JP6706705B2 - Ga2O3-based single crystal substrate - Google Patents

Ga2O3-based single crystal substrate Download PDF

Info

Publication number
JP6706705B2
JP6706705B2 JP2019064086A JP2019064086A JP6706705B2 JP 6706705 B2 JP6706705 B2 JP 6706705B2 JP 2019064086 A JP2019064086 A JP 2019064086A JP 2019064086 A JP2019064086 A JP 2019064086A JP 6706705 B2 JP6706705 B2 JP 6706705B2
Authority
JP
Japan
Prior art keywords
plane
axis
single crystal
substrate
crystal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019064086A
Other languages
Japanese (ja)
Other versions
JP2019123665A (en
Inventor
公平 佐々木
公平 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2019064086A priority Critical patent/JP6706705B2/en
Publication of JP2019123665A publication Critical patent/JP2019123665A/en
Application granted granted Critical
Publication of JP6706705B2 publication Critical patent/JP6706705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、Ga系単結晶基板に関する。 The present invention relates to a Ga 2 O 3 -based single crystal substrate.

(100)面から50°以上90°以下回転させた面を主面とするβ−Ga系基板が提案されている(例えば、特許文献1参照。)。 There has been proposed a β-Ga 2 O 3 -based substrate whose main surface is a surface rotated by 50° or more and 90° or less from a (100) plane (see, for example, Patent Document 1).

また、特許文献1では、この(100)面から50°以上90°以下回転させた面として、(010)、(001)、(−201)、(101)、及び(310)面が挙げられている。 Further, in Patent Document 1, (010), (001), (-201), (101), and (310) planes can be cited as the planes rotated from this (100) plane by 50° or more and 90° or less. ing.

国際公開第2013/035464号International Publication No. 2013/035464

本発明の目的は、表面粗さの小さいGa系結晶膜を成長させることができるGa系単結晶基板を提供することにある。 An object of the present invention is to provide a Ga 2 O 3 -based single crystal substrate capable of growing a Ga 2 O 3 -based crystal film having a small surface roughness.

本発明者等は、Ga系単結晶基板上にGa系結晶膜を成長させる方法について鋭意検討を重ねたところ、ある特定の面方位を主面とし、その主面上にGa系結晶膜をエピタキシャル成長させれば、上記目的が達成できることを見いだし、本発明に至った。 The inventors of the present invention conducted extensive studies on a method of growing a Ga 2 O 3 -based crystal film on a Ga 2 O 3 -based single crystal substrate, and found that a specific plane orientation was set as the main surface and The inventors have found that the above object can be achieved by epitaxially growing a Ga 2 O 3 -based crystal film, and completed the present invention.

即ち、上記目的は、下記の[1]に記載された各発明により達成される。 That is, the above object is achieved by each invention described in [1] below.

[1][010]軸を回転軸として、(100)面から(101)面を経由して(001)面に至る回転方向をプラスと定義したとき、(100)面から90°以上110°以下回転させた面を成長面として有する、Ga系単結晶基板。 When the rotation direction from the (100) plane to the (001) plane through the (101) plane with the [1] and [010] axes as the rotation axis is defined as plus, 90° or more and 110° or more from the (100) plane A Ga 2 O 3 -based single crystal substrate having a rotated surface as a growth surface.

本発明によれば、表面粗さの小さいGa系結晶膜を成長させることができるGa系単結晶基板を提供することができる。 According to the present invention, it is possible to provide a Ga 2 O 3 -based single crystal substrate on which a Ga 2 O 3 -based crystal film having a small surface roughness can be grown.

Ga単結晶基板の主面の、[010]軸を回転軸とする(100)面からの回転角度と、主面上のクラック密度との関係を示す図である(実施例1)。Of Ga 2 O 3 single crystal substrate main surface is a diagram showing a rotation angle from that (100) plane and the rotation axis [010] axis, the relationship between crack density over the main surface (Example 1) .. Ga単結晶基板の主面の、[001]軸を回転軸とする(100)面からの回転角度と、主面上のクラック密度との関係を示す図である(実施例1)。Of Ga 2 O 3 single crystal substrate main surface is a diagram showing the angle of rotation from the [001] axis as a rotation axis (100) plane, a relationship between crack density over the main surface (Example 1) .. [010]軸を回転軸として(100)面から160°回転させた面を主面とするGa単結晶基板の、主面のCMP処理後の表面光学顕微鏡写真である(実施例1)。1 is a surface optical micrograph of a Ga 2 O 3 single crystal substrate whose main surface is a surface rotated by 160° from a (100) surface with a [010] axis as a rotation axis after CMP treatment (Example 1) ). Ga単結晶基板の主面の[010]軸を回転軸とする(100)面からの回転角度と潜傷(研磨ダメージ)との関係を示す図である(実施例1)。Ga 2 O 3 is a diagram showing the relationship between the rotation angle and the latent scratches (polishing damage) from (100) plane to the rotational axis [010] axis of the main surface of the single crystal substrate (Example 1). Ga単結晶基板の主面の[010]軸を回転軸とする(100)面からの回転角度と、エピタキシャル膜の成長レートとの関係を示す図である(実施例2)。Ga 2 O 3 as a rotation axis [010] axis of the main surface of the single crystal substrate and the rotation angle from the (100) plane is a diagram showing the relationship between the growth rate of the epitaxial film (Example 2). Ga単結晶基板の主面の[001]軸を回転軸とする(100)面からの回転角度と、エピタキシャル膜の成長レートとの関係を示す図である(実施例2)。Ga 2 O 3 as a rotation axis [001] axis of the main surface of the single crystal substrate and the rotation angle from the (100) plane is a diagram showing the relationship between the growth rate of the epitaxial film (Example 2). Ga単結晶基板の(−201)面の[010]方向への傾斜角と、エピタキシャル膜の成長レートとの関係を示す図である(実施例2)。And the inclination angle of the Ga 2 O 3 to the [010] direction of the (-201) plane of the single crystal substrate is a diagram showing the relationship between the growth rate of the epitaxial film (Example 2). Ga単結晶基板にエピタキシャル成長した後のX線回折測定結果を示す図(a)であり、図(a)の(002)面付近を拡大して示す図(b)である(実施例3)。Ga 2 O 3 is a diagram showing an X-ray diffraction measurement results after epitaxial growth on the single crystal substrate (a), a diagram showing an enlarged vicinity of (002) plane of FIG. (A) (b) (Example 3). Ga単結晶基板の[010]軸を回転軸として回転させた面に成長したエピタキシャル膜表面におけるRHEED像を示す写真である(実施例3)。 3 is a photograph showing an RHEED image of the surface of an epitaxial film grown on a surface of a Ga 2 O 3 single crystal substrate rotated about the [010] axis as a rotation axis (Example 3). Ga単結晶基板の主面の[001]軸を回転軸として回転させた面に成長したエピタキシャル膜表面におけるRHEED像を示す写真である(実施例3)。4 is a photograph showing an RHEED image of an epitaxial film surface grown on a surface rotated with the [001] axis of the main surface of a Ga 2 O 3 single crystal substrate as a rotation axis (Example 3). Ga単結晶基板の主面の[010]軸を回転軸とする(100)面からの回転角度と、それぞれの基板の主面上に成長したエピタキシャル膜の表面粗さ(RMS)との関係を示す図である(実施例4)。The rotation angle from the (100) plane with the [010] axis of the main surface of the Ga 2 O 3 single crystal substrate as the rotation axis, and the surface roughness (RMS) of the epitaxial film grown on the main surface of each substrate. It is a figure which shows the relationship of (Example 4). Ga単結晶基板の主面の[010]軸を回転軸として回転させた面に成長したエピタキシャル膜表面の、5μm角のAFM像を示す写真である(実施例4)。5 is a photograph showing a 5 μm square AFM image of an epitaxial film surface grown on a surface rotated with the [010] axis of the main surface of a Ga 2 O 3 single crystal substrate as a rotation axis (Example 4). Ga単結晶基板の主面の[001]軸を回転軸として回転させた面に成長したエピタキシャル膜表面の5μm角のAFM像から推定される表面粗さ(RMS)を示す図である(実施例4)。Is a diagram illustrating Ga 2 O 3 of the main surface of the single crystal substrate [001] surface roughness estimate an axis from AFM images of 5μm angle of the grown epitaxial film surface is rotated plane as the rotation axis (RMS) (Example 4). Ga単結晶基板の主面の[001]軸を回転軸として回転させた面に成長したエピタキシャル膜表面の1μm角のAFM像から推定される表面粗さ(RMS)を示す図である(実施例4)。Is a diagram illustrating Ga 2 O 3 of the main surface of the single crystal substrate [001] surface roughness estimate an axis from AFM images of 1μm square of the grown epitaxial film surface is rotated plane as the rotation axis (RMS) (Example 4). Ga単結晶基板の主面の[001]軸を回転軸として回転させた面に成長したエピタキシャル膜表面の1μm角のAFM像を示す写真である(実施例4)。 3 is a photograph showing a 1 μm square AFM image of an epitaxial film surface grown on a surface rotated with the [001] axis of the main surface of a Ga 2 O 3 single crystal substrate as a rotation axis (Example 4).

以下、本発明の好適な実施の形態について、実施例を挙げて図面を参照しながら具体的に説明する。 Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings with reference to examples.

[実施例1]
Ga系単結晶基板は、以下の(1)及び(2)に挙げる問題を有している。
[Example 1]
The Ga 2 O 3 -based single crystal substrate has the following problems (1) and (2).

(1)Ga系単結晶基板は、(100)面に強い劈開性を有しており、Ga系単結晶基板を加工しようとすると、劈開に起因する剥がれやクラックが発生しやすい。基板加工時において剥がれやクラックが発生しやすいため、大型のGa系単結晶基板を得ることが困難である。 (1) The Ga 2 O 3 -based single crystal substrate has a strong cleavage property on the (100) plane, and when the Ga 2 O 3 -based single crystal substrate is processed, peeling or cracks caused by the cleavage occur. It's easy to do. It is difficult to obtain a large-scale Ga 2 O 3 -based single crystal substrate because peeling and cracks are likely to occur during substrate processing.

(2)(100)面は強い劈開性を有しているため、(100)面が基板表面(主面)に対して垂直に近づくほど、特に(100)面が主面となす角度が45°以上になると、デバイス製造時においてGa系単結晶基板が割れやすいという問題がある。 (2) Since the (100) plane has a strong cleavage property, the closer the (100) plane becomes perpendicular to the substrate surface (main surface), the more the angle formed by the (100) plane with the main surface becomes 45. If the temperature is higher than 0°, there is a problem that the Ga 2 O 3 -based single crystal substrate is easily cracked during device manufacturing.

そこで、本実施例においては、クラックや割れの生じにくいGa系単結晶基板を得るため、主面の面方位の異なる複数のGa単結晶基板を製造し、主面の面方位とクラックの発生量との関係を評価した。 Therefore, in the present example, in order to obtain a Ga 2 O 3 -based single crystal substrate in which cracks and breakage are unlikely to occur, a plurality of Ga 2 O 3 single crystal substrates having different principal surface plane orientations were manufactured, and The relationship between the orientation and the amount of cracks generated was evaluated.

Ga系単結晶基板は、β−Ga単結晶等のβ−(GaInAl単結晶(0<x≦1、0≦y<1、0≦z<1、x+y+z=1)からなる基板である。 The Ga 2 O 3 -based single crystal substrate is a β-(Ga x In y Al z ) 2 O 3 single crystal (0<x≦1, 0≦y<1, 0≦, such as a β-Ga 2 O 3 single crystal. The substrate is made of z<1, x+y+z=1).

(Ga単結晶基板の作製)
[010]軸を回転軸として(100)面から0〜170°回転させた面を主面とするGa単結晶基板、及び[001]軸を回転軸として(100)面から10〜90°回転させた面を主面とするGa単結晶基板のそれぞれをGa単結晶から切り出した後、10mm角で厚さ1mmの板状に加工した。これらのGa単結晶基板は、回転角度毎に20枚ずつ作製した。この[010]軸を回転軸とする10mm角のGa単結晶基板の一辺は、[010]方向に平行である。なお、[010]軸を回転軸とする回転の角度は、(100)面から(101)面を経由して(001)面に至る方向をプラスとしている。また、[001]軸を回転軸とする10mm角のGa単結晶基板の一辺は、[001]方向に平行である。
(Production of Ga 2 O 3 Single Crystal Substrate)
A Ga 2 O 3 single crystal substrate whose main surface is a plane rotated by 0 to 170° from the (100) plane with the [010] axis as the rotation axis, and from the (100) plane with the [001] axis as the rotation axis. Each of the Ga 2 O 3 single crystal substrates having the surface rotated by 90° as the main surface was cut out from the Ga 2 O 3 single crystal, and then processed into a plate shape having a 10 mm square and a thickness of 1 mm. 20 Ga 2 O 3 single crystal substrates were prepared for each rotation angle. One side of a 10 mm square Ga 2 O 3 single crystal substrate having the [010] axis as a rotation axis is parallel to the [010] direction. The angle of rotation about the [010] axis as a rotation axis is positive in the direction from the (100) plane to the (001) plane via the (101) plane. Further, one side of a Ga 2 O 3 single crystal substrate of 10 mm square with the [001] axis as a rotation axis is parallel to the [001] direction.

次に、砥石の粗さが1000番の研削装置を用い、Ga単結晶基板の厚さを0.8mm程度まで削った。研削速度は約6μm/min程度である。この研削後、ダイヤモンドからなる砥粒を吹き付けながら削り量20μm程度の表面研磨を行った。 Next, the thickness of the Ga 2 O 3 single crystal substrate was reduced to about 0.8 mm by using a grinder having a grindstone roughness of No. 1000. The grinding speed is about 6 μm/min. After this grinding, the surface was polished with a shaving amount of about 20 μm while spraying abrasive grains made of diamond.

最後に、CMP(Chemical mechanical planarization:化学機械研磨)にて10μm程度の表面研磨を行った。CMP処理後、有機溶剤(アセトン、メタノール、IPA、エタノール)を用いた有機洗浄を行い、HF浸漬洗浄、HSOとHとHOとを4:1:1で混合した酸への浸漬洗浄、超純水によるリンス、窒素ブローによる乾燥を施した。 Finally, surface polishing of about 10 μm was performed by CMP (Chemical mechanical planarization). After the CMP treatment, organic cleaning using an organic solvent (acetone, methanol, IPA, ethanol) was performed, HF immersion cleaning was performed, and H 2 SO 4 , H 2 O 2, and H 2 O were mixed at 4:1:1. Immersion cleaning in acid, rinsing with ultrapure water, and drying with nitrogen blow were performed.

(Ga単結晶基板のクラック密度の評価)
図1及び図2を参照すると、図1には、Ga単結晶基板の主面の、[010]軸を回転軸とする(100)面からの回転角度と、CMP処理後の主面上のクラック密度との関係が示されており、図2には、Ga単結晶基板の主面の[001]軸を回転軸とする(100)面からの回転角度と、CMP処理後の主面上のクラック密度との関係が示されている。図1、2に示される各回転角度のGa単結晶基板のクラック密度は、それぞれ、20枚のGa単結晶基板のクラック密度の平均値である。
(Evaluation of crack density of Ga 2 O 3 single crystal substrate)
Referring to FIGS. 1 and 2, FIG. 1 shows a rotation angle of a main surface of a Ga 2 O 3 single crystal substrate from a (100) surface having a [010] axis as a rotation axis and a main surface after CMP treatment. The relationship with the crack density on the plane is shown in FIG. 2, and the rotation angle from the (100) plane with the [001] axis of the main surface of the Ga 2 O 3 single crystal substrate as the rotation axis and CMP. The relationship with the crack density on the main surface after treatment is shown. The crack densities of the Ga 2 O 3 single crystal substrates at the respective rotation angles shown in FIGS. 1 and 2 are the average values of the crack densities of the 20 Ga 2 O 3 single crystal substrates.

ここで、[010]軸を回転軸とするGa単結晶基板の主面におけるクラック密度は、Ga単結晶基板の主面上の[010]方向と垂直な方向の直線のうち、最も長い直線を基準直線としたとき、この基準直線と交わる[010]方向に沿ったクラックの本数を、この基準直線の長さで除した値と定義する。この基準直線は、例えば、Ga単結晶基板が円形である場合は、その中心を通る[010]方向と垂直な方向の直線であり、基準直線の長さは円形のGa単結晶基板の直径に該当する。 Here, the crack density on the main surface of the Ga 2 O 3 single crystal substrate having the [010] axis as the rotation axis is a straight line in a direction perpendicular to the [010] direction on the main surface of the Ga 2 O 3 single crystal substrate. Of these, when the longest straight line is the reference straight line, the number of cracks along the [010] direction intersecting with the reference straight line is defined as a value divided by the length of the reference straight line. For example, when the Ga 2 O 3 single crystal substrate has a circular shape, this reference straight line is a straight line passing through the center and perpendicular to the [010] direction, and the reference straight line has a circular Ga 2 O 3 length. Corresponds to the diameter of a single crystal substrate.

また、[001]軸を回転軸とするGa単結晶基板の主面におけるクラック密度は、Ga単結晶基板の主面上の[001]方向と垂直な方向の直線のうち、最も長い直線を基準直線としたとき、この基準直線と交わる[001]方向に沿ったクラックの本数を、この基準直線の長さで除した値と定義する。この基準直線は、例えば、Ga単結晶基板が円形である場合は、その中心を通る[001]方向と垂直な方向の直線であり、基準直線の長さは円形のGa単結晶基板の直径に該当する。 In addition, the crack density on the main surface of the Ga 2 O 3 single crystal substrate with the [001] axis as the axis of rotation is the straight line in the direction perpendicular to the [001] direction on the main surface of the Ga 2 O 3 single crystal substrate. , Where the longest straight line is the reference straight line, the number of cracks along the [001] direction that intersects this reference straight line is defined as the value divided by the length of this reference straight line. For example, when the Ga 2 O 3 single crystal substrate has a circular shape, this reference straight line is a straight line in a direction perpendicular to the [001] direction passing through the center of the Ga 2 O 3 single crystal substrate, and the reference straight line has a circular Ga 2 O 3 length. Corresponds to the diameter of a single crystal substrate.

図1及び図2に示されるように、[010]軸を回転軸として(100)面から10〜150°回転させた面を主面とする[010]軸回転10〜150°基板と、[001]軸を回転軸として(100)面から10〜90°回転させた面を主面とする[001]軸回転10〜90°基板とには、クラックが発生しなかった。 As shown in FIGS. 1 and 2, a [010]-axis rotating 10-150° substrate having a main surface that is a surface rotated by 10 to 150° from a (100) plane with the [010] axis as a rotation axis, No cracks were generated on the [001]-axis rotated 10-90° substrate whose main surface is a surface rotated by 10-90° from the (100) plane with the (001) axis as the rotation axis.

20枚の一辺が[010]方向に平行な10mm角基板にクラックが発生しないということから、短手方向が[010]方向に平行な10mm×200mmの長方形基板にクラックが発生しないということがいえる。短手方向が[010]方向に平行な10mm×200mmの長方形基板に発生するクラックが1本未満であるため、クラック密度が0.05本/cm未満であるといえる。 It can be said that no cracks are generated on a 10 mm×200 mm rectangular substrate whose one side is parallel to the [010] direction because no crack is generated on a 10 mm square substrate whose one side is parallel to the [010] direction. . It can be said that the crack density is less than 0.05/cm since the number of cracks generated in the 10 mm×200 mm rectangular substrate parallel to the [010] direction is less than one.

同様に、20枚の一辺が[001]方向に平行な10mm角基板にクラックが発生しないということから、短手方向が[001]方向に平行な10mm×200mmの長方形基板にクラックが発生しないということがいえる。短手方向が[001]方向に平行な10mm×200mmの長方形基板に発生するクラックが1本未満であるため、クラック密度が0.05本/cm未満であるといえる。 Similarly, since no cracks are generated on a 10 mm square substrate whose one side is parallel to the [001] direction, cracks are not generated on a 10 mm×200 mm rectangular substrate whose short direction is parallel to the [001] direction. I can say that. It can be said that the crack density is less than 0.05/cm because the number of cracks generated in the 10 mm×200 mm rectangular substrate whose short direction is parallel to the [001] direction is less than one.

すなわち、[010]軸回転10〜150°基板と、[001]軸回転10〜90°基板のクラック密度は0.05本/cm未満であるといえる。 That is, it can be said that the crack densities of the [010] axis rotation 10 to 150° substrate and the [001] axis rotation 10 to 90° substrate are less than 0.05/cm.

一方、[010]軸を回転軸として、(100)面から160〜180°回転させた面を主面とする[010]軸回転160〜180°基板においては、[010]方向に深い筋状不良(クラック)が大量に発生した。これらのクラックはダイヤモンド砥粒を用いた研磨処理で発生し、その後のCMP処理では消えなかった。 On the other hand, in the [010] axis rotation 160 to 180° substrate whose main surface is a surface rotated from the (100) plane by 160 to 180° with the [010] axis as the rotation axis, deep streaks in the [010] direction A lot of defects (cracks) occurred. These cracks were generated by the polishing process using diamond abrasive grains and were not eliminated by the subsequent CMP process.

図3は、[010]軸を回転軸として(100)面から160°回転させた面(図1の矢印IIIの測定点に係る面)を主面とするGa単結晶基板の、主面のCMP処理後の表面光学顕微鏡写真である。写真中の黒い部分がクラックによって生じた深い溝であり、写真中の白い部分が研磨された表面である。図3の矢印は、[010]方向に垂直な方向を示す。 FIG. 3 shows a Ga 2 O 3 single crystal substrate having a main surface that is a surface rotated from the (100) surface by 160° about the [010] axis (the surface related to the measurement point of arrow III in FIG. 1). It is a surface optical microscope photograph after CMP processing of the main surface. The black portion in the photograph is the deep groove caused by the crack, and the white portion in the photograph is the polished surface. The arrow in FIG. 3 indicates a direction perpendicular to the [010] direction.

クラック密度は、[010]軸回転160°基板で53本/cmであり、[010]軸回転170°基板で79本/cmであった。クラック密度が53本/cmであった場合は、クラックのない領域の[010]方向に垂直な方向の幅は、189μm程度であった。 The crack density was 53 lines/cm for the [010] axis rotation 160° substrate and 79 lines/cm for the [010] axis rotation 170° substrate. When the crack density was 53/cm, the width of the crack-free region in the direction perpendicular to the [010] direction was about 189 μm.

ところで、表面研磨後の光学顕微鏡、及びAFM(原子間力顕微鏡)の観察により、基板の平坦性が得られていたとしても、基板に研磨ダメージが残留している場合があった。それらの残留研磨ダメージ(潜傷)は、その潜傷上にホモエピタキシャル膜を成長させることで表面不良として浮き上がってくる。 By the way, even if the flatness of the substrate is obtained by observation with an optical microscope after surface polishing and an AFM (atomic force microscope), polishing damage may remain on the substrate in some cases. Those residual polishing damages (latent scratches) emerge as surface defects by growing a homoepitaxial film on the latent scratches.

潜傷の有無評価のため、MBEを用いてホモエピタキシャル成長を行った。成長温度は750℃とし、成長時間は30分とした。図4には、Ga単結晶基板の主面の[010]軸を回転軸とする(100)面からの回転角度と、潜傷(研磨ダメージ)の有無との関係が示されている。 To evaluate the presence or absence of latent scratches, homoepitaxial growth was performed using MBE. The growth temperature was 750° C. and the growth time was 30 minutes. FIG. 4 shows the relationship between the rotation angle from the (100) plane whose rotation axis is the [010] axis of the main surface of the Ga 2 O 3 single crystal substrate and the presence or absence of latent scratches (polishing damage). There is.

図4から明らかなように、[010]軸回転90°基板上のホモエピタキシャル膜は、半面が鏡面であり、残りの反面が研磨ダメージ由来のスクラッチとヒロックとで覆われた。[010]軸回転80°基板上のホモエピタキシャル膜は、全面が同様のヒロックで覆われた。[010]軸回転76.3°基板上のホモエピタキシャル膜は、ごく一部のみが鏡面であり、ほぼ全面が同様のヒロックで覆われた。よって、[010]軸回転76.3〜90°の範囲は、研磨ダメージが残留しやすい面であるということが分かった。 As is clear from FIG. 4, the homoepitaxial film on the [010]-axis rotated 90° substrate had a mirror surface on one half and the other surface covered with scratches and hillocks derived from polishing damage. The entire surface of the homoepitaxial film on the [010] axis rotation 80° substrate was covered with the same hillock. The homoepitaxial film on the [010] axis rotation 76.3° substrate was mirror-polished only in a small part, and was almost entirely covered with the same hillock. Therefore, it was found that the range where the [010] axis rotation was 76.3 to 90° was the surface where polishing damage was likely to remain.

なお、[001]軸を回転軸として(100)面から10〜90°回転させた面を主面とする[001]軸回転10〜90°基板においては、基板全体にわたって潜傷による表面不良は確認されなかった。 In the case of a [001]-axis rotated 10-90° substrate whose main surface is a surface rotated by 10-90° from the (100) plane with the [001] axis as a rotation axis, surface defects due to latent scratches are caused over the entire substrate. Not confirmed.

従って、表面研磨時におけるクラックの発生、及び潜傷の発生を抑制するためには、[010]軸回転10〜70°面、[010]軸回転100〜150°面、及び[001]軸回転10〜90°面を用いればよいということが理解できる。 Therefore, in order to suppress the occurrence of cracks and the occurrence of latent scratches during surface polishing, the [010] axis rotation is 10 to 70° surface, the [010] axis rotation is 100 to 150° surface, and the [001] axis rotation is. It can be seen that a 10-90° plane may be used.

上記の本実施例の評価はGa単結晶基板について行ったものであるが、Ga単結晶基板以外のGa系単結晶基板について評価を行った場合も、上記の評価結果と同様の評価結果が得られる。 Evaluation of the above embodiment are those conducted on Ga 2 O 3 single crystal substrate, but when evaluated the Ga 2 O 3 system single crystal substrate other than Ga 2 O 3 single crystal substrate, the The same evaluation result as the evaluation result is obtained.

以上の説明から明らかなように、次のGa系単結晶基板が得られる。 As is clear from the above description, the following Ga 2 O 3 -based single crystal substrate is obtained.

[010]軸を回転軸として、(100)面から(101)面を経由して(001)面に至る回転方向をプラスと定義したとき、(100)面から10〜150°回転させた面を主面とし、クラック密度が0.05本/cm未満であるGa系単結晶基板。 When the rotation direction from the (100) plane to the (001) plane through the (101) plane to the (001) plane is defined as positive with the [010] axis as the rotation axis, a plane rotated from the (100) plane by 10 to 150° Ga 2 O 3 -based single crystal substrate having a main surface of 4 and a crack density of less than 0.05 cracks/cm.

[010]軸を回転軸として、(100)面から(101)面を経由して(001)面に至る回転方向をプラスと定義したとき、(100)面から10〜70°、100〜150°回転させた面を主面とし、クラック密度が0.05本/cm未満であり、潜傷を有しないGa系単結晶基板。 When the rotation direction from the (100) plane to the (001) plane through the (101) plane with the [010] axis as the rotation axis is defined as plus, 10 to 70° from the (100) plane, 100 to 150 A Ga 2 O 3 -based single crystal substrate whose main surface is a surface rotated by °, crack density is less than 0.05 lines/cm, and which has no latent scratches.

[001]軸を回転軸として、(100)面から10〜90°回転させた面を主面とし、クラック密度が0.05本/cm未満であるGa系単結晶基板。 A Ga 2 O 3 -based single crystal substrate having a main surface which is a plane rotated from the (100) plane by 10 to 90° with a [001] axis as a rotation axis and a crack density of less than 0.05 lines/cm.

[001]軸を回転軸として、(100)面から10〜90°回転させた面を主面とし、クラック密度が0.05本/cm未満であり、潜傷を有しないGa系単結晶基板。 A Ga 2 O 3 system having a crack density of less than 0.05 lines/cm and no latent scratches, with a plane rotated by 10 to 90° from the (100) plane as a rotation axis with the [001] axis as a rotation axis. Single crystal substrate.

(実施例1の効果)
この実施例1によれば、上記効果に加えて、次の効果が得られる。
(Effect of Example 1)
According to the first embodiment, the following effects can be obtained in addition to the above effects.

基板加工時におけるクラック、潜傷や剥がれを著しく抑制することができるようになり、大面積のGa系単結晶基板の製造歩留まりを向上させることができる。具体的には、[010]軸を回転軸として(100)面から10〜150°回転させた面、又は[001]軸を回転軸として(100)面から10〜90°回転させた面を主面として用いることで、およそ0.2mm幅以上で20cm幅以下の大型のGa系単結晶基板を製造することが可能となる。 It becomes possible to significantly suppress cracks, latent scratches, and peeling during substrate processing, and it is possible to improve the production yield of a large-area Ga 2 O 3 -based single crystal substrate. Specifically, a surface rotated by 10 to 150° from the (100) plane with the [010] axis as the rotation axis or a surface rotated from 10 to 90° from the (100) plane by using the [001] axis as the rotation axis. By using it as the main surface, it becomes possible to manufacture a large Ga 2 O 3 -based single crystal substrate having a width of about 0.2 mm or more and a width of 20 cm or less.

[実施例2]
Ga系単結晶基板の主面が(100)面である場合、主面上にGa結晶膜を成長させる際に供給する原料が再蒸発しやすいため、Ga結晶膜の成長速度が非常に遅く、量産性が低いという問題がある。
[Example 2]
When the main surface of the Ga 2 O 3 -based single crystal substrate is the (100) plane, the raw material supplied when growing the Ga 2 O 3 crystal film on the main surface is likely to be re-evaporated, so that the Ga 2 O 3 crystal is grown. There is a problem that the growth rate of the film is very slow and mass productivity is low.

そこで、本実施例においては、主面上に成長するGa結晶膜の成長レートが高くなるGa系単結晶基板を得るため、主面の面方位の異なる複数のGa単結晶基板上にそれぞれGa結晶膜を成長させ、主面の面方位とGa結晶膜の成長レートとの関係を評価した。 Therefore, in this embodiment, in order to obtain a Ga 2 O 3 -based single crystal substrate in which the growth rate of the Ga 2 O 3 crystal film grown on the main surface is high, a plurality of Ga 2 O having different main surface orientations are used. A Ga 2 O 3 crystal film was grown on each of the 3 single crystal substrates, and the relationship between the plane orientation of the main surface and the growth rate of the Ga 2 O 3 crystal film was evaluated.

(Ga単結晶基板及びGa結晶膜の作製)
[010]軸を回転軸として、(100)面から(101)面を経由して(001)面に至る回転方向をプラスと定義したとき、(100)面から0〜150°回転させた面を主面とするGa単結晶基板と、[001]軸を回転軸として、(100)面から10〜90°回転させた面を主面とするGa単結晶基板とを用意した。なお、Ga単結晶基板にはSnが添加されており、Ga単結晶基板はn型導電性である。
(Production of Ga 2 O 3 Single Crystal Substrate and Ga 2 O 3 Crystal Film)
When the rotation direction from the (100) plane to the (001) plane via the (101) plane to the (001) plane is defined as positive with the [010] axis as the rotation axis, a plane rotated from 0 to 150° from the (100) plane and Ga 2 O 3 single crystal substrate having a major surface and a rotation axis [001] axis, and a Ga 2 O 3 single crystal substrate whose principal plane is rotated 10 to 90 ° from the (100) plane I prepared. Note that the Ga 2 O 3 single crystal substrate Sn are added, Ga 2 O 3 single crystal substrate is n-type conductivity.

Ga単結晶基板の表面は、研削研磨加工を施し、研削研磨工程後に、CMP処理を施した。CMP処理後、有機溶剤(アセトン、メタノール、IPA、エタノール)を用いた有機洗浄を行い、HF浸漬洗浄、HSOとHとHOとを4:1:1で混合した酸への浸漬洗浄、超純水によるリンス、窒素ブローによる乾燥を施し、エピタキシャル成長可能な基板状態にした。その基板上に、MBEを用いてGa結晶膜をエピタキシャル成長させた。成長温度は750℃とし、成長時間は30分とした。 The surface of the Ga 2 O 3 single crystal substrate was ground and polished, and after the grinding and polishing step, CMP treatment was performed. After the CMP treatment, organic cleaning using an organic solvent (acetone, methanol, IPA, ethanol) was performed, HF immersion cleaning was performed, and H 2 SO 4 , H 2 O 2, and H 2 O were mixed at 4:1:1. Immersion cleaning in acid, rinsing with ultrapure water, and drying with nitrogen blow were performed to prepare a substrate in which epitaxial growth is possible. A Ga 2 O 3 crystal film was epitaxially grown on the substrate using MBE. The growth temperature was 750° C. and the growth time was 30 minutes.

(Ga単結晶膜の成長レートの評価)
図5及び図6には、Ga単結晶基板の主面の[010]軸を回転軸とする(100)面から回転させた面上におけるGa結晶膜の成長レートの評価結果と、Ga単結晶基板の主面の[001]軸を回転軸とする(100)面から回転させた面上におけるGa結晶膜の成長レートの評価結果とが示されている。
(Evaluation of growth rate of Ga 2 O 3 single crystal film)
FIGS. 5 and 6 show the evaluation of the growth rate of the Ga 2 O 3 crystal film on the plane rotated from the (100) plane having the [010] axis of the main surface of the Ga 2 O 3 single crystal substrate as the rotation axis. The results and the evaluation results of the growth rate of the Ga 2 O 3 crystal film on the plane rotated from the (100) plane having the [001] axis of the main surface of the Ga 2 O 3 single crystal substrate as the rotation axis are shown. ing.

図5は、Ga単結晶基板の主面の[010]軸を回転軸とする(100)面からの回転角度(°)と、Ga結晶膜の成長レート(nm/h)との関係を示している。図6は、Ga単結晶基板の主面の[001]軸を回転軸とする(100)面からの回転角度(°)と、Ga結晶膜の成長レート(nm/h)との関係を示している。 FIG. 5 shows the rotation angle (°) from the (100) plane with the [010] axis of the main surface of the Ga 2 O 3 single crystal substrate as the rotation axis, and the growth rate (nm/h) of the Ga 2 O 3 crystal film. ) Is shown. FIG. 6 shows the rotation angle (°) from the (100) plane with the [001] axis of the main surface of the Ga 2 O 3 single crystal substrate as the rotation axis and the growth rate (nm/h) of the Ga 2 O 3 crystal film. ) Is shown.

図5において、[010]軸を回転軸として、(100)面から10°回転させた面である[010]軸回転10°面の成長レートが約500nm/hであるのに対し、(100)面の成長レートが10nm/h以下(測定下限以下)であることから、[010]軸を回転軸として、(100)面から10°回転することで、Ga結晶膜の成長レートを少なくとも50倍以上に向上できることが分かった。 In FIG. 5, the growth rate of the [010]-axis rotated 10° plane, which is a plane rotated by 10° from the (100) plane with the [010] axis as the rotation axis, is about 500 nm/h, while the (100 Since the growth rate of the () plane is 10 nm/h or less (below the measurement lower limit), the growth rate of the Ga 2 O 3 crystal film can be increased by rotating 10° from the (100) plane with the [010] axis as the rotation axis. It has been found that can be improved at least 50 times or more.

また、図5は、[010]軸を回転軸として、10°以上150°以下の範囲で(100)面から回転させた面を主面とする場合に、(100)面を主面とする場合よりもGa結晶膜の成長レートを格段に大きくできることを示している。 Further, in FIG. 5, when the surface rotated from the (100) surface in the range of 10° to 150° with the [010] axis as the rotation axis is the main surface, the (100) surface is the main surface. This shows that the growth rate of the Ga 2 O 3 crystal film can be significantly increased as compared with the case.

図6は、[001]軸を回転軸として、10°以上90°以下の範囲で(100)面から回転させた面を主面とする場合に、(100)面を主面とする場合よりもGa結晶膜の成長レートを格段に大きくできることを示している。 FIG. 6 shows that when the main surface is a surface rotated from the (100) surface in the range of 10° to 90° with the [001] axis as the rotation axis, Also shows that the growth rate of the Ga 2 O 3 crystal film can be significantly increased.

一方、(100)面は強い劈開性を有しており、(100)面と主面のなす角度が45°以上になると、デバイス製造時の基板割れが発生しやすい。このため、(100)面から45°未満回転させた面を主面として用いることが好適である。 On the other hand, the (100) plane has a strong cleavage property, and if the angle formed by the (100) plane and the principal plane is 45° or more, substrate cracking tends to occur during device manufacturing. Therefore, it is preferable to use as the main surface a surface rotated by less than 45° from the (100) surface.

このため、Ga結晶膜の成長レートを高め、かつデバイス製造時の基板割れを抑制するためには、[010]軸を回転軸として、(100)面から10°以上45°未満回転させた面、又は[001]軸を回転軸として、(100)面から10°以上45°未満回転させた面を主面とすればよいといえる。 Therefore, in order to increase the growth rate of the Ga 2 O 3 crystal film and suppress substrate cracking during device manufacturing, rotation is performed at 10° or more and less than 45° from the (100) plane with the [010] axis as the rotation axis. It can be said that the main surface is the surface that is rotated or the surface that is rotated from the (100) surface by 10° or more and less than 45° with the [001] axis as the rotation axis.

また、[010]軸を回転軸として、(100)面から(101)面を経由して(001)面に至る回転方向をプラスと定義したとき、(100)面から10°以上45°未満回転させた面若しくは135°より大きく150°以下回転させた面、又は[001]軸を回転軸として、(100)面から10°以上45°未満回転させた面を主面とすることで、Ga結晶膜の成長レートを高め、かつデバイス製造時の基板割れを抑制し、さらに主面上のクラック密度を0.05本/cm未満にできる。 Further, when the rotation direction from the (100) plane through the (101) plane to the (001) plane with the [010] axis as the rotation axis is defined as plus, 10° or more and less than 45° from the (100) plane are defined. By rotating the surface or the surface rotated more than 135° and 150° or less, or the surface rotated by 10° or more and less than 45° from the (100) plane with the [001] axis as the rotation axis, It is possible to increase the growth rate of the Ga 2 O 3 crystal film, suppress substrate cracking during device manufacturing, and further reduce the crack density on the main surface to less than 0.05 cracks/cm.

なお、今回の検討は、[010]軸と[001]軸という直交する2軸を回転軸とした面を主面とする基板を用いて行い、直交する2軸間で同様の結果が得られている。よって、これらの回転軸の中間でも同様の結果が得られることは容易に推測できる。つまり、主面が(100)面から回転した面である場合、回転軸の方向によらず、回転角度が10°以上45°未満であれば、(100)面よりもGa結晶膜の成長レートを大きくできるため、(100)面から10°以上45°未満回転させた面を主面とすることにより、Ga結晶膜の成長レートを高め、かつデバイス製造時の基板割れを抑制できるといえる。 Note that this study was conducted using a substrate whose principal surface is a plane having two rotation axes of the [010] axis and the [001] axis as orthogonal rotation axes, and similar results were obtained between the two orthogonal axes. ing. Therefore, it can be easily inferred that similar results can be obtained even in the middle of these rotation axes. That is, when the main surface is a plane rotated from the (100) plane and the rotation angle is 10° or more and less than 45° regardless of the direction of the rotation axis, the Ga 2 O 3 crystal film is more than the (100) plane. The growth rate of Ga 2 O 3 can be increased. Therefore, the growth rate of the Ga 2 O 3 crystal film can be increased and the substrate cracking at the time of device manufacturing can be achieved by using the plane rotated by 10° or more and less than 45° from the (100) plane as the main surface. It can be said that

図5及び図6を比較すると、[001]軸を回転軸として、(100)面から回転させた面である[001]軸回転面の方が、[010]軸を回転軸として、(100)面から回転させた面である[010]軸回転面よりも全体的に成長レートが高い。例えば、[010]軸回転10°面の成長レートが約500nm/hであるのに対し、[001]軸回転10°面の成長レートは、約730nm/hであり、約1.5倍となっている。これは、(010)面成分が主面に表れると成長レートが高くなることを示唆している。よって、[010]軸回転面を[010]方向へ傾斜させ、(010)面成分を主面に出すことで、成長レートが上がるのではないかと期待された。 Comparing FIG. 5 and FIG. 6, the [001]-axis rotating surface, which is a surface rotated from the (100) surface with the [001] axis as the rotating axis, has the (010) axis as the rotating axis, The growth rate is higher than that of the [010] axis rotating surface which is a surface rotated from the () plane. For example, while the growth rate of the [010] axis rotation 10° plane is about 500 nm/h, the growth rate of the [001] axis rotation 10° plane is about 730 nm/h, which is about 1.5 times. Has become. This suggests that the growth rate increases when the (010) plane component appears on the main surface. Therefore, it was expected that the growth rate could be increased by inclining the [010] axis rotation plane in the [010] direction and exposing the (010) plane component to the principal plane.

図7は、[010]軸回転126.2°=(−201)面から[010]方向への傾斜角(オフ角)と、エピタキシャル膜の成長レートとの関係を示している。図7から明らかなように、Ga単結晶基板の(−201)面から[010]方向への傾斜角が大きくなるにつれて成長レートが上昇し、7°のオフ角で飽和することが分かった。 FIG. 7 shows the relationship between the inclination angle (off angle) from the [010] axis rotation 126.2°=(−201) plane to the [010] direction and the growth rate of the epitaxial film. As is clear from FIG. 7, the growth rate increases as the tilt angle from the (−201) plane to the [010] direction of the Ga 2 O 3 single crystal substrate increases, and the growth rate is saturated at an off angle of 7°. Do you get it.

この結果から、[010]軸回転(−201)面における成長レート(原料使用効率)を向上させるためには、[010]方向へオフ角を持たせることが有効であるといえる。また、その成長レートの増加は7°で飽和することから、7°以上傾けることで成長レートのオフ角依存がなくなり、基板オフ角ばらつきによる成長レートの変動が抑制でき、製造安定性が向上するという効果が得られる。そのため、オフ角は7°以上であることがより好ましい。また、[010]軸回転(−201)面以外の[010]軸回転面を[010]方向へ傾斜させた場合にも、同様の結果が得られる。 From this result, it can be said that it is effective to have an off-angle in the [010] direction in order to improve the growth rate (raw material use efficiency) on the [010] axis rotation (−201) plane. Further, since the increase in the growth rate is saturated at 7°, tilting the growth rate by 7° or more eliminates the dependence of the growth rate on the off angle, and suppresses the growth rate variation due to the variation in the substrate off angle, thus improving the manufacturing stability. The effect is obtained. Therefore, the off angle is more preferably 7° or more. Similar results are also obtained when the [010] axis rotation plane other than the [010] axis rotation (−201) plane is tilted in the [010] direction.

上記の本実施例の評価はGa単結晶基板を用いて行ったものであるが、Ga単結晶基板以外のGa系単結晶基板を用いて評価を行った場合も、上記の評価結果と同様の評価結果が得られる。また、Ga結晶膜の代わりに、(GaInAl結晶膜(0<x≦1、0≦y<1、0≦z<1、x+y+z=1)を成長させる場合であっても、同様の評価結果が得られる。 If the evaluation of the above embodiment are those conducted with Ga 2 O 3 single crystal substrate, which was evaluated by using a Ga 2 O 3 system single crystal substrate other than Ga 2 O 3 single crystal substrate Also, the same evaluation result as the above evaluation result is obtained. Further, instead of the Ga 2 O 3 crystal film, a (Ga x In y Al z ) 2 O 3 crystal film (0<x≦1, 0≦y<1, 0≦z<1, x+y+z=1) is grown. Even in the case of performing the same, the same evaluation result can be obtained.

以上の説明から明らかなように、次のGa系単結晶基板が得られる。 As is clear from the above description, the following Ga 2 O 3 -based single crystal substrate is obtained.

(100)面から10°以上45°未満回転させた面を成長面として有するGa系単結晶基板。 A Ga 2 O 3 -based single crystal substrate having as a growth surface a surface rotated by 10° or more and less than 45° from the (100) plane.

[010]軸を回転軸として、(100)面から10°以上45°未満回転させた面を成長面として有するGa系単結晶基板。 A Ga 2 O 3 -based single crystal substrate having, as a growth surface, a plane rotated from the (100) plane by 10° or more and less than 45° with a [010] axis as a rotation axis.

[010]軸を回転軸として、(100)面から(101)面を経由して(001)面に至る回転方向をプラスと定義したとき、(100)面から10°以上45°未満回転させた面を成長面、又は(100)面から135°より大きく150°以下回転させた面を成長面として有するGa系単結晶基板。 When the rotation direction from the (100) plane to the (001) plane via the (101) plane to the (001) plane is defined as a positive axis with the [010] axis as the rotation axis, rotation from the (100) plane to 10° or more and less than 45° A Ga 2 O 3 -based single crystal substrate having a grown surface or a surface rotated by more than 135° and not more than 150° from the (100) surface as a growth surface.

[001]軸を回転軸として、(100)面から10°以上45°未満回転させた面を成長面として有するGa系単結晶基板。 A Ga 2 O 3 -based single crystal substrate having, as a growth surface, a plane rotated from the (100) plane by 10° or more and less than 45° with a [001] axis as a rotation axis.

(実施例2の効果)
この実施例2によれば、上記実施例1と同様の効果に加えて、次の効果が得られる。
(Effect of Example 2)
According to the second embodiment, the following effect is obtained in addition to the same effect as the first embodiment.

供給された原料の再蒸発を抑制し、エピタキシャル成長時における原料供給効率を向上することができる。更にはデバイス製造歩留まりの低下を抑制することができる。デバイス製造時の基板割れ等をも抑制することができる。 Re-evaporation of the supplied raw material can be suppressed, and the raw material supply efficiency during epitaxial growth can be improved. Further, it is possible to suppress a decrease in device manufacturing yield. It is also possible to suppress substrate cracking during device manufacturing.

[実施例3]
Ga系単結晶基板上にGa結晶膜を成膜する場合、以下の(1)及び(2)に挙げる問題がある。
[Example 3]
When forming a Ga 2 O 3 crystal film on a Ga 2 O 3 -based single crystal substrate, there are problems listed in (1) and (2) below.

(1)(010)面、(001)面、(−201)面を主面とするGa単結晶基板上にGa結晶膜を成長させる場合、成長速度には問題がないが、Ga結晶膜の面内の結晶性の分布の均一性が低く、一部に単結晶ではない箇所が生じる。[001]軸を回転軸として(100)面から回転させた面を主面とするGa単結晶基板上にGa結晶膜を成長させる場合の、Ga結晶膜の面内の結晶性については明らかになっていない。単結晶ではない箇所の上にデバイスを作製した場合、その結晶粒界がリーク電流のパスになり、デバイスのオフ性能を低下させる恐れがある。 (1) When a Ga 2 O 3 crystal film is grown on a Ga 2 O 3 single crystal substrate having (010) plane, (001) plane, and (−201) plane as main planes, there is no problem in the growth rate. However, the uniformity of the in-plane crystallinity distribution of the Ga 2 O 3 crystal film is low, and some portions are not single crystals. [001] axis plane rotated from (100) plane as a rotation axis to the Ga 2 O 3 single crystal substrate having a major surface of a case of growing a Ga 2 O 3 crystal film of Ga 2 O 3 crystal film The in-plane crystallinity has not been clarified. When a device is formed on a portion that is not a single crystal, the crystal grain boundaries serve as paths for leakage current, which may reduce the off performance of the device.

(2)(001)面を主面とするGa単結晶基板上にGa結晶膜を成長させる場合は、成長速度に問題はなく、更に平坦なGa結晶膜を得やすいが、(001)面は(100)面と同様に強い劈開性を有する面であり、基板表面の研磨が難しく、デバイス製造時に劈開に起因する剥がれ等が発生するおそれがある。 (2) When a Ga 2 O 3 crystal film is grown on a Ga 2 O 3 single crystal substrate whose main surface is the (001) plane, there is no problem with the growth rate and a flatter Ga 2 O 3 crystal film is used. Although it is easy to obtain, the (001) plane has a strong cleavage property like the (100) plane, it is difficult to polish the substrate surface, and peeling due to the cleavage may occur during device manufacturing.

そこで、本実施例においては、面内の結晶性の分布の均一性が高いGa結晶膜を成長させることのできるGa系単結晶基板を得るため、主面の面方位の異なる複数のGa単結晶基板を製造し、主面の面方位と主面上に成長するGa結晶膜の品質との関係を評価した。 Therefore, in the present embodiment, in order to obtain a Ga 2 O 3 -based single crystal substrate on which a Ga 2 O 3 crystal film having a high uniformity of in-plane crystallinity distribution can be obtained, the plane orientation of the main surface is changed. A plurality of different Ga 2 O 3 single crystal substrates were manufactured, and the relationship between the plane orientation of the main surface and the quality of the Ga 2 O 3 crystal film grown on the main surface was evaluated.

以下に、Ga単結晶基板の主面の面方位と、その主面上に成長するGa結晶膜の品質との関係について、図8(a)〜図10を参照しながら詳細に説明する。 The relationship between the plane orientation of the main surface of the Ga 2 O 3 single crystal substrate and the quality of the Ga 2 O 3 crystal film grown on the main surface will be described below with reference to FIGS. The details will be described.

(Ga単結晶基板及びGa結晶膜の作製)
[010]軸を回転軸として、(100)面から(101)面を経由して(001)面に至る回転方向をプラスと定義したとき、(100)面から0〜150°回転させた面を主面とするGa単結晶基板と、[001]軸を回転軸として、(100)面から10〜90°回転させた面を主面とするGa単結晶基板とを用意した。なお、Ga単結晶基板にはSnが添加されており、Ga単結晶基板はn型導電性である。
(Production of Ga 2 O 3 Single Crystal Substrate and Ga 2 O 3 Crystal Film)
When the rotation direction from the (100) plane to the (001) plane via the (101) plane to the (001) plane is defined as positive with the [010] axis as the rotation axis, a plane rotated from 0 to 150° from the (100) plane and Ga 2 O 3 single crystal substrate having a major surface and a rotation axis [001] axis, and a Ga 2 O 3 single crystal substrate whose principal plane is rotated 10 to 90 ° from the (100) plane I prepared. Note that the Ga 2 O 3 single crystal substrate Sn are added, Ga 2 O 3 single crystal substrate is n-type conductivity.

Ga単結晶基板の表面は、研削研磨加工を施し、研削研磨工程後に、CMP処理を施した。CMP処理後、有機溶剤(アセトン、メタノール、IPA、エタノール)を用いた有機洗浄を行い、HF浸漬洗浄、HSOとHとHOとを4:1:1で混合した酸への浸漬洗浄、超純水によるリンス、窒素ブローによる乾燥を施し、エピタキシャル成長可能な基板状態にした。その基板上に、MBEを用いてGa結晶膜をエピタキシャル成長させた。成長温度は750℃とし、成長時間は30分とした。Ga結晶の膜厚は、約300nm程度である。 The surface of the Ga 2 O 3 single crystal substrate was ground and polished, and after the grinding and polishing step, CMP treatment was performed. After the CMP treatment, organic cleaning using an organic solvent (acetone, methanol, IPA, ethanol) was performed, HF immersion cleaning was performed, and H 2 SO 4 , H 2 O 2, and H 2 O were mixed at 4:1:1. Immersion cleaning in acid, rinsing with ultrapure water, and drying with nitrogen blow were performed to prepare a substrate in which epitaxial growth is possible. A Ga 2 O 3 crystal film was epitaxially grown on the substrate using MBE. The growth temperature was 750° C. and the growth time was 30 minutes. The film thickness of the Ga 2 O 3 crystal is about 300 nm.

(基板と方位の異なる結晶の混入抑制)
図8(a)は、XRD(X-Ray-Diffractometer:X線回折装置)のX線回折測定{(001)非対称2θ−ωスキャン}により得られたX線回折スペクトルを表している。図8(b)は、図8(a)のX線回折スペクトルの(002)回折付近を拡大して示す図である。
(Suppression of inclusion of crystals with different orientation from the substrate)
FIG. 8A shows an X-ray diffraction spectrum obtained by an X-ray diffraction measurement ((001) asymmetric 2θ-ω scan} of an XRD (X-Ray-Diffractometer). FIG. 8B is an enlarged view showing the vicinity of (002) diffraction of the X-ray diffraction spectrum of FIG.

図中の横軸はX線の入射方位と反射方位とがなす角2θ(°)を表し、図中の左側の縦軸はX線の回折強度(任意単位)を表している。X線回折スペクトルの右側の数値はGa単結晶基板の主面の[010]軸を回転軸とする(100)面からの回転角度を示している。 The horizontal axis in the drawing represents the angle 2θ (°) formed by the X-ray incident azimuth and the reflection azimuth, and the left vertical axis in the drawing represents the X-ray diffraction intensity (arbitrary unit). The numerical value on the right side of the X-ray diffraction spectrum shows the rotation angle from the (100) plane with the [010] axis of the main surface of the Ga 2 O 3 single crystal substrate as the rotation axis.

図8(a)及び図8(b)を見ると、(002)回折の低角側に、基板結晶と方位の異なる結晶からの回折ピークが観測された。なお、2θ=26°、46.5°付近の回折ピークは、X線回折装置の試料ステージからの回折に起因するものである。 As shown in FIGS. 8A and 8B, a diffraction peak from a crystal having a different orientation from that of the substrate crystal was observed on the low-angle side of the (002) diffraction. The diffraction peaks near 2θ=26° and 46.5° are due to diffraction from the sample stage of the X-ray diffractometer.

[010]軸回転50〜80°面上のGa結晶膜において、(001)面上に(−401)配向した結晶の混入が確認された。一方、[010]軸回転120〜140°面上のGa結晶膜からは、(001)面上に(400)配向した結晶の混入が確認された。 In the Ga 2 O 3 crystal film on the [010] axis rotation plane of 50 to 80°, it was confirmed that the (001) plane-oriented crystals were mixed. On the other hand, from the Ga 2 O 3 crystal film on the [010] axis rotation 120 to 140° plane, it was confirmed that the (400) oriented crystal was mixed on the (001) plane.

図9は、代表的な[010]軸回転40°、50°、70°、90°、100°、126.2°、140°、150°面上のGa結晶膜表面におけるRHEED(Reflective High-Energy Electron Diffraction:反射型高速電子線回折)像を示している。 FIG. 9 shows typical [010] axis rotations 40°, 50°, 70°, 90°, 100°, 126.2°, 140°, and 150° on the Ga 2 O 3 crystal film surface RHEED ( Reflective High-Energy Electron Diffraction: High-energy electron diffraction image.

図9から明らかなように、XRD評価において基板と方位の異なる結晶の混入が確認された[010]軸回転50°、70°、126.2°、140°面上のGa結晶膜のRHEED像は、スポッティ(spotty)なパターンを示した。基板と方位の異なる結晶がGa結晶膜に混入することにより、原子配列が乱され、スポッティなパターンとなったものと思われる。 As is clear from FIG. 9, mixing of crystals having different orientations from the substrate was confirmed in XRD evaluation. Ga 2 O 3 crystal film on [010] axis rotation 50°, 70°, 126.2°, 140° planes RHEED image showed a spotty pattern. It is considered that when the Ga 2 O 3 crystal film was mixed with crystals having different orientations from the substrate, the atomic arrangement was disturbed and a spotty pattern was formed.

一方、基板と方位の異なる結晶の混入がない[010]軸回転40°、90°、100°、150°面上のGa結晶膜のRHEED像は、ストリーク(streak)パターンを示した。ストリークパターンは、Ga単結晶膜が得られていることを示している。 On the other hand, the RHEED image of the Ga 2 O 3 crystal film on the [010] axis rotations of 40°, 90°, 100°, and 150° planes in which crystals having different orientations from the substrate were not mixed showed a streak pattern. .. The streak pattern indicates that a Ga 2 O 3 single crystal film is obtained.

図10は、[001]軸回転面上に成長したGa結晶膜の表面におけるRHEED像を示している。 FIG. 10 shows an RHEED image of the surface of the Ga 2 O 3 crystal film grown on the [001] axis rotation plane.

図10から明らかなように、[001]軸回転10〜90°面上のGa結晶膜の表面においては、全てのRHEED像がストリークパターンを示した。よって、基板と方位の異なる結晶の混入がないGa単結晶膜が得られる。 As is clear from FIG. 10, all RHEED images showed a streak pattern on the surface of the Ga 2 O 3 crystal film on the [001] axis rotation 10 to 90° plane. Therefore, a Ga 2 O 3 single crystal film in which crystals having different orientations from the substrate are not mixed can be obtained.

なお、これらの基板と方位の異なる結晶の混入は、エピタキシャル成長中の積層欠陥に起因することがわかっている。 It is known that the inclusion of crystals having different orientations from those of the substrate is caused by stacking faults during epitaxial growth.

上記の本実施例の評価はGa単結晶基板を用いて行ったものであるが、Ga単結晶基板以外のGa系単結晶基板を用いて評価を行った場合も、上記の評価結果と同様の評価結果が得られる。また、Ga結晶膜の代わりに、(GaInAl結晶膜(0<x≦1、0≦y<1、0≦z<1、x+y+z=1)を成長させる場合であっても、同様の評価結果が得られる。 If the evaluation of the above embodiment are those conducted with Ga 2 O 3 single crystal substrate, which was evaluated by using a Ga 2 O 3 system single crystal substrate other than Ga 2 O 3 single crystal substrate Also, the same evaluation result as the above evaluation result is obtained. Further, instead of the Ga 2 O 3 crystal film, a (Ga x In y Al z ) 2 O 3 crystal film (0<x≦1, 0≦y<1, 0≦z<1, x+y+z=1) is grown. Even in the case of performing the same, the same evaluation result can be obtained.

以上の説明から明らかなように、次のGa系単結晶基板、及びGa系単結晶膜の成長方法が得られる。 As is clear from the above description, the following Ga 2 O 3 -based single crystal substrate and Ga 2 O 3 -based single crystal film growth method can be obtained.

[010]軸を回転軸として、(100)面から(101)面を経由して(001)面に至る回転方向をプラスと定義したとき、(100)面から10〜40°、76.3°、90°〜110°、150°回転させた面を成長面として有するGa系単結晶基板。 When the rotation direction from the (100) plane to the (001) plane through the (101) plane to the (001) plane is defined as positive with the [010] axis as the rotation axis, 10 to 40° from the (100) plane, 76.3. A Ga 2 O 3 -based single crystal substrate having a surface rotated by 90°, 90° to 110°, and 150° as a growth surface.

[001]軸を回転軸として、(100)面から10〜90°回転させた面を成長面として有するGa系単結晶基板。 A Ga 2 O 3 -based single crystal substrate having a surface rotated by 10 to 90° from a (100) plane with a [001] axis as a rotation axis.

[010]軸を回転軸として、(100)面から(101)面を経由して(001)面に至る回転方向をプラスと定義したとき、(100)面から10〜40°、76.3°、90°〜110°、150°回転させた面を主面とするGa系単結晶基板の主面上にGa系結晶をエピタキシャル成長させ、Ga系結晶膜を形成する工程を含むGa系単結晶膜の成長方法。 When the rotation direction from the (100) plane to the (001) plane through the (101) plane to the (001) plane is defined as positive with the [010] axis as the rotation axis, 10 to 40° from the (100) plane, 76.3. °, 90 ° to 110 °, is epitaxially grown Ga 2 O 3 system crystal plane rotated 150 ° on the main surface of the Ga 2 O 3 system single crystal substrate having a major surface, a Ga 2 O 3 based crystal film A method of growing a Ga 2 O 3 -based single crystal film, which comprises a step of forming.

[001]軸を回転軸として、(100)面から10〜90°回転させた面を主面とするGa系単結晶基板の主面上にGa系結晶をエピタキシャル成長させ、Ga系結晶膜を形成する工程を含むGa系単結晶膜の成長方法。 A Ga 2 O 3 -based crystal is epitaxially grown on the main surface of a Ga 2 O 3 -based single crystal substrate whose main surface is a surface rotated from the (100) plane by 10 to 90° with the [001] axis as a rotation axis. Ga 2 O 3 system method for growing a single-crystal film including a step of forming a Ga 2 O 3 based crystal film.

(実施例3の効果)
上記実施例3によれば、Ga系単結晶基板の主面上に、基板と方位の異なる結晶を含まないGa系結晶膜を成長させることができ、デバイスのリーク電流を低減できる。
(Effect of Example 3)
According to Example 3 above, a Ga 2 O 3 -based crystal film containing no crystal having a different orientation from the substrate can be grown on the main surface of the Ga 2 O 3 -based single crystal substrate, and the device leakage current can be reduced. It can be reduced.

[実施例4]
Ga系単結晶基板上にGa結晶膜を成膜する場合、その結晶膜の表面平坦性と面方位の関係が明らかになっていなかった。例えば、表面の荒れた結晶膜上に電極を形成してトランジスタを作製した場合、電極とGa結晶膜界面の電界が不均一になり、デバイスの耐圧低下を引き起こす恐れがある。よって、結晶膜の表面平坦性は高いほど好ましい。
[Example 4]
When forming a Ga 2 O 3 crystal film on a Ga 2 O 3 -based single crystal substrate, the relationship between the surface flatness of the crystal film and the plane orientation has not been clarified. For example, when a transistor is manufactured by forming an electrode on a crystal film having a rough surface, the electric field at the interface between the electrode and the Ga 2 O 3 crystal film becomes non-uniform, which may cause the breakdown voltage of the device to decrease. Therefore, the higher the surface flatness of the crystal film, the more preferable.

そこで、本実施例においては、主面上に成長するGa結晶膜の平坦性が高くなるGa系単結晶基板を得るため、主面の面方位の異なる複数のGa単結晶基板上にそれぞれGa結晶膜を成長させ、主面の面方位とGa結晶膜の平坦性との関係を評価した。 Therefore, in this example, in order to obtain a Ga 2 O 3 -based single crystal substrate in which the flatness of the Ga 2 O 3 crystal film grown on the main surface is high, a plurality of Ga 2 O having different main surface orientations are used. A Ga 2 O 3 crystal film was grown on each of the 3 single crystal substrates, and the relationship between the plane orientation of the main surface and the flatness of the Ga 2 O 3 crystal film was evaluated.

(Ga単結晶基板及びGa結晶膜の作製)
[010]軸を回転軸として、(100)面から(101)面を経由して(001)面に至る回転方向をプラスと定義したときに、(100)面から0〜150°回転させた面を主面とするGa単結晶基板と、[001]軸を回転軸として、(100)面から10〜90°回転させた面を主面とするGa単結晶基板とを用意した。なお、Ga単結晶基板にはSnが添加されており、Ga単結晶基板はn型導電性である。
(Production of Ga 2 O 3 Single Crystal Substrate and Ga 2 O 3 Crystal Film)
When the rotation direction from the (100) plane to the (001) plane through the (101) plane to the (001) plane is defined as positive with the [010] axis as the rotation axis, the rotation is performed from 0 to 150° from the (100) plane. A Ga 2 O 3 single crystal substrate having a plane as a main surface, and a Ga 2 O 3 single crystal substrate having a plane rotated by 10 to 90° from a (100) plane with a [001] axis as a rotation axis. Prepared. Note that the Ga 2 O 3 single crystal substrate Sn are added, Ga 2 O 3 single crystal substrate is n-type conductivity.

Ga単結晶基板の基板表面は、研削研磨加工を施し、研削研磨工程後に、CMP処理を施した。CMP処理後、有機溶剤(アセトン、メタノール、IPA、エタノール)を用いた有機洗浄を行い、HF浸漬洗浄、HSOとHとHOとを4:1:1で混合した酸への浸漬洗浄、超純水によるリンス、窒素ブローによる乾燥を施し、エピタキシャル成長可能な基板状態にした。その基板上に、MBEを用いてGa結晶膜を成長させた。成長温度は750℃とし、成長時間は30分とした。Ga結晶の膜厚は、約300nmである。 The substrate surface of the Ga 2 O 3 single crystal substrate was ground and polished, and after the grinding and polishing step, CMP treatment was performed. After the CMP treatment, organic cleaning using an organic solvent (acetone, methanol, IPA, ethanol) was performed, HF immersion cleaning was performed, and H 2 SO 4 , H 2 O 2, and H 2 O were mixed at 4:1:1. Immersion cleaning in acid, rinsing with ultrapure water, and drying with nitrogen blow were performed to prepare a substrate in which epitaxial growth is possible. A Ga 2 O 3 crystal film was grown on the substrate using MBE. The growth temperature was 750° C. and the growth time was 30 minutes. The film thickness of the Ga 2 O 3 crystal is about 300 nm.

(Ga結晶膜の平坦性)
図11は、Ga単結晶基板の[010]軸を回転軸とした時の(100)面からの回転角度(°)と、それぞれの基板の主面上に成長したエピタキシャル膜の表面粗さ(RMS)(nm)との関係を示す図である。表面粗さ(RMS)は、Ga結晶膜表面の5μm角のAFM像から推定した。
(Flatness of Ga 2 O 3 crystal film)
FIG. 11 shows the rotation angle (°) from the (100) plane when the [010] axis of the Ga 2 O 3 single crystal substrate is the rotation axis and the surface of the epitaxial film grown on the main surface of each substrate. It is a figure which shows the relationship with roughness (RMS) (nm). The surface roughness (RMS) was estimated from a 5 μm square AFM image of the surface of the Ga 2 O 3 crystal film.

図11から明らかなように、[010]軸を回転軸として(100)面から30°、76.3°、90°〜110°、150°回転させた面上に成長したGa結晶膜において、表面粗さが著しく小さくなる傾向が確認された。 As is clear from FIG. 11, Ga 2 O 3 crystals grown on the plane rotated by 30°, 76.3°, 90° to 110°, 150° from the (100) plane with the [010] axis as the rotation axis. It was confirmed that the surface roughness of the film was significantly reduced.

図12は、Ga単結晶基板の[010]軸を回転軸として回転させた面に成長したエピタキシャル膜表面の、5μm角のAFM像を示している。 FIG. 12 shows a 5 μm square AFM image of the surface of the epitaxial film grown on the surface of the Ga 2 O 3 single crystal substrate rotated about the [010] axis.

図12から明らかなように、[010]軸を回転軸として(100)面から30°、76.3°、90°〜110°、150°回転させた面上のGa結晶膜には、明瞭な原子ステップが観測されており、ステップフロー成長していると考えられる。 As is apparent from FIG. 12, a Ga 2 O 3 crystal film on the plane rotated by 30°, 76.3°, 90° to 110°, 150° from the (100) plane with the [010] axis as the rotation axis was formed. , A clear atomic step is observed, and it is considered that step flow is growing.

図13は、Ga単結晶基板の[001]軸を回転軸として回転させた面上に成長したエピタキシャル膜表面の、5μm角のAFM像から推定される表面粗さ(RMS)を示している。 FIG. 13 shows the surface roughness (RMS) estimated from the 5 μm square AFM image of the epitaxial film surface grown on the surface of the Ga 2 O 3 single crystal substrate rotated about the [001] axis. ing.

図13から明らかなように、[001]軸を回転軸として10〜90°回転させた面上の全角度範囲にわたって平坦なGa結晶膜が得られた。 As is clear from FIG. 13, a flat Ga 2 O 3 crystal film was obtained over the entire angular range on the surface rotated by 10 to 90° with the [001] axis as the rotation axis.

図14は、Ga単結晶基板の[001]軸を回転軸として回転させた面上に成長したエピタキシャル膜表面の、1μm角のAFM像から推定される表面粗さ(RMS)を示している。 FIG. 14 shows the surface roughness (RMS) estimated from the 1 μm square AFM image of the epitaxial film surface grown on the surface of the Ga 2 O 3 single crystal substrate rotated about the [001] axis. ing.

図14から明らかなように、[001]軸を回転軸として10〜90°回転させた面の全角度範囲にわたって平坦なGa結晶膜が得られた。平坦なGa結晶膜が得られた中でも、特に60°付近で平坦性が高まることが分かる。 As is clear from FIG. 14, a flat Ga 2 O 3 crystal film was obtained over the entire angle range of the surface rotated by 10 to 90° with the [001] axis as the rotation axis. It can be seen that even when a flat Ga 2 O 3 crystal film is obtained, the flatness is enhanced particularly at around 60°.

図15は、Ga単結晶基板の[001]軸を回転軸として回転させた面上に成長したエピタキシャル膜表面の、1μm角のAFM像を示している。 FIG. 15 shows a 1 μm square AFM image of an epitaxial film surface grown on a surface of a Ga 2 O 3 single crystal substrate rotated about the [001] axis.

図15から明らかなように、60°付近で二次元成長した平坦な表面が観測された。60°付近から離れるにつれてステップバンチングが大きくなり、表面が荒れていく様子が確認された。 As is clear from FIG. 15, a flat surface that two-dimensionally grew around 60° was observed. It was confirmed that the step bunching increased as the distance from the vicinity of 60° increased, and the surface became rough.

上記の本実施例の評価はGa単結晶基板を用いて行ったものであるが、Ga単結晶基板以外のGa系単結晶基板を用いて評価を行った場合も、上記の評価結果と同様の評価結果が得られる。また、Ga結晶膜の代わりに、(GaInAl結晶膜(0<x≦1、0≦y<1、0≦z<1、x+y+z=1)を成長させる場合であっても、同様の評価結果が得られる。 If the evaluation of the above embodiment are those conducted with Ga 2 O 3 single crystal substrate, which was evaluated by using a Ga 2 O 3 system single crystal substrate other than Ga 2 O 3 single crystal substrate Also, the same evaluation result as the above evaluation result is obtained. Further, instead of the Ga 2 O 3 crystal film, a (Ga x In y Al z ) 2 O 3 crystal film (0<x≦1, 0≦y<1, 0≦z<1, x+y+z=1) is grown. Even in the case of performing the same, the same evaluation result can be obtained.

以上の説明から明らかなように、次のGa系単結晶基板、及びGa系結晶膜の成長方法が得られる。 As is clear from the above description, the following Ga 2 O 3 -based single crystal substrate and Ga 2 O 3 -based crystal film growth method can be obtained.

[010]軸を回転軸として、(100)面から(101)面を経由して(001)面に至る回転方向をプラスと定義したとき、(100)面から30°、76.3°、90°〜110°、150°回転させた面を成長面として有するGa系単結晶基板。 When the rotation direction from the (100) plane to the (001) plane through the (101) plane with the [010] axis as the rotation axis is defined as plus, 30°, 76.3° from the (100) plane, A Ga 2 O 3 -based single crystal substrate having a surface rotated by 90° to 110° and 150° as a growth surface.

[001]軸を回転軸として、(100)面から10〜90°回転させた面を成長面として有するGa系単結晶基板。 A Ga 2 O 3 -based single crystal substrate having a surface rotated by 10 to 90° from a (100) plane with a [001] axis as a rotation axis.

[010]軸を回転軸として、(100)面から(101)面を経由して(001)面に至る回転方向をプラスと定義したとき、(100)面から30°、76.3°、90°〜110°、150°回転させた面を主面とするGa系単結晶基板の主面上にβ−Ga系結晶をエピタキシャル成長させ、β−Ga系結晶膜を形成する工程を含むGa単結晶膜の成長方法。 When the rotation direction from the (100) plane to the (001) plane through the (101) plane with the [010] axis as the rotation axis is defined as plus, 30°, 76.3° from the (100) plane, 90 ° to 110 °, is epitaxially grown β-Ga 2 O 3 system crystal plane rotated 150 ° on the main surface of the Ga 2 O 3 system single crystal substrate having a major surface, β-Ga 2 O 3 based crystals A method for growing a Ga 2 O 3 single crystal film, comprising the step of forming a film.

[001]軸を回転軸として、(100)面から10〜90°回転させた面を主面とするGa系単結晶基板の主面上にβ−Ga系結晶をエピタキシャル成長させ、β−Ga系結晶膜を形成する工程を含むGa単結晶膜の成長方法。 Epitaxial growth of β-Ga 2 O 3 -based crystal on the main surface of a Ga 2 O 3 -based single crystal substrate whose main surface is a surface rotated from the (100) plane by 10 to 90° with the [001] axis as a rotation axis. And a method of growing a Ga 2 O 3 single crystal film, including the step of forming a β-Ga 2 O 3 based crystal film.

(実施例4の効果)
この実施例4によれば、上記実施例3と同様の効果に加えて、平坦性の高いGa結晶膜が得られ、デバイスの耐圧低下を抑制できる。
(Effect of Example 4)
According to the fourth embodiment, in addition to the effect similar to that of the third embodiment, a Ga 2 O 3 crystal film having high flatness can be obtained, and the breakdown voltage of the device can be prevented from lowering.

[他の実施例]
本発明におけるGa系単結晶基板の代表的な構成例を上記各実施例、及び図示例を挙げて説明したが、次に示すような他の実施例も可能である。
[Other embodiments]
Although a typical configuration example of the Ga 2 O 3 -based single crystal substrate in the present invention has been described with reference to the above-described embodiments and illustrated examples, other embodiments as shown below are also possible.

図示例からも明らかなように、Ga系単結晶基板上にGa系結晶膜をエピタキシャル成長させるには、(401)面、(201)面、(−102)面、(−101)面、(−401)面、(210)面などを主面とするGa系単結晶基板であっても構わない。これらのGa系単結晶基板も、平坦性の高いGa系単結晶膜を高速成長するための研磨クラック密度の低いGa系単結晶基板として用いることが可能である。そして、これらの面を主面とするGa系単結晶基板上のGa系結晶膜を用いてデバイスを作製した場合、単結晶ではない箇所が生じていないためリーク電流の増加は起こらず、結晶膜表面の平坦性が高いため、電極とGa系結晶膜界面の電界が均一となり、耐圧の低下を抑制できる。 As is clear from the illustrated example, in order to epitaxially grow a Ga 2 O 3 -based crystal film on a Ga 2 O 3 -based single crystal substrate, (401) plane, (201) plane, (-102) plane, (- A Ga 2 O 3 -based single crystal substrate having a (101) plane, a (−401) plane, a (210) plane, or the like as a main surface may be used. These Ga 2 O 3 -based single crystal substrates can also be used as Ga 2 O 3 -based single crystal substrates with low polishing crack density for high-speed growth of Ga 2 O 3 -based single crystal films with high flatness. .. Then, when a device is manufactured using a Ga 2 O 3 -based crystal film on a Ga 2 O 3 -based single crystal substrate having these planes as main surfaces, a leak current is increased because there is no part that is not a single crystal. Does not occur, and the flatness of the crystal film surface is high, so that the electric field at the interface between the electrode and the Ga 2 O 3 -based crystal film becomes uniform, and a decrease in breakdown voltage can be suppressed.

なお、上記の各実施例において、効果を得ることができるGa系単結晶基板の主面の(100)面からの[010]軸回転の角度範囲は、基板面内の[010]軸と直交する方向を回転軸とする角度ずれが存在する場合であっても、その角度ずれの大きさがおよそ±5度以内であれば、その影響をほとんど受けない。 In each of the above-described examples, the angular range of [010] axis rotation from the (100) plane of the main surface of the Ga 2 O 3 -based single crystal substrate that can obtain the effect is [010] within the substrate plane. Even if there is an angle deviation about the rotation axis in the direction orthogonal to the axis, if the magnitude of the angle deviation is within about ±5 degrees, it is hardly affected.

また、上記の各実施例において、効果を得ることができるGa系単結晶基板の主面の(100)面からの[001]軸回転の角度範囲は、基板面内の[001]軸と直交する方向を回転軸とする角度ずれが存在する場合であっても、その角度ずれの大きさがおよそ±5度以内であれば、その影響をほとんど受けない。 Further, in each of the above-described examples, the angular range of [001] axis rotation from the (100) plane of the main surface of the Ga 2 O 3 -based single crystal substrate that can obtain the effect is [001] within the substrate plane. Even if there is an angular deviation about the rotation axis in the direction orthogonal to the axis, if the magnitude of the angular deviation is within about ±5 degrees, it is hardly affected.

以上の説明からも明らかなように、本発明に係る代表的な各実施例、及び図示例を例示したが、上記各実施例、及び図示例は特許請求の範囲に係る発明を限定するものではない。従って、上記各実施例、及び図示例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。 As is clear from the above description, the representative examples and the illustrated examples according to the present invention are illustrated, but the above-described examples and the illustrated examples do not limit the invention according to the claims. Absent. Therefore, it should be noted that not all of the combinations of the features described in the above embodiments and illustrated examples are essential to the means for solving the problems of the invention.

Claims (1)

[010]軸を回転軸として、(100)面から(101)面を経由して(001)面に至る回転方向をプラスと定義したとき、(100)面から90°以上110°以下回転させた面を成長面として有する、
Ga系単結晶基板。
When the rotation direction from the (100) plane to the (001) plane through the (101) plane to the (001) plane is defined as plus with the [010] axis as the rotation axis, the rotation direction is 90° or more and 110° or less from the (100) plane. Has a growth surface as
Ga 2 O 3 -based single crystal substrate.
JP2019064086A 2019-03-28 2019-03-28 Ga2O3-based single crystal substrate Active JP6706705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019064086A JP6706705B2 (en) 2019-03-28 2019-03-28 Ga2O3-based single crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019064086A JP6706705B2 (en) 2019-03-28 2019-03-28 Ga2O3-based single crystal substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014161761A Division JP6505995B2 (en) 2014-08-07 2014-08-07 Ga2O3-based single crystal substrate

Publications (2)

Publication Number Publication Date
JP2019123665A JP2019123665A (en) 2019-07-25
JP6706705B2 true JP6706705B2 (en) 2020-06-10

Family

ID=67398066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019064086A Active JP6706705B2 (en) 2019-03-28 2019-03-28 Ga2O3-based single crystal substrate

Country Status (1)

Country Link
JP (1) JP6706705B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4630986B2 (en) * 2003-02-24 2011-02-09 学校法人早稲田大学 β-Ga2O3-based single crystal growth method
JP5529420B2 (en) * 2009-02-09 2014-06-25 住友電気工業株式会社 Epitaxial wafer, method for producing gallium nitride semiconductor device, gallium nitride semiconductor device, and gallium oxide wafer
CN107653490A (en) * 2011-09-08 2018-02-02 株式会社田村制作所 Crystal laminate structure
JP2014086458A (en) * 2012-10-19 2014-05-12 Tamura Seisakusho Co Ltd Method of manufacturing gallium oxide-based substrate

Also Published As

Publication number Publication date
JP2019123665A (en) 2019-07-25

Similar Documents

Publication Publication Date Title
US20210238766A1 (en) Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
US10269554B2 (en) Method for manufacturing SiC epitaxial wafer and SiC epitaxial wafer
CN109689946B (en) Semiconductor wafer and method for polishing semiconductor wafer
TWI667687B (en) Indium phosphide substrate, inspection method of indium phosphide substrate, and manufacturing method of indium phosphide substrate
WO2007088754A1 (en) Epitaxial wafer manufacturing method
JP2009218575A (en) Method of manufacturing semiconductor substrate
KR101650120B1 (en) Process for producing silicon wafer
US20150249185A1 (en) Beta-Ga2O3-Based Single Crystal Substrate
JP2003321298A (en) SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME, SiC WAFER WITH EPITAXIAL FILM AND METHOD FOR PRODUCING THE SAME, AND SiC ELECTRONIC DEVICE
CN114150376B (en) Large-size single crystal diamond splicing growth method
JP6669157B2 (en) C-plane GaN substrate
WO2021132491A1 (en) Group iii nitride single-crystal substrate and method for manufacturing same
JP2012043892A (en) Manufacturing method of silicon epitaxial wafer, and silicon epitaxial wafer
JP6706705B2 (en) Ga2O3-based single crystal substrate
JP6505995B2 (en) Ga2O3-based single crystal substrate
JP4846312B2 (en) Outline processing method of single crystal ingot
JP2013211315A (en) Method for manufacturing nitride semiconductor substrate and nitride semiconductor substrate
JP2016074553A (en) Method for manufacturing group iii nitride semiconductor single crystal substrate
JP7103210B2 (en) Manufacturing method of silicon epitaxial wafer and silicon epitaxial wafer
CN111051581A (en) Silicon carbide epitaxial wafer
JP2023108951A (en) Method for producing silicon epitaxial wafer
TWI810847B (en) Indium Phosphide Substrate
WO2023181586A1 (en) Aluminum nitride single crystal substrate and method for producing aluminum nitride single crystal substrate
JP7063259B2 (en) Manufacturing method of silicon epitaxial wafer
JP2013120795A (en) Nitride semiconductor substrate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200518

R150 Certificate of patent or registration of utility model

Ref document number: 6706705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150