JP2006273684A - Method for producing group iii element oxide-based single crystal - Google Patents

Method for producing group iii element oxide-based single crystal Download PDF

Info

Publication number
JP2006273684A
JP2006273684A JP2005098208A JP2005098208A JP2006273684A JP 2006273684 A JP2006273684 A JP 2006273684A JP 2005098208 A JP2005098208 A JP 2005098208A JP 2005098208 A JP2005098208 A JP 2005098208A JP 2006273684 A JP2006273684 A JP 2006273684A
Authority
JP
Japan
Prior art keywords
single crystal
group iii
iii oxide
sintered material
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005098208A
Other languages
Japanese (ja)
Inventor
Seishi Shimamura
清史 島村
Kazuo Aoki
和夫 青木
Villora Encarnacion Antonia Garcia
ビジョラ エンカルナシオン アントニア ガルシア
Yukio Yoshikawa
幸雄 吉川
Nobuyuki Honda
信之 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koha Co Ltd
Original Assignee
Koha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koha Co Ltd filed Critical Koha Co Ltd
Priority to JP2005098208A priority Critical patent/JP2006273684A/en
Publication of JP2006273684A publication Critical patent/JP2006273684A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a group III element oxide-based single crystal in which a highly pure and large-sized single crystal can be obtained. <P>SOLUTION: A β-Ga<SB>2</SB>O<SB>3</SB>-based single crystal 8 is produced by the FZ method (floating-zone method). A melting zone 8d is formed by heating and melting a part which is in contact with a sintering material 9 composed of a β-Ga<SB>2</SB>O<SB>3</SB>-based polycrystal to which are added a β-Ga<SB>2</SB>O<SB>3</SB>-based seed crystal 7 and an additive for regulating thermal meltability in an amount depending on the outer diameter of the targeted β-Ga<SB>2</SB>O<SB>3</SB>-based single crystal 8. The single crystal 8 grows at the leading end of the seed crystal 7 by decreasing the temperature of the melting zone 8d. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、発光素子に用いるIII族酸化物系単結晶の製造方法に関し、特に、高純度および高品質で大径の単結晶が得られるIII族酸化物系単結晶の製造方法に関する。   The present invention relates to a method for producing a group III oxide single crystal for use in a light emitting device, and more particularly to a method for producing a group III oxide single crystal from which a single crystal having high purity and high quality and a large diameter can be obtained.

紫外領域での発光素子は、水銀フリーの蛍光灯の実現、クリーンな環境を提供する光触媒、より高密度記録を実現する新世代DVD等の光源として特に大きな期待が持たれている。このような背景から、GaN系青色発光素子が実現されてきたが、更なる短波長化光源が求められている。一方、近年、紫外光を透過する基板として、β−Gaのバルク系単結晶による基板の製造が検討されている。 The light emitting element in the ultraviolet region is particularly expected as a light source for a mercury-free fluorescent lamp, a photocatalyst that provides a clean environment, and a new generation DVD that realizes higher density recording. From such a background, GaN-based blue light emitting elements have been realized, but further light sources with shorter wavelengths are required. On the other hand, in recent years, production of a substrate using a bulk single crystal of β-Ga 2 O 3 has been studied as a substrate that transmits ultraviolet light.

このような基板の材料を製造するための従来の単結晶育成方法として、FZ法(Floating Zone Technique)が知られている(例えば非特許文献1参照。)。   As a conventional single crystal growth method for producing such a substrate material, an FZ method (Floating Zone Technique) is known (see, for example, Non-Patent Document 1).

FZ法は、β−Ga23の種結晶および焼結素材を接触し、この接触部を加熱・融解して種結晶と焼結素材とが融解した接合部を形成し、接合部の温度が下がることにより単結晶を製造する方法である。この方法によれば、単結晶が接触する容器を使用しないので、容器からの汚染が防げること、容器による使用雰囲気の制限が無いこと、容器と反応しやすい材料の育成ができること等の利点がある。
M.Saurat,A.Revcolevschi,「Rev.Int.HautesTemper.et Refract.」1971年8号p.291
In the FZ method, a seed crystal of β-Ga 2 O 3 and a sintered material are contacted, and the contact portion is heated and melted to form a joint where the seed crystal and the sintered material are melted. Is a method of producing a single crystal by lowering. According to this method, since a container in contact with a single crystal is not used, there are advantages such as prevention of contamination from the container, no limitation of the use atmosphere by the container, and growth of a material that easily reacts with the container. .
M.M. Saurat, A .; Rev. Co., Rev. Int. Hautes Temper. Et Refract., 1971, p. 291

しかし、従来のFZ法では、目的とする単結晶の外径が大きくなるに従い融解帯の中心部と外周部との温度差が生じる。   However, in the conventional FZ method, a temperature difference between the central portion and the outer peripheral portion of the melting zone occurs as the outer diameter of the target single crystal increases.

図4は、従来のFZ法によるβ−Ga系単結晶の育成法における融解帯8dを示す。β−Ga焼結素材9を融解したときに、融解帯8dの中心部の温度が下がり円錐状に凝固し凝固部8eを形成し、単結晶育成途中にその凝固部8eが融解していない焼結素材9と接触する。そのため、焼結素材9とβ−Ga単結晶8の回転が均一でなくなり、例えば、燒結素材9が矢印A方向に振動し、β−Ga系単結晶8の結晶育成界面である凝固部8eと融解帯8dの融解部分との界面が不安定になり、β−Ga系単結晶8の品質が低下する。 FIG. 4 shows a melting zone 8d in a conventional method for growing a β-Ga 2 O 3 -based single crystal by the FZ method. When the β-Ga 2 O 3 sintered material 9 is melted, the temperature at the center of the melting zone 8d decreases and solidifies in a conical shape to form a solidified portion 8e, and the solidified portion 8e melts during the growth of the single crystal. It contacts the non-sintered material 9. Therefore, the rotation of the sintered material 9 and the β-Ga 2 O 3 single crystal 8 is not uniform. For example, the sintered material 9 vibrates in the direction of arrow A, and the crystal growth interface of the β-Ga 2 O 3 single crystal 8 The interface between the solidified part 8e and the melting part of the melting zone 8d becomes unstable, and the quality of the β-Ga 2 O 3 -based single crystal 8 is deteriorated.

図5は、従来のFZ法において、融解帯8dが液だれを起こした状態を示す図である。凝固部8eを小さくしようとして、光源の光パワーを上げると、融解帯8dの外周部の温度が上昇し粘度が小さくなるとともに加熱範囲が広がるので、外周部に液だれ部8fが生じ、終いには、融解帯8dが燒結素材9から離れてしまい、結晶を育成させることが難しくなる等の問題がある。これらの問題から、高純度で大径のβ−Ga系単結晶8を製造するのが困難であった。 FIG. 5 is a diagram showing a state in which the melting zone 8d has dripped in the conventional FZ method. If the light power of the light source is increased in order to reduce the solidified portion 8e, the temperature of the outer peripheral portion of the melting zone 8d increases, the viscosity decreases, and the heating range widens. However, there is a problem that the melting zone 8d is separated from the sintered material 9 and it becomes difficult to grow crystals. From these problems, it was difficult to produce a high-purity and large-diameter β-Ga 2 O 3 -based single crystal 8.

従って、本発明の目的は、高純度および高品質で大径の単結晶が得られるIII族酸化物系単結晶の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a Group III oxide single crystal from which a single crystal having a large diameter and high purity and quality can be obtained.

本発明は、上記目的を達成するため、III族酸化物系単結晶からなる種結晶と目的のIII族酸化物系単結晶に熱融解性調整用添加物を添加したIII族酸化物系焼結素材とを準備し、前記種結晶と前記III族酸化物系焼結素材とを近接させて加熱融解させることにより前記種結晶と前記III族酸化物系焼結素材とが溶解した接合部を形成し、前記接合部の温度降下に基づいて前記目的のIII族酸化物系単結晶を製造することを特徴とするIII族酸化物系単結晶の製造方法を提供する。   In order to achieve the above object, the present invention provides a group III oxide-based sintered material in which a seed crystal composed of a group III oxide-based single crystal and a target group III oxide-based single crystal are added with an additive for adjusting heat melting. The material is prepared, and the seed crystal and the group III oxide-based sintered material are brought close to each other and heated and melted to form a joint where the seed crystal and the group III oxide-based sintered material are dissolved. And providing a target Group III oxide single crystal based on the temperature drop of the junction, wherein the target Group III oxide single crystal is manufactured.

この構成によれば、製造しようとするIII族酸化物系単結晶(以下、単に「単結晶」という)に熱融解性調整用添加物を添加したことにより、単結晶の赤外線吸収特性が大きくなり、光源からの赤外線を単結晶が効率的に吸収するようになると考えられる。また、所定の量の熱融解性調整用添加物を添加したことにより、電気伝導度が上昇し、これに伴って熱の伝導も良くなるとも考えられる。そのため、燒結素材の融解部の中心部分の温度と燒結素材の外周部との温度差が小さくなるので、中心部分が凝固し難くなり、凝固部が焼結素材に接触して単結晶育成界面を不安定にすることがなく、高純度のIII族酸化物系単結晶を製造することができる。   According to this configuration, the infrared absorption characteristic of the single crystal is increased by adding the additive for adjusting the heat melting property to the Group III oxide single crystal to be manufactured (hereinafter simply referred to as “single crystal”). It is considered that the single crystal efficiently absorbs infrared rays from the light source. In addition, it is considered that the addition of a predetermined amount of the additive for adjusting the heat melting property increases the electric conductivity, and the heat conduction is improved accordingly. For this reason, the temperature difference between the central part of the sintered part of the sintered material and the outer peripheral part of the sintered material is reduced, so that the central part is difficult to solidify, and the solidified part comes into contact with the sintered material and forms a single crystal growth interface. A high-purity group III oxide single crystal can be produced without being unstable.

III族酸化物としてGa、Al、In等を用いることができる。その中でGaは、その結晶型からα型、β型、γ型、δ型、ε型等の種類が存在するが、常温常圧で安定であるβ型のGa(β−Ga)を用いるのが好ましい。 Ga 2 O 3 , Al 2 O 3 , In 2 O 3 or the like can be used as the group III oxide. Ga 2 O 3 in which the, alpha type from the crystalline form, beta form, gamma form, [delta] type, but the type of ε-type, etc. are present, it is stable at normal temperature and pressure beta-type Ga 2 O 3 ( It is preferable to use (β-Ga 2 O 3 ).

また、種結晶の代わりに、III族酸化物としてβ−Gaと同じ単斜晶系、空間群がC2/mに属するガリウム、インジウム、アルミニウム等の元素の酸化物を含むβ−Ga固溶体からなるβ−Ga系種結晶を用いてかかる固溶体からなるβ−Ga系単結晶を育成させてもよい。これにより、紫外から青色の波長域で発光するLEDを実現できる。 Further, instead of a seed crystal, β-Ga containing an oxide of an element such as gallium, indium, and aluminum whose group III oxide is the same monoclinic system as β-Ga 2 O 3 and whose space group belongs to C2 / m the 2 O 3 consisting of a solid solution Kakaru using beta-Ga 2 O 3 system seed crystal made of a solid solution beta-Ga 2 O 3 system single crystal may be grown. Thereby, LED which light-emits in an ultraviolet to blue wavelength range is realizable.

また、熱融解性調整用添加物は、III族酸化物系焼結素材の外径に応じた添加量で添加するようにしても良い。   Moreover, you may make it add the additive for heat-meltability adjustment in the addition amount according to the outer diameter of a group III oxide type sintered raw material.

前記特性調整用添加物は、IV族元素であること、特に、Si,Sn,Zr,Hf,Geであること、あるいはそれらの酸化物であることが好ましい。   The additive for adjusting characteristics is preferably a group IV element, particularly Si, Sn, Zr, Hf, Ge, or an oxide thereof.

また、熱融解性調整用添加物は、III族元素の量に対してIV族元素の量が0.0001〜1%となるように添加することが好ましい。   Moreover, it is preferable to add the heat-meltability adjusting additive so that the amount of the group IV element is 0.0001 to 1% with respect to the amount of the group III element.

前記III族酸化物系焼結素材は、III族酸化物系粉末とSiO粉末を混合して冷間圧縮し、焼結したものを用いることが好ましい。 As the group III oxide-based sintered material, it is preferable to use a group III oxide-based powder and SiO 2 powder mixed, cold-compressed and sintered.

また、本発明は、上記目的を達成するため、III族酸化物系単結晶としてのGa系単結晶からなる種結晶と目的のGa系単結晶に熱融解性調整用添加物としてSi又はSiOを添加したGa系焼結素材とを準備し、前記種結晶と前記Ga系焼結素材とを近接させて加熱融解させることにより前記種結晶と前記Ga系焼結素材との接合部を形成し、前記接合部の温度降下に基づいて前記目的のGa系単結晶を製造することを特徴とするIII族酸化物系単結晶の製造方法を提供する。 Further, in order to achieve the above object, the present invention provides a seed crystal composed of a Ga 2 O 3 single crystal as a group III oxide single crystal and an addition for adjusting the heat melting property to the target Ga 2 O 3 single crystal. Preparing a Ga 2 O 3 based sintered material to which Si or SiO 2 is added as a product, and bringing the seed crystal and the Ga 2 O 3 based sintered material close to each other and heating and melting the seed crystal and the above A group III oxide single crystal characterized by forming a joint with a Ga 2 O 3 based sintered material and producing the target Ga 2 O 3 single crystal based on a temperature drop of the joint A manufacturing method is provided.

本発明によれば、高純度および高品質で大径のIII族酸化物系単結晶を得ることができる。   According to the present invention, a high-purity and high-quality large-diameter group III oxide single crystal can be obtained.

図1は、本発明の実施の形態に係る赤外線加熱単結晶製造装置を示す。この赤外線加熱単結晶製造装置1は、FZ法(フローティングゾーン法)によりIII族酸化物としてのβ−Ga系単結晶を製造するものであり、石英管2と、β−Ga系種結晶(以下「種結晶」と略す。)7を保持・回転するシード回転部3と、β−Ga系焼結素材(以下「焼結素材」と略す。)9を保持・回転する素材回転部4と、焼結素材9を加熱して溶融する加熱部5と、シード回転部3、素材回転部4および加熱部5を制御する制御部6とを有して概略構成されている。 FIG. 1 shows an infrared heating single crystal manufacturing apparatus according to an embodiment of the present invention. This infrared heating single crystal manufacturing apparatus 1 manufactures a β-Ga 2 O 3 single crystal as a group III oxide by FZ method (floating zone method), and includes a quartz tube 2 and β-Ga 2 O A seed rotating unit 3 that holds and rotates a three- system seed crystal (hereinafter abbreviated as “seed crystal”) 7 and a β-Ga 2 O 3 -based sintered material (hereinafter abbreviated as “sintered material”) 9 are retained. A schematic configuration having a rotating material rotating unit 4, a heating unit 5 for heating and melting the sintered material 9, and a control unit 6 for controlling the seed rotating unit 3, the material rotating unit 4 and the heating unit 5. Has been.

シード回転部3は、種結晶7を保持するシードチャック33と、シードチャック33に回転を伝える下部回転軸32と、下部回転軸32を正回転させるとともに、上下方向に移動させる下部駆動部31とを備える。   The seed rotating unit 3 includes a seed chuck 33 that holds the seed crystal 7, a lower rotating shaft 32 that transmits rotation to the seed chuck 33, a lower driving unit 31 that rotates the lower rotating shaft 32 in the normal direction and moves the lower rotating shaft 32 in the vertical direction. Is provided.

素材回転部4は、焼結素材9の上端部9aを保持する素材チャック43と、素材チャック43に回転を伝える上部回転軸42と、上部回転軸42を正逆回転させるとともに、上下方向に移動させる上部駆動部41とを備える。   The material rotating unit 4 moves the material chuck 43 that holds the upper end 9 a of the sintered material 9, the upper rotating shaft 42 that transmits the rotation to the material chuck 43, the upper rotating shaft 42 forward and backward, and the vertical rotation. The upper drive part 41 to be provided is provided.

加熱部5は、焼結素材9を径方向から加熱して溶融するハロゲンランプ51を収容し、ハロゲンランプの発光する光を燒結素材9の所定部位に集光する楕円鏡52と、ハロゲンランプ51に電源を供給する電源部53とを備える。   The heating unit 5 accommodates a halogen lamp 51 that heats and melts the sintered material 9 from the radial direction, condenses light emitted from the halogen lamp on a predetermined portion of the sintered material 9, and the halogen lamp 51. And a power supply unit 53 for supplying power to the device.

石英管2には、下部回転軸32、シードチャック33、上部回転軸42、素材チャック43、焼結素材9、β−Ga系単結晶8および種結晶7が収容される。石英管2は、酸素ガスと不活性ガスとしての窒素ガスとの混合ガスを供給されて密閉できるようになっている。 The quartz tube 2 accommodates a lower rotating shaft 32, a seed chuck 33, an upper rotating shaft 42, a material chuck 43, a sintered material 9, a β-Ga 2 O 3 system single crystal 8 and a seed crystal 7. The quartz tube 2 is sealed by being supplied with a mixed gas of oxygen gas and nitrogen gas as an inert gas.

次に、本実施の形態に係るβ−Ga系単結晶育成方法を、図1および図2を参照して説明する。図2(a)〜(d)は、本発明の実施の形態に係るβ−Ga系単結晶の育成過程を示す。なお、図2ではシードチャック33は省略してある。 Next, the β-Ga 2 O 3 -based single crystal growth method according to the present embodiment will be described with reference to FIGS. 2A to 2D show a process of growing a β-Ga 2 O 3 single crystal according to an embodiment of the present invention. In FIG. 2, the seed chuck 33 is omitted.

(1)種結晶の作製
種結晶7は、例えば、III族酸化物としてβ−Ga系単結晶を劈開面に沿って切り出したもので、例えば、断面正方形の角柱状を呈し、種結晶7の一部がシードチャック33に保持される。種結晶7は、良好なβ−Ga系単結晶8を育成させるため、育成結晶の5分の1以下の外径または5mm以下の断面積を有し、β−Ga系単結晶8の育成の際に破損しない強度を有する。本実施の形態では、断面積を1〜2mmとした。その軸方向は、a軸<100>方位、b軸<010>方位、あるいはc軸<001>方位(結晶学的に決まる方位)である。なお、ここで、外径とは、正方形の一辺、矩形の長辺あるいは円の直径等をいう。また、軸方向と各方位との誤差は、プラスマイナス10°の範囲内とするのが好ましい。
(1) Preparation of seed crystal The seed crystal 7 is, for example, a β-Ga 2 O 3 single crystal cut out along the cleavage plane as a group III oxide, and has, for example, a prismatic shape with a square cross section. A part of the crystal 7 is held by the seed chuck 33. The seed crystal 7 has an outer diameter of 1/5 or less or a cross-sectional area of 5 mm 2 or less of the grown crystal in order to grow a good β-Ga 2 O 3 single crystal 8, and β-Ga 2 O 3 It has a strength that does not break during the growth of the system single crystal 8. In the present embodiment, the cross-sectional area is set to 1 to 2 mm 2 . The axial direction is an a-axis <100> orientation, a b-axis <010> orientation, or a c-axis <001> orientation (a crystallographically determined orientation). Here, the outer diameter means one side of a square, a long side of a rectangle, a diameter of a circle, or the like. The error between the axial direction and each direction is preferably within a range of plus or minus 10 °.

(2)焼結素材9の作製
まず、焼結素材9を、以下のようにして作製しておく。すなわち、例えば純度5Nのβ−Ga多結晶の粉末に、製造すべきβ−Ga系単結晶に熱融解性調整用添加物、例えば、原子数で0.0001〜1%のSiを添加する。なお、熱融解性調整用添加物としては、Siに限らず、他のIV族元素を用いることができる。また、熱融解性調整用添加物の添加量は、焼結素材9の外径に応じた量としても良い。ここで、Si単体を添加するのではなく、例えば、SiOを添加する。次に、SiOを添加したβ−Ga多結晶の粉末を図示しないゴム管に充填し、500MPaで冷間圧縮する。その後、1500℃で10時間焼結し、焼結体としての棒状の焼結素材9を得る。
(2) Preparation of sintered material 9 First, the sintered material 9 is prepared as follows. That is, for example, powder of β-Ga 2 O 3 polycrystalline purity 5N, thermally fusible adjustment additives β-Ga 2 O 3 system to be manufactured single crystals, for example 0.0001% in the number of atoms Of Si is added. The additive for adjusting the heat melting property is not limited to Si, and other group IV elements can be used. Further, the addition amount of the additive for adjusting the heat melting property may be an amount corresponding to the outer diameter of the sintered material 9. Here, instead of adding Si alone, for example, SiO 2 is added. Next, a β-Ga 2 O 3 polycrystalline powder to which SiO 2 has been added is filled in a rubber tube (not shown) and cold compressed at 500 MPa. Then, it sinters at 1500 degreeC for 10 hours, and obtains the rod-shaped sintered raw material 9 as a sintered compact.

(3)β−Ga系単結晶8の作製
次に、図1に示すように、種結晶7の一部をシードチャック33に保持し、棒状の燒結素材9の上端部9aを素材チャック43に保持する。次に、図2(a)に示すように、上部回転軸42の上下位置を調節して種結晶7の上端7aと焼結素材9の下端9bを接触させる。また、ハロゲンランプ51の光を種結晶7の上端7aと焼結素材9の下端9bとの部位に集光するように、上部回転軸42および下部回転軸32の上下位置を調節する。石英管2の雰囲気2aは、窒素と酸素の混合気体(100%窒素から100%酸素の間で変化する)の全圧1気圧から2気圧に満たされている。
(3) Production of β-Ga 2 O 3 System Single Crystal 8 Next, as shown in FIG. 1, a part of the seed crystal 7 is held on the seed chuck 33, and the upper end portion 9a of the rod-shaped sintered material 9 is used as the material. Hold on the chuck 43. Next, as shown in FIG. 2A, the upper and lower positions of the upper rotating shaft 42 are adjusted so that the upper end 7 a of the seed crystal 7 and the lower end 9 b of the sintered material 9 are brought into contact with each other. Further, the upper and lower positions of the upper rotating shaft 42 and the lower rotating shaft 32 are adjusted so that the light from the halogen lamp 51 is focused on the upper end 7 a of the seed crystal 7 and the lower end 9 b of the sintered material 9. The atmosphere 2a of the quartz tube 2 is filled with a total pressure of 1 to 2 atmospheres of a mixed gas of nitrogen and oxygen (which changes between 100% nitrogen and 100% oxygen).

操作者が図示しない電源スイッチをオンにすると、制御部6は、制御プログラムに従い、各部を制御して以下のように単結晶育成制御を行う。加熱部5に電源が投入されると、ハロゲンランプ51は、種結晶7の上端7aと燒結素材9の下端9bの部位を加熱して、その加熱部位を融解し、融解滴8cを形成する。このとき、種結晶7のみを回転させておく。   When the operator turns on a power switch (not shown), the control unit 6 controls each unit according to the control program and performs single crystal growth control as follows. When the heating unit 5 is turned on, the halogen lamp 51 heats the upper end 7a of the seed crystal 7 and the lower end 9b of the sintered material 9, and melts the heated portion to form the molten droplet 8c. At this time, only the seed crystal 7 is rotated.

ついで、焼結素材9と種結晶7とが十分になじむように当該部を反対方向に回転させながら融解する。適度の大きさのβ−Gaの融解滴8cとなったときに、焼結素材9の回転を停止し、図2(b)に示すように、種結晶7のみを回転させて燒結素材9および種結晶7を互いに反対方向に引っ張り、種結晶7よりも細いダッシュネック8aを形成する。 Next, the sintered material 9 and the seed crystal 7 are melted while being rotated in the opposite direction so that the sintered material 9 and the seed crystal 7 are sufficiently adapted. When the molten droplet 8c of β-Ga 2 O 3 having an appropriate size is obtained, the rotation of the sintered material 9 is stopped, and only the seed crystal 7 is rotated and sintered as shown in FIG. The material 9 and the seed crystal 7 are pulled in opposite directions to form a dash neck 8a that is thinner than the seed crystal 7.

ついで、種結晶7と焼結素材9を20rpmで互いに反対方向に回転させながらハロゲンランプ51で加熱し、かつ、種結晶7、焼結素材9をハロゲンランプ51に対し、下方に移動させる。ハロゲンランプ51により燒結素材9を加熱すると、燒結素材9は、融解して融解帯8dを形成するとともに、それが温度降下すると図2(c)に示すように、燒結素材9と同等またはそれよりも小さな外径Dのβ−Ga系単結晶8が生成する。 Next, the seed crystal 7 and the sintered material 9 are heated by the halogen lamp 51 while rotating in the opposite directions at 20 rpm, and the seed crystal 7 and the sintered material 9 are moved downward relative to the halogen lamp 51. When the sintered material 9 is heated by the halogen lamp 51, the sintered material 9 is melted to form a melting zone 8d, and when the temperature drops, as shown in FIG. A β-Ga 2 O 3 -based single crystal 8 having a small outer diameter D is generated.

図3は、本発明の実施の形態に係る赤外線加熱単結晶製造装置を用いて単結晶を育成させているときの融解帯8dを示す図である。燒結素材9を融解して融解帯8dを形成したときに、添加したSi又はSiOの作用により中心部が凝固し難くなり、凝固部8eは、燒結素材9に接触しない高さで存在する。 FIG. 3 is a diagram showing a melting zone 8d when a single crystal is grown using the infrared heating single crystal manufacturing apparatus according to the embodiment of the present invention. When to melt the sintered material 9 to form a melt zone 8d, the central portion becomes hardly solidified by the action of Si or SiO 2 was added, solidified portion 8e is present at a height which does not contact the sintered material 9.

適度の長さの単結晶を形成した後、図2(d)に示すように、生成したβ−Ga系単結晶8を取り出すためにβ−Ga系単結晶8の上部8bを細径化する。 After forming a single crystal of an appropriate length, as shown in FIG. 2 (d), an upper portion of the β-Ga 2 O 3 single crystal 8 is taken out in order to take out the generated β-Ga 2 O 3 single crystal 8 The diameter of 8b is reduced.

次に、本実施の形態の効果を説明する。
(イ)Si又はSiOを添加することにより、外側から加熱した場合に、外径が大きな結晶でも、中心部と外側の温度差が小さくなるため、中心部が凝固し難くなるので、β−Ga系単結晶育成界面が不安定にならず、β−Ga系単結晶8の品質の低下を防止することができる。それは、Si又はSiOを添加することにより、β−Ga系単結晶8の赤外吸収特性が大きくなり、光源からの赤外線をβ−Ga系単結晶8が効率的に吸収するようになると考えられるからである。また、Si又はSiOを添加することにより、電気伝導度が上昇し、これに伴って熱の伝導も良くなるとも考えられるからである。なお、β−Ga系単結晶8の赤外吸収特性が大きくなるのは、β−Ga系単結晶8が青みがかっていることからも分かる。
(ロ)Si又はSiOを添加することにより、融解帯8dの粘度、張力、融解したβ−Ga焼結素材9の重力等のバランスが保たれるため、融解した焼結素材9が落下し難くなるので、大径のβ−Ga系単結晶8を得ることができる。
(ハ)Si又はSiOを添加することにより、融点が下がるため、光源の光パワーを上げることなくβ−Ga燒結素材9を融解することができる。
(ニ)このβ−Ga系単結晶8は、a軸<100>方位、b軸<010>方位、あるいはc軸<001>方位を結晶軸とすることにより、クラッキング、双晶化傾向が減少し、高い結晶性が得られる。
(ホ)また、β−Ga系単結晶8が、再現性よく生成できる。そのため、発光素子等の半導体の基板としての利用価値も高い。
Next, the effect of this embodiment will be described.
(Ii) When Si or SiO 2 is added, when heated from the outside, even if the crystal has a large outer diameter, the temperature difference between the center and the outside becomes small, so that the center becomes difficult to solidify. The interface for growing the Ga 2 O 3 single crystal does not become unstable, and the quality of the β-Ga 2 O 3 single crystal 8 can be prevented from being deteriorated. It by adding Si or SiO 2, the infrared absorption characteristics of the β-Ga 2 O 3 system single crystal 8 is increased, the infrared radiation from the light source β-Ga 2 O 3 system single crystal 8 is efficiently It is because it is thought that it will absorb. Further, by adding Si or SiO 2, and the electrical conductivity increases, because also considered even better thermal conduction accordingly. Incidentally, the infrared absorption characteristics of the β-Ga 2 O 3 system single crystal 8 is increased, evidenced by the β-Ga 2 O 3 single crystal 8 is bluish.
(B) By adding Si or SiO 2 , the balance of the viscosity and tension of the melting zone 8d, the gravity of the melted β-Ga 2 O 3 sintered material 9 and the like are maintained, so the molten sintered material 9 Since it is difficult to fall, a large-diameter β-Ga 2 O 3 -based single crystal 8 can be obtained.
(C) Since the melting point is lowered by adding Si or SiO 2 , the β-Ga 2 O 3 sintered material 9 can be melted without increasing the optical power of the light source.
(D) This β-Ga 2 O 3 single crystal 8 is cracked and twinned by setting the a-axis <100> orientation, b-axis <010> orientation, or c-axis <001> orientation as the crystal axis. The tendency is reduced and high crystallinity is obtained.
(E) Moreover, the β-Ga 2 O 3 single crystal 8 can be generated with good reproducibility. Therefore, the utility value as a semiconductor substrate such as a light emitting element is also high.

上記(イ)〜(ハ)より明らかなように、添加Si又はSiOは、β−Gaの熱伝導性、粘度、張力、融点等の諸特性を調整する作用を有する。 As is clear from the above (a) to (c), the added Si or SiO 2 has an effect of adjusting various properties such as thermal conductivity, viscosity, tension, melting point and the like of β-Ga 2 O 3 .

[他の実施の形態]
なお、本発明は、上記の実施の形態に限定されず、種々の変形実施が可能である。例えば、窒素と酸素の混合気体として全圧が2気圧以上でFZ法による結晶育成を行うと、バブルの発生を抑えることができ、結晶育成過程をより安定化できる。
[Other embodiments]
In addition, this invention is not limited to said embodiment, A various deformation | transformation implementation is possible. For example, when crystal growth is performed by the FZ method with a total pressure of 2 atmospheres or more as a mixed gas of nitrogen and oxygen, generation of bubbles can be suppressed and the crystal growth process can be further stabilized.

また、ハロゲンランプの代わりに加熱コイルで加熱してもよい。また、不活性ガスとして窒素ガスを使用するものとして説明したが、窒素ガスの代わりにアルゴンを使用してもよい。   Moreover, you may heat with a heating coil instead of a halogen lamp. Moreover, although it demonstrated as what uses nitrogen gas as an inert gas, you may use argon instead of nitrogen gas.

また、種結晶7は、断面長方形でもよく、角柱状の代わりに、円柱状や楕円柱状であってもよい。   Further, the seed crystal 7 may have a rectangular cross section, and may have a columnar shape or an elliptical column shape instead of a prismatic shape.

なお、本発明は、β−Ga系種結晶7、β−Ga系単結晶8、燒結素材9を移動させたが、加熱部5を移動させることによっても、燒結素材9を融解し、β−Ga系単結晶8を育成することができる。 In the present invention, the β-Ga 2 O 3 -based seed crystal 7, the β-Ga 2 O 3 -based single crystal 8, and the sintered material 9 are moved, but the sintered material 9 can also be moved by moving the heating unit 5. The β-Ga 2 O 3 single crystal 8 can be grown.

本発明は、FZ法について説明したが、CZ法等の他の単結晶を育成させる方法にも適用することができる。   Although the present invention has been described with respect to the FZ method, it can also be applied to methods for growing other single crystals such as the CZ method.

本発明の実施の形態に係る赤外線加熱単結晶製造装置を示す要部断面図である。It is principal part sectional drawing which shows the infrared heating single crystal manufacturing apparatus which concerns on embodiment of this invention. (a)〜(d)は、本発明の実施の形態に係るβ−Ga系単結晶の育成過程を示す図である。(A) ~ (d) are diagrams showing the growing process of β-Ga 2 O 3 single crystal according to the embodiment of the present invention. 本発明の実施の形態に係る赤外線加熱単結晶製造装置を用いてβ−Ga系単結晶を育成させているときの融解帯を示す図である。It is a diagram showing the melting zone when that is grow a β-Ga 2 O 3 single crystal by using an infrared heating single crystal manufacturing apparatus according to the embodiment of the present invention. 従来のFZ法によるβ−Ga系単結晶の育成法における融解帯を示す図である。Is a diagram showing the melting zone in the growth method of the conventional FZ method using β-Ga 2 O 3 system single crystal. 従来のFZ法において、融解帯が液だれを起こした状態を示す図である。It is a figure which shows the state which caused the dripping of the melting zone in the conventional FZ method.

符号の説明Explanation of symbols

1…赤外線加熱単結晶製造装置、2…石英管、2a…雰囲気、3…シード回転部、4…素材回転部、5…加熱部、6…制御部、7…種結晶、8…β−Ga系単結晶、8a…ダッシュネック、8b…上部、8c…融解滴、8d…融解帯、8e…凝固部、8f…液だれ部、9…燒結素材、9a…上端部、9b…下端、31…下部駆動部、32…下部回転軸、33…シードチャック、41…上部駆動部、42…上部回転軸、43…素材チャック、51…ハロゲンランプ、52…楕円鏡、53…電源部 DESCRIPTION OF SYMBOLS 1 ... Infrared heating single crystal manufacturing apparatus, 2 ... Quartz tube, 2a ... Atmosphere, 3 ... Seed rotating part, 4 ... Material rotating part, 5 ... Heating part, 6 ... Control part, 7 ... Seed crystal, 8 ... β-Ga 2 O 3 single crystal, 8a ... dash neck, 8b ... upper part, 8c ... melting droplet, 8d ... melting zone, 8e ... solidified part, 8f ... drip part, 9 ... sintered material, 9a ... upper end, 9b ... lower end , 31 ... Lower drive unit, 32 ... Lower rotation shaft, 33 ... Seed chuck, 41 ... Upper drive unit, 42 ... Upper rotation shaft, 43 ... Material chuck, 51 ... Halogen lamp, 52 ... Elliptical mirror, 53 ... Power supply unit

Claims (7)

III族酸化物系単結晶からなる種結晶と目的のIII族酸化物系単結晶に熱融解性調整用添加物を添加したIII族酸化物系焼結素材とを準備し、
前記種結晶と前記III族酸化物系焼結素材とを近接させて加熱融解させることにより前記種結晶と前記III族酸化物系焼結素材とが溶解した接合部を形成し、
前記接合部の温度降下に基づいて前記目的のIII族酸化物系単結晶を製造することを特徴とするIII族酸化物系単結晶の製造方法。
Preparing a seed crystal composed of a group III oxide single crystal and a group III oxide based sintered material obtained by adding an additive for adjusting heat melting to the target group III oxide single crystal;
Forming a joint where the seed crystal and the group III oxide-based sintered material are melted by bringing the seed crystal and the group III oxide-based sintered material close to each other and heating and melting,
A method for producing a group III oxide single crystal, comprising producing the target group III oxide single crystal based on a temperature drop of the junction.
前記熱融解性調整用添加物は、IV族元素であることを特徴とする請求項1記載のIII族酸化物系単結晶の製造方法。   2. The method for producing a group III oxide single crystal according to claim 1, wherein the additive for adjusting heat melting property is a group IV element. 前記熱融解性調整用添加物は、前記III族酸化物系焼結素材の外径に応じた添加量で添加されることを特徴とする請求項1記載のIII族酸化物系単結晶の製造方法。   The group III oxide single crystal according to claim 1, wherein the heat-meltability adjusting additive is added in an amount according to the outer diameter of the group III oxide sintered material. Method. 前記IV族元素は、Si,Sn,Zr,Hf,Geであることを特徴とする請求項2記載のIII族酸化物系単結晶の製造方法。   3. The method for producing a group III oxide single crystal according to claim 2, wherein the group IV element is Si, Sn, Zr, Hf, or Ge. 前記熱融解性調整用添加物は、III族元素の量に対してIV族元素の量が0.0001〜1%となるように添加することを特徴とする請求項1記載のIII族酸化物系単結晶の製造方法。   The Group III oxide according to claim 1, wherein the additive for adjusting heat melting property is added so that the amount of Group IV element is 0.0001 to 1% with respect to the amount of Group III element. A method for producing a single crystal. 前記III族酸化物系焼結素材は、III族酸化物系粉末とSiO粉末を混合して冷間圧縮し、焼結したものを用いることを特徴とする請求項1記載のIII族酸化物系単結晶の製造方法。 The III oxide sintered material, a mixture of Group III oxide powder and SiO 2 powder is compressed cold, Group III oxide according to claim 1, characterized by using a material obtained by sintering A method for producing a single crystal. III族酸化物系単結晶としてのGa系単結晶からなる種結晶と目的のGa系単結晶に熱融解性調整用添加物としてSi又はSiOを添加したGa系焼結素材とを準備し、
前記種結晶と前記Ga系焼結素材とを近接させて加熱融解させることにより前記種結晶と前記Ga系焼結素材との接合部を形成し、
前記接合部の温度降下に基づいて前記目的のGa系単結晶を製造することを特徴とするIII族酸化物系単結晶の製造方法。
Group III oxide Ga 2 O 3 system Ga 2 O 3 to the Ga 2 O 3 system single crystal seed crystal and the object made of single crystal Si was added or SiO 2 as a heat-meltable adjustment additive as a single crystal Prepare the system sintered material,
Forming a joint between the seed crystal and the Ga 2 O 3 sintered material by bringing the seed crystal and the Ga 2 O 3 sintered material close to each other and heating and melting them;
A method for producing a group III oxide single crystal, comprising producing the target Ga 2 O 3 single crystal based on a temperature drop of the junction.
JP2005098208A 2005-03-30 2005-03-30 Method for producing group iii element oxide-based single crystal Pending JP2006273684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098208A JP2006273684A (en) 2005-03-30 2005-03-30 Method for producing group iii element oxide-based single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098208A JP2006273684A (en) 2005-03-30 2005-03-30 Method for producing group iii element oxide-based single crystal

Publications (1)

Publication Number Publication Date
JP2006273684A true JP2006273684A (en) 2006-10-12

Family

ID=37208780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098208A Pending JP2006273684A (en) 2005-03-30 2005-03-30 Method for producing group iii element oxide-based single crystal

Country Status (1)

Country Link
JP (1) JP2006273684A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190127A (en) * 2010-03-12 2011-09-29 Namiki Precision Jewel Co Ltd Gallium oxide single crystal and method for producing the same
JP2014201480A (en) * 2013-04-04 2014-10-27 株式会社タムラ製作所 GROWTH METHOD OF β-Ga2O3-BASED SINGLE CRYSTAL
JP2014205618A (en) * 2014-06-26 2014-10-30 株式会社タムラ製作所 β-Ga2O3-BASED SINGLE CRYSTAL AND SUBSTRATE
US10196756B2 (en) 2014-06-30 2019-02-05 Tamura Corporation β-Ga2O3 single-crystal substrate
WO2022141750A1 (en) * 2020-12-31 2022-07-07 杭州富加镓业科技有限公司 Gallium oxide preparation method and system based on deep learning and heat exchange method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236697A (en) * 1985-04-12 1986-10-21 Seiko Epson Corp Synthesizing method for single crystal of blue sapphire
JPS61251598A (en) * 1985-05-01 1986-11-08 Seiko Epson Corp Production of ruby single crystal
JP2004262684A (en) * 2003-02-24 2004-09-24 Univ Waseda METHOD FOR GROWING BETA-Ga2O3 SINGLE CRYSTAL
JP2005064153A (en) * 2003-08-08 2005-03-10 Koha Co Ltd Semiconductor layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236697A (en) * 1985-04-12 1986-10-21 Seiko Epson Corp Synthesizing method for single crystal of blue sapphire
JPS61251598A (en) * 1985-05-01 1986-11-08 Seiko Epson Corp Production of ruby single crystal
JP2004262684A (en) * 2003-02-24 2004-09-24 Univ Waseda METHOD FOR GROWING BETA-Ga2O3 SINGLE CRYSTAL
JP2005064153A (en) * 2003-08-08 2005-03-10 Koha Co Ltd Semiconductor layer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190127A (en) * 2010-03-12 2011-09-29 Namiki Precision Jewel Co Ltd Gallium oxide single crystal and method for producing the same
JP2014201480A (en) * 2013-04-04 2014-10-27 株式会社タムラ製作所 GROWTH METHOD OF β-Ga2O3-BASED SINGLE CRYSTAL
US10526721B2 (en) 2013-04-04 2020-01-07 Koha Co., Ltd. Method for growing β-GA2O3-based single crystal
JP2014205618A (en) * 2014-06-26 2014-10-30 株式会社タムラ製作所 β-Ga2O3-BASED SINGLE CRYSTAL AND SUBSTRATE
US10196756B2 (en) 2014-06-30 2019-02-05 Tamura Corporation β-Ga2O3 single-crystal substrate
WO2022141750A1 (en) * 2020-12-31 2022-07-07 杭州富加镓业科技有限公司 Gallium oxide preparation method and system based on deep learning and heat exchange method

Similar Documents

Publication Publication Date Title
JP4630986B2 (en) β-Ga2O3-based single crystal growth method
JP5459004B2 (en) Method for producing sapphire single crystal
US9458553B2 (en) Method for growing GZO (ZnO:Ga) crystals
CN107849732B (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP2006273684A (en) Method for producing group iii element oxide-based single crystal
JP4844428B2 (en) Method for producing sapphire single crystal
EP2510138B1 (en) Methods for manufacturing monocrystalline germanium ingots/wafers having low micro-pit density (mpd)
WO2014129414A1 (en) Sapphire single crystal core and production method therefor
JP4930166B2 (en) Method for producing aluminum oxide single crystal
EP3299498B1 (en) Single crystal producing device
JP2009013028A (en) Aluminum oxide-gallium oxide solid solution and method for producing the same
JP4904862B2 (en) Method for producing aluminum oxide single crystal and obtained aluminum oxide single crystal
EP1132505B1 (en) Method for producing single-crystal silicon carbide
JP2008120614A (en) Compound semiconductor single crystal substrate and method for producing the same
WO2019186871A1 (en) Single crystal manufacturing device and single crystal manufacturing method
JP4936829B2 (en) Method for growing zinc oxide crystals
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP2009057237A (en) Method for producing compound semiconductor single crystal
JP3906359B2 (en) Method for producing P-type semiconductor SrCu2O2 single crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JP5218960B2 (en) Zirconium diboride (ZrB2) single crystal growth method and semiconductor forming substrate
JP2007045653A (en) Method for growing zinc oxide crystal
JP2009298611A (en) Production method of semiconductor crystal
JPH10182277A (en) Device for producing single crystal and production of single crystal, using the same
JP2007223815A (en) METHOD OF MANUFACTURING COMPOUND SEMICONDUCTOR SINGLE CRYSTAL, AND ZnTe SINGLE CRYSTAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080318

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100223

A131 Notification of reasons for refusal

Effective date: 20100302

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20100506

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208