制御する。空燃比センサ68とサブO2センサ70の出力が、設定された出力目標値Vtgtに安定した状態で、その時のCHとCO、NOのガス濃度を検出する。
図6は、上記のような環境において検出されたCH、COおよびNOの濃度と、センサ出力目標値との関係を表すグラフである。図6において、横軸は、経過時間を表し、縦軸は、センサ出力目標値およびCH、CO、NOの濃度を表す。図6に示すグラフでは、経過時間と共に空燃比がリッチからリーンになるように、センサ出力目標値を変化させている。図6に示すように、CH4、COの濃度は、リッチな状態から空気過剰率λ=1付近になるまで減少し、λ=1においてほぼ平衡状態に達し、その後は、ほぼ一定のままとなる。一方、NOの濃度は、λ=1付近で上昇を開始しリーンな状態となるに連れて増加する。このような関係から、空気過剰率λ=1となる点は、センサ出力の出力目標値に応じて検出されたCH、CO、NOの濃度のバランスに基づいて、理論的に予測することができる。予測された空気過剰率λ=1におけるサブOセンサ70の出力目標値Vtgtが較正制御目標値とされる。また、空気過剰率λ=1におけるセンサの基準出力は、予め基準較正制御目標値として記憶されている。従って、較正制御目標値の基準制御目標値に対する割合として、較正値が算出される。この較正値が記憶され、内燃機関の駆動中に、サブOセンサ70の出力較正値として用いられる。
図7は、実施の形態2において、制御装置78が実行する制御のルーチンを説明するためのフローチャートである。図7に示すルーチンにおいては、まず、較正値算出のため、内燃機関50の運転状態がアイドル中であるか否かが判定される(ステップS202)。アイドル状態での運転中でないと判定された場合には、一旦この処理が終了される。
一方、アイドル中であることが認められた場合、次に、空燃比センサ68およびサブOセンサ70の出力目標値VtgtがVmaxに設定される(ステップS204)。Vmaxは、今回の較正値算出のための各ガス濃度検出範囲の中で、最もリッチな状態での出力目標値であり、予め制御装置78に記憶されている。
次に、センサ素子16が加熱される(ステップS206)。センサ素子16は、制御装置78から、ヒータ30の制御回路に制御信号が送られて、所定の電圧が印加されることにより加熱される。次に、センサ素子が活性温度に達しているか否かが判定される(ステップS208)。センサ素子の活性判定は、素子インピーダンスが予め記憶された活性判定値にまで低下したか否かにより判定される。ステップS208において、センサ素子の活性が認められない場合には、素子インピーダンスが活性判定値に低下するまで引き続きセンサの加熱が継続される。
一方、ステップS208においてセンサの活性が認められた場合には、次に、フィードバック制御が完了しているか否かが判定される(ステップS210)。すなわち、空燃比センサ68、サブOセンサ70の出力が、設定された出力目標値Vtgtと同一の出力を発しているか否かが判定される。ステップS210において、フィードバック制御の完了が認められない場合には、引き続き空燃比センサ68、サブO2センサ70の出力が出力目標値Vtgtになるようにフィードバック制御が継続される。
一方、ステップS210においてフィードバック制御の完了が認められた場合には、その時点でのCO,CH、NOの濃度がそれぞれ検出される(ステップS212)。各ガスの濃度は、CH濃度センサ72、CO濃度センサ74、およびNO濃度センサ76からの出力に基づいて検出される。次に、ステップS212において検出された各ガスの濃度は、この時点での出力目標値Vtgtに対する濃度としてRAMに記憶される(ステップS214)。
次に、リッチからリーンの全ての測定領域についての各ガスの濃度の検出が完了したか否かが判定される(ステップS216)。ここでは、出力目標値VtgtがVmin以下であるか否かが判定される。なお、制御装置78は、センサ出力特性を検出するために必要な全領域の出力目標値の中で最も小さな値を、Vminとして予め記憶している。
ステップS216において、Vtgt≦Vminの成立が認められない場合には、VtgtからΔVを減算した値が新たな出力目標値Vtgtとして設定される(ステップS218)。制御装置78は、ΔVを出力目標値を変化させる割合として予め記憶している。ステップS218において、新たな出力目標値Vtgtが設定された後、再びセンサ素子の活性が判定され(ステップS208)、ステップS210においてフィードバック制御の完了が認められると、この出力目標値VtgtにおけるCH、CO、NOの各濃度が検出され、出力目標値Vtgtと共に記憶される(ステップS212、S214)。図7のフローでは、ステップS216において、Vtgt≦Vminの成立が認められるまで、出力目標値VtgtがΔVずつ小さくされ、VmaxからVminの範囲内で、各ガス濃度が段階的に測定されることになる。
一方、ステップS216において、Vtgt≦Vminの成立が認められた場合には、各ガスの濃度の測定結果から、ストイキ時の三元触媒下流側の雰囲気に最も近くなる点が空気過剰率λ=1として算出する(ステップS220)。次に、λ=1における出力目標値Vtgtが、このセンサのλ=1における較正制御目標値として読み出される(ステップS222)。その後、較正制御目標値から、サブOセンサ70の較正値を算出する(ステップS224)。較正値は、予め記憶された制御目標値に対する、較正制御目標値の値として算出される。その後、算出された較正値を記憶する(ステップS226)。
以上のように、実際の排気ガス環境下においても、サブOセンサ70の出力較正値を、求めることができる。このように、実際に内燃機関を運転させた状態に設定し、この場合の排気ガスに対応する出力から較正値を求めることにより、サブOセンサ70の使用環境に近い較正値を求めることができる。したって、その使用環境において生じやすい出力ずれをより確実に較正することができ、正確な空燃比制御を行うことができる。
なお、実施の形態2においては、CH、CO、NOの各濃度から、ストイキ時の三元触媒下流の雰囲気に最も近くなる濃度となる点が予測され、このときを空気過剰率λ=1であるとして、このときの出力目標値Vtgtを較正値算出に利用する場合について説明した。しかし、この発明において空気過剰率λ=1の予測方法はこれに限るものではなく、空気過剰率λ=1を特定できるものであればよい。例えば、図6に示すように、リッチガスであるCOの濃度とCHの濃度は、リッチな状態からストイキ付近に近づくに連れて小さくなり、ストイキにおいて最小となるとそのまま平衡状態が維持されて、一定値となる。特にCOについては、この傾向は顕著であり、ストイキ通過後のCO濃度はほぼ平衡状態となって変化しない。従って、例えば、COの濃度が最小になる点を求めて、これをλ=1であると仮定し、このときのセンサ出力を較正制御目標値として設定することもできる。また、ストイキ時においては、リッチガス、リーンガスが何れも低濃度となることが考えられる。従って、各ガスの濃度から、平均的に最も低濃度となる点を空気過剰率λ=1と仮定して、このときの出力目標値Vtgtを較正制御目標値として設定するものであってもよい。このように排気ガスのストイキ点を正確にガス濃度から特定することは困難であるが、上記いずれかの方法によれば、ストイキ付近の極僅かなずれの範囲内で、空気過剰率λ=1となるところを特定することができるものと考えられる。従って、これらの時のセンサ出力を較正制御目標値として設定することにより、サブOセンサ70について、その使用環境に適した正確な出力較正を行うことができる。あるいは、検出される各ガス濃度からではなく、燃料噴射弁からの燃料噴射量と、吸入空気量から空燃比を求めて、空気過剰率を算出するものであってもよい。
以上の実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合や原理的に明らかにその数に特定される場合を除いて、その言及した数に限定されるものではない。また、実施の形態において説明する構造や、方法におけるステップ等は、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。
なお、例えば、実施の形態2において、ステップS218を実行することにより、この発明の「出力目標値設定手段」が実現し、ステップS210を実行することにより、この発明の「出力判定手段」が実現し、ステップS212を実行することにより、「濃度検出手段」が実現し、ステップS224〜S226を実行することにより、「較正手段」および「基準センサ出力記憶手段」が実現し、ステッププS220を実行することにより、この発明の「空気過剰率算出手段」が実現する。
この発明の実施の形態1における酸素センサを説明するための模式図である。 この発明の実施の形態1における較正装置について説明するための模式図である。 この発明の実施の形態1における空気過剰率と酸素センサの出力との関係を説明するためのグラフである。 この発明の実施の形態1において制御装置が実行する制御のルーチンを説明するためのフローチャートである。 この発明の実施の形態2におけるシステムを説明するための模式図である。 この発明の実施の形態2における各ガスの濃度と酸素センサの出力との関係を説明するためのグラフである。 この発明の実施の形態2において制御装置が実行する制御のルーチンについて説明するためのフロー図である。
符号の説明
10 酸素センサ
12 カバー
14 通気穴
16 センサ素子
18 触媒層
20 コーティング層
22 排気側電極
24 固体電解質層
26 大気側電極
28 大気室
30 ヒータ
32 ガス室
34 供給管
36 供給源
38 排気管
40 制御装置
50 内燃機関
52 吸気ポート
54 吸気枝管
56 燃料吸気弁
58 排気ポート
60 排気マニホルド
62 三元触媒
64 触媒コンバータ
66 排気管
68 空燃比センサ
70 サブOセンサ
72 CH濃度センサ
74 CO濃度センサ
76 NO濃度センサ
78 制御装置

Claims (11)

  1. 評価ガスの酸素濃度に応じた出力を発する排気ガスセンサのセンサ特性を較正するセンサ特性較正装置であって、
    前記評価ガスは、所定の濃度の還元ガスと所定の濃度の酸化ガスとを含み、
    前記酸化ガスは、主としてNOにより構成され、
    前記還元ガスの濃度および前記酸化ガスの濃度に対する、前記排気ガスセンサのセンサ出力を検出するセンサ出力検出手段と、
    前記センサ出力に基づいて、前記排気ガスセンサの出力を較正する較正手段と、
    を備えることを特徴とするセンサ特性較正装置。
  2. NOの供給量を変化させて、前記酸化ガスの濃度を変化させるNO供給手段を備え、
    前記センサ出力検出手段は、前記酸化ガスの濃度に応じた値として、前記排気ガスセンサのセンサ出力を検出することを特徴とする請求項1に記載のセンサ特性較正装置。
  3. 前記NO供給手段は、前記NOの供給量をリッチ側からリーン側に変化させて供給することを特徴とする請求項2に記載のセンサ特性較正装置。
  4. 前記還元ガスは、少なくともCHを含むガスであることを特徴とする請求項1から3のいずれかに記載のセンサ特性較正装置。
  5. 任意の空気過剰率における基準センサ出力を記憶する基準センサ出力記憶手段と、
    前記還元ガスの濃度および前記NOの濃度に応じて、前記評価ガスの空気過剰率を算出する空気過剰率算出手段と、を備え、
    前記センサ出力検出手段は、前記センサ出力を、前記空気過剰率算出手段により算出された空気過剰率に応じた値として検出し、
    前記較正手段は、前記任意の空気過剰率におけるセンサ出力と、前記基準センサ出力とに基づいて、前記センサ出力を較正することを特徴とする請求項1から4のいずれかに記載のセンサ特性較正装置。
  6. 前記排気ガスセンサは、内燃機関の三元触媒下流に配置されるサブOセンサであって、
    前記基準センサ出力記憶手段は、空気過剰率が1の場合における基準センサ出力を記憶し、
    前記較正手段は、前記空気過剰率算出手段により算出された空気過剰率が1の場合におけるセンサ出力と、前記基準センサ出力とに基づいて、前記センサ出力を較正することを特徴とする請求項5に記載のセンサ特性較正装置。
  7. 内燃機関の排気ガスの酸素濃度に応じた出力を発する排気ガスセンサのセンサ特性を較正するセンサ特性較正装置であって、
    前記排気ガスセンサの出力目標値を設定する出力目標値設定手段と、
    前記排気ガスセンサのセンサ出力が、前記出力目標値になったか否かを判定する出力判定手段と、
    前記センサ出力が、前記出力目標値になったと判定された場合に、前記排気ガス中の還元ガスの濃度およびNOの濃度を検出する濃度検出手段と、
    前記還元ガスの濃度および前記NOの濃度と、前記出力目標値とに基づいて、前記排気ガスセンサのセンサ出力を較正する較正手段と、
    を備えることを特徴とするセンサ特性較正装置。
  8. 前記濃度検出手段は、前記還元ガスの濃度として、COの濃度およびCHの濃度を検出することを特徴とする請求項7に記載のセンサ特性較正装置。
  9. 前記出力目標値設定手段は、前記出力目標値を変化させて設定し、
    前記濃度検出手段は、前記出力目標値に応じて、前記還元ガスおよび前記NOの濃度をそれぞれ検出することを特徴とする請求項7又は8に記載のセンサ特性較正装置。
  10. 任意の空気過剰率における基準センサ出力を記憶する基準センサ出力記憶手段と、
    前記還元ガスの濃度および前記NOの濃度に応じて、前記排気ガスの空気過剰率を算出する空気過剰率算出手段と、を備え、
    前記較正手段は、前記任意の空気過剰率における前記出力目標値と、前記基準センサ出力とに基づいて、前記センサ出力を較正することを特徴とする請求項に記載のセンサ特定較正装置。
  11. 前記排気ガスセンサは、内燃機関の三元触媒下流に配置されるサブOセンサであって、
    前記基準センサ出力記憶手段は、空気過剰率が1の場合における基準センサ出力を記憶し、
    前記較正手段は、前記空気過剰率算出手段により算出された空気過剰率が1の場合におけるセンサ出力と、前記基準センサ出力とに基づいて、前記センサ出力を較正することを特徴とする請求項10に記載のセンサ特性較正装置。
JP2005221012A 2005-07-29 2005-07-29 センサ特性較正装置 Expired - Fee Related JP4696760B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005221012A JP4696760B2 (ja) 2005-07-29 2005-07-29 センサ特性較正装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005221012A JP4696760B2 (ja) 2005-07-29 2005-07-29 センサ特性較正装置

Publications (2)

Publication Number Publication Date
JP2007033394A JP2007033394A (ja) 2007-02-08
JP4696760B2 true JP4696760B2 (ja) 2011-06-08

Family

ID=37792826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005221012A Expired - Fee Related JP4696760B2 (ja) 2005-07-29 2005-07-29 センサ特性較正装置

Country Status (1)

Country Link
JP (1) JP4696760B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520427B2 (ja) * 2006-05-15 2010-08-04 日本特殊陶業株式会社 ガスセンサの評価方法及びガスセンサの評価装置
JP5060378B2 (ja) * 2008-04-23 2012-10-31 大阪瓦斯株式会社 ガス分析方法及びガス分析装置
JP4952660B2 (ja) * 2008-06-10 2012-06-13 トヨタ自動車株式会社 空燃比センサの劣化判定装置及び方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038756U (ja) * 1989-06-14 1991-01-28
JP2005146900A (ja) * 2003-11-12 2005-06-09 Toyota Motor Corp 空燃比測定装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5470890A (en) * 1977-11-17 1979-06-07 Toyoda Chuo Kenkyusho Kk Device for evaluating 02 sensor
JPH0612525Y2 (ja) * 1985-06-27 1994-03-30 日産自動車株式会社 空燃比検出装置
JP2608146B2 (ja) * 1989-07-31 1997-05-07 日本碍子株式会社 酸素センサ特性評価方法および装置
JP3262682B2 (ja) * 1994-11-14 2002-03-04 株式会社豊田中央研究所 空燃比センサ特性解析装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038756U (ja) * 1989-06-14 1991-01-28
JP2005146900A (ja) * 2003-11-12 2005-06-09 Toyota Motor Corp 空燃比測定装置

Also Published As

Publication number Publication date
JP2007033394A (ja) 2007-02-08

Similar Documents

Publication Publication Date Title
JP5021697B2 (ja) ガス濃度湿度検出装置
JP4631517B2 (ja) 酸素センサ及び空燃比制御システム
EP2023132A2 (en) Gas sensor and air-fuel ratio controller
US8554447B2 (en) Internal combustion engine system controller
US8354016B2 (en) Dual mode oxygen sensor
JP2004069547A (ja) 空燃比センサの制御装置
JP5817581B2 (ja) 内燃機関の排出ガス浄化装置
US9052279B2 (en) Gas sensor apparatus and method for controlling the same
JP3134624B2 (ja) 内燃機関の空燃比制御装置
US20220113280A1 (en) Gas sensor
JP4811001B2 (ja) 排気ガスセンサシステム
JP4696760B2 (ja) センサ特性較正装置
JP4325368B2 (ja) 空燃比測定装置
JP6551314B2 (ja) ガスセンサ制御装置
JP4905726B2 (ja) 空燃比検出装置
JP6756317B2 (ja) 内燃機関の排気装置
JP6562047B2 (ja) 内燃機関の排気浄化装置
US20190107505A1 (en) Sensor control device and sensor unit
WO2014118888A1 (ja) 内燃機関の制御装置
KR102090976B1 (ko) 가스 센서에 의해 공기비 람다를 측정하기 위한 방법 및 장치
JP2023145123A (ja) NOxセンサ
CN111472894B (zh) 内燃机的控制装置
JP4196794B2 (ja) 内燃機関の空燃比検出装置
JP4016921B2 (ja) 内燃機関の空燃比制御装置
JP2010013978A (ja) 排気ガスセンサの劣化判定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

R151 Written notification of patent or utility model registration

Ref document number: 4696760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees