JP4677169B2 - 位置測定装置 - Google Patents

位置測定装置 Download PDF

Info

Publication number
JP4677169B2
JP4677169B2 JP2002527731A JP2002527731A JP4677169B2 JP 4677169 B2 JP4677169 B2 JP 4677169B2 JP 2002527731 A JP2002527731 A JP 2002527731A JP 2002527731 A JP2002527731 A JP 2002527731A JP 4677169 B2 JP4677169 B2 JP 4677169B2
Authority
JP
Japan
Prior art keywords
scanning
angle prism
measuring device
grating
position measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002527731A
Other languages
English (en)
Other versions
JP2004509329A (ja
Inventor
ホルツアプフェル・ヴォルフガング
シュライバー・アンドレアス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Johannes Heidenhain GmbH
Original Assignee
Dr Johannes Heidenhain GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Johannes Heidenhain GmbH filed Critical Dr Johannes Heidenhain GmbH
Publication of JP2004509329A publication Critical patent/JP2004509329A/ja
Application granted granted Critical
Publication of JP4677169B2 publication Critical patent/JP4677169B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • G01D5/38Forming the light into pulses by diffraction gratings

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、請求項1の上位概念にもとづく位置測定装置に関する。
【0002】
【従来の技術】
ウェーファーステッパーによるチップ製造において、マスクと基板の位置決めは極めて正確に行われなければならない。この目的に対して、マスクテーブルの位置変化をレーザー干渉計で検出することが知られている。その場合、空気の揺らぎの影響が欠点となり、それは最終的に再現性において位置に関するノイズおよび問題となる。温度膨張の影響を少なくするためには、基板またはマスクテーブルの位置を光学投影系に対して直接的および相対的に測定するのが有利である。しかし、空間的な制限および熱拡散のために、レーザー干渉計をウェーファーステッパーの投影光学系に直接取り付けることは、不可能および望ましくない場合があり、その場合レーザー干渉計のすべての部分をインバーまたはゼロデュアーから成る特別な構造上に固定しなければならない。レーザーの変更とレーザー干渉計の事後調整も大きな問題となる。別の欠点としては、6〜10は必要となる干渉計軸に対する高い費用がある。
【0003】
費用がかかり高価な干渉計の機構の代わりに、xおよびy方向の位置変化の測定に格子測定システムの形の位置測定装置が考えられ、それは光学的な測定原理を用いて格子基準尺を走査し、高い再現性を実現するものである。そのようなシステムは、例えば刊行物「Ma arbeit - Nanometergenaue Positionsmessung in allen Freiheitsgraden, Y.-B.P. Kwan et al, F & M Jahrg. 108 (2000) 9, S. 60 - 64」に記載されており、xおよびy方向の動きを検出する一つまたは二つの交差格子部と一つまたは複数の走査ヘッドから構成されている。この場合、交差格子部は、マスク支持部上に直接取り付けられている。
【0004】
このような応用における位置決め精度と再現性に対する特に高い要求を満たすためには、位置測定装置には非常に短い信号周期(≦500nm)と多数の補間措置が必要である。同時に、目標物の精緻な面にマスクを調整する際に、マスク支持部の回転が三つの空間方向すべてに生じ、そのためこの位置測定装置は三つの空間方向すべてに対して約±3から±5ミリラジアンの回転許容誤差を持たなければならないということを考慮しなければならない。さらに、この位置測定装置は、約5mm〜20mmの大きな走査間隔を有し、±1mmの比較的高い間隔許容誤差を持つ必要がある。
【0005】
本出願人の欧州特許第387520号明細書により、目盛り周期または格子定数を512nmに選択した場合に信号周期が128nmとなる位置測定装置が周知である。これによって、サブナノメートル範囲の位置決め精度が実現されている。しかし、基準尺上において回折する光線の格子定数がこれほど小さい場合には、後でモアレ回転と称する基準方向に対する基準尺の捩れが、格子部の直線方向に沿って相対する方向成分となって現れる。それによって、干渉する信号光線の位相面が互いに反転し、それが干渉縞とそれと同時に生じる強い信号減衰を発生させる。この問題を解決するために、逆反射体として三角プリズムが使用され、それが格子部の目盛り線の方向に沿ってこの方向成分を反転させ、その結果それ自身上にその目盛りを写し出すものである。このモアレ回転により生じた方向成分の補償を、以下においてモアレ補償と称する。この走査原理の欠点は、光路が目盛り線の方向、すなわち測定方向に交差して傾斜することにある。これは、走査ユニットと基準尺間の間隔の変化を無視することができず、それが同時に起こるモアレ回転によって表示位置を変化させてしまうこととなる。さらに、走査ユニットの付加部分の傾斜によって、大きな間隔許容誤差を得ることはできない。その他の問題としては、いわゆる回転中立点が基準尺表面上にないほか、走査格子内にもないことである。定義では、回転中立点は、走査ユニットが表示位置を変化させることなく測定方向に対してその回りに傾斜すること(以下において、上下傾斜と言う)が可能である点とされる。回転中立点が基準尺表面上にない場合、基準尺の傾斜は表示位置の大きな変化を生じさせることとなり、これは費用のかかる補正手段を用いて解消されなければならない。
【0006】
したがって、このマスクテーブルの位置決めにおける高い必要条件は、回転中立点が基準尺部上にあるほか、さらにモアレ回転を補償する位置測定装置を求めるものである。そのほか、高い対称性を保証するためには、基準尺が垂直に照射されることが求められ、それは大きな間隔許容誤差を可能とし、走査ユニットの間隔が変化し、同時にモアレ回転が起こった場合における位置決めに対する他の問題を回避するものである。
【0007】
【発明が解決しようとする課題】
そのため、この発明の課題は、大きな走査間隔範囲にわたって確実に動作し、さらに走査ヘッドがモアレ回転した場合でも測定誤りを回避する、高解像度で、傾斜に対して強い位置測定装置を開示することである。
【0008】
【課題を解決するための手段】
この課題は、請求項1の特徴部における特徴を有する位置測定装置により解決される。
【0009】
この発明にもとづく装置の有利な実施構成が、従属請求項で挙げられた措置により明らかにされている。
【0010】
この発明にもとづく措置は、今やそれに対応して構成された位置測定装置においては上述した問題がもはや発生しないことを保証するものである。特に、上下動に対する所望の耐性ならびにモアレ回転に対する所望の耐性が確保されるものである。
【0011】
ここでは、この発明にもとづく考察をベースとして、非常に相違する実施構成を実現している。
【0012】
この発明にもとづく位置測定装置の他の利点および詳細は、以下の添付図をもとにした複数の実施例の説明から明らかとなる。
【0013】
【発明の実施の形態】
図1は、この発明による位置測定装置の第1実施構成の光路の展開図を表す。この例では、すべての格子あるいは目盛りが同じ格子定数または目盛り周期を持つ4格子構造が重要である。
【0014】
基準尺格子1は、図1には描かれていない光源から放射された、コリメートされ、直線偏光されたレーザー光線により、垂直に照射される。この目盛りは、x方向に沿って延びる。基準尺格子1において回折して出てきた光束は、基準尺格子と間隔Dをおいて配置された第1走査格子2に伝搬する。この場合、+/−1次の回折が重要である。第1走査格子2における回折により、この二つの光束は、真直ぐに第2走査格子3に向かって伝搬する。その際、この二つの光束の各々は、走査格子2,3にそれぞれ配置された1/8波長板5,5’または5”,5''' として構成された二つの偏光位相差素子を通過する。この代わりに、二つの1/8波長板に替えて一つの1/4波長板をそれぞれ利用することも可能である。これによって、右回りと左回りに偏光された光束が生じる。第2走査格子3において、+/−1次の回折した光束が屈折し、基準尺格子4に伝搬して、そこでこれらは1点に重なり合う。基準尺格子4における回折により、干渉した光束は基準尺格子4に垂直な同じ方向に戻る。位相のずれは、基準尺のずれに依存する、この二つの円偏光された光束が重なり合うことにより、直線偏光された出力光線が生じ、この場合偏光方向が測定方向(x方向)の基準尺のずれに依存する。
【0015】
その後に位置する格子6は、この光束を三つの部分光束に分割し、その結果相異なる方向を向いた偏光子7,7’,7”の配列とそれぞれに対応する光電素子8,8’,8”により、それぞれ互いに120°位相のずれた三つの信号を生成することができる。この信号周期は、基準尺格子の格子周期の4分の1に相当する。
【0016】
図2aおよび図2bは、図1による光路にもとづく、4格子構造の具体的な第1実施例の正面図と側面図を表す。照射は、例えばその後にコリメーションレンズ20を有する、レーザーダイオード10として構成された波長780nmの光源により行われる。走査ユニットAの光学系は、走査格子30,30’、1/8波長板40,40’、ガラスから成る直角プリズム50,50’、ならびに偏光子70,70’,70”と信号検出のための光電素子80,80’,80”から構成される。
【0017】
基準尺90または基準体は、後者は例えばゼロデュアー製のマスクテーブルとして構成され、格子定数d=2μmの反射位相目盛りを持つ。基準尺部から間隔D=15mmをおいて、二つの直角プリズム50,50’があり、それぞれ90°プリズムとして構成され、その下面上、すなわち基準尺90の方を向いた面上には、位相目盛りを持つ透過型格子の形で同じ格子定数d=2μmを有する走査格子30,30’が取り付けられている。この二つの直角プリズム50,50’と走査格子30,30’は、例えばこれらと一体化した支持盤上に固定することができる。この実施例では、この二つの直角プリズム50,50’は、測定方向xに対して互いに間隔をおいて配置されている。
【0018】
説明した実施例に代わって、光線の結合と分離用に穴または溝を持つ走査格子30,30’を有する個別の直角プリズム50,50’も使用される。直角プリズム50,50’と走査格子30,30’の組み合わせは、以下において光路変更素子としても称される。
【0019】
光源10から放射され、コリメートされた光束が、基準尺90上の直角プリズム50,50’の配列間の中央に垂直に当り、その結果二つの+/−1次の回折が発生し、それらは1回目の反射の後に跳ね返って直角プリズム50,50’の下面上に向かう。走査格子30,30’における回折により、光束は直角プリズム50,50’への入射前とその後の進行において、同様に真直ぐに、すなわち基準尺90に垂直の方向に向けられる。直角プリズム50,50’は、部分光線の向きをzとy方向に変え、そのことによってy方向への場所移動が生じる。光束の光路変更素子の通過に際して、走査格子30,30’のほかに1/8波長板4,4’をそれぞれ2回通る。この発明にもとづき、すくなくとも一つの直角プリズム50,50’を測定方向xに並行に向けることにより、その直角プリズム50,50’がy方向における逆反射体として機能する。この方向yは、基準尺90の平面内で測定方向xに垂直の方向を向いている。直角プリズム50,50’から出た後、走査格子30,30’で再び回折することによって、基準尺90に戻って伝搬し、そこで重なり合う光束が生じる。この干渉した光束は、2回目の反射あるいは基準尺90での回折により、z方向、すなわち検出素子の方向に戻る形で向きを変え、コリメータレンズと分割格子60から成る配列に当る。分割格子60において、三つの部分光束が発生する。これらの三つの部分光束から、偏光子70,70’,70” により周知の方法で信号を検出するが、部分光束はこれらを通過した後、光電素子80,80’,80”に当り、そこでは位相のずれた信号が生じる。分割格子60に関しては、本出願人の欧州特許第481356号明細書を参照されたい。
【0020】
基準尺90のモアレ回転は、まず第1に基準尺90上での1回目の入射の際に二つの回折した光束の相対するy偏向を生じさせる。さて、モアレ回転は、直角プリズム50,50’がy方向における逆反射体のように機能する、すなわち二つの光束の光線方向のy成分を逆転させるので、走査格子30,30’の組み合わせとこの発明にもとづく直角プリズム50,50’の選択と配列により補償される。そして、基準尺90における2回目の回折または反射の後は、これらの二つの同種の光束にはもはや光線方向のy成分、すなわち角度差も無い。このことによって、出射方向の違いが回避され、縞模様およびそれにより生じる信号減衰が発生しない。
【0021】
次に、図3にもとづき上下動の傾斜による光路の変化を具体的に説明する。以下においては、傾斜していない基準尺90に対して垂直の方向を基準方向と称する。基準尺90は、点Pにおいて基準方向に対して相対的に小さな角度θで傾斜し、その結果部分光線PAとPA’の回折角αが、基準方向に対しておよそα−2θおよびα+2θに変わる。これは、基準尺90が傾斜していない場合よりも、一方の光束がより大きな角度で、他方の光束がより小さな角度で走査格子に伝搬することを意味する。その場合、走査格子は、光束に対して真直ぐに向いた状態ではない。+2θと−2θの角度が生じ、それに応じて直角プリズムへの入射の際に屈折の度合いが変わる。そのため、光束がプリズムを通る路ABCまたはA’B’C’において測定方向に同じ距離AC=A’C’だけ移動する。
【0022】
光線CQおよびC’Qに関して、走査格子における再度の回折により、基準方向に対しておよそα+2θおよびα−2θの角度が生じる。その場合、PAとC’QまたはCQとPA’の角度は、それぞれ一致する。二つの光束の結合は、点Qで起こる。全体として、各光束は、より平坦およびより急峻な部分を元に戻すことになる。より詳細に考察すると、二つの光束の伝搬において位相差は全く生じないことに気付くことができる。特に、二つの光束の出射方向も基準方向に対して同じであり、信号減衰に結び付く干渉縞を生じさせない。そのため、上下動の傾斜による、干渉する光束の位相のずれが生じないので、上下動の傾斜に際しても本来の測定位置が維持される。それとともに、回転中立点は、望むとおり基準尺表面上にある。
【0023】
次に、図4は、3格子構造の走査原理にもとづく、この発明による位置測定装置の第2実施構成の光路原理を表している。
【0024】
まず基準尺1000に当った光線は、またもや回折し、続いて位相差板5000,5000’を通過する。前述の4格子構造とは反対に、光線は、基準尺格子周期に対してまさに半分の格子周期を持つ走査格子2000を通って真直ぐの方向を向かず、リトロー型回折によりx方向に向きを変える。その次に、位相差板5000”,5000''' を通過して、最終的に基準尺3000上で一つにまとまり、そこでこられの二つの干渉した光束は、回折により基準尺3000に垂直の方向に向きを合わせられる。それに続く干渉した光束の処理は、上述した例と同じである。
【0025】
また、図5aと図5bは、図4による光路にもとづく、3格子構造の具体的な第2実施例の正面図と側面図を表す。
【0026】
第1の構成との基本的な違いは、走査格子1000,1000’がもはや直角プリズム500,500’の下面上にはないということにある。正確に言うと、それらは下面に垂直に取り付けられねばならず、その結果プリズム先端とプリズム下面の間に立てられている。このことは、例えば二つの部分プリズム500a,500bを走査格子1000,1000’上で接合することにより実現することができる。それに代わって、直角プリズムの代わりに直角反射鏡を使用することもできる。
【0027】
この装置の利点は、リトロー型回折(走査格子の格子定数=基準尺の格子定数の1/2)が維持される限りにおいて、測定方向への方向変換を走査格子1000,1000’だけで実現することができることにある。このことによって、利用されない回折次数の回折により、前述した二つの走査格子を持つ走査装置の場合よりも光の損失がより少ない。
【0028】
その他の点では、ここに描かれた素子の機能は、前述の例のものと同じである。そしてまた、走査格子1000,1000’には、それぞれ偏光レンズの位相差素子400,400’が配置されている。また、基本的には、共通の支持盤150上に測定方向xに対して間隔をおいて配置された二つの直角プリズム500,500’の配列の代わりに、それに対応した長さを持つ一つの単独の直角プリズムを使用することもできる。
【0029】
また、走査光路に関して、光源100から放射された光束が、まず基準尺900に当り、そこからの1回目の反射と少なくとも一つの直角プリズム500,500’の方向への回折が起こる。直角プリズム500,500’によって、基準尺900の方向に戻る反射が生じた後、基準尺900から検出素子800.800’,800”の方向への2回目の反射が起こる。一つまたは二つの直角プリズム500,500’の相異なる形態において、基準尺900上での1回目の反射の後、光束は直角プリズム500,500’内で走査格子1000,1000’をそれぞれ1回だけ通過する。
【0030】
説明した二つの実施例は、以下に述べる点において簡単に修正することができる。
【0031】
そこでは、例えば相異なる光源を用いることができる。光路差が発生せず、二つの干渉する光束が同じ位置で一つにまとまるので、時間的および/または空間的において部分的なまたは非干渉性の光源も使用することができる。単一モードまたは多モードのストライプ型半導体レーザーのほかにVCSELもこれに属し、その際横方向多モード形式も用いることができる。そして、LEDすら使用される。
【0032】
拡散損失に関する問題を防止するため、光源を走査ユニットから分離し、これと光ファイバーで接続することができる。信号の検出を偏光状態の評価により行う場合には、偏光面保存ファイバーを使用する。
【0033】
さらに、光路変更素子は、円柱レンズと鏡の組み合わせにより置き換えることができる。その際、円柱レンズを、フレネル型円柱レンズまたはフレネル型円柱輪帯回折板としても構成することができる。
【0034】
また、直角プリズムは、直角反射鏡、すなわち90°の角度をもって互いに配置された二つの鏡面の配列と置き換えることができる。この代わりに、簡単なプラスチックプリズムの使用も可能である。
【0035】
信号生成のために、光電素子の前にある偏光子の代わりに、偏光された部分光線から成る、干渉法において一般的な配列を利用することができ、それによりそれぞれ90°位相のずれた4つの信号が生成される。
【0036】
同様に、レーザー光の偏光された状態から測定信号を生成するのではなく、基準尺格子と走査格子の格子定数を僅かに異なるように選択することができる。この方法では、基準尺上における二つの光束の干渉により、ここではバーニャ縞模様と呼ばれる、強度の縞模様が発生する。これは、走査ユニットの構造化された光電センサーの形の検出素子上に転写または描写される。このため、構造化された光電センサーは、指の構造(横に並行して配置された複数の同じ大きさの長方形の光電素子)を持つ。バーニャ縞模様が光電素子の上に描写される場合、各光電素子は、120°位相のずれた三つの、または90°位相のずれた四つの信号電流が発生するように接続される。バーニャ縞模様の代わりに、走査格子が基準尺の基準方向(z方向)の回りを僅かに回転した場合に発生するモアレ縞模様を生成させることもできる。
【0037】
さらに、この発明の範囲内には、説明した例以外にも一連の他の実施可能な構成が存在する。
【図面の簡単な説明】
【図1】 この発明による位置測定装置の第1実施構成の光路の展開図
【図2a】 図1による光路にもとづく、この発明による位置測定装置の第1実施例の正面図
【図2b】 図1による光路にもとづく、この発明による位置測定装置の第1実施例の側面図
【図3】 場合によっては発生する上下動の傾斜の場合における光路の変化の説明図
【図4】 この発明による位置測定装置の第2実施構成の光路の展開図
【図5a】 図4による光路にもとづく、この発明による位置測定装置の第2実施例の正面図
【図5b】 図4による光路にもとづく、この発明による位置測定装置の第2実施例の側面図
【符号の説明】
1 基準尺格子
2 第1走査格子
3 第2走査格子
4 基準尺格子
5,5’ 1/8波長板
6 後置の格子
7,7’,7” 偏光子
8,8’,8” 光電素子
A 走査ユニット
10 光源(レーザーダイオード)
15 支持盤
20 コリメーションレンズ
30,30’ 走査格子
40,40’ 1/8波長板
50,50’ 直角プリズム
70,70’,70” 偏光子
80,80’,80” 光電素子
90 基準尺
1000 基準尺
2000 走査格子
3000 基準尺
5000,5000’,5000”,5000''' 位相差板
6000 後置の格子
7000,7000’,7000” 偏光子
8000,8000’,8000” 光電素子
100 光源
150 支持盤
400,400’ 位相差素子
500,500 直角プリズム
500a,500b 部分プリズム
800.800’,800” 検出素子
900 基準尺

Claims (11)

  1. 走査ユニットが、少なくとも一つの走査格子、少なくとも一つの光路変更素子、ならびに複数の光電型検出素子を持ち、この走査ユニットとこれに対して少なくとも一つの方向に位置がずれることができる基準尺との相対位置を検出するための位置測定装置において、
    走査ユニット(A)には、少なくとも一つの直角プリズム(50,50’)が光路変更素子として配置され、その直角プリズムの稜線(51,51’)が測定方向(x)に対して平方向を向き、その直角プリズムが、基準尺の面内(90)にあり測定方向(x)に対して垂直方向を向いた方向(y)において、逆反射体として機能することと、
    光源(10)から放射された光束が、先ず基準尺(90)上に当り、そこから少なくとも一つの直角プリズム(50,50’)の方向に1回目の反射が起こり、そして直角プリズム(50,50’)によって基準尺(90)の方向に戻る反射が起こり、その次に光束の基準尺(90)から検出素子(80,80’,80”)の方向への2回目の反射が起こることと、
    光束が、基準尺(90)上での1回目の反射の後に直角プリズム(50,50’)への入射の前に1回目の走査格子(30,30’)の通過を行い、そのことによって光束が基準尺(90)に対して垂直な方向を向くように方向を変え、その光束が直角プリズム(50,50’)からの出射後に2回目の走査格子(30,30’)の通過を行うことと、
    を特徴とする位置測定装置。
  2. 走査ユニットが、少なくとも一つの走査格子、少なくとも一つの光路変更素子、ならびに複数の光電型検出素子を持ち、この走査ユニットとこれに対して少なくとも一つの方向に位置がずれることができる基準尺との相対位置を検出するための位置測定装置において、
    走査ユニット(A’)には、少なくとも一つの直角プリズム(500,500’)が光路変更素子として配置され、その直角プリズムの稜線(510,510’)が測定方向(x)に対して平方向を向き、その直角プリズムが、基準尺の面内(900)にあり測定方向(x)に対して垂直方向を向いた方向(y)において、逆反射体として機能することと、
    走査格子(1000,1000’)が、直角プリズム(500,500’)の先端と下面との間に立てられた形で配置されていることと、
    光源(100)から放射された光束が、先ず基準尺(900)上に当り、そこから少なくとも一つの直角プリズム(500,500’)の方向に1回目の反射が起こり、そして直角プリズム(500,500’)によって基準尺(900)の方向に戻る反射が起こり、その次に基準尺(900)から検出素子(800,800’,800”)の方向への光束の2回目の反射が起こることと、
    光束が、基準尺(900)上での1回目の反射の後に直角プリズム(500,500’)内において走査格子(1000,1000’)を1回通過することと、
    を特徴とする位置測定装置。
  3. 走査格子(30,30’)が、直角プリズム(50,50’)の基準尺(90)の方を向いた面上に配置されていることを特徴とする請求項1に記載の位置測定装置。
  4. 偏光位相差素子(40,40’;400,400’)が、走査格子(30,30’;1000,1000’)に組み込まれていることを特徴とする請求項1から3までの一つに記載の位置測定装置。
  5. 走査ユニット(A)が、測定方向(x)に対して互いに間隔をおいて配置された二つの直角プリズム(50,50’;500,500’)を有することを特徴とする請求項1からまでの一つに記載の位置測定装置。
  6. 二つの直角プリズム(50,50’;500,500’)が、共通の支持盤(15;150)上に配置されていることを特徴とする請求項に記載の位置測定装置。
  7. 直角プリズム(500,500’)が、走査格子(1000,1000’)上で双方の面が接合された二つの部分プリズム(500a,500b)から成ることを特徴とする請求項に記載の位置測定装置。
  8. 直角プリズムが、90°の頂角をもって互いに配置された二つの鏡面を有することを特徴とする請求項1又は2に記載の位置測定装置。
  9. 検出素子の前に、当たった光束を複数の部分光束に分ける分割格子が配置され、そしてこれらの部分光束が相異なる方向を向いた偏向子を通過し、その結果検出素子が位相のずれた信号を検出することを特徴とする請求項1又は2に記載の位置測定装置。
  10. 光源が、走査ユニットから切り離されて配置されるとともに、これと光ファイバーによって接続されることを特徴とする請求項1又は2に記載の位置測定装置。
  11. 基準尺と走査格子の格子定数が、僅かに異なるように選択されるとともに、走査ユニットにおいて構造化された光電センサーが検出素子として配置されていることを特徴とする請求項1又は2に記載の位置測定装置。
JP2002527731A 2000-09-14 2001-09-08 位置測定装置 Expired - Lifetime JP4677169B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10045846 2000-09-14
PCT/EP2001/010373 WO2002023131A1 (de) 2000-09-14 2001-09-08 Positionsmesseinrichtung

Publications (2)

Publication Number Publication Date
JP2004509329A JP2004509329A (ja) 2004-03-25
JP4677169B2 true JP4677169B2 (ja) 2011-04-27

Family

ID=7656444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002527731A Expired - Lifetime JP4677169B2 (ja) 2000-09-14 2001-09-08 位置測定装置

Country Status (6)

Country Link
US (1) US7019842B2 (ja)
EP (1) EP1319170B1 (ja)
JP (1) JP4677169B2 (ja)
CN (1) CN1248058C (ja)
DE (2) DE10144659A1 (ja)
WO (1) WO2002023131A1 (ja)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10150099A1 (de) * 2001-10-11 2003-04-17 Heidenhain Gmbh Dr Johannes Verfahren zur Herstellung eines Maßstabes, sowie derart hergestellter Maßstab und eine Positionsmesseinrichtung
DE10235669B4 (de) 2002-08-03 2016-11-17 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung
DE10320991B4 (de) 2002-08-03 2017-10-19 Dr. Johannes Heidenhain Gmbh Optische Positionsmesseinrichtung
DE10303795B4 (de) * 2003-01-31 2010-10-14 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung
TWI295408B (en) * 2003-10-22 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method, and measurement system
US7256871B2 (en) * 2004-07-27 2007-08-14 Asml Netherlands B.V. Lithographic apparatus and method for calibrating the same
DE102005029553A1 (de) * 2005-06-25 2007-01-04 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung und Verfahren zur Kontrolle von Abtastsignalen der Positionsmesseinrichtung
DE102005029917A1 (de) * 2005-06-28 2007-01-04 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung
DE102005036180B4 (de) * 2005-08-02 2020-08-27 Dr. Johannes Heidenhain Gmbh Optische Positionsmesseinrichtung
JP4791786B2 (ja) * 2005-09-09 2011-10-12 石塚硝子株式会社 薄膜評価用基準基板及び薄膜評価方法
DE102005043569A1 (de) * 2005-09-12 2007-03-22 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung
DE102005053787B4 (de) * 2005-11-09 2019-11-28 Dr. Johannes Heidenhain Gmbh Optische Abtasteinheit sowie Verfahren zur Montage
WO2007075675A2 (en) 2005-12-22 2007-07-05 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College High precision code plates and geophones
US7440113B2 (en) * 2005-12-23 2008-10-21 Agilent Technologies, Inc. Littrow interferometer
US7636165B2 (en) 2006-03-21 2009-12-22 Asml Netherlands B.V. Displacement measurement systems lithographic apparatus and device manufacturing method
DE102006021484A1 (de) 2006-05-09 2007-11-15 Dr. Johannes Heidenhain Gmbh Optische Positionsmesseinrichtung
DE102006035022A1 (de) * 2006-07-28 2008-01-31 Carl Zeiss Smt Ag Verfahren zum Herstellen einer optischen Komponente, Interferometeranordnung und Beugungsgitter
DE102006042743A1 (de) * 2006-09-12 2008-03-27 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung
DE102007023300A1 (de) 2007-05-16 2008-11-20 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung und Anordnung derselben
WO2009006919A1 (en) 2007-07-09 2009-01-15 Carl Zeiss Smt Ag Method of measuring a deviation an optical surface from a target shape
KR101670624B1 (ko) * 2008-04-30 2016-11-09 가부시키가이샤 니콘 스테이지 장치, 패턴 형성 장치, 노광 장치, 스테이지 구동 방법, 노광 방법, 그리고 디바이스 제조 방법
DE102008059667A1 (de) 2008-11-26 2010-05-27 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung
NL2003845A (en) 2008-12-19 2010-06-22 Asml Netherlands Bv Lithographic apparatus, and patterning device for use in a lithographic process.
EP2264409B1 (en) * 2009-06-19 2015-10-07 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI473970B (zh) * 2009-10-05 2015-02-21 Taiyo Yuden Kk Displacement measurement method and displacement measurement device
JP5395603B2 (ja) 2009-10-05 2014-01-22 太陽誘電株式会社 回生ブレーキ装置及びこれを備えた電動アシスト車
DE102010003157B4 (de) * 2010-03-23 2019-10-24 Dr. Johannes Heidenhain Gmbh Vorrichtung zur interferentiellen Abstandsmessung
US8476577B2 (en) * 2010-03-29 2013-07-02 Mitutoyo Corporation Optical encoder
US8637805B2 (en) * 2010-03-29 2014-01-28 Mitutoyo Corporation Optical encoder using off-axis imaging through a lens
WO2011126610A2 (en) 2010-03-30 2011-10-13 Zygo Corporation Interferometric encoder systems
JP5849103B2 (ja) 2011-02-01 2016-01-27 ザイゴ コーポレーションZygo Corporation 干渉ヘテロダイン光学エンコーダシステム
DE102011007459B4 (de) * 2011-04-15 2023-05-11 Dr. Johannes Heidenhain Gmbh Optische Längenmesseinrichtung
DE102011076178B4 (de) * 2011-05-20 2022-03-31 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung
DE102012204572A1 (de) * 2012-03-22 2013-09-26 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung und Anordnung mit einer derartigen Positionsmesseinrichtung
TWI516746B (zh) 2012-04-20 2016-01-11 賽格股份有限公司 在干涉編碼系統中執行非諧循環錯誤補償的方法、裝置及計算機程式產品,以及微影系統
WO2013161428A1 (ja) * 2012-04-26 2013-10-31 株式会社ニコン 計測方法及びエンコーダ装置、並びに露光方法及び装置
DE102012212759B4 (de) 2012-07-20 2022-04-28 Dr. Johannes Heidenhain Gmbh Vorrichtung zur Messung der linearen Abmessung einer Probe
EP2746731B1 (de) * 2012-12-20 2020-03-25 Dr. Johannes Heidenhain GmbH Optische Positionsmesseinrichtung
DE102013221898A1 (de) * 2013-10-29 2015-04-30 Dr. Johannes Heidenhain Gmbh Vorrichtung zur Positionsbestimmung
DE102014211004A1 (de) * 2014-06-10 2015-12-17 Dr. Johannes Heidenhain Gmbh Optische Positionsmesseinrichtung
CN111089612B (zh) * 2014-09-24 2022-06-21 原相科技股份有限公司 光学传感器及光学感测系统
JP6696748B2 (ja) * 2014-10-21 2020-05-20 ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングDr. Johannes Heidenhain Gesellschaft Mit Beschrankter Haftung 光学式エンコーダ
DE102015203188A1 (de) * 2015-02-23 2016-08-25 Dr. Johannes Heidenhain Gmbh Optische Positionsmesseinrichtung
JP6629118B2 (ja) * 2016-03-30 2020-01-15 三菱重工業株式会社 光学センサ及び回転機械
CN106052561B (zh) * 2016-08-05 2019-07-09 京东方科技集团股份有限公司 位置传感器以及包括其的运送装置和利用其进行位置修正的方法
CN112752364B (zh) * 2019-10-31 2022-11-04 新奥科技发展有限公司 极化器
CN111076672B (zh) * 2019-12-31 2022-04-15 黑龙江科技大学 一种矿用液压支架压缩量监测装置
DE102021004664A1 (de) * 2020-11-24 2022-05-25 Mitutoyo Corporation Verlagerungssensor und profilmessapparat

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2479445A1 (fr) * 1980-03-25 1981-10-02 Soro Electro Optics Dispositif de mesure de deplacement a reseau et contre-reseau
DE3905730C2 (de) 1989-02-24 1995-06-14 Heidenhain Gmbh Dr Johannes Positionsmeßeinrichtung
EP0425726B1 (de) * 1989-11-02 1993-05-12 Dr. Johannes Heidenhain GmbH Positionsmesseinrichtung
US5079418A (en) * 1990-02-20 1992-01-07 Dr. Johannes Heidenhain Gmbh Position measuring apparatus with reflection
DE4006365A1 (de) * 1990-03-01 1991-10-17 Heidenhain Gmbh Dr Johannes Positionsmesseinrichtung
EP0479445B1 (en) 1990-10-03 1998-03-11 The Dow Chemical Company Hydroxyl functionalized polyetheramines as barrier packaging for oxygen-sensitive materials
DE4033013C2 (de) * 1990-10-18 1994-11-17 Heidenhain Gmbh Dr Johannes Polarisationsoptische Anordnung
JP3189464B2 (ja) 1993-02-19 2001-07-16 株式会社デンソー 回転位置検出装置
JP2650645B2 (ja) * 1996-09-24 1997-09-03 キヤノン株式会社 光学装置
US20030174343A1 (en) * 2002-03-18 2003-09-18 Mitutoyo Corporation Optical displacement sensing device with reduced sensitivity to misalignment
DE10235669B4 (de) * 2002-08-03 2016-11-17 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung

Also Published As

Publication number Publication date
CN1459019A (zh) 2003-11-26
CN1248058C (zh) 2006-03-29
EP1319170A1 (de) 2003-06-18
US20040051881A1 (en) 2004-03-18
US7019842B2 (en) 2006-03-28
JP2004509329A (ja) 2004-03-25
WO2002023131A1 (de) 2002-03-21
DE10144659A1 (de) 2002-05-02
EP1319170B1 (de) 2005-03-09
DE50105554D1 (de) 2005-04-14

Similar Documents

Publication Publication Date Title
JP4677169B2 (ja) 位置測定装置
JP5100266B2 (ja) エンコーダ
JP5005969B2 (ja) 位置測定装置
US6771377B2 (en) Optical displacement sensing device with reduced sensitivity to misalignment
US9080857B2 (en) Device for interferential distance measurement
JP6181978B2 (ja) 干渉式間隔測定装置
US20080067333A1 (en) Position-measuring device
US7738112B2 (en) Displacement detection apparatus, polarization beam splitter, and diffraction grating
US9303979B2 (en) Optical position measuring device
JP6063166B2 (ja) 干渉計方式により間隔測定するための機構
JP6588836B2 (ja) 光学位置測定装置
KR20030081182A (ko) 변위정보검출장치
JPH1038517A (ja) 光学式変位測定装置
CN109708569B (zh) 光学位置测量装置
EP0344291A1 (en) OPTO-ELECTRONIC SCALE READER.
JPH06174424A (ja) 測長または測角装置
US7705289B2 (en) Scanning unit for an optical position-measuring device
JP6289609B2 (ja) 干渉式間隔測定装置
KR100531693B1 (ko) 광학식 변위측정장치
JPH0273118A (ja) 2次元変位検出装置
JPH11166809A (ja) 相対位置検出装置
JP3808192B2 (ja) 移動量測定装置、及び移動量測定方法
JP2012008004A (ja) エンコーダ装置、光学装置、露光装置、露光方法およびデバイス製造方法
JP7042183B2 (ja) 変位検出装置
JP6756496B2 (ja) 光学式角度測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080508

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4677169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term