JP4630986B2 - β-Ga2O3-based single crystal growth method - Google Patents

β-Ga2O3-based single crystal growth method Download PDF

Info

Publication number
JP4630986B2
JP4630986B2 JP2003046552A JP2003046552A JP4630986B2 JP 4630986 B2 JP4630986 B2 JP 4630986B2 JP 2003046552 A JP2003046552 A JP 2003046552A JP 2003046552 A JP2003046552 A JP 2003046552A JP 4630986 B2 JP4630986 B2 JP 4630986B2
Authority
JP
Japan
Prior art keywords
single crystal
axis
azimuth
growth method
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003046552A
Other languages
Japanese (ja)
Other versions
JP2004262684A (en
JP2004262684A5 (en
Inventor
昇 一ノ瀬
清史 島村
和夫 青木
ビジョラ エンカルナシオン アントニア ガルシア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003046552A priority Critical patent/JP4630986B2/en
Application filed by Waseda University filed Critical Waseda University
Priority to PCT/JP2004/001653 priority patent/WO2004074556A2/en
Priority to US10/546,484 priority patent/US7393411B2/en
Priority to EP10011746A priority patent/EP2273569A3/en
Priority to CNB2004800050077A priority patent/CN100370065C/en
Priority to EP10011745.6A priority patent/EP2267194B1/en
Priority to AT04711454T priority patent/ATE525498T1/en
Priority to RU2005126721/15A priority patent/RU2313623C2/en
Priority to EP04711454A priority patent/EP1598450B1/en
Priority to CA002517024A priority patent/CA2517024C/en
Priority to KR1020057015608A priority patent/KR100787272B1/en
Priority to TW093103898A priority patent/TWI370804B/en
Priority to TW101114968A priority patent/TW201242901A/en
Priority to TW100131316A priority patent/TWI450865B/en
Publication of JP2004262684A publication Critical patent/JP2004262684A/en
Publication of JP2004262684A5 publication Critical patent/JP2004262684A5/ja
Priority to US12/155,991 priority patent/US7713353B2/en
Priority to US12/659,609 priority patent/US8262796B2/en
Publication of JP4630986B2 publication Critical patent/JP4630986B2/en
Application granted granted Critical
Priority to US13/572,976 priority patent/US8747553B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、β−Ga23系単結晶成長方法に関し、特にクラッキングや双晶化傾向を減少させ、結晶性を向上させたβ−Ga23系単結晶成長方法に関する。
【0002】
【従来の技術】
紫外領域での発光素子は、水銀フリーの蛍光灯の実現、クリーンな環境を提供する光触媒、より高密度記録を実現する新世代DVD等で特に大きな期待が持たれている。このような背景から、GaN系青色発光素子が実現されてきたが、更なる短波長化光源が求められており、近年、β−Ga23のバルク系単結晶の基板作製が検討されている。図7は、従来のβ−Ga23のバルク系単結晶により形成した基板200を示す。
【0003】
このような基板200の材料を製造するための従来の単結晶成長方法として、CZ法(Czochralski法)やFZ法(Floating Zone Technique)が知られている(例えば非特許文献1参照。)。
【0004】
CZ法は、以下のようにして行われる。先ず、原料としての純度4NのGa23粉末を充填したIrるつぼを石英管で覆い、アルゴンガスに酸素ガス1vol.%混合した混合ガスを石英管に流しながら高周波発振器によりIrるつぼを加熱し、Ga23粉末を溶解し、Ga23の多結晶溶解物を生成する。ついで、別途準備したβ−Ga23種結晶を、溶解したGa23に接触し、1mm/h、結晶回転数15rpmの速度でβ−Ga23種結晶を引上げ、β−Ga23単結晶の作製を行うものである。この方法によれば、大きな直径のβ−Ga23単結晶を成長させることができるという利点がある。
【0005】
FZ法は、上側の原料、例えば、β−Ga23多結晶の融液を下側のβ−Ga23種結晶で支えながら結晶を成長させる方法である。この方法によれば、容器を使用しないので、容器からの汚染が防げること、容器による使用雰囲気の制限が無いこと、容器と反応しやすい材料の育成ができること、等の利点がある。
【0006】
【非特許文献1】
M.Saurat,A.Revcolevschi,「Rev.Int.HautesTemper.et Refract.」1971年8号p.291
【0007】
【発明が解決しようとする課題】
しかし、従来のCZ法では、Ga23融液からの融液成分の激しい蒸発や著しい不安定成長のために、結晶成長を制御することが困難である。
【0008】
また、FZ法では、1cm2程度の単結晶が条件によっては得られるが、溶融帯からの激しい蒸発、急峻な温度勾配のために、双晶化、クラッキングが生じ、基板に必要とされる大型化、高品質化は困難であった。さらに、方位の定まっていないβ−Ga23単結晶で基板200を作製する場合、クラッキング201が生じるために、劈開面(100)以外の方位で切断することが非常に困難である。
【0009】
従って、本発明の目的は、大型化、高品質化の基板等に加工しても割れを生じにくいβ−Ga23系単結晶成長方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、上記目的を達成するため、β−Ga系種結晶を準備し、β−Ga系種結晶からa軸<100>方位、b軸<010>方位、又はc軸<001>方位にβ−Ga系単結晶を成長させることを特徴とするβ−Ga系単結晶成長方法を提供する。
【0011】
この構成によれば、クラッキング、双晶化傾向が減少し、結晶性が高くなり、加工性が良くなる。
【0012】
【発明の実施の形態】
図1は、本発明の実施の形態に係る赤外線加熱単結晶製造装置を示す。この赤外線加熱単結晶製造装置1は、FZ法(フローティングゾーン法)によりβ−Ga23単結晶を製造するものであり、石英管2と、β−Ga23種結晶(以下「種結晶」と略す。)7を保持・回転するシード回転部3と、β−Ga23多結晶素材(以下「多結晶素材」と略す。)9を保持・回転する素材回転部4と、多結晶素材9を加熱して溶融する加熱部5と、シード回転部3、素材回転部4および加熱部5を制御する制御部6とを有して概略構成されている。
【0013】
シード回転部3は、種結晶7を保持するシードチャック33と、シードチャック33に回転を伝える下部回転軸32と、下部回転軸32を正回転させるとともに、上下方向に移動させる下部駆動部31とを備える。
【0014】
素材回転部4は、多結晶素材9の上端部9aを保持する素材チャック43と、素材チャック43に回転を伝える上部回転軸42と、上部回転軸42を正逆回転させるとともに、上下方向に移動させる上部駆動部41とを備える。
【0015】
加熱部5は、多結晶素材9を径方向から加熱して溶融するハロゲンランプ51と、ハロゲンランプ51を収容し、ハロゲンランプの発光する光を多結晶素材9の所定部位に集光する楕円鏡52と、ハロゲンランプ51に電源を供給する電源部53とを備える。
【0016】
石英管2には、下部回転軸32、シードチャック33、上部回転軸42、素材チャック43、多結晶素材9、β−Ga23の単結晶8および種結晶7が収容される。石英管2は、酸素ガスと不活性ガスとしての窒素ガスとの混合ガスを供給されて密閉できるようになっている。
【0017】
次に、本実施の形態に係るβ−Ga23単結晶成長方法を、図2、図3、図4を参照して説明する。
【0018】
(1)種結晶の作製
図2は、種結晶7の正面図を示す。種結晶7は、断面正方形の角柱状を呈し、種結晶7の一部がシードチャック33に保持される。種結晶7は、例えば、β−Ga単結晶を劈開面に沿って切り出したものを使用する。種結晶7は、良好なβ−Ga単結晶を成長させるため、成長結晶の5分の1以下の径または5mm以下の断面積を有し、β−Ga単結晶の成長の際に破損しない強度を有する。本実施の形態では、断面積を1〜2mmとした。その軸方向は、a軸<100>方位、b軸<010>方位、あるいはc軸<001>方位である。なお、ここで、径とは、正方形の一辺、矩形の長辺あるいは円の直径等をいう。また、軸方向と各方位との誤差は、プラスマイナス10°の範囲内とするのが好ましい。
【0019】
図3(a)〜(d)は、本発明の実施の形態に係るβ−Ga23単結晶の成長過程を示し、図4は、本発明の実施の形態に係る単結晶を示す。なお、図3および図4ではシードチャック33は省略してある。
【0020】
(2)多結晶素材9の作製
まず、多結晶素材9を、以下のようにして作製しておく。すなわち、純度4NのGa23の粉末の所定量を図示しないゴム管に充填し、500MPaで冷間圧縮する。その後、1500℃で10時間焼結し、棒状の多結晶素材9を得る。
【0021】
(3)β−Ga23単結晶8の作製
次に、図1に示すように、種結晶7の一部をシードチャック33に保持し、棒状の多結晶素材9の上端部9aを素材チャック43に保持する。次に、図3(a)に示すように、上部回転軸42の上下位置を調節して種結晶7の上端7aと多結晶素材9の下端9bを接触させる。また、ハロゲンランプ51の光を種結晶7の上端7aと多結晶素材9の下端9bとの部位に集光するように、上部回転軸42および下部回転軸33の上下位置を調節する。石英管2の雰囲気2aは、窒素と酸素の混合気体(100%窒素から100%酸素の間で変化する)の全圧1気圧から2気圧に満たされている。
【0022】
操作者が図示しない電源スイッチをオンにすると、制御部6は、制御プログラムに従い、各部を制御して以下のように単結晶成長制御を行う。加熱部5に電源が投入されると、ハロゲンランプ51は、種結晶7の上端7aと多結晶素材9の下端9bの部位を加熱して、その加熱部位を溶解し、溶解滴8cを形成する。このとき、種結晶7のみを回転させておく。
ついで、多結晶素材9と種結晶7とが十分になじむように当該部を反対方向に回転させながら溶解する。図3(b)に示すように、適度のβ−Ga23単結晶の溶解物8’ができたときに、多結晶素材9の回転を停止し、種結晶7のみを回転させて多結晶素材9および種結晶7を互いに反対方向に引っ張り、種結晶7よりも細いダッシュネック8aを形成する。
ついで、種結晶7と多結晶素材9を20rpmで互いに反対方向に回転させながらハロゲンランプ51で加熱し、かつ、多結晶素材9を5mm/時間の割合で上部回転軸42により上方に引っ張る。ハロゲンランプ51により多結晶素材9を加熱すると、多結晶素材9は、溶解して溶解物8’を形成するとともに、それが冷却すると図3(c)に示すように、多結晶素材9と同等またはそれよりも小さな径のβ−Ga23単結晶8が生成する。適度の長さの単結晶を形成した後、図3(d)に示すように、生成したβ−Ga23単結晶8を取り出すためにβ−Ga23単結晶8の上部8bを細径化する。
【0023】
(4)基板の作製
図5は、β−Ga単結晶8から形成した基板を示す。β−Ga単結晶8は、b軸<010>方位に結晶成長させた場合には、(100)面の劈開性が強くなるので、(100)面に平行な面と垂直な面で切断して基板60を作製する。a軸<100>方位、c軸<001>方位に結晶成長させた場合は、(100)面、(001)の劈開性が弱くなるので、全ての面の加工性が良くなり、上記のような切断面の制限はない。
【0024】
図6は、β−Ga単結晶の単位格子を示す。β−Ga単結晶は、8つのGa原子および12のO原子が、Ga(1),Ga(2),O(1),O(2),O(3)として示される。同図中、a,b,は、それぞれa軸<100>方位、b軸<010>方位、c軸<001>方位を示す。
【0025】
次に、本実施の形態の効果を説明する。
(イ)所定の方向に結晶を成長させているので、直径1cm以上の大きなβ−Ga単結晶8を得ることができる。
(ロ)このβ−Ga単結晶8は、a軸<100>方位、b軸<010>方位、あるいはc軸<001>方位を結晶軸とすることにより、クラッキング、双晶化傾向が減少し、高い結晶性が得られる。
(ハ)また、このような結晶が、再現性よく生成できる。そのため、半導体等の基板としての利用価値も高い。
なお、本発明は、上記の実施の形態に限定されず、種々の変形実施が可能である。
例えば、β−Ga種結晶7の代わりに、β−Gaと同じ単斜晶系、空間群がC2/mに属するβ−Gaのガリウム、インジウム、アルミニウム、錫、ゲルマニウム、ニッケル、銅、亜鉛、ジルコニウム、ニオブ、モリブデン、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ハフニウム、タンタル、タングステン、ケイ素およびマグネシウムからなる群から選択される1または2以上の元素の酸化物を含むβ−Ga固溶体からなるβ−Ga系種結晶を用いてかかる固溶体からなるβ−Ga系単結晶を成長させてもよい。これにより、紫外から青色の波長域で発光するLEDを実現できる。
また、窒素と酸素の混合気体として全圧が2気圧以上でFZ法を行うと、バブルの発生を抑えることができ、結晶成長過程をより安定化できる。
【0026】
また、単結晶8を上方に引っ張る必要があるとき、下部回転軸32を下げてもよい。また、ハロゲンランプ51を移動させるのではなく、下部回転軸32および上部回転軸42を移動させて加熱してもよい。ハロゲンランプの代わりに加熱コイルで加熱してもよい。
本発明は、不活性ガスとして窒素ガスを使用するものとして説明したが、窒素ガスの代わりにアルゴンを使用してもよい。
また、種結晶7は、断面長方形でもよく、角柱状の代わりに、円柱状や楕円柱状であってもよい。
なお、本発明は、FZ法以外に、EFG法(引上げ法であるCzochralski法を利用した形状制御結晶成長法)等の他の結晶成長法にも適用できる。
【0027】
【発明の効果】
以上説明したとおり、本発明によれば、所定の方向にβ−Ga23系単結晶を成長させているため、クラッキング、双晶化傾向が減少し、結晶性の高いβ−Ga23系単結晶を得ることができる。
また、このような結晶性の高いβ−Ga23系単結晶を加工して得られた基板は、歩留りが高く、半導体等の基板として利用性が高い。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る赤外線加熱単結晶製造装置の概略構成を示す図である。
【図2】本発明の実施の形態に係るβ−Ga23の種結晶の正面図である。
【図3】(a)〜(d)は、本発明の実施の形態に係るβ−Ga23単結晶の成長過程を示す。
【図4】本発明の実施の形態に係る単結晶生成物を示す図である。
【図5】本発明の実施の形態に係るβ−Ga23単結晶基板を示す図である。
【図6】本発明の実施の形態に係るβ−Ga23単結晶の原子配置を示す図である。
【図7】従来の単結晶基板を示す図である。
【符号の説明】
1 赤外線加熱単結晶製造装置
2 石英管
2a 雰囲気
3 シード回転部
4 素材回転部
5 加熱部
6 制御部
7 種結晶
8 β−Ga23単結晶
8a ダッシュネック
8b 単結晶の上部
8c 溶解滴
8’ 溶解物
9 多結晶素材
9a 多結晶素材の上端部
31 下部駆動部
32 下部回転軸
33 シードチャック
41 上部駆動部
42 上部回転軸
43 素材チャック
51 ハロゲンランプ
52 楕円鏡
53 電源部
60,200 基板
201 クラッキング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a β-Ga 2 O 3 single crystal growth method, and more particularly, to a β-Ga 2 O 3 single crystal growth method with improved cracking and twinning tendency and improved crystallinity.
[0002]
[Prior art]
Light-emitting elements in the ultraviolet region are particularly expected for the realization of mercury-free fluorescent lamps, photocatalysts that provide a clean environment, and new-generation DVDs that realize higher-density recording. Against this background, GaN-based blue light-emitting elements have been realized, but further light sources with shorter wavelengths have been demanded. In recent years, the production of β-Ga 2 O 3 bulk-based single crystals has been studied. Yes. FIG. 7 shows a substrate 200 formed of a conventional β-Ga 2 O 3 bulk single crystal.
[0003]
CZ method (Czochralski method) and FZ method (Floating Zone Technique) are known as conventional single crystal growth methods for producing such a material of the substrate 200 (see, for example, Non-Patent Document 1).
[0004]
The CZ method is performed as follows. First, an Ir crucible filled with 4N purity Ga 2 O 3 powder as a raw material was covered with a quartz tube, and oxygen gas 1 vol. The Ir crucible is heated by a high-frequency oscillator while flowing a mixed gas mixed in a quartz tube to dissolve the Ga 2 O 3 powder, thereby producing a polycrystalline dissolved solution of Ga 2 O 3 . Subsequently, the separately prepared β-Ga 2 O 3 seed crystal is brought into contact with the dissolved Ga 2 O 3 , and the β-Ga 2 O 3 seed crystal is pulled up at a speed of 1 mm / h and a crystal rotation speed of 15 rpm. A 2 O 3 single crystal is produced. This method has an advantage that a β-Ga 2 O 3 single crystal having a large diameter can be grown.
[0005]
The FZ method is a method of growing a crystal while supporting an upper raw material, for example, a β-Ga 2 O 3 polycrystal melt with a lower β-Ga 2 O 3 seed crystal. According to this method, since the container is not used, there are advantages such as prevention of contamination from the container, no limitation of the use atmosphere by the container, and growth of a material that easily reacts with the container.
[0006]
[Non-Patent Document 1]
M.M. Saurat, A .; Rev. Co., Rev. Int. Hautes Temper. Et Refract., 1971, p. 291
[0007]
[Problems to be solved by the invention]
However, in the conventional CZ method, it is difficult to control crystal growth due to intense evaporation of the melt components from the Ga 2 O 3 melt and remarkable unstable growth.
[0008]
In addition, in the FZ method, a single crystal of about 1 cm 2 can be obtained depending on conditions, but due to intense evaporation from the melting zone and steep temperature gradient, twinning and cracking occur, and the large size required for the substrate High quality and high quality were difficult. Furthermore, when the substrate 200 is manufactured using a β-Ga 2 O 3 single crystal whose orientation is not fixed, cracking 201 is generated, so that it is very difficult to cut in a direction other than the cleavage plane (100).
[0009]
Accordingly, an object of the present invention is to provide a β-Ga 2 O 3 single crystal growth method that is less likely to crack even when processed into a large-sized, high-quality substrate or the like.
[0010]
[Means for Solving the Problems]
The present invention, in order to achieve the above object, prepares the β-Ga 2 O 3 system seed crystal, a shaft <100> orientation from β-Ga 2 O 3 system seed crystal, b-axis <010> orientation or c providing β-Ga 2 O 3 single crystal growing method characterized by growing β-Ga 2 O 3 system single crystal in the axial <001> orientation.
[0011]
According to this configuration, cracking and twinning tendencies are reduced, crystallinity is increased, and workability is improved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an infrared heating single crystal manufacturing apparatus according to an embodiment of the present invention. This infrared heating single crystal manufacturing apparatus 1 manufactures a β-Ga 2 O 3 single crystal by FZ method (floating zone method), and includes a quartz tube 2 and a β-Ga 2 O 3 seed crystal (hereinafter referred to as “seed”). Abbreviated to “crystal”.) A seed rotating unit 3 that holds and rotates 7; a material rotating unit 4 that holds and rotates a β-Ga 2 O 3 polycrystalline material (hereinafter abbreviated as “polycrystalline material”) 9; A heating unit 5 that heats and melts the polycrystalline material 9 and a control unit 6 that controls the seed rotating unit 3, the material rotating unit 4, and the heating unit 5 are schematically configured.
[0013]
The seed rotating unit 3 includes a seed chuck 33 that holds the seed crystal 7, a lower rotating shaft 32 that transmits rotation to the seed chuck 33, a lower driving unit 31 that rotates the lower rotating shaft 32 in the normal direction and moves the lower rotating shaft 32 in the vertical direction. Is provided.
[0014]
The material rotating unit 4 moves the material chuck 43 that holds the upper end 9a of the polycrystalline material 9, the upper rotating shaft 42 that transmits the rotation to the material chuck 43, the upper rotating shaft 42 forward and backward, and the vertical rotation. And an upper drive unit 41 to be operated.
[0015]
The heating unit 5 contains a halogen lamp 51 that heats and melts the polycrystalline material 9 from the radial direction, and an elliptical mirror that houses the halogen lamp 51 and collects light emitted from the halogen lamp at a predetermined portion of the polycrystalline material 9. 52 and a power supply unit 53 that supplies power to the halogen lamp 51.
[0016]
The quartz tube 2 accommodates a lower rotating shaft 32, a seed chuck 33, an upper rotating shaft 42, a material chuck 43, a polycrystalline material 9, a β-Ga 2 O 3 single crystal 8 and a seed crystal 7. The quartz tube 2 is sealed by being supplied with a mixed gas of oxygen gas and nitrogen gas as an inert gas.
[0017]
Next, the β-Ga 2 O 3 single crystal growth method according to the present embodiment will be described with reference to FIGS.
[0018]
(1) Production of Seed Crystal FIG. 2 shows a front view of the seed crystal 7. The seed crystal 7 has a prismatic shape with a square cross section, and a part of the seed crystal 7 is held by the seed chuck 33. As the seed crystal 7, for example, a β-Ga 2 O 3 single crystal cut out along the cleavage plane is used. In order to grow a good β-Ga 2 O 3 single crystal, the seed crystal 7 has a diameter of 1/5 or less of the grown crystal or a cross-sectional area of 5 mm 2 or less, and the β-Ga 2 O 3 single crystal Has strength that does not break during growth. In the present embodiment, the cross-sectional area is set to 1 to 2 mm 2 . The axial direction is the a-axis <100> orientation, the b-axis <010> orientation, or the c-axis <001> orientation . Here, the diameter means one side of a square, a long side of a rectangle, a diameter of a circle, or the like. The error between the axial direction and each direction is preferably within a range of plus or minus 10 °.
[0019]
3A to 3D show the growth process of the β-Ga 2 O 3 single crystal according to the embodiment of the present invention, and FIG. 4 shows the single crystal according to the embodiment of the present invention. 3 and 4, the seed chuck 33 is omitted.
[0020]
(2) Production of polycrystalline material 9 First, the polycrystalline material 9 is produced as follows. That is, a predetermined amount of 4N purity Ga 2 O 3 powder is filled in a rubber tube (not shown) and cold-compressed at 500 MPa. Thereafter, sintering is performed at 1500 ° C. for 10 hours to obtain a rod-like polycrystalline material 9.
[0021]
(3) Production of β-Ga 2 O 3 Single Crystal 8 Next, as shown in FIG. 1, a part of the seed crystal 7 is held by the seed chuck 33, and the upper end portion 9a of the rod-like polycrystalline material 9 is used as the material. Hold on the chuck 43. Next, as shown in FIG. 3A, the upper and lower positions of the upper rotating shaft 42 are adjusted so that the upper end 7 a of the seed crystal 7 and the lower end 9 b of the polycrystalline material 9 are brought into contact with each other. Further, the vertical positions of the upper rotary shaft 42 and the lower rotary shaft 33 are adjusted so that the light from the halogen lamp 51 is focused on the upper end 7 a of the seed crystal 7 and the lower end 9 b of the polycrystalline material 9. The atmosphere 2a of the quartz tube 2 is filled with a total pressure of 1 to 2 atmospheres of a mixed gas of nitrogen and oxygen (which changes between 100% nitrogen and 100% oxygen).
[0022]
When the operator turns on a power switch (not shown), the control unit 6 controls each unit according to the control program and performs single crystal growth control as follows. When the heating unit 5 is turned on, the halogen lamp 51 heats the upper end portion 7a of the seed crystal 7 and the lower end portion 9b of the polycrystalline material 9 to melt the heated portion, thereby forming a dissolving droplet 8c. . At this time, only the seed crystal 7 is rotated.
Next, the polycrystalline material 9 and the seed crystal 7 are melted while being rotated in the opposite direction so that the polycrystalline crystal 9 and the seed crystal 7 are sufficiently adapted. As shown in FIG. 3 (b), when a moderate β-Ga 2 O 3 single crystal melt 8 ′ is formed, the rotation of the polycrystalline material 9 is stopped, and only the seed crystal 7 is rotated to obtain a large amount. The crystal material 9 and the seed crystal 7 are pulled in opposite directions to form a dash neck 8a that is thinner than the seed crystal 7.
Next, the seed crystal 7 and the polycrystalline material 9 are heated by the halogen lamp 51 while rotating in opposite directions at 20 rpm, and the polycrystalline material 9 is pulled upward by the upper rotating shaft 42 at a rate of 5 mm / hour. When the polycrystalline material 9 is heated by the halogen lamp 51, the polycrystalline material 9 is melted to form a melt 8 ', and when it is cooled, it is equivalent to the polycrystalline material 9 as shown in FIG. Alternatively, β-Ga 2 O 3 single crystal 8 having a smaller diameter is formed. After forming the appropriate length of the single crystal, as shown in FIG. 3 (d), the upper 8b of β-Ga 2 O 3 single crystal 8 in order to extract the β-Ga 2 O 3 single crystal 8 generated Reduce diameter.
[0023]
(4) Production of Substrate FIG. 5 shows a substrate formed from the β-Ga 2 O 3 single crystal 8. When the β-Ga 2 O 3 single crystal 8 is grown in the b-axis <010> orientation, the cleavage of the (100) plane becomes strong, so that the plane perpendicular to the plane parallel to the (100) plane The substrate 60 is manufactured by cutting. When the crystal is grown in the a-axis <100> orientation and the c-axis <001> orientation, the cleaving properties of the (100) plane and (001) are weakened, so that the workability of all the faces is improved, as described above. There is no limit on the cut surface.
[0024]
FIG. 6 shows a unit cell of a β-Ga 2 O 3 single crystal. In the β-Ga 2 O 3 single crystal, 8 Ga atoms and 12 O atoms are shown as Ga (1), Ga (2), O (1), O (2), O (3). In the figure, a, b, and c indicate the a-axis <100> orientation, the b-axis <010> orientation, and the c-axis <001> orientation, respectively.
[0025]
Next, the effect of this embodiment will be described.
(A) Since the crystal is grown in a predetermined direction, a large β-Ga 2 O 3 single crystal 8 having a diameter of 1 cm or more can be obtained.
(B) This β-Ga 2 O 3 single crystal 8 has a tendency of cracking and twinning by using the a-axis <100> orientation, the b-axis <010> orientation, or the c-axis <001> orientation as the crystal axis. Decreases and high crystallinity is obtained.
(C) In addition, such crystals can be generated with good reproducibility. Therefore, the utility value as a substrate of a semiconductor or the like is high.
In addition, this invention is not limited to said embodiment, A various deformation | transformation implementation is possible.
For example, instead of the β-Ga 2 O 3 seed crystal 7, β-Ga 2 O 3 and the same monoclinic system, β-Ga 2 O 3 of gallium space group belongs to C2 / m, indium, aluminum, tin One or more elements selected from the group consisting of germanium, nickel, copper, zinc, zirconium, niobium, molybdenum, titanium, vanadium, chromium, manganese, iron, cobalt, hafnium, tantalum, tungsten, silicon and magnesium oxide β-Ga 2 O 3 consisting of a solid solution β-Ga 2 O 3 system seed crystal comprising β-Ga 2 O 3 system single crystal of a solid solution may be grown to Kakaru with including. Thereby, LED which light-emits in an ultraviolet to blue wavelength range is realizable.
Further, when the FZ method is performed with a total pressure of 2 atm or more as a mixed gas of nitrogen and oxygen, generation of bubbles can be suppressed, and the crystal growth process can be further stabilized.
[0026]
Further, when the single crystal 8 needs to be pulled upward, the lower rotating shaft 32 may be lowered. Further, instead of moving the halogen lamp 51, the lower rotating shaft 32 and the upper rotating shaft 42 may be moved to heat them. You may heat with a heating coil instead of a halogen lamp.
Although the present invention has been described as using nitrogen gas as an inert gas, argon may be used instead of nitrogen gas.
Further, the seed crystal 7 may have a rectangular cross section, and may have a columnar shape or an elliptical column shape instead of a prismatic shape.
In addition to the FZ method, the present invention can also be applied to other crystal growth methods such as an EFG method (a shape-controlled crystal growth method using a Czochralski method which is a pulling method).
[0027]
【The invention's effect】
As described above, according to the present invention, the β-Ga 2 O 3 single crystal is grown in a predetermined direction, so that cracking and twinning tendency are reduced, and β-Ga 2 O having high crystallinity is obtained. A three- system single crystal can be obtained.
In addition, a substrate obtained by processing such a β-Ga 2 O 3 single crystal having high crystallinity has a high yield and is highly usable as a substrate for a semiconductor or the like.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an infrared heating single crystal manufacturing apparatus according to an embodiment of the present invention.
FIG. 2 is a front view of a β-Ga 2 O 3 seed crystal according to an embodiment of the present invention.
FIGS. 3A to 3D show a growth process of a β-Ga 2 O 3 single crystal according to an embodiment of the present invention.
FIG. 4 is a diagram showing a single crystal product according to an embodiment of the present invention.
FIG. 5 is a diagram showing a β-Ga 2 O 3 single crystal substrate according to an embodiment of the present invention.
FIG. 6 is a diagram showing an atomic arrangement of a β-Ga 2 O 3 single crystal according to an embodiment of the present invention.
FIG. 7 is a view showing a conventional single crystal substrate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Infrared heating single crystal manufacturing apparatus 2 Quartz tube 2a Atmosphere 3 Seed rotation part 4 Material rotation part 5 Heating part 6 Control part 7 Seed crystal 8 β-Ga 2 O 3 single crystal 8a Dash neck 8b Single crystal upper part 8c Melting droplet 8 'Melt 9 Polycrystalline material 9a Polycrystalline material upper end 31 Lower drive unit 32 Lower rotation shaft 33 Seed chuck 41 Upper drive unit 42 Upper rotation shaft 43 Material chuck 51 Halogen lamp 52 Elliptical mirror 53 Power supply unit 60, 200 Substrate 201 cracking

Claims (14)

β−Ga系種結晶を準備し、
前記β−Ga系種結晶からa軸<100>方位、b軸<010>方位、又はc軸<001>方位にβ−Ga系単結晶を成長させることを特徴とするβ−Ga系単結晶成長方法。
A β-Ga 2 O 3 based seed crystal is prepared,
A β-Ga 2 O 3 based single crystal is grown from the β-Ga 2 O 3 based seed crystal in the a-axis <100> orientation, the b-axis <010> orientation, or the c-axis <001> orientation. A β-Ga 2 O 3 -based single crystal growth method.
前記a軸<100>方位、前記b軸<010>方位、又は前記c軸<001>方位はそれぞれ、それぞれの方位に対してプラスマイナス10°の範囲内の方位であることを特徴とする請求項記載のβ−Ga系単結晶成長方法。The a-axis <100> azimuth, the b-axis <010> azimuth, or the c-axis <001> azimuth is an azimuth within a range of plus or minus 10 degrees with respect to each azimuth. Item 6. The β-Ga 2 O 3 -based single crystal growth method according to Item 1 . 前記β−Ga系単結晶の成長は、FZ法によることを特徴とする請求項1記載のβ−Ga系単結晶成長方法。The beta-Ga 2 Growth of O 3 system single crystal, β-Ga 2 O 3 single crystal growing method according to claim 1, wherein the by FZ method. 前記FZ法で用いるβ−Ga系多結晶原料棒の直径は、成長結晶の直径と等しいかそれよりも大きいことを特徴とする請求項3記載のβ−Ga系単結晶成長方法。The β-Ga 2 O 3 single crystal according to claim 3, wherein a diameter of the β-Ga 2 O 3 polycrystalline raw material rod used in the FZ method is equal to or larger than a diameter of the grown crystal. Growth method. 前記β−Ga系単結晶の前記成長は、全圧が1〜2気圧でOと不活性ガスの混合気体の雰囲気中で行うことを特徴とする請求項1記載のβ−Ga系単結晶成長方法。2. The β-Ga according to claim 1, wherein the growth of the β-Ga 2 O 3 single crystal is performed in an atmosphere of a mixed gas of O 2 and an inert gas at a total pressure of 1 to 2 atm. 2 O 3 single crystal growth method. 前記β−Ga系単結晶の前記成長は、全圧が2気圧以上のOと不活性ガスの混合気体の雰囲気中で行うことを特徴とする請求項1記載のβ−Ga系単結晶成長方法。The β-Ga 2 O 3 system the growth of a single crystal, according to claim 1, wherein beta-Ga 2 that the total pressure is equal to or carried out in an atmosphere of a mixed gas of inert gas and O 2 of more than 2 atm O 3 single crystal growth method. 前記β−Ga系種結晶は、単結晶であることを特徴とする請求項1記載のβ−Ga系単結晶成長方法。The β-Ga 2 O 3 -based single crystal growth method according to claim 1, wherein the β-Ga 2 O 3 -based seed crystal is a single crystal. 前記β−Ga系種結晶は、a軸<100>方位、b軸<010>方位、又はc軸<001>方位に成長したものであることを特徴とする請求項1記載のβ−Ga系単結晶成長方法。The β-Ga 2 O 3 -based seed crystal is grown in the a-axis <100> orientation, the b-axis <010> orientation, or the c-axis <001> orientation. -ga 2 O 3 single crystal growing method. 前記a軸<100>方位、前記b軸<010>方位、又は前記c軸<001>方位はそれぞれ、それぞれの方位に対してプラスマイナス10°の範囲内の方位であることを特徴とする請求項8記載のβ−Ga系単結晶成長方法。The a-axis <100> azimuth, the b-axis <010> azimuth, or the c-axis <001> azimuth is an azimuth within a range of plus or minus 10 degrees with respect to each azimuth. Item 9. The β-Ga 2 O 3 -based single crystal growth method according to Item 8. 前記β−Ga系種結晶は、成長結晶の5分の1以下の径を有し、前記β−Ga系単結晶の成長の際に破損しない強度を有することを特徴とする請求項1記載のβ−Ga系単結晶成長方法。The β-Ga 2 O 3 -based seed crystal has a diameter that is 1/5 or less of a grown crystal, and has a strength that does not break during the growth of the β-Ga 2 O 3 -based single crystal. The β-Ga 2 O 3 -based single crystal growth method according to claim 1. 前記β−Ga系種結晶は、5mm以下の断面積を有し、前記β−Ga系単結晶の成長の際に破損しない強度を有することを特徴とする請求項1記載のβ−Ga系単結晶成長方法。The β-Ga 2 O 3 -based seed crystal has a cross-sectional area of 5 mm 2 or less, and has a strength that does not break during the growth of the β-Ga 2 O 3 -based single crystal. The β-Ga 2 O 3 -based single crystal growth method described. 前記β−Ga系種結晶は、β−Gaと同じ単斜晶系、空間群がC2/mに属するβ−Ga固溶体を含むことを特徴とする請求項1記載のβ−Ga系単結晶成長方法。2. The β-Ga 2 O 3 seed crystal includes the same monoclinic system as β-Ga 2 O 3 and a β-Ga 2 O 3 solid solution whose space group belongs to C2 / m. The β-Ga 2 O 3 -based single crystal growth method described. 前記β−Ga系単結晶は、β−Gaと同じ単斜晶系、空間群がC2/mに属するβ−Ga固溶体を含むことを特徴とする請求項1記載のβ−Ga系単結晶成長方法。The β-Ga 2 O 3 single crystal includes the same monoclinic system as β-Ga 2 O 3 and a β-Ga 2 O 3 solid solution whose space group belongs to C2 / m. The β-Ga 2 O 3 -based single crystal growth method described. 前記β−Ga固溶体は、ガリウム、インジウム、アルミニウム、錫、ゲルマニウム、ニッケル、銅、亜鉛、ジルコニウム、ニオブ、モリブデン、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ハフニウム、タンタル、タングステン、ケイ素およびマグネシウムからなる群から選択される1または2以上の元素の酸化物を含むことを特徴とする請求項12または13記載のβ−Ga系単結晶成長方法。The β-Ga 2 O 3 solid solution is gallium, indium, aluminum, tin, germanium, nickel, copper, zinc, zirconium, niobium, molybdenum, titanium, vanadium, chromium, manganese, iron, cobalt, hafnium, tantalum, tungsten, The β-Ga 2 O 3 -based single crystal growth method according to claim 12 or 13, comprising an oxide of one or more elements selected from the group consisting of silicon and magnesium.
JP2003046552A 2003-02-24 2003-02-24 β-Ga2O3-based single crystal growth method Expired - Lifetime JP4630986B2 (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP2003046552A JP4630986B2 (en) 2003-02-24 2003-02-24 β-Ga2O3-based single crystal growth method
CA002517024A CA2517024C (en) 2003-02-24 2004-02-16 .beta.-ga2o3 single crystal growing method, thin-film single crystal growing method, ga2o3 light-emitting device, and its manufacturing method
US10/546,484 US7393411B2 (en) 2003-02-24 2004-02-16 β-Ga2O3 single crystal growing method, thin-film single crystal growing method, Ga2O3 light-emitting device, and its manufacturing method
CNB2004800050077A CN100370065C (en) 2003-02-24 2004-02-16 B-ga2o3 single crystal growing method, thin-film single crystal growing method, ga2o3 light-emitting device, and its manufacturing method
EP10011745.6A EP2267194B1 (en) 2003-02-24 2004-02-16 Method of growing a beta-Ga2O3 single crystal thin film
AT04711454T ATE525498T1 (en) 2003-02-24 2004-02-16 METHOD FOR GROWING BETA-GA2O3 SINGLE CRYSTALS
RU2005126721/15A RU2313623C2 (en) 2003-02-24 2004-02-16 METHOD OF GROWING THIN MONOCRYSTALLINE FILM, LIGHT-EMITTING DEVICE BASED ON Ga2O3, AND A METHOD FOR MANUFACTURING THE SAME
EP04711454A EP1598450B1 (en) 2003-02-24 2004-02-16 Beta-Ga2O3 SINGLE CRYSTAL GROWING METHOD
EP10011746A EP2273569A3 (en) 2003-02-24 2004-02-16 Beta-Ga203 light-emitting device and its manufacturing method
KR1020057015608A KR100787272B1 (en) 2003-02-24 2004-02-16 Ga2o3 light-emitting device, and its manufacturing method
PCT/JP2004/001653 WO2004074556A2 (en) 2003-02-24 2004-02-16 β-Ga2O3 SINGLE CRYSTAL GROWING METHOD, THIN-FILM SINGLE CRYSTAL GROWING METHOD, Ga2O3 LIGHT-EMITTING DEVICE, AND ITS MANUFACTURING METHOD
TW101114968A TW201242901A (en) 2003-02-24 2004-02-18 Thin film type single crystal growth method
TW093103898A TWI370804B (en) 2003-02-24 2004-02-18 Ga2o3 type light meitting device and manufacturing method thereof
TW100131316A TWI450865B (en) 2003-02-24 2004-02-18 Β-ga2o3 type single crystal growth method
US12/155,991 US7713353B2 (en) 2003-02-24 2008-06-12 β-Ga2O3 single crystal growing method, thin-film single crystal growing method, Ga2O3 light-emitting device, and its manufacturing method
US12/659,609 US8262796B2 (en) 2003-02-24 2010-03-15 β-Ga2O3 single crystal growing method, thin-film single crystal growing method, Ga2O3 light-emitting device, and its manufacturing method
US13/572,976 US8747553B2 (en) 2003-02-24 2012-08-13 β-Ga2O3 single crystal growing method including crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046552A JP4630986B2 (en) 2003-02-24 2003-02-24 β-Ga2O3-based single crystal growth method

Publications (3)

Publication Number Publication Date
JP2004262684A JP2004262684A (en) 2004-09-24
JP2004262684A5 JP2004262684A5 (en) 2006-04-20
JP4630986B2 true JP4630986B2 (en) 2011-02-09

Family

ID=33113055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046552A Expired - Lifetime JP4630986B2 (en) 2003-02-24 2003-02-24 β-Ga2O3-based single crystal growth method

Country Status (2)

Country Link
JP (1) JP4630986B2 (en)
CN (1) CN100370065C (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3679097B2 (en) 2002-05-31 2005-08-03 株式会社光波 Light emitting element
JP2006273684A (en) * 2005-03-30 2006-10-12 Koha Co Ltd Method for producing group iii element oxide-based single crystal
JP5529420B2 (en) * 2009-02-09 2014-06-25 住友電気工業株式会社 Epitaxial wafer, method for producing gallium nitride semiconductor device, gallium nitride semiconductor device, and gallium oxide wafer
JP5618318B2 (en) * 2010-03-12 2014-11-05 並木精密宝石株式会社 Method and apparatus for producing gallium oxide single crystal
CN101967680B (en) * 2010-11-04 2012-02-01 山东大学 Method for preparing monoclinic gallium oxide single-crystal film on magnesium oxide substrate
CN110010670A (en) 2011-09-08 2019-07-12 株式会社田村制作所 Ga2O3It is MISFET and Ga2O3It is MESFET
US9461124B2 (en) 2011-09-08 2016-10-04 Tamura Corporation Ga2O3 semiconductor element
CN103781947B (en) 2011-09-08 2019-05-10 株式会社田村制作所 Crystal laminate structure
CN103781948B (en) * 2011-09-08 2017-11-17 株式会社田村制作所 Crystal laminate structure and its manufacture method
JP5857337B2 (en) * 2011-09-21 2016-02-10 並木精密宝石株式会社 Gallium oxide substrate and manufacturing method thereof
JP5864998B2 (en) * 2011-10-11 2016-02-17 株式会社タムラ製作所 Method for growing β-Ga 2 O 3 single crystal
JP2013102081A (en) 2011-11-09 2013-05-23 Tamura Seisakusho Co Ltd Schottky barrier diode
JP5879102B2 (en) * 2011-11-15 2016-03-08 株式会社タムラ製作所 Method for producing β-Ga2O3 single crystal
JP5491483B2 (en) * 2011-11-15 2014-05-14 株式会社タムラ製作所 Method for growing β-Ga 2 O 3 single crystal
JP6097989B2 (en) * 2012-04-24 2017-03-22 並木精密宝石株式会社 Gallium oxide single crystal and gallium oxide single crystal substrate
JP5756075B2 (en) 2012-11-07 2015-07-29 株式会社タムラ製作所 Method for growing β-Ga 2 O 3 single crystal
JP5536920B1 (en) * 2013-03-04 2014-07-02 株式会社タムラ製作所 Ga2O3-based single crystal substrate and manufacturing method thereof
JP5788925B2 (en) 2013-04-04 2015-10-07 株式会社タムラ製作所 Method for growing β-Ga 2 O 3 single crystal
JP5984069B2 (en) * 2013-09-30 2016-09-06 株式会社タムラ製作所 Method for growing β-Ga2O3 single crystal film and crystal laminated structure
JP5777756B2 (en) * 2014-02-27 2015-09-09 株式会社タムラ製作所 β-Ga2O3-based single crystal substrate
JP6013410B2 (en) * 2014-08-07 2016-10-25 株式会社タムラ製作所 Ga2O3 single crystal substrate
JP6505995B2 (en) * 2014-08-07 2019-04-24 株式会社タムラ製作所 Ga2O3-based single crystal substrate
CN104947192B (en) * 2015-05-25 2018-11-27 中国科学院上海微系统与信息技术研究所 A kind of Ca-Ti ore type SrIrO3The preparation method of monocrystal thin films material
CN104962858A (en) * 2015-07-08 2015-10-07 西安电子科技大学 GaAs substrate-based gallium oxide thin film and growing method thereof
CN104988579A (en) * 2015-07-08 2015-10-21 西安电子科技大学 Gallium oxide film based on sapphire substrate and growing method of gallium oxide film
JP6402079B2 (en) * 2015-09-02 2018-10-10 株式会社タムラ製作所 Method for producing β-Ga2O3 single crystal substrate
JP6744523B2 (en) * 2015-12-16 2020-08-19 株式会社タムラ製作所 Semiconductor substrate, epitaxial wafer, and method of manufacturing the same
JP2016117643A (en) * 2015-12-25 2016-06-30 株式会社タムラ製作所 β-Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
JP6726910B2 (en) 2016-04-21 2020-07-22 国立大学法人信州大学 Device for producing gallium oxide crystal and method for producing gallium oxide crystal
CN106340551B (en) * 2016-08-30 2021-01-19 孙顺秋 Based on Mg beta-Ga2O3Zero-power-consumption solar blind ultraviolet detector of/NSTO heterojunction and preparation method thereof
SG11202000619WA (en) * 2017-01-25 2020-02-27 Shanghai Inst Optics & Fine Mech Cas Gallium oxide-doped crystalline material, preparation method and application thereof
CN108342775B (en) * 2017-01-25 2024-04-12 中国科学院上海光学精密机械研究所 Tantalum-doped beta gallium oxide crystalline material and preparation method and application thereof
CN114836832A (en) * 2017-03-03 2022-08-02 杭州富加镓业科技有限公司 Gallium oxide-doped crystal and preparation method thereof
GB201705755D0 (en) * 2017-04-10 2017-05-24 Norwegian Univ Of Science And Tech (Ntnu) Nanostructure
CN107819045B (en) * 2017-10-27 2019-07-30 张香丽 UV photodetector and preparation method thereof based on gallium oxide heterojunction structure
CN107749565B (en) * 2017-11-27 2020-12-04 江苏点晶光电科技有限公司 Si-based vertical cavity surface emitting chip
CN108304666B (en) * 2018-02-09 2021-11-09 哈尔滨工业大学 Method for calculating charge transfer of beta-gallium sesquioxide based on hybridization functional
CN108630792A (en) * 2018-04-23 2018-10-09 中国科学院半导体研究所 Based on Ga2O3Vertical structure ultraviolet LED of substrate and preparation method thereof
CN109321888B (en) * 2018-09-03 2020-07-31 北京镓族科技有限公司 Gallium oxide luminescent material and preparation method thereof
CN109767990A (en) * 2018-12-27 2019-05-17 山东大学 A kind of method of gallium oxide surface carrier concentration regulation
JP6706705B2 (en) * 2019-03-28 2020-06-10 株式会社タムラ製作所 Ga2O3-based single crystal substrate
CN110098552A (en) * 2019-04-30 2019-08-06 北京镓族科技有限公司 Picosecond all-solid-state ultraviolet laser based on gallium oxide crystal
KR20220014161A (en) 2020-07-28 2022-02-04 한양대학교 산학협력단 Large-area single or multi-layer graphene having a controlled azimuth angle and manufacturing method thereof
CN110752159B (en) * 2019-10-28 2023-08-29 中国科学技术大学 Method for Annealing Gallium Oxide Material
CN110828589B (en) * 2019-11-17 2021-08-03 金华紫芯科技有限公司 Flexible solar blind ultraviolet photoelectric detector and preparation method thereof
CN111081825A (en) * 2019-12-20 2020-04-28 浙江大学 Preparation method of MSM type solar blind ultraviolet detector
JP6846724B2 (en) * 2020-02-28 2021-03-24 国立大学法人信州大学 Equipment for manufacturing gallium oxide crystals and manufacturing method for gallium oxide crystals
CN112850780B (en) * 2021-01-08 2022-11-08 辽宁师范大学 Phosphorus doped beta-Ga 2 O 3 Preparation method of micron line
CN114561701B (en) * 2021-06-07 2022-08-19 浙江大学杭州国际科创中心 Method for growing gallium oxide single crystal by casting method and semiconductor device containing gallium oxide single crystal
CN114059162B (en) * 2022-01-14 2022-05-13 浙江大学杭州国际科创中心 Gallium oxide crystal growth device and crystal growth method
CN114574966B (en) * 2022-05-06 2022-08-16 中国电子科技集团公司第四十六研究所 Raw material processing method for growing beta-phase gallium oxide single crystal by guided mode method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226899A (en) * 1988-07-16 1990-01-29 Mitsumi Electric Co Ltd Method for growing fe-si-al based alloy single crystal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3579712B2 (en) * 2000-08-28 2004-10-20 独立行政法人産業技術総合研究所 Method for producing (0001) epitaxial thin film of hexagonal substance such as zinc oxide using oxide cubic (111) substrate and thin film produced by the same method
TW541723B (en) * 2001-04-27 2003-07-11 Shinetsu Handotai Kk Method for manufacturing light-emitting element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226899A (en) * 1988-07-16 1990-01-29 Mitsumi Electric Co Ltd Method for growing fe-si-al based alloy single crystal

Also Published As

Publication number Publication date
CN100370065C (en) 2008-02-20
JP2004262684A (en) 2004-09-24
CN1754013A (en) 2006-03-29

Similar Documents

Publication Publication Date Title
JP4630986B2 (en) β-Ga2O3-based single crystal growth method
KR100787272B1 (en) Ga2o3 light-emitting device, and its manufacturing method
US7097707B2 (en) GaN boule grown from liquid melt using GaN seed wafers
JP5459004B2 (en) Method for producing sapphire single crystal
JP4844428B2 (en) Method for producing sapphire single crystal
JP2006347865A (en) Container for growing compound semiconductor single crystal, compound semiconductor single crystal and manufacturing method of compound semiconductor single crystal
WO1996015297A1 (en) Process for bulk crystal growth
JP2006273684A (en) Method for producing group iii element oxide-based single crystal
TWI580827B (en) Sapphire single crystal nucleus and its manufacturing method
JP4844429B2 (en) Method for producing sapphire single crystal
JP4966007B2 (en) InP single crystal wafer and method of manufacturing InP single crystal
WO2019186871A1 (en) Single crystal manufacturing device and single crystal manufacturing method
JP4670002B2 (en) Method for producing nitride single crystal
JP2010064936A (en) Method for producing semiconductor crystal
JP5326865B2 (en) Method for producing sapphire single crystal
JP2011236088A (en) Oxide single crystal
JPH1095699A (en) Growth of zirconium diboride single crystal
JP2009057237A (en) Method for producing compound semiconductor single crystal
JP2011126731A (en) Sapphire single crystal and method for producing the same
KR100868726B1 (en) Synthesis vb apparatus and method for gaas
JP4817099B2 (en) Carbide single crystal and manufacturing method thereof
JP2008063204A (en) Growing method of zinc oxide crystal
JP5218960B2 (en) Zirconium diboride (ZrB2) single crystal growth method and semiconductor forming substrate
JP3821508B2 (en) Method for producing ZnSe single crystal
CN114197041A (en) Preparation method of trititanium pentoxide polycrystal material and trititanium pentoxide polycrystal material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101014

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4630986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term