JP4642585B2 - 粉体測定システムおよび粉体測定方法 - Google Patents

粉体測定システムおよび粉体測定方法 Download PDF

Info

Publication number
JP4642585B2
JP4642585B2 JP2005223594A JP2005223594A JP4642585B2 JP 4642585 B2 JP4642585 B2 JP 4642585B2 JP 2005223594 A JP2005223594 A JP 2005223594A JP 2005223594 A JP2005223594 A JP 2005223594A JP 4642585 B2 JP4642585 B2 JP 4642585B2
Authority
JP
Japan
Prior art keywords
powder
viscosity
stirring blade
load
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005223594A
Other languages
English (en)
Other versions
JP2007040770A (ja
Inventor
洋基 薄井
悦之 菰田
一博 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp filed Critical Sysmex Corp
Priority to JP2005223594A priority Critical patent/JP4642585B2/ja
Priority to EP06016001.7A priority patent/EP1750114A3/en
Publication of JP2007040770A publication Critical patent/JP2007040770A/ja
Application granted granted Critical
Publication of JP4642585B2 publication Critical patent/JP4642585B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/14Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by using rotary bodies, e.g. vane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0092Monitoring flocculation or agglomeration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Accessories For Mixers (AREA)

Description

本発明は、粉体測定システムおよび粉体測定方法に関し、特に、乾燥粉体の特性(流動性)を表す指標を求める粉体測定システムおよび粉体測定方法に関する。
従来、収容容器に収容された粉体中を攪拌しながら移動する攪拌翼にかかる荷重を検出して、粉体の流動性を評価する粉体測定装置が知られている(たとえば、特許文献1参照)。この粉体測定装置は、収容容器と攪拌翼とが軸線を中心として互いに回転可能になるとともに、互いに軸線方向に移動可能になるように構成されている。そして、攪拌翼は収容容器内の粉体を押し下げる方向に駆動することにより、攪拌翼にかかる荷重を検出して粉体の流動性を評価している。
特表2000−507354号公報
しかしながら、上記特許文献1に開示された粉体測定装置では、攪拌翼が容器の粉体中を下降しながら粉体層を上方に押し上げる方向に攪拌するときの攪拌翼にかかる荷重に基づいて、粘度を求める粉体測定装置は開示されていない。
この発明は、上記のような課題を解決するためになされたものであり、攪拌翼が収容容器の粉体により形成された粉体層を下降しながら粉体を上方に押し上げる方向に攪拌するときの攪拌翼にかかる荷重に基づいて、粘度を求める粉体測定システムおよび粉体測定方法を提供することを目的とする。
課題を解決するための手段および発明の効果
上記目的を達成するために、この発明の第1の局面による粉体測定システムは、粉体を収容するための収容容器と、収容容器に空気を供給するための通気装置と、収容容器に対して相対的に上下移動可能でかつ相対的に回転可能であり、収容容器に収容された粉体により形成された粉体層を攪拌するための攪拌翼と、粉体層が攪拌翼によって攪拌されるときに、攪拌翼にかかる荷重を検出するための検出部と、攪拌翼が、粉体と空気との気固二相系の状態において、収容容器の粉体層中を下降しながら粉体を上方に押し上げる方向に攪拌するときの検出部により検出された荷重に基づいて、粉体層の特性を表す指標を粘度として求めるための制御部とを備えている。
この第1の局面による粉体測定システムでは、上記のように、検出部により検出された荷重に基づいて、粉体層の特性を表す指標を粘度として求めるための制御部を設けることによって、粉体層の流動性(挙動)を表す一つの指標である粘度を得ることができる。その結果、粉体を輸送する際の輸送方法や、粉体を大型のプラントなどで混合する際の混合方法などを設計する場合に重要となる粉体の動的な挙動を、制御部によって求められた粘度を用いて評価することができる。そして、粉体の動的な挙動を予め評価しておくことによって、粉体が用いられるプラントなどにおいてトラブルが発生した場合でも、上記評価に基づいて早急に対応することができる。また、制御部によって求められた粉体層の特性を表す指標である粘度を、固液分散系において確立されている凝集性の評価可能なモデルに適用することによって、粉体粒子の粒子間エネルギーや凝集粒子数などの新たな指標を得ることができる。また、攪拌翼が収容容器の粉体層中を下降しながら粉体を上方に押し上げる方向に攪拌することによって、攪拌翼が粉体層中を下降しながら粉体を下方に押し下げる方向に攪拌する場合と異なり、攪拌翼の下方側の粉体が攪拌翼により圧縮されることに起因して、攪拌翼にかかる荷重がその圧縮された粉体の影響を受けて大きくなるという不都合が発生するのを抑制することができるので、攪拌翼の周りの攪拌翼によって攪拌される粉体層の荷重を正確に検出することができる。その結果、その正確に検出された攪拌翼の周りの攪拌翼によって攪拌される粉体層の荷重に基づいて、粉体層の粘度を正確に求めることができる。また、収容容器と攪拌翼とは相対的に上下移動可能であり、かつ、相対的に回転可能である。このように構成すれば、収容容器に対して攪拌翼が相対的に上下方向に移動するため、攪拌翼を収容容器に収容される粉体層中で攪拌翼を上下方向に移動させることができる。また、収容容器に対して攪拌翼が相対的に回転するため、収容容器に収容される粉体層中で攪拌翼を回転させることができる。これにより、収容容器に収容される粉体層中を上下方向に移動しながら、収容容器の粉体層を攪拌することができる。その結果、上下方向の所定の高さ位置における攪拌翼にかかる粉体層の荷重を検出することができる。また、収容容器に空気を供給するための通気装置をさらに備え、制御部は、粉体と空気との気固二相系の状態において、攪拌翼が収容容器の粉体層中を下降しながら粉体を上方に押し上げる方向に攪拌するときの検出部により検出された荷重に基づいて、粉体層の特性を表す指標を粘度として求める。このように通気装置を設ければ、収容容器に収容される粉体のつまり具合を変化させることができる。これにより、粉体のつまり具合の異なる様々な条件下で、粉体層の特性を表す指標を粘度として求めることができる。
上記第1の局面による粉体測定システムにおいて、好ましくは、荷重は、攪拌翼にかかる軸トルクである。このように構成すれば、攪拌翼にかかる軸トルクに基づいて、粉体層の粘度を求めることができる。
上記第1の局面による粉体測定システムにおいて、好ましくは、制御部は、所定の荷重と粘度との関係式に基づいて、検出部により検出された荷重から粘度を求める。このように構成すれば、検出部により検出された荷重を所定の荷重と粘度との関係式に代入することによって、容易に、検出部により検出された荷重から粘度を求めることができる。したがって、制御部の記憶領域に荷重と粘度との関係式を記憶させるとともに、その関係式が記憶された制御部に検出部により検出された荷重を入力することにより、容易に、荷重から粉体層の粘度を求めることができる。
上記所定の荷重と粘度との関係式に基づいて検出部により検出された荷重から粘度を求める粉体測定システムにおいて、好ましくは、所定の荷重と粘度との関係式は、比例関係の式である。このように構成すれば、たとえば、粘度が既知であるポリグリセリンや水あめなどの物質の荷重を検出部により検出することにより導出される荷重と粘度との比例関係式を用いることによって、その比例関係式に検出部により検出された荷重を代入すれば、容易に、検出部により検出された荷重から粉体層の粘度を求めることができる。
上記所定の荷重と粘度との関係式に基づいて検出部により検出された荷重から粘度を求める粉体測定システムにおいて、好ましくは、粘度を求めるための検出部により検出された荷重は、攪拌翼が収容容器内の所定の高さ範囲に位置する間に検出された複数の荷重の平均値である。このように構成すれば、収容容器に収容される粉体層中の攪拌翼の高さ位置によって、攪拌翼にかかる荷重にばらつきがある場合でも、攪拌翼が収容容器内の所定の高さ範囲に位置する間に検出された複数の荷重の平均値を用いて、粉体層の粘度を求めることができるので、より正確に粉体層の粘度を求めることができる。
この場合、所定の高さ範囲は、収容容器の高さ方向の中央部近傍の所定の高さ範囲である。このように構成すれば、収容容器の上部近傍で検出される荷重と、下部近傍で検出される荷重とを用いずに、粘度を求めることができる。これにより、収容容器の上部近傍で検出される荷重が、収容容器の上部近傍の粉体の自由表面の影響により、小さくなる傾向がある場合でも、その小さくなる傾向がある荷重を用いずに、粘度を求めることができる。また、収容容器の下部近傍で検出される荷重が、攪拌翼により圧縮された粉体に起因して、大きくなる傾向がある場合でも、その大きくなる傾向がある荷重を用いずに、粘度を求めることができる。これらの結果、攪拌翼が収容容器の高さ方向の中央部近傍の所定の高さ範囲に位置する間に検出される安定した荷重に基づいて、容易に、より正確な粉体層の粘度を求めることができる。
上記第1の局面による粉体測定システムにおいて、好ましくは、制御部は、粉体層の特性を表す指標である粘度に基づいて、粉体の粒子間エネルギーまたは凝集粒子数を求める。このように構成すれば、粉体層の特性を表す指標である粘度を特徴付ける原因となる粉体粒子の凝集作用を、粒子間エネルギーまたは凝集粒子数を求めることにより評価することができる。
上記第1の局面による粉体測定システムにおいて、好ましくは、収容容器と、攪拌翼と、検出とを備えた分析装置と、制御部を備えるとともに、分析装置に通信可能に接続されるコンピュータとを備え、コンピュータの制御部は、検出部から攪拌翼にかかる荷重を分析装置から受信して、受信した荷重に基づいて粉体層の特性を表す指標を粘度として求める。このように構成すれば、攪拌翼が収容容器の粉体中を下降しながら粉体を上方に押し上げる方向に攪拌するときの攪拌翼にかかる荷重に基づいて、粘度を求める粉体測定システムを、分析装置とコンピュータとにより構築することができる。
この発明の第2の局面による粉体測定方法は、通気装置により空気が供給される収容容器に収容される粉体により形成された粉体層を、粉体と空気との気固二相系の状態において、下降しながら粉体を上方に押し上げる方向に攪拌する攪拌翼にかかる荷重を検出するステップと、検出された攪拌翼にかかる荷重に基づいて、粉体層の特性を表す指標を粘度として求めるステップとを備えている。



この第2の局面による粉体測定方法では、上記のように、検出された攪拌翼にかかる荷重に基づいて、粉体層の特性を表す指標を粘度として求めることによって、粉体層の流動性(挙動)を表す一つの指標である粘度を得ることができる。その結果、粉体を輸送する際の輸送方法や、粉体を大型のプラントなどで混合する際の混合方法などを設計する場合に重要となる粉体層の動的な挙動を、粘度を用いて評価することができる。そして、粉体の動的な挙動を予め評価しておくことによって、粉体が用いられるプラントなどにおいてトラブルが発生した場合でも、上記評価に基づいて早急に対応することができる。また、求められた粉体の特性を表す指標である粘度を、固液分散系において確立されている凝集性の評価可能なモデルに適用することによって、粉体粒子の粒子間エネルギーや凝集粒子数などの新たな指標を得ることができる。また、攪拌翼が収容容器の粉体中を下降しながら粉体を上方に押し上げる方向に攪拌することによって、攪拌翼が粉体中を下降しながら粉体を下方に押し下げる方向に攪拌する場合と異なり、攪拌翼の下方側の粉体が攪拌翼により圧縮されることに起因して、攪拌翼にかかる荷重がその圧縮された粉体の影響を受けて大きくなるという不都合が発生するのを抑制することができるので、攪拌翼の周りの攪拌翼によって攪拌される粉体層の荷重を正確に検出することができる。その結果、その正確に検出された攪拌翼の周りの攪拌翼によって攪拌される粉体層の荷重に基づいて、粉体層の粘度を正確に求めることができる。
上記第2の局面による粉体測定方法において、好ましくは、検出された攪拌翼にかかる荷重に基づいて、粉体層の特性を表す指標を粘度として求めるステップは、所定の荷重と粘度との関係式に基づいて、攪拌翼により検出された荷重から粘度を求めるステップを含んでいる。このように構成すれば、検出された攪拌翼にかかる荷重を所定の荷重と粘度との関係式に代入することによって、容易に、検出された荷重から粉体層の粘度を求めることができる。
上記第2の局面による粉体測定方法において、好ましくは、粉体層の特性を表す指標である粘度に基づいて、粉体の粒子間エネルギーまたは凝集粒子数を求めるステップをさらに備えている。このように構成すれば、粉体層の特性を表す指標である粘度を特徴付ける原因となる粉体粒子の凝集作用を、粒子間エネルギーまたは凝集粒子数を求めることにより評価することができる。
上記粉体層の特性を表す指標である粘度に基づいて粉体の粒子間エネルギーまたは凝集粒子数を求めるステップを備える粉体測定方法において、好ましくは、粉体層の特性を表す指標である粘度に基づいて、粉体の粒子間エネルギーまたは凝集粒子数を求めるステップは、空気中の粉体が、液体中の固体粒子が分散して懸濁状態となったときの特性と実質的に同じ特性を表すものと仮定して、粘度に基づいて、空気中の粉体の粒子間エネルギーまたは凝集粒子数を求めるステップを含んでいる。このように構成すれば、気固二相系における粉体と空気とのサスペンション(懸濁物)に対しても、液体中の固体粒子が分散して懸濁状態となった固液分散系において確立されている凝集性の評価可能なモデルを用いることができる。
以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明の一実施形態による粉体測定システムの全体構成を示した斜視図であり、図2は、図1に示した一実施形態による粉体測定システムの模式図である。図3〜図13は、図1に示した一実施形態による粉体測定システムの構成を説明するための図である。まず、図1〜図13を参照して、本発明の一実施形態による粉体測定システム1の構成について説明する。
本発明の一実施形態による粉体測定システム1は、乾燥粉体層の流動性を評価するシステムであり、乾燥粉体層の流動性を表す指標として粘度を求めるシステムである。つまり、本実施形態による粉体測定システム1は、空気(気体)と乾燥粉体(固体)との気固二相系におけるサスペンション(懸濁物)の粘度を求めるシステムである。さらに、この粉体測定システム1は、乾燥粉体層の流動性を表す指標である粘度に基づいて、乾燥粉体の粒子間に働く粒子間結合エネルギーと凝集粒子数とを求める機能も有している。なお、測定用試料の乾燥粉体としては、シリカ(日本触媒製、KE−P150、粒子径:1.58μm、比重:2.0)が用いられる。粉体測定システム1は、図1および図2に示すように、粉体測定装置10と、パーソナルコンピュータ(PC)20と、コンプレッサー30と、コンプレッサー30にチューブ2を介して接続される空気流量調節部40とにより構成されている。
粉体測定装置10は、後述する収容容器11に収容される空気と乾燥粉体との気固二相系におけるサスペンション(懸濁物)の軸トルク荷重T(mNm)を求めるために設けられている。また、粉体測定装置10には、パーソナルコンピュータ20が有線(または無線)による通信ができるように接続されており、粉体測定装置10により測定される軸トルク荷重Tや圧力(重量)、その他各種のデータを相互に通信している。この粉体測定装置10は、乾燥粉体を収容するための収容容器11と、攪拌部12と、エアレータ13と、本体部14とを備えている。
収容容器11は、測定用試料の乾燥粉体を収容するために設けられている。この収容容器11は、円筒形状に形成されており、50.0mlの容量、25.0mmの内径および50.0mmの高さ有している。また、収容容器11は、後述するエアレータ13から送り込まれる空気を収容容器11に収容される乾燥粉体に送り込むことが可能なように、エアレータ13に設置されている。
ここで、本実施形態では、攪拌部12は、図3に示すように、回転軸121と、回転軸121に取り付けられる攪拌翼122とを有しており、この攪拌翼122は、乾燥粉体が収容される収容容器11に対して上下方向に移動可能に、かつ、図2および図3の矢印A方向に回転可能に構成されている。したがって、本実施形態では、攪拌部12の攪拌翼122が収容容器11の乾燥粉体層中を下降しながら図2および図3の矢印A方向に回転すると、乾燥粉体層を上方に押し上げる方向に攪拌する。具体的には、図4に示すように、攪拌翼122が図4の矢印A方向に回転すると、攪拌翼122の上面122a側に位置する乾燥粉体層が、攪拌翼122の上面122aにより、上方に押し上げられるように攪拌される。また、攪拌翼122は、図2および図3に示すように、D(=23.5mm)の大きさの直径および5.0mmの高さを有しており、25.0mmの内径を有する円筒形状の収容容器11に挿入可能に形成されている。また、攪拌翼122は、収容容器11の底面からの高さH(図2および図4参照)の高さ範囲(底面5mm〜上部50mm)の間を移動可能に構成されている。
エアレータ13は、乾燥粉体が収容される収容容器11の底部側に設けられるとともに、2本のチューブ3を介して空気流量調節部40に接続されている。このエアレータ13は、空気流量調節部40により流量が調整されたコンプレッサー30からの空気により、収容容器11に収容される乾燥粉体の固体体積分率φ(=(収容容器11内の乾燥粉体の重量(g)/比重(g/ml))/収容容器の容量(ml))を調節するために設けられている。つまり、コンプレッサー30から供給され、空気流量調節部40により流量が調整された空気を、エアレータ13を介して収容容器11の底部から収容容器11に収容される乾燥粉体に供給することによって、乾燥粉体の粒子間の距離を変化させて、乾燥粉体のつまり具合を示す固体体積分率φを変化させている。具体的には、エアレータ13から収容容器11の乾燥粉体に、0(l/min)、1(l/min)、および2(l/min)の流量の空気を供給することによって、乾燥粉体の固体体積分率φを、それぞれ、0.344、0.302、および0.257に調整することが可能となる。また、エアレータ13は、図5に示すように、収容容器11を設置するための設置部131と、コンプレッサー30から空気流量調節部40を介して供給される空気を導入するためのチューブ3が取り付けられる導入部132と、導入部132から導入される空気を収容容器11に収容される乾燥粉体に送り込むための複数の導風孔133aが設けられた導風部133とを備えている。
本体部14は、図6に示すように、粉体測定装置10の上部に配置されており、制御部141と、駆動回路142と、上下駆動部143と、回転駆動部144と、トルク検出部145と、重量検出部146とを含んでいる。
また、制御部141は、駆動回路142を介して、上下駆動部143を制御することにより攪拌部12の攪拌翼122の上下動作を制御するとともに、回転駆動部144を制御することにより攪拌翼122の回転動作を制御する機能を有している。また、制御部141は、上下駆動部143を駆動するための上下駆動用パルス信号をパーソナルコンピュータ20に送信する機能も有している。この制御部141は、図7に示すように、ROM141aと、CPU141bと、RAM141cと、入出力インターフェイス141dとから構成されている。
また、ROM141aには、オペレーティングシステム、粉体測定装置10の測定動作を制御するための制御プログラム、および、制御プログラムの実行に必要なデータ(上下駆動用パルス信号や回転駆動用パルス信号など)が格納されている。また、CPU141bは、ROM141aに格納される制御プログラムをRAM141cにロードしたり、ROM141aから直接実行したりするために設けられている。これにより、CPU141bが、制御プログラムを実行することにより、粉体測定装置10の測定動作の制御を行うことが可能となる。そして、CPU141bが処理したデータは、入出力インターフェイス141dを介して、粉体測定装置10の各部、または、パーソナルコンピュータ20へと送信され、CPU141bの処理に必要なデータは、粉体測定装置10の各部、または、パーソナルコンピュータ20から入出力インターフェイス141dを通じて受信される。具体的には、CPU141bは、予めROM141aに記憶された上下駆動用パルス信号を呼び出して、入出力インターフェイス141dおよび駆動回路142を介して、上下駆動部143に送信するとともに、予めROM141aに記憶された回転駆動用パルス信号を呼び出して、入出力インターフェイス141dおよび駆動回路142を介して、回転駆動部144に送信する機能を有している。さらに、CPU141bは、上下駆動部143に送信した上下駆動用パルス信号と、トルク検出部145により検出される軸トルク荷重TとをRAM141cに記憶する機能も有している。
また、上下駆動部143は、攪拌部12の攪拌翼122を上下方向に移動させるために設けられている。具体的には、上下駆動部143が、CPU141bによりROM141aから呼び出された上下駆動用パルス信号を受信することにより、上下駆動部143に取り付けられる攪拌部12の攪拌翼122が上下方向に移動する。これにより、攪拌翼122が収容容器11に収容される乾燥粉体中を下降または上昇することが可能となる。
また、回転駆動部144は、攪拌部12の攪拌翼122を回転させるために設けられている。具体的には、回転駆動部144が、CPU141bによりROM141aから呼び出された回転駆動用パルス信号を受信することにより、回転駆動部144に取り付けられる攪拌部12の回転軸121が回転する。これにより、回転軸121に取り付けられる攪拌翼122が回転するので、収容容器11に収容される乾燥粉体を攪拌することが可能となる。また、本実施形態では、回転駆動部144により、攪拌部12の攪拌翼122の回転速度πND(mm/s)が、5(mm/s)、20(mm/s)、40(mm/s)、80(mm/s)、100(mm/s)に制御される。なお、N(1/s)は攪拌翼122の回転数である。また、本実施形態では、上下駆動部143が攪拌翼122を下降させる際に、回転駆動部144は、攪拌翼122が収容容器11の乾燥粉体を上方に押し上げる方向(図2および図3の矢印A方向)に回転するように構成されている。
また、トルク検出部145は、収容容器11に収容される乾燥粉体が攪拌翼122によって攪拌されるときに、攪拌翼122にかかる軸トルク荷重Tを検出するために設けられている。このトルク検出部145によって検出される軸トルク荷重Tは、制御部141の入出力インターフェイス141dを介してRAM141cに記憶される。また、重量検出部146は、収容容器11に収容される乾燥粉体が攪拌翼122によって攪拌されるときに、乾燥粉体に加わる垂直荷重を検出するために設けられている。したがって、この粉体測定装置10では、攪拌部12の攪拌翼122を乾燥粉体中で回転させることによって、軸トルク荷重Tと垂直荷重とを検出することが可能となる。
パーソナルコンピュータ20は、粉体測定装置10と有線または無線による通信ができるように接続されており、粉体測定装置10のトルク検出部145により検出された軸トルク荷重Tを受信して、受信した軸トルク荷重Tに基づいて乾燥粉体層の特性(流動性)を表す指標を粘度η(Pa・s)として求める機能を有している。さらに、本実施形態によるパーソナルコンピュータ(PC)20は、求められた粘度に基づいて、乾燥粉体の粒子間に働く粒子間結合エネルギーF(J)と凝集粒子数nとを求める機能も有している。パーソナルコンピュータ20は、図1および図8に示すように、本体部21と、表示部22と、入力部23とから構成されている。
本体部21は、図8に示すように、ROM211と、CPU212と、RAM213と、ハードディスク214と、読出装置215と、入出力インターフェイス216と、画像出力インターフェイス217とにより構成されており、それらの間はバス218によってデータ通信可能に接続されている。
ROM211は、マスクROM、PROM、EPROM、EEPROMなどにより構成されている。また、CPU212は、RAM213にロードされた後述するハードディスク214の粉体分析用アプリケーションプログラム214aを実行するために設けられている。これにより、CPU212が、粉体分析用アプリケーションプログラム214aを実行することによって、粉体測定装置10から送信された軸トルク荷重Tに基づいて粘度ηを求めるとともに、その粘度ηに基づいて粒子間結合エネルギーFおよび凝集粒子数nを求めることが可能となる。また、CPU212は、粉体測定装置10の制御部141により送信された上下駆動用パルス信号に基づいて、攪拌部12の攪拌翼122の高さHを算出する機能も有している。また、RAM213は、SRAMまたはDRAMなどにより構成されており、ROM211および後述するハードディスク214に記憶されているコンピュータプログラムや粉体分析用アプリケーションプログラム214aの読み出しに用いられる。また、RAM213は、ハードディスク214に記憶される粉体分析用アプリケーションプログラム214aを実行する場合に、CPU212の作業領域として利用される。
ハードディスク214は、オペレーティングシステム、後述する粉体を分析するための粉体分析用アプリケーションプログラム214a、および、粉体分析用アプリケーションプログラム214aの実行に必要なデータがインストールされている。また、読出装置215は、フレキシブルディスクドライブ、CD−ROMドライブ、DVD−ROMドライブなどにより構成されており、可搬型記録媒体4に記憶されたコンピュータプログラムまたはデータを読み出すことが可能である。これにより、たとえば、読出装置215を用いて可搬型記録媒体4から粉体分析用アプリケーションプログラム214aを読み出し、その読み出された粉体分析用アプリケーションプログラム214aをハードディスク214にインストールすることが可能である。なお、粉体分析用アプリケーションプログラム214aやその他のパーソナルコンピュータ20で用いられるコンピュータプログラムは、可搬型記録媒体4によって提供されるのみならず、本実施形態によるパーソナルコンピュータ20と通信可能に接続された外部のPCなどから電気通信回線(有線、無線を問わない)を通じて提供されることも可能である。たとえば、粉体分析用アプリケーションプログラム214aがインターネット上のサーバコンピュータのハードディスク内に格納されており、このサーバコンピュータに本実施形態によるパーソナルコンピュータ20が電気通信回線を通じてアクセスするとともに粉体分析用アプリケーションプログラム214aをダウンロードして、このダウンロードした粉体分析用アプリケーションプログラム214aをハードディスク214にインストールすることも可能である。また、ハードディスク214には、たとえば、米マイクロソフト社が製造販売するWindows(登録商標)などのグラフィカルユーザインターフェイス環境を提供するオペレーティングシステムがインストールされている。以下の説明においては、本実施形態による粉体分析用アプリケーションプログラム214aは上記したオペレーティングシステム上で動作するものとしている。
また、入出力インターフェイス216は、たとえば、USB、IEEE1394、RS−232Cなどのシリアルインターフェイスや、SCSI、IDE、IEEE1284などのパラレルインターフェイス、および、D/A変換器、A/D変換器などからなるアナログインターフェイスなどから構成されている。この入出力インターフェイス216には、入力部23が接続されている。また、入出力インターフェイス216は、粉体測定装置10の制御部141の入出力インターフェイス141dと接続されており、粉体測定装置10で検出された軸トルク荷重Tや垂直荷重などをパーソナルコンピュータ20に入力することが可能である。また、画像出力インターフェイス217は、LCD(液晶表示装置)またはCRTなどにより構成される表示部22に接続されており、CPU212から与えられた画像データに応じた映像信号を表示部22に出力するように構成されている。
入力部23は、ユーザが入力部23を使用することにより、パーソナルコンピュータ20にデータを入力することが可能なように構成されている。また、表示部22は、画像出力インターフェイス217から入力された映像信号に従って、画像(画面)を表示するために設けられている。具体的には、乾燥粉体層の粘度η、粒子間結合エネルギーFおよび凝集粒子数nを表示する機能を有している。
ここで、パーソナルコンピュータ20のハードディスク214にインストールされる粉体分析用アプリケーションプログラム214aについて詳細に説明する。この粉体分析用アプリケーションプログラム214aは、粉体測定装置10のトルク検出部145(図6参照)により検出された軸トルク荷重Tに基づいて、粘度η、粒子間結合エネルギーFおよび凝集粒子数nを算出するためのプログラムである。
この粉体分析用アプリケーションプログラム214aは、下記の換算式(1)を用いて、粉体測定装置10のトルク検出部145により検出された軸トルク荷重Tを粘度ηに換算している。なお、換算式(1)において、η(Pa・s)は粘度、T(mN・m)は平均軸トルク荷重、N(1/s)は攪拌翼122の回転数、D(=23.5mm)は攪拌翼122の直径であり、πND(mm/s)は回転速度である。
η=770×(T/πND)・・・(1)
ここで、換算式(1)で用いられる平均軸トルク荷重Tの算出方法について詳細に説明する。まず、粉体測定装置10のエアレータ13を用いることにより固体体積分率が0.257、0.302、0.344に調節された乾燥粉体について、それぞれ、攪拌部12の攪拌翼122の高さHに対する、攪拌翼122にかかる軸トルク荷重Tを取得する。これにより、図9に示すように、攪拌翼122の高さHに対する軸トルク荷重Tがプロットされたグラフが作成される。そして、本実施形態では、図9に示すグラフから、攪拌翼122の高さHが約20mm〜約30mmの範囲では、攪拌翼122にかかる軸トルク荷重Tの変化が少ないと判断して、この約20mm〜約30mmの範囲に位置する間に検出された複数の軸トルク荷重Tの平均値である平均軸トルク荷重Tを算出する。
次に、上記した平均軸トルク荷重Tを粘度ηに換算する換算式(1)について詳細に説明する。まず、粘性の異なる溶液の複数のポリグリセリンおよび複数の水あめに対して、それぞれ、粘度計(トキメック株式会社製)を用いて粘度ηを求めておく。そして、粘度ηが求められたポリグリセリンおよび水あめに対して、本実施形態による粉体測定装置10を用いて平均軸トルク荷重Tを取得する。これにより、図10に示すように、所定のポリグリセリンおよび水あめの平均軸トルク荷重Tと粘度ηとの関係がプロットされたグラフが作成される。そして、ポリグリセリンおよび水あめの平均軸トルク荷重Tと粘度ηとの関係は、図10に示したグラフから比例関係にあると推測できるので、ポリグリセリンおよび水あめの粘度ηを平均軸トルク荷重Tの一次式として上記の換算式(1)が算出される。
次に、乾燥粉体の平均軸トルク荷重Tと粘度ηとが、上記の換算式(1)のように比例関係を示すことを詳細に説明する。一般的な攪拌系での動力数N(W)は、圧力P(N/m)、攪拌翼によって攪拌される液の密度ρ(kg/m)、回転数Nおよび攪拌翼の直径Dを用いて、下記の式(2)を満たすことが知られている。
=P/(ρ×N×D)・・・(2)
また、圧力Pと軸トルク荷重Tとの関係から、上記式(2)は、下記の式(3)のように示される。
∝T/(ρ×N×D)・・・(3)
ところで、本実施形態の攪拌翼122の周りの乾燥粉体の流動状態は、滑らかな流れであると観察されたので、層流であると考えられる。ここで、層流状態における動力数Nがレイノルズ数Reの逆数Re−1と比例関係になることが知られているため、動力数Nとレイノルズ数Reの逆数Re−1とは、下記の関係式(4)を満たす。
∝Re−1・・・(4)
また、レイノルズ数Reの逆数Re−1は、粘度η、攪拌翼によって攪拌される液の密度ρ、回転数Nおよび攪拌翼の直径Dを用いて、下記の式(5)を満たすことが知られている。
Re−1=η/(ρ×N×D)・・・(5)
そして、上記式(4)に、上記式(5)を代入すると、下記の式(6)のようになる。
∝η/(ρ×N×D)・・・(6)
上記式(6)と式(3)とから次の式(7)が導かれる。
η/(ρ×N×D)∝T/(ρ×N×D)・・・(7)
この式(7)の両辺に(ρ×N×D)を掛けると、以下の式(8)が導かれる。
η∝T/N×D・・・(8)
したがって、上記式(8)により、粘度ηと軸トルク荷重Tとが比例関係にあることが理論上裏付けられる。
また、粉体分析用アプリケーションプログラム214aは、下記の式(9)を用いて、換算式(1)に基づいて算出された粘度ηから粒子間結合エネルギーFおよび凝集粒子数nを求めている。なお、下記の式(9)において、α(=0.58)はブラウン凝集速度定数、kはボルツマン係数(=1.38×10−23(J/K))、K(=298(K))は絶対温度、N(=1.24×1017)は単位体積あたりの粒子数、ηmin(=0.047)は仮想分散媒粘度、α(=0.6)は剪断凝集速度定数、φ(=0.257、0.302、0.344)は固体体積分率、nは凝集粒子数、γは剪断速度、d(=1.58μm)は乾燥粉体(シリカ)の粒子径、F(J)は粒子間結合エネルギー、Nはクラスター破壊の切断鎖数、εはクラスター内ボイド率、ηは乾燥粉体の粘度である。
dn/dt=(4・α・k・K・N/3・ηmin)+(4・α・φ・n・γ/π)−(3・π・d ・n/4・F・N)・(n/(1−ε)−1)・η・γ ・・・(9)
この上記式(9)は、液体中の固体粒子が分散して懸濁状態となった固液分散系における固体粒子の凝集性を評価するための式(薄井 洋基、2000年)であり、“Prediction of Dispersion Characteristics and Rheology in Dense Slurries”、Hiromoto Usui、Journal of Chemical Engineering of Japan、vol.35、No.9、pp815−829、2002に掲載されている。そして、固液分散系における固体粒子の凝集性を評価する式を、気体中に固体粒子が分散された気固二相系に適用するのは今回がはじめてである。
クラスターの生成には、ブラウン凝集と剪断凝集が寄与し、攪拌翼122により剪断される剪断流中においては、クラスターに働く流体力学的力により剪断破壊が生じる。そのため、式(9)は、ブラウン凝集項(=(4・α・k・T・N/3・η))、剪断凝集項(=(4・α・φ・n・γ/π))および剪断破壊項(=(3・π・d ・n/4・F・N)・(n/(1−ε)−1)・η・γ )から構成されている。そして、上記式(9)の左辺dn/dt=0として、計算することによって、粒子間結合エネルギーFおよび凝集粒子数nが算出される。また、上記式(9)中の、クラスター内ボイド率εは、凝集粒子数nが十分大きいときのクラスター内ボイド率ε,maxと、凝集粒子数nとを用いた下記の式(10)より定義されている。また、下記式(10)中の、凝集粒子数nが十分大きいときのクラスター内ボイド率ε,maxは、下記式(11)のように定義される。この下記式(11)中の、φ,maxは、粒子の最大充填率(最大固体体積分率)であり、本実施形態では、ガラス容器に乾燥粉体を最大に充填した場合での、乾燥粉体の重さから求めた充填率の実測値を、粒子の最大充填率(最大固体体積分率)φ,max(=0.453)とする。
ε=ε,max(1−n−0.4)・・・(10)
ε,max=1−φ/φ,max・・・(11)
ここで、固液分散系における固体粒子の凝集性を評価する式(9)を、本実施形態による乾燥粉体と空気との気固二相系におけるサスペンション(懸濁物)に適用可能であることを詳細に説明する。一般的に、固液分散系における液体中で攪拌翼の剪断速度を増大させることに伴って、固液分散系における液体の粘度が低下するShear−thinig現象が発生することが知られている。このShear−thinig現象は、液体中を回転する攪拌翼の剪断速度γ(回転速度πND)が増大することによって、凝集状態にある粒子の結合が外れ、液体中の固体粒子の間に力が働かなくなることに起因して発生する。そこで、本実施形態の粉体測定システム1のエアレータ13を用いて固体体積分率φが0.257、0.302、0.344に制御された乾燥粉体について、それぞれ、攪拌翼122の剪断速度γ(回転速度πND)における粘度ηを上記式(1)を用いて算出する。なお、剪断速度γは、下記の式(12)により定義され、上記式(1)の攪拌翼122の回転速度πNDと対応している。すなわち、攪拌翼122の回転速度πND(mm/s)である5(mm/s)、20(mm/s)、40(mm/s)、80(mm/s)、100(mm/s)は、それぞれ、剪断速度γの0.068(1/s)、0.271(1/s)、0.542(1/s)、1.084(1/s)、1.355(1/s)に対応する。
γ=(攪拌翼122の回転数/攪拌翼122の外周長さ)=N/πD・・・(12)
これにより、図11に示すように、攪拌翼122の剪断速度γに対する粘度ηがプロットされたグラフが作成される。そして、図11に示すグラフから、本実施形態による粉体測定システム1に用いられる乾燥粉体についても、攪拌翼122の剪断速度γを増大させることに伴って、乾燥粉体の粘度ηが低下していると判断することが可能である。これにより、エアレータ13により固体体積分率が0.257、0.302、0.344に制御された気固二相系におけるサスペンション(乾燥粉体と空気との懸濁物)にも、固液分散系における液体に典型的に見られるShear−thinig現象が生じていると判断することが可能である。したがって、本実施形態では、乾燥粉体が、液体中の固体粒子が分散して懸濁状態となった固液分散系の液体の特性と実質的に同じ特性を表すので、粘度に基づいて、乾燥粉体の粒子間結合エネルギーまたは凝集粒子数を求める上記式(9)が適用可能である。
また、上記式(9)を用いるに際に、代入される仮想的分散媒粘度ηminについて詳細に説明する。この仮想的分散媒粘度ηminは、分散媒が水である場合には水の粘度(約0.8×10−3〜約0.9×10−3)が用いられ、本実施形態のように分散媒が空気である場合には空気の粘度(0)が用いられる。ここで、本実施形態では、乾燥粉体の凝集および乾燥粉体の粒子の存在による粘度への影響がない仮想的分散媒粘度ηmin(=0.047)を用いる。この仮想的分散媒粘度ηminの導出方法を以下に詳細に説明する。
まず、エアレータ13により固体体積分率φが0.257、0.302、0.344に調節された乾燥粉体中を、回転速度80(mm/s)の攪拌翼122を下降させることにより、固体体積分率φが0.257、0.302、0.344に調節された乾燥粉体のそれぞれの粘度ηを求める。これにより、図12に示すように、固体体積分率φと粘度ηとの関係を示したグラフが作成される。この図12に示したグラフにおいてプロットされた粘度ηに基づいて、Simhaのセルモデルに適用されるSimhaの方程式(13)〜(16)に沿った線を描く。このSimhaの方程式(13)は、希薄な分散系に対して理論的に導かれた下記に示したEinsteinの式(17)を拡張したものであり、高濃度の条件下では、濃度に対する固体体積分率φの依存性が高くなるため、その依存性を補正する式(14)中の補正項λ(γ)を有している。なお、式(13)〜式(16)中、fはセル合計の体積分率であり、γはセル半径と粒子半径との比である。
η=η/η=1+2.5・λ(γ)・φ・・・(13)
λ(γ)=4(1−γ)/4(1+γ10)−25・γ(1+γ)+42・γ・・・(14)
γ=φ/f(1−(φ1/3/f))・・・(15)
φ,max=f/8・・・(16)
η=1+2.5・φ・・・(17)
図12に示したグラフに描かれたSimhaの方程式(13)に沿った線から、攪拌翼122の回転速度80(mm/s)、固体体積分率0における粘度η(80)を算出する。この固体体積分率0とは、収容容器中に空気のみ収容されている状態を示しており、攪拌翼122の回転速度80(mm/s)における分散媒である空気の仮想的分散媒粘度η(80)が導かれる。したがって、上記式(13)が、上記式(14)〜上記式(16)により、図12に示すように描かれる。
さらに、攪拌翼122の回転速度80(mm/s)以外の回転速度5(mm/s)、20(mm/s)、40(mm/s)、100(mm/s)についても、同様に、仮想的分散媒粘度η(5)、η(20)、η(40)、η(100)を導く。これにより、図13に示すように、攪拌翼122の回転速度πND(5(mm/s)、10(mm/s)、20(mm/s)、40(mm/s)、100(mm/s))に対する、固体体積分率0とした場合の空気の仮想的分散媒粘度ηがプロットされたグラフが作成される。この図13に示したグラフにプロットされた5つの仮想的分散媒粘度η(η(5)、η(20)、η(40)、η(80)、η(100))について、近似曲線(減衰曲線)を描くことによって、下記の式(18)が導出される。
η=a・(πND)+0.047・・・(18)
なお、上記式(18)中のaおよびbは、近似曲線を導き出す際に求められた係数であり、それぞれ、正の数および負の数である。そして、攪拌翼122の回転速度が遅ければ乾燥粉体の粒子間の凝集作用が大きくなり、攪拌翼122の回転速度が速ければ乾燥粉体の粒子間の凝集作用が小さくなると推測すると、攪拌翼122の回転速度が高速になるに伴って乾燥粉体の粒子間の作用が小さくなり、攪拌翼122の高速回転の条件下で得られる仮想的分散媒粘度ηmin(=0.047)が、乾燥粉体の凝集および乾燥粉体の粒子の存在による粘度への影響が少ない仮想的な粘度として導出される。
ここで、粒子間結合エネルギーFおよび凝集粒子数nの算出方法について詳細に説明する。まず、上記式(11)に、最大充填率(最大固体体積分率)φ,max(=0.453)と、固体体積分率φ(=0.257、0.302、0.344)とを代入することによって、ε,maxを求める。そして、この求められたε,maxと、仮定した凝集粒子数n(=2)の初期値とを、上記式(10)に代入することにより、クラスター内ボイド率εを求める。さらに、算出されたクラスター内ボイド率εと、凝集粒子数nと、乾燥粉体(シリカ)の粒子径dとを用いて、以下の式(19)で定義されるクラスター径dを算出する。
=d・(n/(1−ε))1/3・・・(19)
また、上記式(19)により求められたクラスター径dと、単位体積あたりのクラスター数Nとを用いて、見かけの固体体積分率φを求める。なお、本実施形態では、クラスター内にクラスターが浮遊している溶媒が入り込み、そのクラスターが1つの粒子として振舞うため、実測された固体体積分率とは異なる、見かけの固体体積分率φを用いている。具体的には、クラスター径dと、単位体積あたりのクラスター数Nとにより定義される下記の式(20)を用いて、見かけの固体体積分率φを算出する。
φ=N×(π・d /6)・・・(20)
なお、上記式(20)中で用いられる単位体積あたりのクラスター数Nは、単位体積あたりの粒子数Nと、1つのクラスターに含まれる凝集粒子数nとにより、以下の式(21)を満たす。
=N/n・・・(21)
そして、上記式(20)により求められた見かけの固体体積分率φを用いて、Simhaの方程式(13)〜(16)から粘度ηを求める。具体的には、実測の最大充填率(最大固体体積分率)φ,max(=0.453)を上記式(16)に代入することにより、セル合計の体積分率fを算出する。そして、見かけの固体体積分率φと、算出されたセル合計の体積分率fとを、上記式(15)に代入することにより、セル半径と粒子半径との比γを求める。さらに、その求められたγを、上記式(14)に代入するとともに、γが代入された補正項λ(γ)を、上記式(13)に代入することにより、粘度ηが求められる。この計算された粘度ηと、本実施形態の粉体測定システム1により検出された軸トルク荷重Tから求められた粘度ηとが実質的に一致するまで、凝集粒子数nを増加させ、上記した計算を繰り返す。これにより、粉体測定システム1により検出された軸トルク荷重Tから求められた粘度ηに基づいた凝集粒子数nが決定される。さらに、決定された凝集粒子数nに基づき、上記式(9)から粒子間結合エネルギーFを求める。一旦、粒子間結合エネルギーFが求められると、その粉体が種々の条件で調整され、取り扱われる際の粉体層の流動性を事前に評価することが可能となる。すなわち、異なる粉体含有量の粉体層が異なる剪断速度条件下で取り扱われる際の、粉体層の粘度を推算することが可能である。これにより、その粉体を任意の条件で輸送、混合などの操作を行う際の粉体取り扱い機器の設計基礎データを得ることができるようになる。
図14は、図1に示した一実施形態による粉体測定システムの粉体測定装置の制御部による乾燥粉体の測定フローを示したフローチャートである。次に、図14を参照して、本発明の一実施形態による粉体測定システム1の粉体測定装置の制御部による乾燥粉体の測定フローについて詳細に説明する。
まず、収容容器11に乾燥粉体を一定量入れるとともに、収容容器11に収容される乾燥粉体に対して攪拌部12の攪拌翼122を回転させることにより、乾燥粉体の状態を均一に整える。そして、必要に応じてエアレータ13から収容容器11に収容される乾燥粉体へ所定の空気を送ることにより、乾燥粉体を所定の固体堆積分率φとして測定開始準備が整う。
ステップS1において、粉体測定装置10の制御部141のCPU141bは、パーソナルコンピュータ20から送信される測定開始信号の受信を待機して、測定開始信号を受信したか否かを判断する。そして、測定開始信号を受信していないと判断した場合には、測定開始信号を受信するまで、ステップS1の判断が繰り返される。一方、パーソナルコンピュータ20からの測定開始信号を受信したと判断した場合には、ステップS2において、攪拌部12の攪拌翼122を回転させながら、収容容器11内へ下降させる。具体的には、CPU141bが予めROM141aに記憶された上下駆動用パルス信号を呼び出して、本体部14の上下駆動部143に送るとともに、予めROM141aに記憶された回転駆動用パルス信号を呼び出して、本体部14の回転駆動部144に送り、攪拌部12の攪拌翼122を図2および図3の矢印A方向に回転させながら、収容容器11内へ下降させる。
次に、ステップS3において、CPU141bは、上下駆動部143へ送信した上下駆動用パルス信号と、トルク検出部145から受信した攪拌翼122にかかる軸トルク荷重Tとを、RAMに141c保存する。そして、ステップS4において、CPU141bは、RAM141cに保存された上下駆動用パルス信号と軸トルク荷重Tとを呼び出し、パーソナルコンピュータ20に送信する。次に、ステップS5において、CPU141bは、予めROM141aに記憶された上下駆動用パルス信号が所定回数に達したときに、攪拌翼122を一旦停止させて、上下駆動用パルス信号を再び送り攪拌翼122を回転させながら収容容器11内から上昇させる。その後、ステップS6において、CPU141bは、予めROM141aに記憶された上下駆動用パルス信号が所定回数に達したときに、攪拌翼122の回転動作および上昇動作を停止する。次に、ステップS7において、CPU141bは、測定終了信号をパーソナルコンピュータ20に送信して測定フローを終了する。
図15は、図1に示した一実施形態による粉体測定システムのPCのCPUによるデータ処理フローを示したフローチャートである。図15を参照して、本発明の一実施形態による粉体測定システム1のパーソナルコンピュータ20のCPU212によるデータ処理フローについて詳細に説明する。
ステップS11において、パーソナルコンピュータ20の本体部21のCPU212は、スタートキーがONになっているか否かを判断する。そして、スタートキーがONになっていないと判断した場合には、スタートキーがONになるまで、ステップS11の判断が繰り返される。一方、スタートキーがONになっていると判断された場合には、ステップS12において、CPU212が測定開始信号を粉体測定装置10の本体部14へ送信する。次に、ステップS13において、CPU212は、粉体測定装置10から送信された上下駆動用パルス信号と軸トルク荷重Tを受信し、ハードディスク214に保存する。次に、ステップS14において、CPU212は、粉体測定装置10の本体部14から測定終了信号を受信したか否かを判断する。そして、CPU212が測定終了信号を受信していないと判断した場合には、ステップS13の処理が再び行われる。
一方、本実施形態では、CPU212が測定終了信号を受信したと判断した場合には、ステップS15において、CPU212は、ハードディスク214に保存された上下駆動用パルス信号と軸トルク荷重Tを呼び出し、受信した上下駆動用パルス信号の数に基づいて、軸トルク荷重Tを平均して、平均軸トルク荷重Tを算出する。つまり、攪拌翼122の高さHが、約20mm〜約30mmの範囲に位置する間に検出された複数の軸トルク荷重Tの平均値である平均軸トルク荷重Tを算出する。
次に、本実施形態では、ステップS16において、CPU212は、ROM211に記憶された平均軸トルク荷重Tを粘度ηに換算する上記の換算式(1)に基づいて、乾燥粉体層の粘度ηを算出する。次に、ステップS17において、CPU212は、乾燥粉体層の粘度ηを表示部22に表示する。そして、ステップS18において、CPU212は、ステップS16において算出された乾燥粉体層の粘度ηを、粒子間結合エネルギーFおよび凝集粒子数nに換算する上記の式(9)に基づいて、乾燥粉体の粒子間結合エネルギーFおよび凝集粒子数nを算出する。その後、ステップS19において、CPU212は、乾燥粉体の粒子間結合エネルギーFおよび凝集粒子数nを表示部22に表示して、データ処理フローの処理を終了する。具体的には、表示部22は、図16に示すように、攪拌翼122の剪断速度γに対する、粒子間結合エネルギーFと凝集粒子数nとを示したグラフを表示することが可能である。
本実施形態では、上記のように、粉体測定装置10のトルク検出部145により検出された軸トルク荷重Tに基づいて、乾燥粉体層の特性を表す指標を粘度ηとして求めるためのパーソナルコンピュータ20を設けることによって、乾燥粉体層の流動性(挙動)を表す一つの指標である粘度ηを得ることができる。その結果、乾燥粉体を輸送する際の輸送方法や、乾燥粉体を大型のプラントなどで混合する際の混合方法などを設計する場合に重要となる乾燥粉体の動的な挙動を、パーソナルコンピュータ20によって求められた粘度ηを用いて評価することができる。そして、乾燥粉体層の動的な挙動を予め評価しておくことによって、乾燥粉体が用いられるプラントなどにおいてトラブルが発生した場合でも、上記評価に基づいて早急に対応することができる。また、パーソナルコンピュータ20によって求められた乾燥粉体層の特性を表す指標である粘度ηを、固液分散系において確立されている凝集性の評価可能なモデル式(9)(薄井 洋基、2000年)に代入することによって、乾燥粉体粒子の粒子間エネルギーや凝集粒子数などの新たな指標を得ることができる。
また、本実施形態では、攪拌翼122が収容容器11の乾燥粉体層中を下降しながら乾燥粉体を上方に押し上げる方向に攪拌することによって、攪拌翼122が乾燥粉体層中を下降しながら乾燥粉体を下方に押し下げる方向に攪拌する場合と異なり、攪拌翼122の下方側の乾燥粉体が攪拌翼122により圧縮されることに起因して、攪拌翼122にかかる軸トルク荷重Tがその圧縮された乾燥粉体の影響を受けて大きくなるという不都合が発生するのを抑制することができるので、攪拌翼122の周りの攪拌翼122によって攪拌される乾燥粉体層の軸トルク荷重Tを正確に検出することができる。その結果、その正確に検出された攪拌翼122の周りの攪拌翼122によって攪拌される乾燥粉体層の軸トルク荷重Tに基づいて、乾燥粉体層の粘度ηを正確に求めることができる。
また、本実施形態では、パーソナルコンピュータ20の本体部21に、粘度ηが既知であるポリグリセリンや水あめを用いて取得された軸トルク荷重Tと粘度ηとの比例関係式(1)を記憶させることによって、トルク検出部145により検出された軸トルク荷重Tを、軸トルク荷重Tと粘度ηとの関係式(1)に代入することによって、容易に、トルク検出部145により検出された軸トルク荷重Tから乾燥粉体層の粘度ηを求めることができる。
また、本実施形態では、ハードディスク214に格納される粉体分析用アプリケーションプログラム214aが用いる上記式(1)に代入される軸トルク荷重Tを、攪拌翼122が収容容器11内の20.0mm〜30.0mmの高さ範囲に位置する間に検出される複数の軸トルク荷重Tの平均値である平均軸トルク荷重Tとすることによって、収容容器11に収容される乾燥粉体中の攪拌翼122の高さ位置によって、攪拌翼122にかかる軸トルク荷重Tにばらつきがある場合でも、平均軸トルク荷重Tを用いて、粘度ηを求めることができる。その結果、収容容器11に収容される乾燥粉体のつまり具合のばらつきに起因して、求められる粘度ηにばらつきが生じるのを抑制することができる。具体的には、収容容器11の上部近傍(30mm〜50mm)で検出される軸トルク荷重Tを用いずに、粘度ηを求めることができるので、収容容器11の上部近傍で検出される軸トルク荷重Tが、収容容器11の上部近傍の乾燥粉体の自由表面の影響により、その小さくなる傾向がある場合でも、小さくなる傾向がある軸トルク荷重Tを用いずに、粘度ηを求めることができる。また、収容容器11の下部近傍(5mm〜20mm)で検出される軸トルク荷重Tが、乾燥粉体の圧力により圧縮されることに起因して、その大きくなる傾向がある場合でも、大きくなる傾向がある軸トルク荷重Tを用いずに、粘度ηを求めることができる。これらの結果、攪拌翼122が収容容器11の高さ方向の中央部近傍の高さ範囲(20.0mm〜30.0mm)に位置する間に検出される安定した軸トルク荷重Tに基づいて、容易に、より正確な乾燥粉体層の粘度ηを求めることができる。
また、本実施形態では、粉体測定装置10のトルク検出部145により検出された軸トルク荷重T(平均軸トルク荷重T)に基づいて求められた粘度ηから粒子間結合エネルギーFおよび凝集粒子数nを求める際に用いられる式(9)で、攪拌翼122の高速回転の条件下で得られた仮想的分散媒粘度ηmin(=0.047)を用いることによって、乾燥粉体の凝集および乾燥粉体の粒子の存在による粘度への影響が少ない仮想的な粘度の条件下で、粒子間結合エネルギーFおよび凝集粒子数nを求めることができる。
また、本実施形態では、図14に示したステップS1の測定開始信号を受信したか否かの判断を行う前の測定開始準備として、収容容器11に収容される乾燥粉体に対して攪拌部12の攪拌翼122を回転させることにより、乾燥粉体の状態を均一に整えることによって、収容容器11に収容される乾燥粉体のつまり具合に偏りが生じるの解消することができるので、再現性の良い測定を行うことができる。
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
たとえば、上記実施形態では、乾燥粉体が収容された収容容器に対して、上下方向に移動可能で、かつ、回転可能に構成された攪拌部の攪拌翼を用いる例を示したが、本発明はこれに限らず、攪拌部の攪拌翼を固定させた状態で、乾燥粉体を収容するための収容容器を上下方向に移動可能に、かつ、回転可能に構成してもよい。
また、上記実施形態では、粉体測定装置のトルク検出部により検出された軸トルク荷重から粘度を求めるとともに、求められた粘度から乾燥粉体の粒子間結合エネルギーおよび凝集粒子数を求める例を示したが、本発明はこれに限らず、粉体測定装置のトルク検出部により検出された軸トルク荷重から求められた粘度のみによって、乾燥粉体層の流動性(挙動)を評価してもよい。
また、上記実施形態では、粉体測定装置に通信回線を通じてパーソナルコンピュータ(PC)を接続させることにより、粉体測定装置で検出された軸トルク荷重をパーソナルコンピュータに送信して、パーソナルコンピュータのCPUにより受信した軸トルク荷重を粘度に換算する例を示したが、本発明はこれに限らず、粉体測定装置と別個に設けずに、粉体測定装置のみにより、軸トルク荷重を検出して粘度を求めるようにしてもよい。
本発明の一実施形態による粉体測定システムの全体構成を示した斜視図である。 図1に示した一実施形態による粉体測定システムの模式図である。 図1に示した一実施形態による粉体測定システムの攪拌部の正面図である。 図1に示した一実施形態による粉体測定システムの攪拌翼と収容容器とを示した模式図である。 図1に示した一実施形態による粉体測定システムのエアレータを示した平面図である。 図1に示した一実施形態による粉体測定システムの粉体測定装置の本体部のブロック図である。 図1に示した一実施形態による粉体測定システムの粉体測定装置の制御部のブロック図である。 図1に示した一実施形態による粉体測定システムのPCのブロック図である。 図1に示した一実施形態による粉体測定システムの攪拌翼の高さに対する乾燥粉体の軸トルク荷重を示したグラフである。 図1に示した一実施形態による粉体測定システムの粉体測定装置により検出された軸トルク荷重と粘度計により検出された粘度との関係を示したグラフである。 図1に示した一実施形態による粉体測定システムの粉体測定装置の攪拌翼の剪断速度に対する乾燥粉体の粘度を示したグラフである。 図1に示した一実施形態による粉体測定システムの攪拌翼の回転速度80mm/sにおける乾燥粉体の固体体積分率と粘度との関係を示したグラフである。 図1に示した一実施形態による粉体測定システムの攪拌翼の回転速度と乾燥粉体の固体体積分率0とした場合の仮想的分散媒粘度との関係を示したグラフである。 図1に示した一実施形態による粉体測定システムの粉体測定装置の制御部による乾燥粉体の測定フローを示したフローチャートである。 図1に示した一実施形態による粉体測定システムのPCのCPUによるデータ処理フローを示したフローチャートである。 図1に示した一実施形態による粉体測定システムの攪拌翼の剪断速度に対する凝集粒子数と粒子間結合エネルギーとを示したグラフである。
符号の説明
1 粉体測定システム
10 粉体測定装置(分析装置)
11 収容容器
13 エアレータ(通気装置)
20 パーソナルコンピュータ(コンピュータ)
21 本体部(制御部)
145 トルク検出部(検出部)
122 攪拌翼

Claims (12)

  1. 粉体を収容するための収容容器と、
    前記収容容器に空気を供給するための通気装置と、
    前記収容容器に対して相対的に上下移動可能でかつ相対的に回転可能であり、前記収容容器に収容された粉体により形成された粉体層を攪拌するための攪拌翼と、
    前記粉体層が前記攪拌翼によって攪拌されるときに、前記攪拌翼にかかる荷重を検出するための検出部と、
    前記攪拌翼が、前記粉体と前記空気との気固二相系の状態において、前記収容容器の粉体層中を下降しながら前記粉体を上方に押し上げる方向に攪拌するときの前記検出部により検出された前記荷重に基づいて、前記粉体層の特性を表す指標を粘度として求めるための制御部とを備える、粉体測定システム。
  2. 前記荷重は、前記攪拌翼にかかる軸トルクである、請求項1に記載の粉体測定システム。
  3. 前記制御部は、所定の荷重と粘度との関係式に基づいて、前記検出部により検出された前記荷重から前記粘度を求める、請求項1または2に記載の粉体測定システム。
  4. 前記所定の荷重と前記粘度との関係式は、比例関係の式である、請求項3に記載の粉体測定システム。
  5. 前記粘度を求めるための前記検出部により検出された前記荷重は、前記攪拌翼が前記収容容器内の所定の高さ範囲に位置する間に検出された複数の荷重の平均値である、請求項3または4に記載の粉体測定システム。
  6. 前記所定の高さ範囲は、前記収容容器の高さ方向の中央部近傍の所定の高さ範囲である、請求項5に記載の粉体測定システム。
  7. 前記制御部は、前記粉体層の特性を表す指標である前記粘度に基づいて、前記粉体の粒子間エネルギーまたは凝集粒子数を求める、請求項1〜6のいずれか1項に記載の粉体測定システム。
  8. 前記収容容器と、前記攪拌翼と、前記通気装置と、前記検出部とを備えた分析装置と、
    前記制御部を備えるとともに、前記分析装置に通信可能に接続されるコンピュータとを備え、
    前記コンピュータの制御部は、前記検出部から前記攪拌翼にかかる荷重を前記分析装置から受信して、受信した前記荷重に基づいて前記粉体層の特性を表す指標を粘度として求める、請求項1〜7のいずれか1項に記載の粉体測定システム。
  9. 通気装置により空気が供給される収容容器に収容される粉体により形成された粉体層を、前記粉体と空気との気固二相系の状態において、下降しながら前記粉体を上方に押し上げる方向に攪拌する攪拌翼にかかる荷重を検出するステップと、
    検出された前記攪拌翼にかかる荷重に基づいて、前記粉体層の特性を表す指標を粘度として求めるステップとを備えた、粉体測定方法。
  10. 前記検出された攪拌翼にかかる荷重に基づいて、前記粉体層の特性を表す指標を粘度として求めるステップは、
    所定の荷重と粘度との関係式に基づいて、前記攪拌翼により検出された前記荷重から前記粘度を求めるステップを含む、請求項9に記載の粉体測定方法。
  11. 前記粉体層の特性を表す指標である前記粘度に基づいて、前記粉体の粒子間エネルギーまたは凝集粒子数を求めるステップをさらに備える、請求項9または10に記載の粉体測定方法。
  12. 前記粉体層の特性を表す指標である前記粘度に基づいて、前記粉体の粒子間エネルギーまたは凝集粒子数を求めるステップは、
    空気中の前記粉体が、液体中の固体粒子が分散して懸濁状態となったときの特性と実質的に同じ特性を表すものと仮定して、前記粘度に基づいて、前記空気中の粉体の粒子間エネルギーまたは凝集粒子数を求めるステップを含む、請求項11に記載の粉体測定方法。
JP2005223594A 2005-08-02 2005-08-02 粉体測定システムおよび粉体測定方法 Expired - Fee Related JP4642585B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005223594A JP4642585B2 (ja) 2005-08-02 2005-08-02 粉体測定システムおよび粉体測定方法
EP06016001.7A EP1750114A3 (en) 2005-08-02 2006-08-01 Powder measuring system and powder measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005223594A JP4642585B2 (ja) 2005-08-02 2005-08-02 粉体測定システムおよび粉体測定方法

Publications (2)

Publication Number Publication Date
JP2007040770A JP2007040770A (ja) 2007-02-15
JP4642585B2 true JP4642585B2 (ja) 2011-03-02

Family

ID=37410699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005223594A Expired - Fee Related JP4642585B2 (ja) 2005-08-02 2005-08-02 粉体測定システムおよび粉体測定方法

Country Status (2)

Country Link
EP (1) EP1750114A3 (ja)
JP (1) JP4642585B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2238283A4 (en) * 2008-02-01 2012-07-11 Glaxosmithkline Llc METHOD AND DEVICE FOR PREDICTING THE PROPERTIES OF GRANULATES AND MIXTURES MANUFACTURED THEREFROM
EP3064926B8 (en) 2015-03-06 2018-07-11 Ernest Buira Núñez Rotational viscometer and equipment for determining the viscosity comprising said viscometer
AT516405B1 (de) 2015-03-11 2016-05-15 Anton Paar Gmbh Drehrheometer
AT519255B1 (de) * 2016-12-14 2018-05-15 Anton Paar Gmbh Pulverfluidisierung
US11480507B2 (en) * 2019-03-22 2022-10-25 Honda Motor Co., Ltd. Powder resin flow inspection method and powder resin flow inspection apparatus
EP4045890B1 (en) 2019-10-15 2023-11-29 TA Instruments-Waters LLC Rotor for rheological measurements of material with variable volume

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153544A (ja) * 1984-12-27 1986-07-12 Zenitakagumi:Kk 回転粘度計
JPS6311836A (ja) * 1986-02-24 1988-01-19 エヌオーエーエルエル・デービーアイ エナジー ウント エントソルグングステクニック ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉粒体のレオロジ−特性値を決定する方法と装置
JPH03269340A (ja) * 1990-03-20 1991-11-29 Hosokawa Micron Corp 粉粒体の付着力測定方法、並びに、付着力測定装置
JPH0480639A (ja) * 1990-07-23 1992-03-13 Fujitsu Ltd 粉末の粒度測定方法
JPH06221984A (ja) * 1993-01-26 1994-08-12 Osaka Gas Co Ltd 回転粘度計
JPH07331860A (ja) * 1994-06-09 1995-12-19 Seasutaa Corp:Kk 建築仕上塗材等の粘度設定方法および粘度設定撹拌機
JPH0996599A (ja) * 1995-07-26 1997-04-08 Chichibu Onoda Cement Corp 流動性測定方法及びその装置
JP2000507354A (ja) * 1996-03-26 2000-06-13 レジナルド エドワード フリーマン レオメーター
JP2000258222A (ja) * 1999-03-04 2000-09-22 Ishikawajima Harima Heavy Ind Co Ltd 液面検出方法
JP2002062240A (ja) * 2000-08-21 2002-02-28 Ishikawajima Constr Materials Co Ltd 粘度測定装置
JP2004037651A (ja) * 2002-07-01 2004-02-05 Ricoh Co Ltd 電子写真用トナー及び評価方法
JP2005121836A (ja) * 2003-10-15 2005-05-12 Ricoh Co Ltd 粉体評価装置及び静電荷現像用トナー

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0128486D0 (en) * 2001-11-28 2002-01-23 Stable Micro Systems Ltd Rheometer
US6874353B2 (en) * 2003-01-30 2005-04-05 Halliburton Energy Services, Inc. Yield point adaptation for rotating viscometers

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153544A (ja) * 1984-12-27 1986-07-12 Zenitakagumi:Kk 回転粘度計
JPS6311836A (ja) * 1986-02-24 1988-01-19 エヌオーエーエルエル・デービーアイ エナジー ウント エントソルグングステクニック ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉粒体のレオロジ−特性値を決定する方法と装置
JPH03269340A (ja) * 1990-03-20 1991-11-29 Hosokawa Micron Corp 粉粒体の付着力測定方法、並びに、付着力測定装置
JPH0480639A (ja) * 1990-07-23 1992-03-13 Fujitsu Ltd 粉末の粒度測定方法
JPH06221984A (ja) * 1993-01-26 1994-08-12 Osaka Gas Co Ltd 回転粘度計
JPH07331860A (ja) * 1994-06-09 1995-12-19 Seasutaa Corp:Kk 建築仕上塗材等の粘度設定方法および粘度設定撹拌機
JPH0996599A (ja) * 1995-07-26 1997-04-08 Chichibu Onoda Cement Corp 流動性測定方法及びその装置
JP2000507354A (ja) * 1996-03-26 2000-06-13 レジナルド エドワード フリーマン レオメーター
JP2000258222A (ja) * 1999-03-04 2000-09-22 Ishikawajima Harima Heavy Ind Co Ltd 液面検出方法
JP2002062240A (ja) * 2000-08-21 2002-02-28 Ishikawajima Constr Materials Co Ltd 粘度測定装置
JP2004037651A (ja) * 2002-07-01 2004-02-05 Ricoh Co Ltd 電子写真用トナー及び評価方法
JP2005121836A (ja) * 2003-10-15 2005-05-12 Ricoh Co Ltd 粉体評価装置及び静電荷現像用トナー

Also Published As

Publication number Publication date
EP1750114A2 (en) 2007-02-07
EP1750114A3 (en) 2014-01-22
JP2007040770A (ja) 2007-02-15

Similar Documents

Publication Publication Date Title
JP4642585B2 (ja) 粉体測定システムおよび粉体測定方法
Tabuteau et al. Drag force on a sphere in steady motion through a yield-stress fluid
CA2771589C (en) Probe and method for obtaining rheological property value
US10520410B2 (en) Probe and method for obtaining rheological property value
Boyer et al. Dense suspensions in rotating-rod flows: normal stresses and particle migration
Rudolph et al. Experimental and numerical analysis of power consumption for mixing of high viscosity fluids with a co-axial mixer
JP4322676B2 (ja) レオメータ
Tomasetta et al. The measurement of powder flow properties with a mechanically stirred aerated bed
Bao et al. Effects of rotational speed and fill level on particle mixing in a stirred tank with different impellers
Lac et al. Non-Newtonian end-effects in standard oilfield rheometers
Bacelos et al. Analysis of fluid dynamics behavior of conical spouted bed in presence of pastes
CN110068504B (zh) 一种测试粮食内部温湿度对其压缩特性影响的装置和方法
CN108261976B (zh) 一种强力混合机混匀效果的控制方法及控制系统
CN114888971B (zh) 一种混凝土搅拌车自动称重方法
CN208780595U (zh) 悬浮物检测装置
JP2009113408A (ja) 細骨材の諸元値算出方法
JP6623921B2 (ja) 粘度測定装置および粘度測定方法
Bao et al. Shaft power consumption of stirred tank with particles: from the perspective of pseudoshearing thinning rheological property of particles
Liu et al. An Understanding of the Relationship Between Mixing Performance and Power Consumption in a High-Shear Wet Granulation Pre-mixing
CN218601097U (zh) 粉体表观粘度测量系统
Stavrou Assessing powder flowability at low consolidation stresses.
WO2023014400A1 (en) Viscometer system
Di Landro et al. Experimental determination of rheological properties of polydimethylsiloxane
Dickey Scale‐Up
CN115791520A (zh) 粘度计算模型的确定方法及粉体表观粘度测量系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees