JP4655460B2 - 光電変換材料用半導体、光電変換素子及び太陽電池 - Google Patents

光電変換材料用半導体、光電変換素子及び太陽電池 Download PDF

Info

Publication number
JP4655460B2
JP4655460B2 JP2003309821A JP2003309821A JP4655460B2 JP 4655460 B2 JP4655460 B2 JP 4655460B2 JP 2003309821 A JP2003309821 A JP 2003309821A JP 2003309821 A JP2003309821 A JP 2003309821A JP 4655460 B2 JP4655460 B2 JP 4655460B2
Authority
JP
Japan
Prior art keywords
group
semiconductor
photoelectric conversion
ring
heterocyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003309821A
Other languages
English (en)
Other versions
JP2005078995A (ja
Inventor
信也 大津
幸司 大福
宣明 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2003309821A priority Critical patent/JP4655460B2/ja
Publication of JP2005078995A publication Critical patent/JP2005078995A/ja
Application granted granted Critical
Publication of JP4655460B2 publication Critical patent/JP4655460B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

本発明は、光電変換材料用半導体、光電変換素子及び太陽電池に関する。
光電変換材料とは、電極間の電気化学反応を利用して光エネルギを電気エネルギに変換する材料である。光電変換材料に光を照射すると、一方の電極側で電子が発生し、対電極に移動する。対電極に移動した電子は、電解質中をイオンとして移動して一方の電極に戻る。
すなわち、光電変換材料は光エネルギを電気エネルギとして連続して取り出せる材料であり、例えば、太陽電池等に利用されている。太陽電池にはいくつかの種類があるが、住居設置用発電パネル、卓上計算機、時計、携帯用ゲーム機等に実用化されているものの大部分はシリコン太陽電池である。
しかし、最近になって色素増感型太陽電池が注目され、実用化を目指して研究されている。色素増感型太陽電池は古くから研究されており、その基本構造は、具体的には金属酸化物半導体及びそこに吸着した色素、電解質溶液及び対向電極から構成されるものである。
上記のような、従来の色素増感型太陽電池においては、光電変換材料は、半導体表面に可視光領域に吸収を持つ分光増感色素を吸着させたものが用いられている。例えば、金属酸化物半導体の表面に、遷移金属錯体等の分光増感色素層を有する太陽電池を記載しているもの(例えば、特許文献1参照。)、また、金属イオンでドープした酸化チタン半導体層の表面に、遷移金属錯体等の分光増感色素層を有する太陽電池を記載しているもの(例えば、特許文献2参照。)等が挙げられる。
一方、光電変換能力を有する酸化物半導体電極としては、初期の頃は半導体の単結晶電極が用いられてきた。その種類としては、酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化スズ(SnO2)等がある。
しかし、単結晶電極は色素の吸着量が少ないため効率は非常に低く、コストが高いというデメリットがあった。そこで考え出されてきたのが、微粒子を焼結して形成された多数の細孔を有する高表面積半導体電極である。
例えば、坪村等によって有機色素を吸着した多孔質酸化亜鉛電極が非常に性能が高いことが報告されている(例えば、非特許文献1参照。)。
その後は、色素にも改良がされるようになり、Graetzel等はルテニウム錯体系色素を多孔質酸化チタン電極に吸着させることで、現在、シリコン太陽電池並みの性能を有するまでになっている(例えば、非特許文献2参照。)。
しかし、シリコン太陽電池を代替する実用化のためには、今まで以上に高いエネルギ変換効率や、さらに高い短絡電流、開放電圧、形状因子が求められており、現在のところ、多孔質半導体電極で報告されている物質としてはZnO、TiO2、酸化ジルコニウム(ZrO2)、酸化ニオブ(Nb25)等を用いての技術開発が行われている。
また、色素増感型湿式太陽電池はシリコン太陽電池に比べ製造コストが非常に安いため、将来的には先述の種々の製品に用いられているシリコン太陽電池を代替する可能性があるが、その際には各々の製品に応じた太陽電池の特性が重要になる。太陽電池の特性にはさまざまなものがあり中でも、下記に示す。
1.短絡電流
2.開放電圧
3.形状因子
4.エネルギ変換効率
5.光吸収スペクトル
等が重要であるが、特に4.のエネルギ変換効率は太陽電池の最大の課題であり、その改良が強く望まれていた。その効率を左右する技術課題の一つとして、光励起された電子を効率的に半導体に移動する能力を有する増感色素が求められている。これまでに検討された種々の色素のうち、前記ルテニウム錯体系色素は比較的優れた特性を有することがわかっているが、色素が高価であること、及び錯体の中心金属であるルテニウムが稀少元素であり将来にわたる安定的な供給に懸念がもたれることから、より安価で安定的に供給可能な有機色素がより好ましい。こうした要請からこれまでにも多くの有機色素(例えば、特許文献3、4、5参照。)が検討されていて、メロシアニン色素、キサンテン系色素、クマリン系色素、アクリジン系色素、フェニルメタン系色素等がよく知られている。また、それら以外の新たな色素母核の開発も行われている。(例えば、特許文献6参照。)。しかし、それら光電変換効率は未だ充分なものではなく、さらに変換効率の高い光電変換素子を構成できる有機色素が待望されている。
特開平1−220380号公報 特表平5−504023号公報 特開平11−167937号公報 特開平11−214730号公報 特開平11−214731号公報 特開2001−76775号公報 Nature,261(1976)p402 J.Am.Chem.Soc.115(1993)p6382
本発明の目的は、高い光電変換効率と優れた安定性とを示す光電変換材料用半導体、光電変換素子及び太陽電池を提供することである。
本発明の上記課題は、以下の構成により達成される。
(請求項1)
下記一般式(1)で表される複素環化合物を含有することを特徴とする光電変換材料用半導体。
Figure 0004655460
(式中、Rは水素原子または、脂肪族基、芳香族基、複素環基、アルコキシ基、アミノ基、アリールオキシ基、シアノ基、ニトロ基、ハロゲン原子、カルボキシル基より選ばれるいずれかの置換基を表し、R、Rは各々独立に水素原子または置換基を表し、nが2以上の場合、繰り返される単位において、RとRは各々異なってもよく、また、RとRは環を形成してもよく、nが2以上の場合、隣接する繰り返しの単位において、RとR、あるいは、RとR間で環を形成してもよく、Zは芳香族炭素環または複素環を形成するのに必要な原子群を表し、Xは、O、NRまたはSを表し、Rは水素原子、脂肪族基、芳香族基または複素環基を表し、nは1、2、3または4を表す。)
(請求項2)
下記一般式(2)で表される複素環化合物を含有することを特徴とする光電変換材料用半導体。
Figure 0004655460
(式中、Rは水素原子または、脂肪族基、芳香族基、複素環基、アルコキシ基、アミノ基、アリールオキシ基、シアノ基、ニトロ基、ハロゲン原子、カルボキシル基より選ばれるいずれかの置換基を表し、R、Rは各々独立に水素原子または置換基を表し、nが2以上の場合、繰り返される単位において、RとRは各々異なってもよく、また、RとRは環を形成してもよく、nが2以上の場合、隣接する繰り返しの単位において、RとR、あるいは、RとR間で環を形成してもよく、R、R、Rは各々独立に水素原子または置換基を表し、R、Rは脂肪族基、芳香族基または複素環基を表し、また、RとR、RとR、RとRは環を形成してもよく、Xは、O、NR、Sを表し、Rは水素原子、脂肪族基、芳香族基または複素環基を表し、nは1,2,3または4を表す。)
(請求項3)
前記一般式(1)または(2)において、RとRが環を形成し、形成した環構造がベンゼン環、フラン環またはチオフェン環であることを特徴とする請求項1または2に記載の光電変換材料用半導体。
(請求項4)
前記光電変換材料用半導体が、金属酸化物半導体または金属硫化物半導体であることを特徴とする請求項1〜3のいずれか1項に記載の光電変換材料用半導体。
(請求項5)
請求項1〜4のいずれか1項に記載の光電変換材料用半導体が導電性支持体上に設けられていることを特徴とする光電変換素子。
(請求項6)
請求項5に記載の光電変換素子、電荷移動層及び対向電極を有することを特徴とする太陽電池。
本発明により、高い光電変換効率と優れた安定性とを示す光電変換材料用半導体、光電変換素子及び太陽電池を提供することができた。
本発明者等は上記課題を解決するため鋭意検討を行った結果、前記一般式(1)、(2)で表されるような特定構造を有する化合物を用いて増感した光電変換材料用半導体により、高い光電変換効率と優れた安定性とを示す光電変換材料用半導体、光電変換素子及び太陽電池を得ることに成功した。
また、本発明の効果をより発現するためには、前記一般式(1)または(2)において、R2とR3が環を形成し、形成した環構造がベンゼン環、フラン環またはチオフェン環であることが好ましい。
以下、本発明を詳細に説明する。
《光電変換材料用半導体》
本発明の光電変換材料用半導体に用いられる半導体としては、シリコン、ゲルマニウムのような単体、周期表(元素周期表ともいう)の第3〜5族、第13〜15族系の元素を有する化合物、金属のカルコゲニド(例えば酸化物、硫化物、セレン化物等)、金属窒化物等を使用することができる。
好ましい金属のカルコゲニドとして、チタン、スズ、亜鉛、鉄、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブまたはタンタルの酸化物、カドミウム、亜鉛、鉛、銀、アンチモンまたはビスマスの硫化物、カドミウムまたは鉛のセレン化物、カドミウムのテルル化物等が挙げられる。他の化合物半導体としては亜鉛、ガリウム、インジウム、カドミウム等のリン化物、ガリウム−ヒ素または銅−インジウムのセレン化物、銅−インジウムの硫化物、チタンの窒化物等が挙げられる。
本発明の光電変換材料用半導体に係る半導体の具体例としては、TiO2、SnO2、Fe23、WO3、ZnO、Nb25、CdS、ZnS、PbS、Bi23、CdSe、CdTe、GaP、InP、GaAs、CuInS2、CuInSe2、Ti34等が挙げられるが、好ましく用いられるのは、TiO2、ZnO、SnO2、Fe23、WO3、Nb25、CdS、PbSであり、更に好ましく用いられるのは、TiO2またはNb25であるが、中でも、好ましく用いられるのはTiO2である。
本発明の光電変換材料用半導体に用いる半導体は、上述した複数の半導体を併用して用いてもよい。例えば、上述した金属酸化物もしくは金属硫化物の数種類を併用することもできるし、また、酸化チタン半導体に20質量%の窒化チタン(Ti34)を混合して使用してもよい。また、J.Chem.Soc.,Chem.Commun.,15(1999)記載の酸化亜鉛/酸化錫複合としてもよい。このとき、半導体として金属酸化物もしくは金属硫化物以外に成分を加える場合、追加成分の金属酸化物もしくは金属硫化物半導体に対する質量比は30%以下であることが好ましい。
上記の光電変換材料用半導体を前記一般式(1)、(2)で表されるいずれか1種の化合物により増感処理することにより、本発明の目的のひとつである、高い光電変換効率と優れた安定性とを示す光電変換材料用半導体を得ることができる。
以下、前記一般式(1)、(2)で表される複素環化合物について説明する。
《一般式(1)で表される複素環化合物》
一般式(1)において、Rは水素原子、または、脂肪族基、芳香族基、複素環基、アルコキシ基、アミノ基、アリールオキシ基、シアノ基、ニトロ基、ハロゲン原子、カルボキシル基より選ばれるいずれかの置換基を表
で表される脂肪族基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、tert−ブチル基、n−オクチル基、n−デシル基、エイコシル基、2−クロロエチル基、2−シアノエチル基、2−エチルヘキシル基、ビニル基、アリル基、エチニル基、(4−ジメチルアミノ−フェニル)−ビニル基等が挙げられ、これらの内で好ましいのは、メチル基、エチル基、ビニル基、アリル基、n−オクチル基、n−デシル基である。
で表される芳香族基としては、例えばフェニル基、p−トリル基、ナフチル基、m−クロロフェニル基、4−ジメチルアミノフェニル基、o−ヘキサデカノイルアミノフェニル基等が挙げられ、これらの内で好ましいのは、フェニル基である。
で表される複素環基としては、例えば、ピリジル基、チアゾリル基、2−ベンゾチアゾリル基、オキサゾリル基、イミダゾリル基、2−フリル基、2−チエニル基、ピロリル基、ピラジニル基、2−ピリミジニル基、ピリダジニル基、セレナゾリル基、スルホラニル基、ピペリジニル基、ピラゾリル基、テトラゾリル基、2−(5−ジメチルアミノ)チエニル基、2−(5−ジメチルアミノ)フリル基、2−[5−(4−ジメチルアミノ)−フェニル]チエニル基、2−[5−(4−ジメチルアミノ)−フェニル]フリル基、2−[5−(4−ジメチルアミノ−フェニル)−ビニル]チエニル基、2−[5−(4−ジメチルアミノ−フェニル)−ビニル]フリル基等が挙げられ、これらの内で好ましいのは、ピリジル基、2−フリル基、2−チエニル基、ピロリル基である。
で表されるアルコキシ基としては、例えば、メトキシ基、エトキシ基、tert−ブトキシ基、2−クロロエトキシ基等が挙げられ、これらの内で好ましいのは、メトキシ基、エトキシ基である。
で表されるアミノ基としては、例えば、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、エチルメチルアミノ基、エチルブチルアミノ基、ジフェニルアミノ基、ピロリジル基、ピペリジル基、エチルオクチルアミノ基、ジオクチルアミノ基、ジドデシルアミノ基、ドデシルオクチルアミノ基、ビロリジウム基等が挙げられ、これらの内で好ましいのは、ジメチルアミノ基、ジエチルアミノ基、エチルブチルアミノ基、ピロリジル基、エチルオクチルアミノ基、ジオクチルアミノ基である。
で表されるアリールオキシ基としては、例えば、フェノキシ基、ナフチルオキシ基が挙げられ、これらの内で好ましいのは、フェノキシ基である。
で表されるハロゲン原子としては、例えば、沃素原子、臭素原子、塩素原子、フッ素原子が挙げられる。
一般式(1)において、R2、R3は各々水素原子、置換基を表し、好ましい置換基としては、脂肪族基、芳香族基、複素環基、アルコキシ基、アミノ基、アリールオキシ基、シアノ基、ニトロ基、ハロゲン原子、カルボキシル基、ヒドロキシル基が挙げられる。R2、R3で表される脂肪族基、芳香族基、複素環基、アルコキシ基、アミノ基、アリールオキシ基、ハロゲン原子の例としては、R1で挙げた例を挙げられる。
また、R2、R3は、nが2以上の場合、繰り返される単位において、R2とR3は各々異なってもよい。また、R2とR3は環を形成してもよく、形成される環としては、シクロヘキセン環、シクロペンテン環、ベンゼン環、ナフタレン環、ピロール環、チオフェン環、フラン環、ピリジン環、インドール環等が挙げられ、nが2以上の場合、隣接する繰り返しの単位において、R2とR2、あるいは、R3とR3間で環を形成してもよい。
一般式(1)において、Z1で表されるのは芳香族炭素環または複素環を形成するのに必要な原子群であり、形成される芳香族炭素環の例としては、フェニル基、ナフチル基、アントラセニル基が挙げられ、形成される複素環の例としては、フラン環、チオフェン環、ピリジン環、インドール環、キノリン環、ピロール環、カルバゾール環、ジュロリジン環、イミダゾール環、ベンゾフラン環、ベンゾチオフェン環、テトラヒドロキノリン環が挙げられ、これらの内で好ましいのは、フェニル環、フラン環、チオフェン環、ピロール環、ジュロリジン環であり、更にこれらは置換基を有してもよく、Z1で表される芳香族炭素環または複素環を形成するのに必要な原子群が有してもよい置換基の例としては、R1で挙げた例を挙げられ、これらうちで好ましいのは、ジメチルアミノ基、ジエトキシアミノ基、エチルブチルアミノ基、ピロリジル基、エチルオクチルアミノ基、ジオクチルアミノ基である。
一般式(1)において、XはO、NR4、Sを表し、R4は水素原子、脂肪族基、芳香族基または複素環基であり、R4で表される脂肪族基、芳香族基、複素環基の例としては、R1で挙げた例を挙げられる。
一般式(1)において、nは1、2、3または4を表す。
《一般式(2)で表される複素環化合物》
一般式(2)において、R1は前記一般式(1)におけるR1と同義であり、R2、R3は、前記一般式(1)におけるR2、R3と同義であり、Xは、前記一般式(1)におけるXと同義である。
一般式(2)において、R5、R6、R7は各々独立に水素原子または置換基を表し、好ましい置換基としては、脂肪族基、芳香族基、複素環基、アルコキシ基、アミノ基、アリールオキシ基、シアノ基、ニトロ基、ハロゲン原子、ヒドロキシル基、カルボキシル基であり、R5、R6、R7で表される脂肪族基、芳香族基、複素環基、アルコキシ基、アミノ基、アリールオキシ基、ハロゲン原子の例としては、R1で挙げた例が挙げられる。
一般式(2)において、R8、R9は脂肪族基、芳香族基または複素環基を表し、好ましい脂肪族基、芳香族基または複素環基の例としては、R1で挙げた例が挙げられる。
また、R6とR8、R7とR9、R8とR9は環を形成してもよく、形成する環の例としては、ピペジジン環、ピロリジン環、ピリジン環、テトラヒドロピリジン環が挙げられる。
一般式(2)において、nは1、2、3または4を表す。
以下に本発明係る前記一般式(1)、(2)で表される複素環化合物の具体例を示すが、本発明はこれらに限定されない。
Figure 0004655460
Figure 0004655460
Figure 0004655460
Figure 0004655460
Figure 0004655460
Figure 0004655460
《合成例》
《例示化合物I−5の合成》
以下に記載の合成ルートに従い、例示化合物I−5を合成した。
Figure 0004655460
100mlの三頭フラスコに中間体1を2.67g、中間体2を0.85g、エタノール30ml、ピリジン2滴を加え、3時間還流させた。その後放冷して、エタノールを減圧下留去した。この残渣をシリカゲルカラム(展開溶媒 酢酸エチル)により目的物、例示化合物I−5を1.85g得た。
その他の例示化合物も同様にして合成できる。
《光電変換材料用半導体の増感処理》
本発明の光電変換材料用半導体は、前記一般式(1)、(2)で表されるいずれか1種の化合物を含有することにより増感し、本発明に記載の効果を奏することが可能となる。ここで、該化合物を含有するとは、半導体表面への吸着、半導体が多孔質等のポーラスな構造を有する場合には、半導体の多孔質構造に前記化合物が入り込む等の種々の態様が挙げられる。
また、半導体層(半導体でもよい)1m2当たりの前記一般式(1)、(2)で表される化合物の総含有量は0.01〜100ミリモルが好ましく、更に好ましくは0.1〜50ミリモルであり、特に好ましくは0.5〜20ミリモルである。
本発明に係る前記一般式(1)、(2)で表されるいずれか1種の化合物を用いて増感処理を行う場合、前記化合物を単独で用いてもよいし、複数を併用することもでき、本発明に係る前記一般式(1)、(2)で表されるいずれか1種の化合物と他の化合物(例えば米国特許第4,684,537号明細書、同第4,927,721号明細書、同第5,084,365号明細書、同第5,350,644号明細書、同第5,463,057号明細書、同第5,525,440号明細書等の各明細書、特開平7−249790号公報、特開2000−150007号公報等に記載の化合物)とを混合して用いることもできる。
特に、本発明の光電変換材料用半導体の用途が、後述する太陽電池である場合には、光電変換の波長域をできるだけ広くして太陽光を有効に利用できるように、吸収波長の異なる二種類以上の色素を混合して用いることが好ましい。
半導体に、前記一般式(1)、(2)で表されるいずれか1種の化合物を含有させるには、前記化合物を適切な溶媒(エタノール等)に溶解し、その溶液中によく乾燥した半導体を長時間浸漬する方法が一般的である。
前記一般式(1)、(2)で表されるいずれか1種の化合物を複数種類併用したり、その他の増感色素化合物とを併用した光電変換材料用半導体を作製する際には、各々の化合物の混合溶液を調製して用いてもよいし、それぞれの化合物について溶液を用意して、各溶液に順に浸漬して作製することもできる。各化合物について別々の溶液を用意し、各溶液に順に浸漬して作製する場合は、半導体に前記化合物や増感色素等を含ませる順序がどのようであっても本発明に記載の効果を得ることができる。また、前記化合物を単独で吸着させた半導体微粒子を混合する等することにより作製してもよい。
吸着処理は半導体が粒子状の時に行ってもよいし、支持体上に膜を形成した後に行ってもよい。吸着処理に用いる化合物を溶解した溶液は、それを常温で用いてもよいし、該化合物が分解せず溶液が沸騰しない温度範囲で加熱して用いてもよい。また、後述する光電変換素子の製造のように、半導体微粒子の塗布後(感光層の形成後)に、前記化合物の吸着を実施してもよい。また、半導体微粒子と本発明の前記化合物とを同時に塗布することにより、前記化合物の吸着を実施してもよい。また、未吸着の化合物は洗浄によって除去することができる。
また、本発明の光電変換材料用半導体の増感処理については、半導体を、前記一般式(1)、(2)で表されるいずれか1種の化合物を含有することにより増感処理が行われるが、増感処理の詳細については、後述する光電変換素子のところで具体的に説明する。
また、空隙率の高い半導体薄膜を有する光電変換材料用半導体の場合には、空隙に水分、水蒸気等により水が半導体薄膜上、並びに半導体薄膜内部の空隙に吸着する前に、前記化合物や増感色素化合物等の吸着処理(光電変換材料用半導体の増感処理)を完了することが好ましい。
本発明の光電変換材料用半導体は、有機塩基を用いて表面処理してもよい。前記有機塩基としては、ジアリールアミン、トリアリールアミン、ピリジン、4−t−ブチルピリジン、ポリビニルピリジン、キノリン、ピペリジン、アミジン等が挙げられるが、中でも、ピリジン、4−t−ブチルピリジン、ポリビニルピリジンが好ましい。
上記の有機塩基が液体の場合はそのまま、固体の場合は有機溶媒に溶解した溶液を準備し、本発明の光電変換材料用半導体を液体アミンまたはアミン溶液に浸漬することで、表面処理を実施できる。
また、本発明に係る前記一般式(1)、(2)で表されるいずれか1種の化合物と併用して用いることのできる色素としては、本発明に係る半導体を分光増感しうるものならばいずれの色素も用いることができる。光電変換の波長域をできるだけ広くし、かつ変換効率を上げるため、二種類以上の色素を混合することが好ましい。また、目的とする光源の波長域と強度分布に合わせるように、混合する色素とその割合を選ぶことができる。
本発明に係る化合物と併用して用いることのできる色素としては、光電子移動反応活性、光耐久性、光化学的安定性等の総合的な観点から、金属錯体色素、フタロシアニン系色素、ポルフィリン系色素、ポリメチン系色素が好ましく用いられる。
金属錯体色素の中では、特開2001−223037号、同2001−226607号、米国特許第4,927,721号、同第4,684,537号、同第5,084,365号、同第5,350,644号、同第5,463,057号、同第5,525,440号、特開平7−249750号、特表平10−504512号、世界特許989/50393号等に記載のルテニウム錯体色素が好ましく用いられる。
ポルフィリン系色素、フタロシアニン系色素としては、特開2001−223037号に記載の色素が好ましい色素としてあげられる。
ポリメチン系色素としては、従来公知のメチン系色素、特開平11−35836号公報、同11−158395号公報、同11−163378号公報、同11−214730号公報、同11−214731号公報、同10−093118号公報、同11−273754号公報、特開2000−106224号公報、同2000−357809号公報、同2001−052766号公報、欧州特許第892,411号、同911,841号等に記載のものが挙げられる。
《光電変換材料用半導体の作製方法》
本発明の光電変換材料用半導体の作製方法について説明する。
本発明の光電変換材料用半導体の一態様としては、導電性支持体上に上記の光電変換材料用半導体を焼成により形成する等の方法が挙げられる。
本発明の光電変換材料用半導体が焼成により作製される場合には、上記の化合物や増感色素を用いての該半導体の増感(吸着、多孔質への入り込み等)処理は、焼成後に実施することが好ましい。焼成後、半導体に水が吸着する前に、素早く化合物の吸着処理を実施することが特に好ましい。
本発明の光電変換材料用半導体が粒子状の場合には、光電変換材料用半導体を
導電性支持体に塗布あるいは吹き付けて、半導体電極を作製するのがよい。また、本発明の光電変換材料用半導体が膜状であって、導電性支持体上に保持されていない場合には、光電変換材料用半導体を導電性支持体上に貼合して半導体電極を作製することが好ましい。
以下、本発明の光電変換材料用半導体の作製工程を具体的に述べる。
《半導体微粉末含有塗布液の調製》
まず、半導体の微粉末を含む塗布液を調製する。この半導体微粉末は、その1次粒子径が微細な程好ましく、その1次粒子径は、1〜5000nmが好ましく、更に好ましくは2〜50nmである。半導体微粉末を含む塗布液は、半導体微粉末を溶媒中に分散させることによって調製することができる。溶媒中に分散された半導体微粉末は、その1次粒子状で分散する。溶媒としては、半導体微粉末を分散し得るものであればよく、特に制約されない。
前記溶媒としては、水、有機溶媒、水と有機溶媒との混合液が包含される。有機溶媒としては、メタノールやエタノール等のアルコール、メチルエチルケトン、アセトン、アセチルアセトン等のケトン、ヘキサン、シクロヘキサン等の炭化水素等が用いられる。塗布液中には、必要に応じ、界面活性剤や粘度調節剤(ポリエチレングリコール等の多価アルコール等)を加えることができる。溶媒中の半導体微粉末濃度の範囲は、0.1〜70質量%が好ましく、更に好ましくは0.1〜30質量%である。
《半導体微粉末含有塗布液の塗布と形成された半導体層の焼成処理》
上記のようにして得られた半導体微粉末含有塗布液を導電性支持体上に塗布または吹きつけ、乾燥等を行った後、空気中または不活性ガス中で焼成して、導電性支持体上に半導体層(半導体膜)が形成される。
導電性支持体上に塗布液を塗布、乾燥して得られる皮膜は、半導体微粒子の集合体からなるもので、その微粒子の粒径は使用した半導体微粉末の1次粒子径に対応するものである。
このようにして導電性支持体等の基板上に形成された半導体微粒子集合体膜は、導電性支持体との結合力や、微粒子相互の結合力が弱く、機械的強度の弱いものであることから、前記半導体微粒子集合体膜を焼成処理して機械的強度を高め、基板に強く固着した焼成物膜とするため好ましく行われる。
本発明においては、この焼成物膜はどのような構造を有していてもよいが、多孔質構造膜(空隙を有する、ポーラスな層ともいう)であることが好ましい。
ここで、本発明に係る半導体薄膜の空隙率は、10体積%以下が好ましく、更に好ましくは8体積%以下であり、特に好ましくは0.01〜5体積%である。なお、半導体薄膜の空隙率は、誘電体の厚み方向に貫通性のある空隙率を意味し、水銀ポロシメーター(島津ポアライザー9220型)等の市販の装置を用いて測定することができる。
多孔質構造を有する焼成物膜になった半導体層の膜厚は、少なくとも10nm以上が好ましく、更に好ましくは100〜10000nmである。
焼成処理時、焼成物膜の実表面積を適切に調整し、上記の空隙率を有する焼成物膜を得る観点から、焼成温度は1000℃より低いことが好ましく、更に好ましくは、200℃〜800℃であり、特に好ましくは300℃〜800℃である。
また、見かけ表面積に対する実表面積の比は、半導体微粒子の粒径及び比表面積や、焼成温度等によりコントロールすることができる。また、加熱処理後、半導体粒子の表面積を増大させたり、半導体粒子近傍の純度を高め、色素から半導体粒子への電子注入効率を高める目的で、例えば四塩化チタン水溶液を用いた化学メッキや三塩化チタン水溶液を用いた電気化学的メッキ処理を行ってもよい。
《半導体の増感処理》
半導体の増感処理は、上記のように、色素を適切な溶媒に溶解し、その溶液に前記半導体を焼成した基板を浸漬することによって行われる。その際には半導体層(半導体膜ともいう)を焼成により形成させた基板を、あらかじめ減圧処理したり加熱処理したりして膜中の気泡を除去し、前記一般式(1)、(2)のいずれか1種の化合物が半導体層(半導体膜)内部深くに進入できるようにしておくことが好ましく、半導体層(半導体膜)が多孔質構造膜である場合には特に好ましい。
《溶媒》
前記一般式(1)、(2)のいずれか1種の化合物を溶解するのに用いる溶媒は、前記化合物を溶解することができ、かつ、半導体を溶解したり半導体と反応したりすることのないものであれば格別の制限はないが、溶媒に溶解している水分及び気体が半導体膜に進入して、前記化合物の吸着等の増感処理を妨げることを防ぐために、あらかじめ脱気及び蒸留精製しておくことが好ましい。
前記化合物の溶解において、好ましく用いられる溶媒はメタノール、エタノール、n−プロパノール等のアルコール系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン等のエーテル系溶媒、塩化メチレン、1,1,2−トリクロロエタン等のハロゲン化炭化水素溶媒であり、特に好ましくはメタノール、エタノール、アセトン、メチルエチルケトン、テトラヒドロフラン、塩化メチレンである。
《増感処理の温度、時間》
半導体を焼成した基板を、前記一般式(1)、(2)のいずれか1種の化合物を含む溶液に浸漬する時間は、半導体層(半導体膜)に前記化合物が深く進入して吸着等を充分に進行させ、半導体を十分に増感させ、かつ、溶液中での前記化合物の分解等により生成した分解物が化合物の吸着を妨害することを抑制する観点から、25℃条件下では3〜48時間が好ましく、更に好ましくは4〜24時間である。この効果は、特に、半導体膜が多孔質構造膜である場合において顕著である。但し、浸漬時間については、25℃条件での値であり、温度条件を変化させて場合には、上記の限りではない。
浸漬しておくにあたり前記一般式(1)、(2)のいずれか1種の化合物を含む溶液は、前記化合物が分解しないかぎりにおいて、沸騰しない温度にまで加熱して用いてもよい。好ましい温度範囲は10〜100℃であり、更に好ましくは2580℃であるが、前記の通り溶媒が前記温度範囲で沸騰する場合はこの限りでない。
《光電変換素子》
本発明の光電変換素子について、図1を用いて説明する。
図1は、本発明の光電変換素子の構造の一例を示す部分断面図である。
1は導電性支持体、2は感光層、3は電荷移動層、4は対向電極を表す。なお、導電性支持体1と感光層2をあわせて半導体電極ともいう。
ここで、感光層2は本発明の光電変換材料用半導体を有する層であり、電荷移動層3は通常、レドックス電解質が含有し、導電性支持体1、感光層2、対向電極4に接触した形態で用いられる。
《光電変換素子の製造方法》
図1を用いて、光電変換素子の製造方法を説明する。
本発明の光電変換素子は、図1に示すような導電性支持体1上に、上記記載のように半導体薄膜を形成した後に、本発明に係る前記一般式(1)、(2)で表されるいずれか1種の化合物を吸着させるという工程を経て製造される。
また、半導体薄膜の表面積を増大させたり、半導体薄膜表面の不純物等を除去して、半導体の純度を高め、前記一般式(1)、(2)で表されるいずれか1種の化合物から半導体への電子注入効率を高める目的で、例えば四塩化チタン水溶液を用いた化学メッキや三塩化チタン水溶液を用いた電気化学的メッキ処理を行ってもよい。
導電性支持体1上に形成した半導体膜には前記一般式(1)、(2)で表されるいずれか1種の化合物を吸着させ、半導体膜を増感させて感光層2を形成する。増感処理方法は先に説明した通り、前記化合物を適切な溶媒に溶解し、導電性支持体1上に形成された半導体膜をその溶液に浸漬することによって行われる。その際には半導体膜は、あらかじめ減圧処理したり加熱処理したりして膜中の気泡を除去し、前記一般式(1)、(2)で表されるいずれか1種の化合物が半導体膜内部深くに進入できるようにしておくことが好ましい。
本発明に係る半導体に、前記一般式(1)、(2)で表されるいずれか1種の化合物を吸着させる際には、単独で用いてもよいし、複数を併用してもよい。さらに、前述のように、従来公知の増感色素化合物(例えば、米国特許第4,684,537号、同第4,927,721号、同第5,084,365号、同第5,350,644号、同第5,463,057号、同第5,525,440号、特開平7−249790号、特開2000−150007号等に記載の化合物)とを混合して吸着させてもよい。
特に、半導体の用途が太陽電池である場合、光電変換の波長域を広くして太陽光を可能な限り有効に利用できるように、二種類以上の色素を混合して用いることが好ましい。
上記記載の前記一般式(1)、(2)で表されるいずれか1種の化合物を複数種類併用して増感した光電変換材料用半導体は、併用する前記化合物を混合して調製した溶液に浸漬させて作製してもよいし、各々の化合物について溶液を調製し、各溶液に順に浸漬して作製することもできる。
各化合物について別々の溶液を用意し、各溶液に順に浸漬して作製する場合は、半導体に前記化合物や従来公知の増感色素を吸着させる順番がどのような順番であっても本発明の効果を得ることができる。
吸着処理は、前記化合物が溶解した溶液を常温で用いてもよいし、また、前記化合物に影響を与えない範囲の温度まで溶液を加熱して行ってもよい。更に、吸着処理時に未吸着となった色素については溶媒等の洗浄処理により除去することが好ましい。
導電性支持体1上に形成した半導体膜に色素を吸着させて感光層2を形成し後、該感光層2と向かい合うようにして対向電極4を配置する。さらに、半導体電極と対向電極4の間に電荷移動層であるレドックス電解質を注入して光電変換素子とする。
《太陽電池》
本発明の太陽電池について説明する。
本発明の太陽電池は、図1に示すような、本発明の光電変換素子の一態様として太陽光に最適の設計、並びに回路設計が行われ、太陽光を光源として用いたときに最適な光電変換が行われるような構造を有する。即ち、光電変換材料用半導体に太陽光が照射されうる構造となっている。本発明の太陽電池を構成する際には、前記半導体電極、電荷移動層及び対向電極をケース内に収納して封止するか、あるいはそれら全体を樹脂封止することが好ましい。
本発明の太陽電池に太陽光または太陽光と同等の電磁波を照射すると、光電変換材料用半導体に吸着された本発明の化合物は、照射された光もしくは電磁波を吸収して励起する。励起によって発生した電子は半導体に移動し、次いで導電性支持体1を経由して対向電極4に移動して、電荷移動層3のレドックス電解質を還元する。一方、半導体に電子を移動させた本発明の化合物は酸化体となっているが、対向電極4から電荷移動層3のレドックス電解質を経由して電子が供給されることにより、還元されて元の状態に戻り、同時に電荷移動層3のレドックス電解質は酸化されて、再び対向電極4から供給される電子により還元されうる状態に戻る。このようにして電子が流れ、本発明の光電変換素子を用いた太陽電池を構成することができる。
《導電性支持体》
本発明の光電変換素子や本発明の太陽電池に用いられる導電性支持体には、金属板のような導電性材料や、ガラス板やプラスチックフイルムのような非導電性材料に導電性物質を設けた構造のものを用いることができる。導電性支持体に用いられる材料の例としては金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム)あるいは導電性金属酸化物(例えばインジウム−スズ複合酸化物、酸化スズにフッ素をドープしたもの)や炭素を挙げることができる。導電性支持体の厚さは特に制約されないが、0.3〜5mmが好ましい。
また導電性支持体は実質的に透明であることが好ましく、実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることがさらに好ましく、80%以上であることが最も好ましい。透明な導電性支持体を得るためには、ガラス板またはプラスチックフイルムの表面に、導電性金属酸化物からなる導電性層を設けることが好ましい。透明な導電性支持体1を用いる場合、光は支持体側から入射させることが好ましい。
導電性支持体は表面抵抗は、50Ω/cm2以下であることが好ましく、10Ω/cm2以下であることがさらに好ましい。
《電荷移動層》
本発明に用いられる電荷移動層について説明する。
電荷移動層にはレドックス電解質が好ましく用いられる。ここで、レドックス電解質としては、I-/I3 -系や、Br-/Br3 -系、キノン/ハイドロキノン系等が挙げられる。このようなレドックス電解質は、従来公知の方法によって得ることができ、例えば、I-/I3 -系の電解質は、ヨウ素のアンモニウム塩とヨウ素を混合することによって得ることができる。電荷移動層はこれらレドックス電解質の分散物で構成され、それら分散物は溶液である場合に液体電解質、常温において固体である高分子中に分散させた場合に固体高分子電解質、ゲル状物質に分散された場合にゲル電解質と呼ばれる。電荷移動層として液体電解質が用いられる場合、その溶媒としては電気化学的に不活性なものが用いられ、例えば、アセトニトリル、炭酸プロピレン、エチレンカーボネート等が用いられる。固体高分子電解質の例としては特開2001−160427号記載の電解質が、ゲル電解質の例としては『表面科学』21巻、第5号288〜293ページに記載の電解質が挙げられる。
《対向電極》
本発明に用いられる対向電極について説明する。
対向電極は、導電性を有するものであればよく、任意の導電性材料が用いられるが、I3 -イオン等の酸化や他のレドックスイオンの還元反応を充分な速さで行わせる触媒能を持ったものの使用が好ましい。このようなものとしては、白金電極、導電材料表面に白金メッキや白金蒸着を施したもの、ロジウム金属、ルテニウム金属、酸化ルテニウム、カーボン等が挙げられる。
以下、実施例により本発明を説明するが、本発明はこれらに限定されない。
実施例1
《光電変換素子1の作製》
下記に記載のようにして、図1に示すような光電変換素子を作製した。
チタンテトライソプロポキシド(和光純薬社製1級)62.5mlを純水375ml中に室温下、激しく攪拌しながら10分間で滴下し(白色の析出物が生成する)、次いで70質量%硝酸水を2.65ml加えて反応系を80℃に加熱した後、8時間攪拌を続けた。さらに該反応混合物の体積が約200mlになるまで減圧下に濃縮した後、純水を125ml、酸化チタン粉末(昭和タイタニウム社製スーパータイタニアF−6)140gを加えて酸化チタン懸濁液(約800ml)を調製した。フッ素をドープした酸化スズをコートした透明導電性ガラス板上に該酸化チタン懸濁液を塗布し、自然乾燥の後300℃で60分間焼成して、支持体上に膜状の酸化チタンを形成した。
ついで、メタノール溶液200ml中に、例示化合物I−1を5g溶解した溶液を調製し、上記膜状酸化チタン(光電変換材料用半導体層)を支持体ごと浸し、さらにトリフルオロ酢酸1gを加えて2時間超音波照射した。反応後膜状酸化チタン(光電変換材料用半導体層)をクロロホルムで洗浄し真空乾燥して、感光層2(光電変換材料用半導体)を作製した。
対向電極4として、フッ素をドープした酸化スズをコートし、さらにその上に白金を担持した透明導電性ガラス板を用い、前記導電性支持体1と前記対向電極4との間に体積比が1:4であるアセトニトリル/炭酸エチレンの混合溶媒に、テトラプロピルアンモニウムアイオダイドと沃素とを、それぞれの濃度が0.46モル/リットル、0.06モル/リットルとなるように溶解したレドックス電解質を入れた電荷移動層3を作製して、光電変換素子1を作製した。
《光電変換素子2〜18の作製》
光電変換素子1の作製において、例示化合物I−1を表1に記載の化合物に変更した以外は同様にして、本発明の光電変換素子2〜18を得た。
《光電変換素子19、20の作製》
光電変換素子1の作製において、例示化合物I−1を表1に記載の比較化合物RA、RBに変更した以外は同様にして、比較例の光電変換素子19、20を得た。
Figure 0004655460
《太陽電池SC−01〜18の作製》
光電変換素子1〜18の側面を樹脂で封入した後、リード線を取り付けて、本発明の太陽電池SC−01〜18を各々3ロットずつ作製した。
《太陽電池SC−19、20の作製》
光電変換素子19、20の側面を樹脂で封入した後、リード線を取り付けて、比較例の太陽電池SC−19、20を各々3ロットずつ作製した。
《太陽電池の光電変換特性評価》
上記で得られた太陽電池SC−01〜18、及び太陽電池SC−19、20の各々にソーラーシミュレーター(JASCO(日本分光)製、低エネルギー分光感度測定装置CEP−25)により100mW/m2の強度の光を照射した時の短絡電流密度Jsc(mA/cm2)及び開放電圧値Voc(V)を測定し表1に示した。示した値は、同じ構成及び作製方法の太陽電池3つについての測定結果の平均値とした。
Figure 0004655460
表1より、比較例に比べて、本発明の太陽電池は高い光電変換特性を示し、前記一般式(1)、(2)で表されるいずれか1種の化合物を用いることが有効であることが分かる。また、本発明の太陽電池SC−01〜18は、ソーラーシミュレーターによる100mW/m2の光照射100時間を経ても光電変換効率の低下が認められず、安定性に優れていることが明らかになった。
本発明の光電変換素子の構造の一例を示す部分断面図である。
符号の説明
1 導電性支持体
2 感光層
3 電荷移動層
4 対向電極

Claims (6)

  1. 下記一般式(1)で表される複素環化合物を含有することを特徴とする光電変換材料用半導体。
    Figure 0004655460
    (式中、Rは水素原子または、脂肪族基、芳香族基、複素環基、アルコキシ基、アミノ基、アリールオキシ基、シアノ基、ニトロ基、ハロゲン原子、カルボキシル基より選ばれるいずれかの置換基を表し、R、Rは各々独立に水素原子または置換基を表し、nが2以上の場合、繰り返される単位において、RとRは各々異なってもよく、また、RとRは環を形成してもよく、nが2以上の場合、隣接する繰り返しの単位において、RとR、あるいは、RとR間で環を形成してもよく、Zは芳香族炭素環または複素環を形成するのに必要な原子群を表し、Xは、O、NRまたはSを表し、Rは水素原子、脂肪族基、芳香族基または複素環基を表し、nは1、2、3または4を表す。)
  2. 下記一般式(2)で表される複素環化合物を含有することを特徴とする光電変換材料用半導体。
    Figure 0004655460
    (式中、Rは水素原子または、脂肪族基、芳香族基、複素環基、アルコキシ基、アミノ基、アリールオキシ基、シアノ基、ニトロ基、ハロゲン原子、カルボキシル基より選ばれるいずれかの置換基を表し、R、Rは各々独立に水素原子または置換基を表し、nが2以上の場合、繰り返される単位において、RとRは各々異なってもよく、また、RとRは環を形成してもよく、nが2以上の場合、隣接する繰り返しの単位において、RとR、あるいは、RとR間で環を形成してもよく、R、R、Rは各々独立に水素原子または置換基を表し、R、Rは脂肪族基、芳香族基または複素環基を表し、また、RとR、RとR、RとRは環を形成してもよく、Xは、O、NR、Sを表し、Rは水素原子、脂肪族基、芳香族基または複素環基を表し、nは13または4を表す。)
  3. 前記一般式(1)または(2)において、RとRが環を形成し、形成した環構造がベンゼン環、フラン環またはチオフェン環であることを特徴とする請求項1または2に記載の光電変換材料用半導体。
  4. 前記光電変換材料用半導体が、金属酸化物半導体または金属硫化物半導体であることを特徴とする請求項1〜3のいずれか1項に記載の光電変換材料用半導体。
  5. 請求項1〜4のいずれか1項に記載の光電変換材料用半導体が導電性支持体上に設けられていることを特徴とする光電変換素子。
  6. 請求項5に記載の光電変換素子、電荷移動層及び対向電極を有することを特徴とする太陽電池。
JP2003309821A 2003-09-02 2003-09-02 光電変換材料用半導体、光電変換素子及び太陽電池 Expired - Fee Related JP4655460B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003309821A JP4655460B2 (ja) 2003-09-02 2003-09-02 光電変換材料用半導体、光電変換素子及び太陽電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003309821A JP4655460B2 (ja) 2003-09-02 2003-09-02 光電変換材料用半導体、光電変換素子及び太陽電池

Publications (2)

Publication Number Publication Date
JP2005078995A JP2005078995A (ja) 2005-03-24
JP4655460B2 true JP4655460B2 (ja) 2011-03-23

Family

ID=34411870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003309821A Expired - Fee Related JP4655460B2 (ja) 2003-09-02 2003-09-02 光電変換材料用半導体、光電変換素子及び太陽電池

Country Status (1)

Country Link
JP (1) JP4655460B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101341299B1 (ko) 2006-07-05 2013-12-12 니폰 가야꾸 가부시끼가이샤 색소 증감 태양 전지
CA3237199A1 (en) 2021-11-02 2023-05-11 Flare Therapeutics Inc. Pparg inverse agonists and uses thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294303A (ja) * 1999-04-02 2000-10-20 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP2003078152A (ja) * 2001-06-19 2003-03-14 Hayashibara Biochem Lab Inc エチレン化合物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294303A (ja) * 1999-04-02 2000-10-20 Fuji Photo Film Co Ltd 光電変換素子および光電気化学電池
JP2003078152A (ja) * 2001-06-19 2003-03-14 Hayashibara Biochem Lab Inc エチレン化合物

Also Published As

Publication number Publication date
JP2005078995A (ja) 2005-03-24

Similar Documents

Publication Publication Date Title
JP5135774B2 (ja) 光電変換素子、及び太陽電池
JP4945873B2 (ja) 光電変換材料用半導体、光電変換素子及び太陽電池
JP2008186752A (ja) 光電変換素子及び太陽電池
JP2010267612A (ja) 光電変換素子及び太陽電池
JP2009269987A (ja) 新規化合物、光電変換素子及び太陽電池
JP2005129430A (ja) 光電変換材料用半導体、光電変換素子及び太陽電池
JP5239262B2 (ja) 太陽電池
JP5396987B2 (ja) 光電変換素子及び太陽電池
JP5168761B2 (ja) 光電変換材料用半導体、光電変換素子、太陽電池及び光電変換材料用半導体の製造方法
EP2246916A2 (en) Amine dye for a dye sensitized solar cell
JP2010277998A (ja) 光電変換素子及び太陽電池
JP5217475B2 (ja) 光電変換素子及び太陽電池
JP5347329B2 (ja) 光電変換素子及び太陽電池
JP2005078888A (ja) 光電変換材料用半導体、光電変換素子及び太陽電池
JP4655460B2 (ja) 光電変換材料用半導体、光電変換素子及び太陽電池
JP2009205890A (ja) 光電変換素子及び太陽電池
JP2007188809A (ja) ゲル電解質、光電変換素子及び太陽電池
JP2005126586A (ja) ポリメチン色素、光電変換材料用半導体、光電変換素子及び太陽電池
JP2005019124A (ja) 光電変換材料用半導体、光電変換素子および太陽電池
JP2010168511A (ja) 新規化合物、光電変換素子及び太陽電池
JP2010282780A (ja) 光電変換素子及び太陽電池
JP2009187820A (ja) 光電変換素子及び太陽電池
JP2008226582A (ja) 光電変換素子及び太陽電池
JP5332114B2 (ja) 光電変換素子及び太陽電池
JP2005078887A (ja) 光電変換材料用半導体、光電変換素子及び太陽電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees