JP5864998B2 - Method for growing β-Ga 2 O 3 single crystal - Google Patents

Method for growing β-Ga 2 O 3 single crystal Download PDF

Info

Publication number
JP5864998B2
JP5864998B2 JP2011224243A JP2011224243A JP5864998B2 JP 5864998 B2 JP5864998 B2 JP 5864998B2 JP 2011224243 A JP2011224243 A JP 2011224243A JP 2011224243 A JP2011224243 A JP 2011224243A JP 5864998 B2 JP5864998 B2 JP 5864998B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal
plane
growing
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011224243A
Other languages
Japanese (ja)
Other versions
JP2013082587A (en
Inventor
公祥 輿
公祥 輿
信也 渡辺
信也 渡辺
公平 佐々木
公平 佐々木
優 山岡
優 山岡
建和 氏家
建和 氏家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Koha Co Ltd
Original Assignee
Tamura Corp
Koha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp, Koha Co Ltd filed Critical Tamura Corp
Priority to JP2011224243A priority Critical patent/JP5864998B2/en
Publication of JP2013082587A publication Critical patent/JP2013082587A/en
Application granted granted Critical
Publication of JP5864998B2 publication Critical patent/JP5864998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、β−Ga系単結晶の成長方法に関し、特に、双晶化を抑えることのできるβ−Ga系単結晶の成長方法に関する。 The present invention relates to a method of growing a β-Ga 2 O 3 single crystal, in particular, it relates to method of growing β-Ga 2 O 3 single crystal that can suppress the twinning.

従来のβ−Ga系単結晶の成長方法として、FZ(Floating Zone)法を用いた双晶化やクラッキングを抑えることのできる方法が知られている(例えば、特許文献1参照)。特許文献1に記載の方法によれば、β−Ga系単結晶をそのa軸、b軸、又はc軸と平行な方向に成長させることにより、双晶化やクラッキングを減少させることができる。 As a conventional method for growing a β-Ga 2 O 3 -based single crystal, a method capable of suppressing twinning and cracking using an FZ (Floating Zone) method is known (see, for example, Patent Document 1). According to the method described in Patent Document 1, it is possible to reduce twinning and cracking by growing a β-Ga 2 O 3 single crystal in a direction parallel to the a-axis, b-axis, or c-axis. Can do.

特開2004−262684号公報JP 2004-262684 A

しかし、実際には、特許文献1に記載の方法により必ずしも十分な効果が得られるとは限らず、特に、b軸に沿った方向にβ−Ga系単結晶を成長させた場合には、実用可能なレベルのβ−Ga系単結晶を得るために十分な程度に双晶化を抑えることは難しい。 However, in practice, a sufficient effect is not always obtained by the method described in Patent Document 1, and in particular, when a β-Ga 2 O 3 single crystal is grown in a direction along the b-axis. However, it is difficult to suppress twinning to a sufficient extent to obtain a β-Ga 2 O 3 single crystal at a practical level.

したがって、本発明の目的は、双晶化を効果的に抑えることのできるβ−Ga系単結晶の成長方法を提供することである。 Accordingly, an object of the present invention is to provide a method for growing a β-Ga 2 O 3 single crystal capable of effectively suppressing twinning.

本発明の一態様は、上記目的を達成するために、[1]〜[]のβ−Ga
単結晶の成長方法を提供する。
In order to achieve the above object, one embodiment of the present invention provides a method for growing a β-Ga 2 O 3 single crystal of [1] to [ 9 ].

[1]β−Ga系単結晶をその(101)面に平行な方向(b軸<010>方向に対してプラスマイナス10°の範囲内の方向を除く)に成長させ、前記(101)面内における<10−1>方向と前記方向とのなす角度φ(0°≦φ<90°)90°未満である、β−Ga系単結晶の成長方法。 [1] A β-Ga 2 O 3 based single crystal is grown in a direction parallel to the (101) plane (excluding directions in the range of plus or minus 10 ° with respect to the b-axis <010> direction). 101) A method for growing a β-Ga 2 O 3 single crystal, wherein an angle φ (0 ° ≦ φ <90 °) between the <10-1> direction in the plane and the direction is less than 90 ° .

[2]前記角度φは45°以下である、前記[1]に記載のβ−Ga系単結晶の成長方法。 [2] The β-Ga 2 O 3 single crystal growth method according to [1], wherein the angle φ is 45 ° or less.

[3]前記角度φは20°以下である、前記[2]に記載のβ−Ga系単結晶の成長方法。 [3] The β-Ga 2 O 3 single crystal growth method according to [2], wherein the angle φ is 20 ° or less.

[4]前記角度φは0°である、前記[3]に記載のβ−Ga系単結晶の成長方法。 [4] The β-Ga 2 O 3 single crystal growth method according to [3], wherein the angle φ is 0 °.

[5]前記β−Ga系単結晶は前記(101)面を主面とする平板状の結晶である、前記[1]〜[4]のいずれか1つに記載のβ−Ga系単結晶の成長方法。 [5] The β-Ga 2 O 3 -based single crystal is a plate-like crystal having the (101) plane as a main surface, and the β-Ga according to any one of [1] to [4]. A method for growing a 2 O 3 single crystal.

[6]EFG法により前記β−Ga系単結晶を成長させる、前記[5]に記載のβ−Ga系単結晶の成長方法。 [6] EFG method by growing the β-Ga 2 O 3 single crystal growing method of the β-Ga 2 O 3 single crystal according to [5].

[7]β−Ga系単結晶をその(100)面に垂直な直線となす角度が55.2°以内の方向(a軸<100>方向に対してプラスマイナス10°の範囲内の方向を除く)に成長させる、β−Ga系単結晶の成長方法。 [7] An angle between the β-Ga 2 O 3 single crystal and a straight line perpendicular to the (100) plane is within 55.2 ° ( within ± 10 ° with respect to the a-axis <100> direction) A method of growing a β-Ga 2 O 3 single crystal.

]β−Ga系単結晶をその(100)面に垂直な直線となす角度が0°の方向に成長させる、前記[]に記載のβ−Ga系単結晶の成長方法。 [8] β-Ga 2 a O 3 system single crystal angle between a line perpendicular to the (100) plane is grown in the direction of 0 °, the [7] β-Ga 2 O 3 system single crystal according to Growth method.

]FZ法により前記β−Ga系単結晶を成長させる、前記[7]又は[8]に記載のβ−Ga系単結晶の成長方法。 [9] FZ method by growing the β-Ga 2 O 3 system single crystal, the [7] or [8] method of growing β-Ga 2 O 3 system single crystal according to.

本発明によれば、双晶化を効果的に抑えることのできるβ−Ga系単結晶の成長方法を提供することができる。 According to the present invention can provide a method for growing a β-Ga 2 O 3 single crystal that can suppress the twinning effectively.

第1の実施の形態に係るEFG結晶製造装置の一部の垂直断面図Partial vertical sectional view of the EFG crystal manufacturing apparatus according to the first embodiment β−Ga系単結晶の成長中の様子を表す斜視図A perspective view showing a state during growth of a β-Ga 2 O 3 single crystal β−Ga系結晶の単位格子を示す図It shows a unit cell of the β-Ga 2 O 3 based crystals β−Ga系単結晶の成長中に発生する双晶の概念図Conceptual diagram of twins generated during growth of β-Ga 2 O 3 single crystal (a)(101)面が結晶成長方向に平行である場合のβ−Ga系単結晶の<10−1>方向と成長方向の関係を表す概念図、(b)β−Ga系単結晶の単位格子における<10−1>方向、(101)面、及び(100)面(A) Conceptual diagram showing the relationship between the <10-1> direction of the β-Ga 2 O 3 -based single crystal and the growth direction when the (101) plane is parallel to the crystal growth direction, (b) β-Ga 2 <10-1> direction, (101) plane, and (100) plane in the unit cell of O 3 single crystal β−Ga系単結晶の双晶化度と角度φとの関係を表すグラフThe graph showing the relationship between the twinning degree of β-Ga 2 O 3 single crystal and the angle φ (a)、(b)第2の実施の形態に係るβ−Ga系単結晶の結晶成長方向の範囲を表す概念図(A), a conceptual diagram representing the (b) crystal growth direction in the range of a second embodiment in accordance with β-Ga 2 O 3 single crystal

〔第1の実施の形態〕
本実施の形態においては、EFG(Edge-defined film-fed growth)法によりβ−Ga系単結晶を成長させる。
[First Embodiment]
In the present embodiment, a β-Ga 2 O 3 single crystal is grown by an EFG (Edge-defined film-fed growth) method.

図1は、本実施の形態に係るEFG結晶製造装置の一部の垂直断面図である。このEFG結晶製造装置10は、β−Ga系融液12を受容するルツボ13と、このルツボ13内に設置されたスリット14Aを有するダイ14と、スリット14Aの開口14Bを除くルツボ13の上面を閉塞する蓋15と、β−Ga種結晶(以下、「種結晶」という)20を保持する種結晶保持具21と、種結晶保持具21を昇降可能に支持するシャフト22とを有する。 FIG. 1 is a vertical sectional view of a part of the EFG crystal manufacturing apparatus according to the present embodiment. The EFG crystal manufacturing apparatus 10 includes a crucible 13 that receives a β-Ga 2 O 3 -based melt 12, a die 14 having a slit 14 A installed in the crucible 13, and a crucible 13 excluding an opening 14 B of the slit 14 A. , A seed crystal holder 21 that holds a β-Ga 2 O 3 seed crystal (hereinafter referred to as “seed crystal”) 20, and a shaft 22 that supports the seed crystal holder 21 so as to be movable up and down. And have.

ルツボ13は、β−Ga系粉末を溶解させて得られたβ−Ga系融液12を収容する。ルツボ13は、β−Ga系融液12を収容しうる耐熱性を有するイリジウム等の金属材料からなる。 The crucible 13 contains the β-Ga 2 O 3 melt 12 obtained by dissolving the β-Ga 2 O 3 powder. The crucible 13 is made of a metal material such as iridium having heat resistance that can accommodate the β-Ga 2 O 3 melt 12.

ダイ14は、β−Ga系融液12を毛細管現象により上昇させるためのスリット14Aを有する。 The die 14 has a slit 14A for raising the β-Ga 2 O 3 -based melt 12 by capillary action.

蓋15は、ルツボ13から高温のβ−Ga系融液12が蒸発することを防止し、さらにスリット14Aの上面以外の部分にβ−Ga系融液12の蒸気が付着することを防ぐ。 The lid 15 prevents the high-temperature β-Ga 2 O 3 melt 12 from evaporating from the crucible 13, and the vapor of the β-Ga 2 O 3 melt 12 adheres to a portion other than the upper surface of the slit 14A. To prevent.

種結晶20を下降させて毛細管現象で上昇したβ−Ga系融液12に接触させ、β−Ga系融液12と接触した種結晶20を引き上げることにより、平板状のβ−Ga系単結晶25を成長させる。種結晶20の底面の幅はダイ14の長手方向の幅よりも小さく、β−Ga系単結晶25は種結晶20の引き上げに伴ってダイ14の長手方向に拡張しながら成長する(肩拡げ過程)。β−Ga系単結晶25の結晶方位は種結晶20の結晶方位と等しく、β−Ga系単結晶25の結晶方位を制御するためには、例えば、種結晶20の底面の面方位及び水平面内の角度を調整する。 The seed crystal 20 is lowered and brought into contact with the β-Ga 2 O 3 melt 12 raised by capillary action, and the seed crystal 20 in contact with the β-Ga 2 O 3 melt 12 is pulled up, whereby a plate-like shape is obtained. A β-Ga 2 O 3 single crystal 25 is grown. The width of the bottom surface of the seed crystal 20 is smaller than the width in the longitudinal direction of the die 14, and the β-Ga 2 O 3 single crystal 25 grows while expanding in the longitudinal direction of the die 14 as the seed crystal 20 is pulled up ( Shoulder expansion process). crystal orientation of the β-Ga 2 O 3 single crystal 25 is equal to the crystal orientation of the seed crystal 20, in order to control the crystal orientation of the β-Ga 2 O 3 single crystal 25 is, for example, the bottom surface of the seed crystal 20 Adjust the plane orientation and angle in the horizontal plane.

図2は、β−Ga系単結晶の成長中の様子を表す斜視図である。図2中の面26は、スリット14Aのスリット方向と平行なβ−Ga系単結晶25の主面である。成長させたβ−Ga系単結晶25を切り出してβ−Ga系基板を形成する場合は、β−Ga系基板の所望の主面の面方位にβ−Ga系単結晶25の面26の面方位を一致させる。例えば、(101)面を主面とするβ−Ga系基板を形成する場合は、面26の面方位を(101)とする。また、成長させたβ−Ga系単結晶25は、新たなβ−Ga系単結晶を成長させるための種結晶として用いることができる。 FIG. 2 is a perspective view illustrating a state during the growth of the β-Ga 2 O 3 single crystal. A surface 26 in FIG. 2 is a main surface of the β-Ga 2 O 3 single crystal 25 parallel to the slit direction of the slit 14A. If cut out β-Ga 2 O 3 single crystal 25 is grown to form a β-Ga 2 O 3 system board, the plane orientation of the desired major surface of the β-Ga 2 O 3 based substrate beta-Ga The plane orientation of the face 26 of the 2 O 3 system single crystal 25 is matched. For example, when a β-Ga 2 O 3 -based substrate having the (101) plane as the main surface is formed, the plane orientation of the plane 26 is set to (101). The grown β-Ga 2 O 3 single crystal 25 can be used as a seed crystal for growing a new β-Ga 2 O 3 single crystal.

β−Ga系単結晶25及び種結晶20は、β−Ga単結晶、又は、Cu、Ag、Zn、Cd、Al、In、Si、Ge、Sn、Hf、Mg等の元素が添加されたβ−Ga単結晶である。 The β-Ga 2 O 3 -based single crystal 25 and the seed crystal 20 are a β-Ga 2 O 3 single crystal, or Cu, Ag, Zn, Cd, Al, In, Si, Ge, Sn, Hf, Mg, etc. It is a β-Ga 2 O 3 single crystal to which an element is added.

図3は、β−Ga系結晶の単位格子を示す。図3中の単位格子2がβ−Ga系結晶の単位格子である。β−Ga系結晶は単斜晶系に属するβ-ガリア構造を有し、不純物を含まないβ−Ga結晶の典型的な格子定数はa=12.23Å、b=3.04Å、c=5.80Å、α=γ=90°、β=103.8°である。 FIG. 3 shows a unit cell of a β-Ga 2 O 3 based crystal. A unit cell 2 in FIG. 3 is a unit cell of a β-Ga 2 O 3 based crystal. The β-Ga 2 O 3 crystal has a β-gallia structure belonging to a monoclinic system, and a typical lattice constant of a β-Ga 2 O 3 crystal containing no impurities is a 0 = 12.23., b 0 = 3.04Å, c 0 = 5.80Å, α = γ = 90 °, β = 103.8 °.

図4は、β−Ga系単結晶の成長中に発生する双晶の概念図である。双晶は、鏡面対称な2つのβ−Ga系結晶からなる。β−Ga系結晶の双晶の対称面(双晶面)は、(100)面である。EFG法によりβ−Ga系単結晶を成長させる場合、結晶成長開始後の結晶の肩拡げ過程において双晶が発生しやすい。 FIG. 4 is a conceptual diagram of twins generated during the growth of a β-Ga 2 O 3 single crystal. The twin crystal is composed of two mirror-symmetric β-Ga 2 O 3 -based crystals. The twin symmetry plane (twin plane) of the β-Ga 2 O 3 based crystal is the (100) plane. When a β-Ga 2 O 3 single crystal is grown by the EFG method, twins are likely to be generated in the shoulder expansion process of the crystal after the start of crystal growth.

この双晶面となる(100)面がβ−Ga系単結晶25の成長方向(種結晶20の引き上げ方向)に平行である場合に、β−Ga系単結晶25が双晶化しやすくなる傾向がある。反対に、β−Ga系単結晶25の成長方向と(100)面とのなす角度が直角に近いほど、β−Ga系単結晶25の成長時の双晶化を抑えることができる。 When the (100) plane serving as the twin plane is parallel to the growth direction of the β-Ga 2 O 3 single crystal 25 (the pulling direction of the seed crystal 20), the β-Ga 2 O 3 single crystal 25 is There is a tendency to twinning easily. On the contrary, the twinning during the growth of the β-Ga 2 O 3 single crystal 25 is suppressed as the angle between the growth direction of the β-Ga 2 O 3 single crystal 25 and the (100) plane is closer to a right angle. be able to.

図5(a)は、(101)面が結晶成長方向に平行である場合のβ−Ga系単結晶25の<10−1>方向と成長方向の関係を表す概念図である。図5(b)には、β−Ga系単結晶25の単位格子2における<10−1>方向、(101)面、及び(100)面を示す。図5(a)においては、(101)面が紙面に平行である。φは、β−Ga系単結晶25の(101)面内において<10−1>方向と結晶成長方向(鉛直方向)とのなす角度である。 FIG. 5A is a conceptual diagram showing the relationship between the <10-1> direction of the β-Ga 2 O 3 single crystal 25 and the growth direction when the (101) plane is parallel to the crystal growth direction. FIG. 5B shows the <10-1> direction, the (101) plane, and the (100) plane in the unit cell 2 of the β-Ga 2 O 3 -based single crystal 25. In FIG. 5A, the (101) plane is parallel to the paper surface. φ is an angle between the <10-1> direction and the crystal growth direction (vertical direction) in the (101) plane of the β-Ga 2 O 3 single crystal 25.

ここで、角度φが90°であるとき、β−Ga系単結晶25の成長方向と(100)面は平行であり、角度φが0°であるとき、β−Ga系単結晶25の成長方向と(100)面とのなす角度は最も直角に近くなる。つまり、角度φが0°に近いほど、β−Ga系単結晶25の成長時の双晶化を効果的に抑えることができる。 Here, when the angle φ is 90 °, the growth direction of the β-Ga 2 O 3 single crystal 25 and the (100) plane are parallel, and when the angle φ is 0 °, β-Ga 2 O 3 The angle formed by the growth direction of the system single crystal 25 and the (100) plane is closest to the right angle. That is, as the angle φ is closer to 0 °, twinning during the growth of the β-Ga 2 O 3 single crystal 25 can be effectively suppressed.

そのため、本実施の形態においては、角度φ(0°≦φ<90°)の範囲は少なくとも90°未満、好ましくは45°以下、より好ましくは20°以下、最も好ましくは0°である。例えば、β−Ga系単結晶25の面26を(101)面とした場合、この条件を満たすことにより、β−Ga系単結晶25から(101)面を主面とする双晶の少ないβ−Ga系基板を切り出すことができる。 Therefore, in the present embodiment, the range of the angle φ (0 ° ≦ φ <90 °) is at least less than 90 °, preferably 45 ° or less, more preferably 20 ° or less, and most preferably 0 °. For example, when the surface 26 of the β-Ga 2 O 3 -based single crystal 25 is the (101) surface, by satisfying this condition, the (101) surface is defined as the main surface from the β-Ga 2 O 3 -based single crystal 25. It is possible to cut a β-Ga 2 O 3 -based substrate with few twins.

図6は、β−Ga系単結晶の双晶化度と角度φとの関係を表すグラフである。図6の縦軸は、(100)面を双晶面として結晶構造が反転した領域の平均密度(面26上の成長方向と垂直な方向の1cm当たりの平均数)を表す。横軸は、角度φを表す。φ=90°のときは、反転領域が1cm当たり平均27.8本存在し、φ=45°のときは、反転領域が1cm当たり平均9本存在し、φ=0°のときは、反転領域が存在しない。 FIG. 6 is a graph showing the relationship between the twinning degree of the β-Ga 2 O 3 single crystal and the angle φ. The vertical axis in FIG. 6 represents the average density (average number per cm in the direction perpendicular to the growth direction on the surface 26) of the region where the crystal structure is inverted with the (100) plane as the twin plane. The horizontal axis represents the angle φ. When φ = 90 °, there are an average of 27.8 inversion regions per cm, when φ = 45 °, an average of 9 inversion regions per cm, and when φ = 0 °, the inversion regions Does not exist.

図6に示されるように、φ=90°、すなわちβ−Ga系単結晶25の<10−1>方向が結晶成長方向に対して垂直であるときに最も双晶が多く、φ=0°、すなわちβ−Ga系単結晶25の<10−1>方向が結晶成長方向に対して平行であるときに最も双晶が少ない。これは、β−Ga系単結晶25の成長方向と(100)面が、φ=90°のときに平行であり、φ=0°のときに最も直角に近くなることによると考えられる。 As shown in FIG. 6, when φ = 90 °, that is, when the <10-1> direction of the β-Ga 2 O 3 -based single crystal 25 is perpendicular to the crystal growth direction, there are most twins, = 0 °, that is, there are few twins when the <10-1> direction of the β-Ga 2 O 3 single crystal 25 is parallel to the crystal growth direction. This is considered to be because the growth direction of the β-Ga 2 O 3 single crystal 25 and the (100) plane are parallel when φ = 90 ° and are closest to the right angle when φ = 0 °. It is done.

なお、第1の実施の形態においては、EFG法を用いてβ−Ga系単結晶25を成長させたが、CZ(Czochralski)法、FZ(Floating Zone)法等の他の結晶成長方法を用いた場合であってもβ−Ga系単結晶25の双晶化を効果的に抑えることができる。それらの場合も、β−Ga系単結晶25の結晶方位と成長方向の関係はEFG法を用いる場合と同様である。 In the first embodiment, the β-Ga 2 O 3 single crystal 25 is grown by using the EFG method. However, other crystal growth methods such as a CZ (Czochralski) method and an FZ (Floating Zone) method are used. Even when the method is used, twinning of the β-Ga 2 O 3 single crystal 25 can be effectively suppressed. In those cases, the relationship between the crystal orientation and the growth direction of the β-Ga 2 O 3 single crystal 25 is the same as that in the case of using the EFG method.

〔第2の実施の形態〕
第2の実施の形態は、結晶の成長方向の範囲が第1の実施の形態と異なる。第1の実施の形態と同様の点については、説明を省略又は簡略化する。
[Second Embodiment]
The second embodiment is different from the first embodiment in the range of the crystal growth direction. The description of the same points as in the first embodiment will be omitted or simplified.

図7(a)、(b)は、第2の実施の形態に係るβ−Ga系単結晶の結晶成長方向の範囲を表す概念図である。図7(a)においては、β−Ga系単結晶のb軸及びc軸が紙面に平行である。図7(b)においては、β−Ga系単結晶のa軸及びc軸が紙面に平行であり、b軸が紙面に垂直である。 FIGS. 7A and 7B are conceptual diagrams showing the range of the crystal growth direction of the β-Ga 2 O 3 based single crystal according to the second embodiment. In FIG. 7A, the b-axis and c-axis of the β-Ga 2 O 3 single crystal are parallel to the paper surface. In FIG. 7B, the a-axis and c-axis of the β-Ga 2 O 3 -based single crystal are parallel to the paper surface, and the b-axis is perpendicular to the paper surface.

本実施の形態のβ−Ga系単結晶の結晶成長方向は、β−Ga系単結晶の(100)面に垂直な直線3となす角度がθ以内の方向である。すなわち、図7(a)、(b)に点線で示される円錐4内を通る方向である。ここで、円錐4は、直線3を軸とした、軸と稜線のなす角度がθの直円錐である。 Crystal growth direction of the β-Ga 2 O 3 system single crystal of the present embodiment, the angle formed by the β-Ga 2 O 3 system single crystal (100) perpendicular to the plane linear 3 is the direction within theta. That is, it is a direction passing through the inside of the cone 4 indicated by a dotted line in FIGS. Here, the cone 4 is a right cone whose angle between the axis and the ridge line is θ with the straight line 3 as an axis.

角度θは55.2°であり、より好ましくは36.2°であり、さらに好ましくは13.7°であり、最も好ましくは0°である。結晶成長方向が(100)面に垂直な直線3となす角度が小さいほど、β−Ga系単結晶の成長時の双晶化を効果的に抑えることができる。 The angle θ is 55.2 °, more preferably 36.2 °, even more preferably 13.7 °, and most preferably 0 °. As the angle between the crystal growth direction and the straight line 3 perpendicular to the (100) plane is smaller, twinning during the growth of the β-Ga 2 O 3 -based single crystal can be effectively suppressed.

例えば、FZ法によりβ−Ga系単結晶を直線3に平行な方向に成長させた場合、及びa軸方向、すなわち<100>方向に成長させた場合、成長方向に25cm以上にわたって、結晶構造が反転した反転領域が現れないことが確認されている。また、β−Ga系単結晶をb軸方向、すなわち<010>方向に成長させた場合、成長方向と垂直な方向の1cm当たりの反転領域の平均数が数十以上になることが確認されている。ここで、直線3に平行な方向が直線3となす角度は0°、a軸方向が直線3となす角度は13.7°、b軸方向が直線3となす角度は90°である。 For example, when a β-Ga 2 O 3 single crystal is grown in the direction parallel to the straight line 3 by the FZ method, and when grown in the a-axis direction, that is, in the <100> direction, the growth direction extends over 25 cm or more. It has been confirmed that an inversion region in which the crystal structure is inverted does not appear. Further, when the β-Ga 2 O 3 single crystal is grown in the b-axis direction, that is, the <010> direction, the average number of inversion regions per 1 cm in the direction perpendicular to the growth direction may be several tens or more. It has been confirmed. Here, the angle formed between the direction parallel to the straight line 3 and the straight line 3 is 0 °, the angle formed between the a-axis direction and the straight line 3 is 13.7 °, and the angle formed between the b-axis direction and the straight line 3 is 90 °.

なお、第1の実施の形態で述べられた(101)面内における<10−1>方向となす角度が0°である方向は、直線3に対して36.2°の角度をなす。また、(101)面内における<10−1>方向となす角度が45°である方向は、直線3に対して55.2°の角度をなす。   Note that the direction in which the angle formed with the <10-1> direction in the (101) plane described in the first embodiment is 0 ° forms an angle of 36.2 ° with the straight line 3. Further, the direction in which the angle formed with the <10-1> direction in the (101) plane is 45 ° forms an angle of 55.2 ° with respect to the straight line 3.

β−Ga系単結晶の成長にFZ法を用いる場合、EFG法を用いる場合と比較して、結晶が双晶化しにくいことが本発明者らにより確認されている。そのため、第1の実施の形態に記載されたEFG法を用いる場合の結晶成長方向と双晶化度の関係から、FZ法により直線3に対して36.2°の角度をなす方向に結晶を成長させた場合、結晶が双晶化しないことが予測される。また、FZ法により直線3に対して55.2°の角度をなす方向に結晶を成長させた場合、成長方向と垂直な方向の1cm当たりの反転領域の平均数が9本以下になると予測される。 It has been confirmed by the present inventors that when the FZ method is used for the growth of a β-Ga 2 O 3 based single crystal, the crystal is less likely to be twinned as compared with the case where the EFG method is used. Therefore, from the relationship between the crystal growth direction and the twinning degree when using the EFG method described in the first embodiment, the crystal is formed in a direction that forms an angle of 36.2 ° with respect to the straight line 3 by the FZ method. When grown, the crystals are expected not to twin. In addition, when a crystal is grown in a direction that forms an angle of 55.2 ° with respect to the straight line 3 by the FZ method, the average number of inversion regions per 1 cm in a direction perpendicular to the growth direction is predicted to be 9 or less. The

(実施の形態の効果)
本実施の形態によれば、β−Ga系単結晶の結晶方位とその成長方向を制御することにより、β−Ga系単結晶の双晶化を効果的に抑えることができる。
(Effect of embodiment)
According to this embodiment, by controlling the crystal orientation and the growth direction of the β-Ga 2 O 3 single crystal, it is possible to suppress the twinning of β-Ga 2 O 3 single crystal effectively it can.

以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   While the embodiments of the present invention have been described above, the embodiments described above do not limit the invention according to the claims. In addition, it should be noted that not all the combinations of features described in the embodiments are essential to the means for solving the problems of the invention.

3…直線、4…円錐、10…EFG結晶製造装置、25…β−Ga系単結晶、26…面 3 ... linear, 4 ... cone, 10 ... EFG crystal manufacturing apparatus, 25 ... β-Ga 2 O 3 single crystal, 26 ... surface

Claims (9)

β−Ga系単結晶をその(101)面に平行な方向(b軸<010>方向に対してプラスマイナス10°の範囲内の方向を除く)に成長させ、前記(101)面内における<10−1>方向と前記方向とのなす角度φ(0°≦φ<90°)90°未満である、
β−Ga系単結晶の成長方法。
A β-Ga 2 O 3 based single crystal is grown in a direction parallel to the (101) plane (excluding directions in a range of plus or minus 10 ° with respect to the b-axis <010> direction) , and the (101) plane The angle φ (0 ° ≦ φ <90 °) between the <10-1> direction and the direction is less than 90 ° ,
A method for growing a β-Ga 2 O 3 single crystal.
前記角度φは45°以下である、
請求項1に記載のβ−Ga系単結晶の成長方法。
The angle φ is 45 ° or less.
A method for growing a β-Ga 2 O 3 single crystal according to claim 1.
前記角度φは20°以下である、
請求項2に記載のβ−Ga系単結晶の成長方法。
The angle φ is 20 ° or less.
A method for growing a β-Ga 2 O 3 single crystal according to claim 2.
前記角度φは0°である、
請求項3に記載のβ−Ga系単結晶の成長方法。
The angle φ is 0 °,
A method for growing a β-Ga 2 O 3 single crystal according to claim 3.
前記β−Ga系単結晶は前記(101)面を主面とする平板状の結晶である、
請求項1〜4のいずれか1項に記載のβ−Ga系単結晶の成長方法。
The β-Ga 2 O 3 -based single crystal is a flat crystal having the (101) plane as a main surface.
The method for growing a β-Ga 2 O 3 single crystal according to any one of claims 1 to 4.
EFG法により前記β−Ga系単結晶を成長させる、
請求項5に記載のβ−Ga系単結晶の成長方法。
Growing the β-Ga 2 O 3 single crystal by EFG method,
A method for growing a β-Ga 2 O 3 single crystal according to claim 5.
β−Ga系単結晶をその(100)面に垂直な直線となす角度が55.2°以内の方向(a軸<100>方向に対してプラスマイナス10°の範囲内の方向を除く)に成長させる、
β−Ga系単結晶の成長方法。
The angle between the β-Ga 2 O 3 based single crystal and a straight line perpendicular to the (100) plane is within 55.2 ° (the direction is within ± 10 ° with respect to the a-axis <100> direction). Excluding) ,
A method for growing a β-Ga 2 O 3 single crystal.
β−Ga系単結晶をその(100)面に垂直な直線となす角度が0°の方向に成長させる、
請求項7に記載のβ−Ga系単結晶の成長方法。
a β-Ga 2 O 3 single crystal is grown in a direction of 0 ° with respect to a straight line perpendicular to the (100) plane;
A method for growing a β-Ga 2 O 3 single crystal according to claim 7.
FZ法により前記β−Ga系単結晶を成長させる、
請求項7又は8に記載のβ−Ga系単結晶の成長方法。
Growing the β-Ga 2 O 3 based single crystal by FZ method,
The method for growing a β-Ga 2 O 3 single crystal according to claim 7 or 8.
JP2011224243A 2011-10-11 2011-10-11 Method for growing β-Ga 2 O 3 single crystal Active JP5864998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011224243A JP5864998B2 (en) 2011-10-11 2011-10-11 Method for growing β-Ga 2 O 3 single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011224243A JP5864998B2 (en) 2011-10-11 2011-10-11 Method for growing β-Ga 2 O 3 single crystal

Publications (2)

Publication Number Publication Date
JP2013082587A JP2013082587A (en) 2013-05-09
JP5864998B2 true JP5864998B2 (en) 2016-02-17

Family

ID=48528195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011224243A Active JP5864998B2 (en) 2011-10-11 2011-10-11 Method for growing β-Ga 2 O 3 single crystal

Country Status (1)

Country Link
JP (1) JP5864998B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6097989B2 (en) * 2012-04-24 2017-03-22 並木精密宝石株式会社 Gallium oxide single crystal and gallium oxide single crystal substrate
JP5865867B2 (en) 2013-05-13 2016-02-17 株式会社タムラ製作所 Method for growing β-Ga 2 O 3 single crystal and method for producing β-Ga 2 O 3 single crystal substrate
JP5836999B2 (en) * 2013-05-14 2015-12-24 株式会社タムラ製作所 Method for growing β-Ga 2 O 3 single crystal and method for producing β-Ga 2 O 3 single crystal substrate
JP2014224041A (en) * 2014-06-09 2014-12-04 株式会社タムラ製作所 β-Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
JP5749839B1 (en) * 2014-06-30 2015-07-15 株式会社タムラ製作所 β-Ga2O3-based single crystal substrate
JP6013410B2 (en) * 2014-08-07 2016-10-25 株式会社タムラ製作所 Ga2O3 single crystal substrate
EP3042986A1 (en) 2015-01-09 2016-07-13 Forschungsverbund Berlin e.V. Method for growing beta phase of gallium oxide (ß-Ga2O3) single crystals from the melt contained within a metal crucible by controlling the partial pressure of oxygen.
JP6376600B2 (en) 2015-03-20 2018-08-22 株式会社タムラ製作所 Method for manufacturing crystal laminated structure
JP6758569B2 (en) 2015-03-20 2020-09-23 株式会社タムラ製作所 High withstand voltage Schottky barrier diode
JP2016117643A (en) * 2015-12-25 2016-06-30 株式会社タムラ製作所 β-Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
CN114507899B (en) * 2022-04-20 2022-08-16 中国电子科技集团公司第四十六研究所 Control method and control device for shouldering angle of gallium oxide single crystal growth

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3679097B2 (en) * 2002-05-31 2005-08-03 株式会社光波 Light emitting element
JP4630986B2 (en) * 2003-02-24 2011-02-09 学校法人早稲田大学 β-Ga2O3-based single crystal growth method
JP4020314B2 (en) * 2003-05-15 2007-12-12 学校法人早稲田大学 Ga2O3 light emitting device and method for manufacturing the same
JP2008156141A (en) * 2006-12-21 2008-07-10 Koha Co Ltd Semiconductor substrate and method for manufacturing the same

Also Published As

Publication number Publication date
JP2013082587A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP5864998B2 (en) Method for growing β-Ga 2 O 3 single crystal
JP5491483B2 (en) Method for growing β-Ga 2 O 3 single crystal
WO2016088883A1 (en) Method for producing silicon carbide single crystal, and silicon carbide single crystal substrate
EP2933359B1 (en) Method for growing a beta-ga2o3-based single crystal
JP2007284301A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP2014196242A (en) AlxGa1-xN crystal substrate
KR101310292B1 (en) Sapphire seed and method for manufacturing the same, and method for manufacturing sapphire single crystal
JP2003313089A (en) Method for manufacturing single crystal silicon and single crystal silicon wafer, seed crystal for manufacturing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
TW201443301A (en) Method for growing [beta]-ga2o3-based single crystal
JP6590145B2 (en) Silicon ingot, method for producing the same, and seed crystal
JP5056122B2 (en) Method for producing silicon single crystal
JP2018095490A (en) Method for manufacturing silicon single crystal, silicon single crystal and silicon single crystal wafer
JP2006232570A (en) METHOD FOR PRODUCING GaAs SINGLE CRYSTAL
WO2016147673A1 (en) SiC SINGLE CRYSTAL PRODUCTION METHOD
JP5777756B2 (en) β-Ga2O3-based single crystal substrate
CN114540953A (en) Cast crystalline silicon preparation method capable of reducing dislocation defects and polycrystalline proportion
JP4923253B2 (en) Method for producing Si bulk polycrystal
JP4529712B2 (en) Method for producing compound semiconductor single crystal
JP5688654B2 (en) Silicon crystal, method for producing silicon crystal, and method for producing silicon polycrystalline ingot
Harsy et al. Heat conduction vs crystal defects in GaSb ingots grown by the vertical Bridgman method
JPH11199362A (en) Production of compound semiconductor single crystal
WO2017138516A1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
CN111441083A (en) Seed crystal laying method in production of low dislocation density casting single crystal ingot or polycrystalline silicon ingot
JP2005047797A (en) InP SINGLE CRYSTAL, GaAs SINGLE CRYSTAL, AND METHOD FOR PRODUCING THEM
JP2017088416A (en) Manufacturing method of single crystal of silicon carbide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151225

R150 Certificate of patent or registration of utility model

Ref document number: 5864998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350