JP2008156141A - Semiconductor substrate and method for manufacturing the same - Google Patents

Semiconductor substrate and method for manufacturing the same Download PDF

Info

Publication number
JP2008156141A
JP2008156141A JP2006344918A JP2006344918A JP2008156141A JP 2008156141 A JP2008156141 A JP 2008156141A JP 2006344918 A JP2006344918 A JP 2006344918A JP 2006344918 A JP2006344918 A JP 2006344918A JP 2008156141 A JP2008156141 A JP 2008156141A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
plane
gan
single crystal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006344918A
Other languages
Japanese (ja)
Inventor
Kazuo Aoki
和夫 青木
Takekazu Ujiie
建和 氏家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koha Co Ltd
Original Assignee
Koha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koha Co Ltd filed Critical Koha Co Ltd
Priority to JP2006344918A priority Critical patent/JP2008156141A/en
Publication of JP2008156141A publication Critical patent/JP2008156141A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor substrate made of a β-Ga<SB>2</SB>O<SB>3</SB>single crystal on which high-quality epitaxial crystal growth can be carried out with low dislocation density even when a GaN crystal is to be grown, and a semiconductor substrate made of a β-Ga<SB>2</SB>O<SB>3</SB>single crystal having an epitaxial layer by growing GaN on the (100) plane, and to provide a method for manufacturing a semiconductor substrate made of the above β-Ga<SB>2</SB>O<SB>3</SB>single crystal. <P>SOLUTION: The semiconductor substrate comprises a β-Ga<SB>2</SB>O<SB>3</SB>single crystal having the (100) plane as a given plane direction, in which oxygen is removed from the surface layer of the (100) plane. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体デバイス、例えば、LED、レーザ等に使用されるβ―Ga系単結晶からなる半導体基板に関し、特に、その上にGaNをエピタキシャル結晶成長させても良質な単結晶膜が得られるβ―Ga系単結晶からなる半導体基板に関する。 The present invention relates to a semiconductor substrate made of a β-Ga 2 O 3 single crystal used for semiconductor devices such as LEDs and lasers, and in particular, a high quality single crystal film even when GaN is epitaxially grown thereon. Relates to a semiconductor substrate made of a β-Ga 2 O 3 -based single crystal.

従来、半導体デバイス、例えば、LED、レーザ等の半導体基板にはサファイア基板が使用されているが、その上に成長させるGaNとの格子不整合が16%と大きいために良質なGaNの単結晶膜を成長させることができないといった問題がある。これを解決するものとして、サファイア基板と、サファイア基板の表面に低温で形成されたAlNからなるバッファ層と、バッファ層の上にMOCVD(Metal Organic Chemical Vapor Deposition) 法によりエピタキシャル成長して形成されたGaN成長層とを備える半導体基板がある(特許文献1)。   Conventionally, a sapphire substrate has been used for a semiconductor substrate such as a semiconductor device such as an LED or a laser, but since the lattice mismatch with GaN grown thereon is as large as 16%, a good quality GaN single crystal film There is a problem that it cannot grow. As a solution to this problem, a sapphire substrate, a buffer layer made of AlN formed on the surface of the sapphire substrate at low temperature, and GaN formed by epitaxial growth on the buffer layer by MOCVD (Metal Organic Chemical Vapor Deposition) method There exists a semiconductor substrate provided with a growth layer (patent document 1).

この半導体基板によれば、サファイア基板とGaN成長層との間にバッファ層を形成することにより、格子定数の不一致を緩和して積層されるエピタキシャル結晶の品質の低下を抑制している。
特公昭52−36117号公報
According to this semiconductor substrate, by forming a buffer layer between the sapphire substrate and the GaN growth layer, the mismatch of lattice constants is alleviated and the deterioration of the quality of the epitaxial crystal laminated is suppressed.
Japanese Patent Publication No. 52-36117

しかし、特許文献1の半導体基板によれば、サファイア基板とGaN成長層との間にバッファ層を設けてはいるが、格子不整合を十分に緩和することができず、高品質のGaN成長層を得ることは難しい。そして、これを用いて製造した半導体デバイス、例えば、LED、レーザ等の発光素子では、発光層の結晶性が十分でなく、発光効率の向上に限界があった。従って、従来は、結晶構造の異なる半導体基板に、格子定数が異なるGaNを結晶成長させる場合、良質なエピタキシャル結晶成長が十分ではなかった。   However, according to the semiconductor substrate of Patent Document 1, although the buffer layer is provided between the sapphire substrate and the GaN growth layer, the lattice mismatch cannot be sufficiently relaxed, and the high-quality GaN growth layer. Hard to get. And in the semiconductor device manufactured using this, for example, light emitting elements, such as LED and a laser, the crystallinity of the light emitting layer was not enough, and there existed a limit in the improvement of luminous efficiency. Therefore, conventionally, when GaN having different lattice constants is grown on a semiconductor substrate having a different crystal structure, high-quality epitaxial crystal growth has not been sufficient.

従って、本発明の目的は、GaNを結晶成長させる場合でも、転移密度が低い良質なエピタキシャル結晶成長が可能なβ―Ga系単結晶からなる半導体基板、(100)面の上にGaNが成長して形成されたエピタキシャル層を有するβ―Ga系単結晶からなる半導体基板、及び、これらのβ―Ga系単結晶からなる半導体基板の製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a semiconductor substrate made of a β-Ga 2 O 3 single crystal capable of growing a high-quality epitaxial crystal having a low transition density even when GaN is crystal-grown. To provide a semiconductor substrate made of a β-Ga 2 O 3 single crystal having an epitaxial layer formed by growing silicon, and a method for manufacturing a semiconductor substrate made of these β-Ga 2 O 3 single crystals is there.

[1]本発明は、上記の目的を達成するため、所定の面方位である(100)面を有し、前記(100)面の表面層の酸素が除去されたことを特徴とするβ―Ga系単結晶からなる半導体基板を提供する。 [1] In order to achieve the above object, the present invention has a (100) plane having a predetermined plane orientation, and the oxygen in the surface layer of the (100) plane is removed. Provided is a semiconductor substrate made of a Ga 2 O 3 based single crystal.

[2]本発明は、上記の目的を達成するため、所定の面方位である(100)面の表面層の酸素が除去され、前記酸素が除去された(100)面上に、ウルツ鉱型構造のGaNが前記GaNのc軸<0001>又は<000―1>方向に成長して形成されたエピタキシャル層を有することを特徴とするβ―Ga系単結晶からなる半導体基板を提供する。 [2] According to the present invention, in order to achieve the above object, oxygen in the surface layer of the (100) plane having a predetermined plane orientation is removed, and the wurtzite type is formed on the (100) plane from which the oxygen is removed. Provided is a semiconductor substrate made of a β-Ga 2 O 3 based single crystal, characterized by having an epitaxial layer formed by growing GaN of the structure in the c-axis <0001> or <000-1> direction of the GaN To do.

[3]本発明は、上記の目的を達成するため、所定の面方位である(100)面を有するβ―Ga系単結晶からなる基板を準備する基板準備工程と、前記基板の前記所定の面方位である(100)面の表面層の酸素を除去する酸素除去工程と、を有することを特徴とするβ―Ga系単結晶からなる半導体基板の製造方法を提供する。 [3] In order to achieve the above object, the present invention provides a substrate preparation step of preparing a substrate made of β-Ga 2 O 3 single crystal having a (100) plane having a predetermined plane orientation, And a method of producing a semiconductor substrate made of a β-Ga 2 O 3 single crystal, comprising: an oxygen removing step of removing oxygen from a surface layer having a (100) plane having a predetermined plane orientation. .

[4]前記酸素除去工程は、1気圧以下の雰囲気中において熱処理することを特徴とする上記[3]に記載のβ―Ga系単結晶からなる半導体基板の製造方法であってもよい。 [4] The method for producing a semiconductor substrate made of a β-Ga 2 O 3 single crystal according to the above [3], wherein the oxygen removing step is heat-treated in an atmosphere of 1 atm or less. Good.

[5]前記酸素除去工程は、低温、H雰囲気中において熱処理することを特徴とする上記[4]に記載のβ―Ga系単結晶からなる半導体基板の製造方法であってもよい。 [5] The method for producing a semiconductor substrate made of a β-Ga 2 O 3 single crystal as described in [4] above, wherein the oxygen removing step is heat-treated in a low temperature H 2 atmosphere. Good.

本発明によると、GaNを結晶成長させる場合でも、転移密度が低い良質なエピタキシャル結晶成長が可能なβ―Ga系単結晶からなる半導体基板、(100)面の上にGaNが成長して形成されたエピタキシャル層を有するβ―Ga系単結晶からなる半導体基板、及び、これらのβ―Ga系単結晶からなる半導体基板の製造方法を提供することができる。 According to the present invention, even when GaN is crystal-grown, GaN grows on a (100) plane of a semiconductor substrate made of a β-Ga 2 O 3 single crystal capable of high-quality epitaxial crystal growth with a low transition density. a semiconductor substrate made of β-Ga 2 O 3 single crystal having an epitaxial layer formed Te, and can provide a method for manufacturing a semiconductor substrate consisting of β-Ga 2 O 3 system single crystal.

(第1の実施の形態)
図1(a)は、本発明の第1の実施の形態に係る面方位を規定した半導体基板の外観斜視図である。図1(b)は、図1(a)の半導体基板の(100)面の部分を拡大して結晶構造を示す図である。
(First embodiment)
FIG. 1A is an external perspective view of a semiconductor substrate that defines a plane orientation according to the first embodiment of the present invention. FIG. 1B is a diagram showing a crystal structure by enlarging the portion of the (100) plane of the semiconductor substrate of FIG.

本発明の第1の実施の形態に係る半導体基板は、所定の面方位である(100)面を有し、この(100)面の表面層の酸素が除去されたことを特徴とするβ―Ga系単結晶からなる半導体基板1である。 The semiconductor substrate according to the first embodiment of the present invention has a (100) plane having a predetermined plane orientation, and the oxygen is removed from the surface layer of the (100) plane. A semiconductor substrate 1 made of a Ga 2 O 3 single crystal.

半導体基板1は、β―Ga系単結晶からなる半導体基板1であり、所定の面方位を有して板状に形成されている。β―Gaの結晶構造の方位軸は、a軸<100>、b軸<010>、c軸<001>で構成され、半導体基板1はこれら3つの軸により規定される所定の面方位、すなわち、(100)面、(010)面、(001)面により板状に形成されている。(100)面は、半導体デバイスを作製する場合にこの表面にGaN又はGaN系化合物のエピタキシャル結晶成長が行なわれるので、図1(a)に示したように、(100)面が広い面積を有する板状である。 The semiconductor substrate 1 is a semiconductor substrate 1 made of a β-Ga 2 O 3 based single crystal, and is formed in a plate shape having a predetermined plane orientation. The azimuth axis of the crystal structure of β-Ga 2 O 3 is composed of an a-axis <100>, a b-axis <010>, and a c-axis <001>, and the semiconductor substrate 1 has a predetermined plane defined by these three axes It is formed in a plate shape with an orientation, that is, a (100) plane, a (010) plane, and a (001) plane. As shown in FIG. 1A, the (100) plane has a large area because epitaxial crystal growth of GaN or a GaN-based compound is performed on the surface when a semiconductor device is manufactured. It is plate-shaped.

半導体基板1の一部分を拡大して、図1(b)のように結晶構造を示すと、β―Gaの結晶構造は、a軸<100>、b軸<010>、c軸<001>に対して所定の結晶構造で、Ga(ガリウム)原子30及びO(酸素)原子40が配列されている。図1(b)に示したA部拡大図は、半導体基板1の(100)面の表面層の一部を示すが、この表面層においてO原子40の一部が後述する酸素除去方法により除去されている。除去されるO原子40は、β―Gaの結晶構造の(100)表面におけるO原子1層分が好ましいが、これに限られず、GaNのエピタキシャル結晶成長において転移密度が低くなる程度にO原子が除去されていればよい。 When a part of the semiconductor substrate 1 is enlarged to show a crystal structure as shown in FIG. 1B, the crystal structure of β-Ga 2 O 3 is a-axis <100>, b-axis <010>, c-axis <001> has Ga (gallium) atoms 30 and O (oxygen) atoms 40 arranged in a predetermined crystal structure. The enlarged view of part A shown in FIG. 1B shows a part of the surface layer of the (100) plane of the semiconductor substrate 1, and in this surface layer, a part of the O atoms 40 is removed by an oxygen removing method described later. Has been. The O atom 40 to be removed is preferably one O atom layer on the (100) surface of the crystal structure of β-Ga 2 O 3 , but is not limited to this, and the transition density becomes low in the epitaxial crystal growth of GaN. It suffices if the O atom is removed.

(第1の実施の形態に係るβ―Ga系単結晶からなる半導体基板1の製造方法)
第1の実施の形態に係るβ―Ga系単結晶からなる半導体基板1の製造方法は、所定の面方位である(100)面を有するβ―Ga系単結晶からなる基板を準備する基板準備工程と、前記基板の前記所定の面方位である(100)面の表面の酸素を除去する酸素除去工程とを有して構成されている。
(Method for Producing Semiconductor Substrate 1 Consisting of β-Ga 2 O 3 System Single Crystal According to First Embodiment)
The method of manufacturing a semiconductor substrate 1 made of β-Ga 2 O 3 single crystal according to the first embodiment is comprised of a β-Ga 2 O 3 single crystal having a predetermined surface orientation (100) surface A substrate preparing step for preparing a substrate and an oxygen removing step for removing oxygen on the surface of the (100) plane which is the predetermined plane orientation of the substrate are configured.

(基板準備工程)
所定の面方位である(100)面を有するβ―Ga系単結晶からなる基板を準備する基板準備工程は、上記示した所定の半導体基板1を作製するか予め製造された半導体基板1を購入する等により、次工程の酸素除去工程の準備をする工程である。
(Board preparation process)
The substrate preparation step of preparing a substrate made of a β-Ga 2 O 3 based single crystal having a (100) plane having a predetermined plane orientation is performed by manufacturing the predetermined semiconductor substrate 1 shown above or a semiconductor substrate manufactured in advance. This is a step of preparing the oxygen removal step of the next step by purchasing 1 or the like.

半導体基板1は、まず、EFG法あるいはFZ法等によりバルク結晶を作製し、これを切断又は劈開等により板状の半導体基板1を作製する。   As for the semiconductor substrate 1, first, a bulk crystal is produced by the EFG method or the FZ method, and the plate-like semiconductor substrate 1 is produced by cutting or cleaving this.

EFG法は、ルツボに原料となるβ―Gaを所定量入れ、加熱して溶解し、β―Ga融液とする。ルツボ内に配置されたスリットダイに形成するスリットによりβ―Ga融液を毛細管現象によりスリットダイ上面に上昇させ、種結晶にβ―Ga融液を接触させて冷却し、任意の形状の断面を有するバルク結晶を作製する。 In the EFG method, a predetermined amount of β-Ga 2 O 3 as a raw material is put in a crucible and heated to be dissolved to obtain a β-Ga 2 O 3 melt. The β-Ga 2 O 3 melt is raised to the upper surface of the slit die by a capillary phenomenon by a slit formed in the slit die arranged in the crucible, and cooled by bringing the β-Ga 2 O 3 melt into contact with the seed crystal, A bulk crystal having a cross section of an arbitrary shape is prepared.

FZ法は、赤外線加熱単結晶製造装置により作製する。種結晶の一端をシードチャックに保持し、棒状の多結晶素材の上端部を素材チャックに保持する。上部回転軸の上下位置を調節して種結晶の上端と多結晶素材の下端を接触させる。ハロゲンランプの光を種結晶の上端と多結晶素材の下端との部位に集光するように、上部回転軸および下部回転軸の上下位置を調節する。これらの調整をして、種結晶の上端と多結晶素材の下端の部位を加熱して、その加熱部位を溶解し、溶解滴を形成する。このとき、種結晶のみを回転させておく。ついで、多結晶素材と種結晶とが十分になじむように当該部を反対方向に回転させながら溶解し、多結晶素材および種結晶を互いに反対方向に引っ張りながら、適度の長さ及び太さの単結晶を形成することでバルク結晶を作製する。   The FZ method is manufactured by an infrared heating single crystal manufacturing apparatus. One end of the seed crystal is held on the seed chuck, and the upper end of the rod-like polycrystalline material is held on the material chuck. The upper and lower positions of the upper rotating shaft are adjusted to bring the upper end of the seed crystal into contact with the lower end of the polycrystalline material. The upper and lower positions of the upper and lower rotary shafts are adjusted so that the light from the halogen lamp is condensed at the upper end of the seed crystal and the lower end of the polycrystalline material. By making these adjustments, the upper end portion of the seed crystal and the lower end portion of the polycrystalline material are heated, and the heated portion is dissolved to form dissolution droplets. At this time, only the seed crystal is rotated. Next, the polycrystalline material and the seed crystal are melted while rotating in the opposite direction so that the polycrystalline material and the seed crystal are sufficiently blended, and the polycrystalline material and the seed crystal are pulled in the opposite directions to obtain a single unit of appropriate length and thickness. Bulk crystals are formed by forming crystals.

上記のように作製されたβ―Gaバルク結晶から所定の面方位を有する板状の半導体基板1を次のように作製する。β―Gaバルク結晶は、b軸<010>方位に結晶成長させた場合には、(100)面の劈開性が強くなるので、(100)面に平行な面と垂直な面で切断して所定の面方位を有する半導体基板1を作製する。a軸<100>方位、c軸<001>方位に結晶成長させた場合は、(100)面、(001)面の劈開性が弱くなるので、全ての面の加工性が良くなり、上記のような切断面の制限はない。 A plate-like semiconductor substrate 1 having a predetermined plane orientation is produced from the β-Ga 2 O 3 bulk crystal produced as described above as follows. When the β-Ga 2 O 3 bulk crystal is grown in the b-axis <010> orientation, the cleaving property of the (100) plane becomes strong, so that it is a plane perpendicular to the plane parallel to the (100) plane. The semiconductor substrate 1 having a predetermined plane orientation is produced by cutting. When the crystal is grown in the a-axis <100> orientation and the c-axis <001> orientation, the cleaving properties of the (100) plane and the (001) plane are weakened. There is no restriction on the cut surface.

(酸素除去工程)
酸素除去工程は、β―Ga系単結晶からなる半導体基板1の(100)面の表面層の酸素を除去する工程であり、次のような酸素除去方法を使用することが可能である。
(1)1気圧(1×10Pa)より低い圧力中(真空)においての熱処理
(2)低温(400〜1000℃未満)、H、He+H、Ar+H、不活性ガス+H雰囲気中での熱処理
(3)H、He+H、Ar+H、不活性ガス+Hプラズマにおける処理
(Oxygen removal process)
The oxygen removing step is a step of removing oxygen from the surface layer of the (100) plane of the semiconductor substrate 1 made of β-Ga 2 O 3 based single crystal, and the following oxygen removing method can be used. is there.
(1) Heat treatment in a pressure (vacuum) lower than 1 atm (1 × 10 5 Pa) (2) Low temperature (below 400 to 1000 ° C.), H 2 , He + H 2 , Ar + H 2 , inert gas + H 2 atmosphere (3) Treatment in H 2 , He + H 2 , Ar + H 2 , inert gas + H 2 plasma

半導体基板1の(100)面の表面層の酸素除去量は、例えば、設定気圧、熱処理温度、H雰囲気中での熱処理による場合はHフロ―の流量、プラズマ強度及び流量を適宜変更することにより設定される。 The amount of oxygen removed from the surface layer of the (100) surface of the semiconductor substrate 1 is appropriately changed by, for example, the set atmospheric pressure, the heat treatment temperature, or the H 2 flow rate, plasma intensity, and flow rate when heat treatment is performed in an H 2 atmosphere. Is set by

尚、半導体基板1の(100)面の表面層の酸素が除去される方法であれば、上記の酸素除去方法に限定されずに、本発明の第1の実施の形態に係る半導体基板に適用できる。
(第2の実施の形態)
Note that the method is applicable to the semiconductor substrate according to the first embodiment of the present invention as long as it is a method of removing oxygen from the surface layer of the (100) surface of the semiconductor substrate 1 without being limited to the above-described oxygen removing method. it can.
(Second Embodiment)

図2(a)は、本発明の第2の実施の形態に係る半導体基板10を示す図であり、第1の実施の形態に係る半導体基板1上に、GaNをエピタキシャル結晶成長させた場合の結晶成長方位を示す図であり、Gaのb軸方向から見た図である。同様に、図2(b)は、GaNのc軸<0001>又は<000―1>方向から見た図(図2(a)の上方向から見た図)である。 FIG. 2A is a diagram showing a semiconductor substrate 10 according to the second embodiment of the present invention. In the case where GaN is epitaxially grown on the semiconductor substrate 1 according to the first embodiment, FIG. is a diagram showing the crystal growth orientation, as viewed from the b-axis direction of the Ga 2 O 3. Similarly, FIG. 2B is a view of GaN as seen from the c-axis <0001> or <000-1> direction (viewed from the upper side of FIG. 2A).

本発明の第2の実施の形態に係る半導体基板10は、所定の面方位である(100)面の表面層の酸素が除去され、前記酸素が除去された(100)面上に、ウルツ鉱型構造のGaNが前記GaNのc軸<0001>又は<000―1>方向に成長して形成されたエピタキシャル層を有するβ―Ga系単結晶からなる半導体基板である。 In the semiconductor substrate 10 according to the second embodiment of the present invention, the oxygen in the surface layer of the (100) plane having a predetermined plane orientation is removed, and the wurtzite is formed on the (100) plane from which the oxygen is removed. This is a semiconductor substrate made of a β-Ga 2 O 3 based single crystal having an epitaxial layer formed by growing GaN having a mold structure in the c-axis <0001> or <000-1> direction of the GaN.

図3は、ウルツ鉱型構造のGaNの結晶構造、(a)Ga面及び(b)窒素面を示す図であり、Ga(ガリウム)原子30及びN(窒素)原子50から構成されていることを表わす図である。尚、AlGaN、InGaN等のGaN系化合物ではGa原子30の一部がAl、In等に置換された結晶構造となる。   FIG. 3 is a view showing a crystal structure of GaN having a wurtzite structure, (a) a Ga plane, and (b) a nitrogen plane, and is composed of Ga (gallium) atoms 30 and N (nitrogen) atoms 50. FIG. Note that a GaN-based compound such as AlGaN or InGaN has a crystal structure in which part of the Ga atom 30 is substituted with Al, In, or the like.

第2の実施の形態に係る半導体基板10は、第1の実施の形態に係る半導体基板1、すなわち、(100)面の表面層の酸素が除去されたβ―Ga系単結晶からなる半導体基板1の(100)面に、GaNをc軸<0001>又は<000―1>方向に成長させることにより得られる。 The semiconductor substrate 10 according to the second embodiment is formed from the semiconductor substrate 1 according to the first embodiment, that is, a β-Ga 2 O 3 -based single crystal from which oxygen is removed from the (100) plane surface layer. It is obtained by growing GaN in the c-axis <0001> or <000-1> direction on the (100) plane of the resulting semiconductor substrate 1.

(MOCVD法によるGaNエピタキシャル層の形成方法)
上記示した第2の実施の形態に係る半導体基板10をMOCVD法により作製する方法を示す。
(Method of forming GaN epitaxial layer by MOCVD method)
A method for manufacturing the semiconductor substrate 10 according to the second embodiment described above by MOCVD will be described.

まず、(100)面の表面層の酸素が除去された半導体基板1を、反応容器内に保持する。半導体基板1の表面の温度が所定の温度、例えば、400℃〜700℃となるように反応容器内の温度を調節する。反応容器内を100torrまで減圧し、反応容器内にGa供給原料としてのTMG(トリメチルガリウム)と窒素源としてのNHを、キャリアガスとしてのヘリウムガス又は水素ガスと共に供給して、所定の厚さのGaN層をエピタキシャル成長させる。この後、いわゆる高温アニール処理を施すことが好ましい。これにより、GaNの(11−20)面とβ―Gaの(010)面とがほぼ平行するようになる。 First, the semiconductor substrate 1 from which oxygen in the (100) plane surface layer has been removed is held in a reaction vessel. The temperature in the reaction vessel is adjusted so that the surface temperature of the semiconductor substrate 1 becomes a predetermined temperature, for example, 400 ° C. to 700 ° C. The inside of the reaction vessel is depressurized to 100 torr, and TMG (trimethylgallium) as a Ga feed material and NH 3 as a nitrogen source are supplied into the reaction vessel together with helium gas or hydrogen gas as a carrier gas, to a predetermined thickness. The GaN layer is epitaxially grown. Thereafter, it is preferable to perform a so-called high temperature annealing treatment. Thereby, the (11-20) plane of GaN and the (010) plane of β-Ga 2 O 3 become substantially parallel.

図4は、第1の実施の形態に係る半導体基板1のβ―Ga基板表面にGaNをエピタキシャル結晶成長させた場合における、GaNのc軸<0001>又は<000―1>方向から見た、GaNのGa原子30及びN原子50を線で結んで結晶格子を視覚化して表したもの、及び、β―GaのGa原子30及びO原子50を線で結んで結晶格子を視覚化して表したものを重ねて図示したものである。また、図5は、β―Ga基板の(001)面から見たGa原子30及びO原子50の配列状態を視覚化して図示したものである。 FIG. 4 shows the GaN c-axis <0001> or <000-1> direction when GaN is epitaxially grown on the surface of the β-Ga 2 O 3 substrate of the semiconductor substrate 1 according to the first embodiment. As seen, the crystal lattice is visualized by connecting Ga atoms 30 and N atoms 50 of GaN with lines, and the crystal lattice by connecting Ga atoms 30 and O atoms 50 of β-Ga 2 O 3 with lines. This is an illustration of a visual representation of the above. FIG. 5 is a visual representation of the arrangement state of Ga atoms 30 and O atoms 50 viewed from the (001) plane of the β-Ga 2 O 3 substrate.

第2の実施の形態に係る半導体基板10によれば、β―GaとGaNの結晶のずれが生じていない。これは、第1の実施の形態に係る半導体基板1は、β―Gaの(100)面の表面層の酸素が除去されているので、GaNの格子定数がβ―Gaの格子定数に合致するように、GaN層のエピタキシャル成長が行なわれることによる。すなわち、GaNの2単位格子でみれば、β―Gaのb軸、c軸方向に並進性を満足すること、及び、併進の移動距離が横はβ―Gaのc軸の1倍、縦はβ―Gaのb軸の3倍となっている。 According to the semiconductor substrate 10 according to the second embodiment, there is no deviation between the crystals of β-Ga 2 O 3 and GaN. This is because, in the semiconductor substrate 1 according to the first embodiment, the oxygen of the surface layer of the (100) plane of β-Ga 2 O 3 is removed, so that the lattice constant of GaN is β-Ga 2 O 3. This is because the GaN layer is epitaxially grown so as to match the lattice constant of That is, when viewed from a two-unit lattice of GaN, translational properties are satisfied in the b-axis and c-axis directions of β-Ga 2 O 3 , and the translational movement distance is laterally the c-axis of β-Ga 2 O 3 The vertical axis is three times the b-axis of β-Ga 2 O 3 .

(第1及び第2の実施の形態の作用、効果)
本発明の第1の実施の形態に係る半導体基板1、及び、この半導体基板1を用いて構成される本発明の第2の実施の形態に係る半導体基板10の作用、効果を説明する。
(Operations and effects of the first and second embodiments)
The operation and effect of the semiconductor substrate 1 according to the first embodiment of the present invention and the semiconductor substrate 10 according to the second embodiment of the present invention configured using the semiconductor substrate 1 will be described.

図6は、GaN及びβ―Gaの格子定数を示す図である。GaN及びβ―Gaの結晶構造は全く異なっているが、縦・横の数値が近似している。例えば縦方向では、図示したように、GaNの3.189とβ―Gaの3.04は近似しているが、ミスマッチは4.7%である。また、横方向では、GaNの5.52とβ―Gaの5.80は近似しているが、ミスマッチは5.1%である。面積で比較すると、3.189×5.52と3.04×5.80でミスマッチは0.16%である。 FIG. 6 is a diagram showing lattice constants of GaN and β-Ga 2 O 3 . Although the crystal structures of GaN and β-Ga 2 O 3 are completely different, the vertical and horizontal numerical values are approximated. For example, in the vertical direction, as shown in the figure, 3.189 of GaN and 3.04 of β-Ga 2 O 3 are approximated, but the mismatch is 4.7%. In the lateral direction, 5.52 of GaN and 5.80 of β-Ga 2 O 3 are close to each other, but the mismatch is 5.1%. When compared in terms of area, the mismatch is 0.16% between 3.189 × 5.52 and 3.04 × 5.80.

図7は、GaNの格子とβ―Gaの格子像を合わせた状態を視覚化して表す図である。 FIG. 7 is a diagram visualizing a state where a lattice of GaN and a lattice image of β-Ga 2 O 3 are combined.

β―Ga基板の格子の寸法は3.04×5.80である。一方、β―Ga基板の上に結晶成長するGaNのGa原子30を線で結んで結晶格子を視覚化した6角形の縦横寸法は3.189×5.52である。従って、上記したように、それぞれの格子定数は近似するものの、結晶成長する場合には格子不整合が起こり、良質なエピタキシャル結晶成長が困難である。 The lattice dimension of the β-Ga 2 O 3 substrate is 3.04 × 5.80. On the other hand, the hexagonal vertical and horizontal dimensions of the crystal lattice visualized by connecting Ga atoms 30 of GaN growing on the β-Ga 2 O 3 substrate with lines are 3.189 × 5.52. Therefore, as described above, although the lattice constants are approximated, lattice mismatch occurs when crystals are grown, and high-quality epitaxial crystal growth is difficult.

図8は、上記した従来のβ―Ga基板にGaNをエピタキシャル結晶成長させた場合における、GaNのc軸<0001>又は<000―1>方向から見た、GaNのGa原子30及びN原子50を線で結んで結晶格子を視覚化して表したもの、及び、β―GaのGa原子30及びO原子50を線で結んで結晶格子を視覚化して表したものを重ねて図示したものである。また、図9は、β―Ga基板の(001)面から見たGa原子30及びO原子50の配列状態を視覚化して図示したものである。 FIG. 8 shows GaN Ga atoms 30 and GaN as viewed from the c-axis <0001> or <000-1> direction of GaN when GaN is epitaxially grown on the conventional β-Ga 2 O 3 substrate. The crystal lattice is visualized by connecting the N atoms 50 with lines, and the crystal lattice is visualized by connecting the Ga atoms 30 and O atoms 50 of β-Ga 2 O 3 with lines. It is shown in the figure. FIG. 9 is a visual representation of the arrangement state of Ga atoms 30 and O atoms 50 viewed from the (001) plane of the β-Ga 2 O 3 substrate.

図8、9より、β―Ga基板の表面層のO原子50が存在するため、ヘテロエピタキシャル成長となり基板界面では格子の不整合が生じやすい。 8 and 9, since there are O atoms 50 in the surface layer of the β-Ga 2 O 3 substrate, heteroepitaxial growth occurs, and lattice mismatch is likely to occur at the substrate interface.

β―Ga基板の表面層のO原子50は図5に示したように除去されており、GaNのc軸<0001>又は<000―1>方向から見ると図4で示されるように、Ga原子30を線で結んで結晶格子を視覚化した6角形が明確になる。すなわち、1層のGa原子30が6角形の頂点と中心に配置されていることがわかる。従って、このような状態でβ―Ga基板の表面にGaNをエピタキシャル結晶成長させると、β―Ga基板界面付近ではホモエピタキシャルに近い成長が得られ、良質なエピタキシャル結晶成長が可能となる。 The O atoms 50 in the surface layer of the β-Ga 2 O 3 substrate are removed as shown in FIG. 5, and as shown in FIG. 4 when viewed from the c-axis <0001> or <000-1> direction of GaN. In addition, a hexagon obtained by linking the Ga atoms 30 with lines to visualize the crystal lattice becomes clear. That is, it can be seen that one layer of Ga atoms 30 is arranged at the apex and center of the hexagon. Therefore, when GaN is epitaxially grown on the surface of the β-Ga 2 O 3 substrate in such a state, growth close to homoepitaxial is obtained near the interface of the β-Ga 2 O 3 substrate, and high-quality epitaxial crystal growth is achieved. It becomes possible.

以上から、第1及び第2の実施の形態によれば、次のような効果を有する。
(1)β―Ga系単結晶からなる半導体基板上にGaNを結晶成長させる場合でも、転移密度が低い良質なエピタキシャル結晶成長が可能となる。
(2)β―Ga系単結晶からなる半導体基板にGaNをヘテロエピタキシャル結晶成長させる場合、成長条件を最適化することにより転位密度を下げられる可能性がでてきた。これにより、レーザー用基板として大いに期待が持てることになった。
(3)本発明の実施の形態に係る半導体基板は、半導体デバイス、例えば、LED、レーザ等の発光素子を製造するための汎用的な半導体基板として使用でき、広範な用途として利用できる利点を有する。
From the above, according to the first and second embodiments, the following effects are obtained.
(1) Even when GaN is grown on a semiconductor substrate made of a β-Ga 2 O 3 single crystal, high-quality epitaxial crystal growth with a low transition density is possible.
(2) When heteroepitaxial crystal growth of GaN is performed on a semiconductor substrate made of a β-Ga 2 O 3 system single crystal, the dislocation density can be lowered by optimizing the growth conditions. As a result, we have great expectations as a laser substrate.
(3) The semiconductor substrate according to the embodiment of the present invention can be used as a general-purpose semiconductor substrate for manufacturing semiconductor devices, for example, light emitting elements such as LEDs and lasers, and has an advantage that it can be used for a wide range of applications. .

(第2の実施の形態に係る半導体基板のレーザ発光素子への適用例)
図10は、第2の実施の形態に係る半導体基板10を半導体レーザへ適用した場合の半導体レーザ101の模式的斜視図である。半導体レーザ101は、β―Ga系単結晶からなる基板10と、基板10の上にウルツ鉱型構造のGaN系化合物の(0001)面が成長して形成されたエピタキシャル層111と、活性領域112の両端にエピタキシャル層111の劈開面である共振器端面113が形成されたレーザ共振器とを有する。
(Application Example of Semiconductor Substrate According to Second Embodiment to Laser Light-Emitting Element)
FIG. 10 is a schematic perspective view of a semiconductor laser 101 when the semiconductor substrate 10 according to the second embodiment is applied to a semiconductor laser. The semiconductor laser 101 includes a substrate 10 made of a β-Ga 2 O 3 single crystal, an epitaxial layer 111 formed by growing a (0001) plane of a GaN-based compound having a wurtzite structure on the substrate 10, And a laser resonator in which a resonator end face 113 which is a cleavage plane of the epitaxial layer 111 is formed at both ends of the active region 112.

尚、β―Ga系単結晶からなる基板10は、上記のようにβ―Ga単結晶からなることを基本とするが、Cu、Ag、Zn、Cd、Al、In、Si、GeおよびSnからなる群から選ばれる1種以上を添加したGaを主成分とした酸化物で構成してもよい。これらの元素を添加することにより、格子定数あるいはバンドギャップエネルギーを制御することができる。例えば、AlとInの元素を添加することにより、(GaxAlyIn(1−x−y))(ただし、0≦x≦1、0≦y≦1、0≦x+y≦1)で表わされる半導体基板を得ることができる。 The substrate 10 made of β-Ga 2 O 3 system single crystal, although basically in that it consists in β-Ga 2 O 3 single crystal as described above, Cu, Ag, Zn, Cd , Al, In, You may comprise with the oxide which made Ga the main component which added 1 or more types chosen from the group which consists of Si, Ge, and Sn. By adding these elements, the lattice constant or band gap energy can be controlled. For example, by adding Al and In elements, (GaxAlyIn (1-xy)) 2 O 3 (where 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1) A semiconductor substrate can be obtained.

半導体レーザ101は、図10に示すように、β―Ga系単結晶からなる基板10の(100)面上に、n−GaN層122、n−InGaN層123、n−AlGaN層124、n−GaN層125、InGaN MQW126、p−AlGaN層127、p−GaN層128、p−AlGaN層129、及び、p−GaN層130がエピタキシャル層111として形成されている。また、基板10のエピタキシャル層111が形成されていない側の面にn電極131、その反対側の面にp電極132が形成されている。尚、エピタキシャル層111は、上記の各層の全部または一部を有して構成されるものである。 As shown in FIG. 10, the semiconductor laser 101 includes an n-GaN layer 122, an n-InGaN layer 123, and an n-AlGaN layer 124 on the (100) plane of the substrate 10 made of a β-Ga 2 O 3 single crystal. , An n-GaN layer 125, an InGaN MQW 126, a p-AlGaN layer 127, a p-GaN layer 128, a p-AlGaN layer 129, and a p-GaN layer 130 are formed as the epitaxial layer 111. An n-electrode 131 is formed on the surface of the substrate 10 where the epitaxial layer 111 is not formed, and a p-electrode 132 is formed on the opposite surface. The epitaxial layer 111 is configured to include all or a part of each of the above layers.

上記において、主に、n−GaN層122はコンタクト層、n−InGaN層123はクラッド層、n−AlGaN層124は下地層、n−GaN層125はガイド層、InGaN MQW126は発光層、p−AlGaN層127はキャップ層、p−GaN層128はガイド層、p−AlGaN層129はクラッド層、及び、p−GaN層130はコンタクト層として機能する。   In the above, mainly, the n-GaN layer 122 is a contact layer, the n-InGaN layer 123 is a cladding layer, the n-AlGaN layer 124 is a base layer, the n-GaN layer 125 is a guide layer, the InGaN MQW 126 is a light emitting layer, p- The AlGaN layer 127 functions as a cap layer, the p-GaN layer 128 functions as a guide layer, the p-AlGaN layer 129 functions as a cladding layer, and the p-GaN layer 130 functions as a contact layer.

p電極132は、図10に示すように、ストライプ型の電極とされ、ストライプ幅により電流狭窄の範囲を規定することにより活性領域112の範囲を設定している。   As shown in FIG. 10, the p-electrode 132 is a stripe-type electrode, and the range of the active region 112 is set by defining the range of current confinement by the stripe width.

ここで、図10に示すように、β―Ga系単結晶からなる基板10の(100)面にエピタキシャル層111が平行に形成されるが、基板10の(001)面は(100)面と103.7°の角度を成している。従って、基板10の劈開面である(001)面とエピタキシャル層111の劈開面である(1−100)面とは、上記の103.7°に対応した角度を有するが、劈開性に特に問題は生じない。 Here, as shown in FIG. 10, the epitaxial layer 111 is formed in parallel to the (100) plane of the substrate 10 made of β-Ga 2 O 3 based single crystal, but the (001) plane of the substrate 10 is (100). ) With the surface at an angle of 103.7 °. Therefore, the (001) plane that is the cleavage plane of the substrate 10 and the (1-100) plane that is the cleavage plane of the epitaxial layer 111 have an angle corresponding to the above 103.7 °. Does not occur.

半導体レーザ101のレーザ共振器は、活性領域112を含むエピタキシャル層111の(1−100)面、すなわち、エピタキシャル層111の両端の劈開面を共振器端面113として形成されている。   The laser resonator of the semiconductor laser 101 is formed with the (1-100) plane of the epitaxial layer 111 including the active region 112, that is, the cleavage planes at both ends of the epitaxial layer 111 as the resonator end surface 113.

尚、図示は省略するが、上記の半導体レーザ101は、n電極131及びp電極132にワイヤボンディング等により電流供給のための配線が施され、実装のためのパッケージングが施される。
(レーザ発光素子への適用の効果)
Although not shown, in the semiconductor laser 101, wiring for supplying current is applied to the n electrode 131 and the p electrode 132 by wire bonding or the like, and packaging for mounting is performed.
(Effect of application to laser light emitting device)

第2の実施の形態に係る半導体基板をレーザ発光素子へ適用する場合、以下に示す効果を有する。
(1)β―Ga系単結晶からなる基板10の(100)面にGaN系化合物の(0001)面を成長させているので、劈開面がほぼ同じ方向の面となる。よって劈開を利用して、容易に良質な共振器端面113が得られる。
(2)β―Ga系単結晶からなる基板10は、導電性を有するので電極をエピタキシャル層111の側とそれと反対側の基板10に設けた垂直構造とすることが可能となるので、半導体レーザの簡易的な製造プロセスにより作製することが可能となる。
(3)β―Ga系単結晶からなる基板10は、GaNと熱膨張率が非常に近いため、プロセス中の基板10の反りの影響が少なく、基板10の全体に亘って均一なエピタキシャル層111が得られ歩留まりが向上する。
When the semiconductor substrate according to the second embodiment is applied to a laser light emitting element, the following effects are obtained.
(1) Since the (0001) plane of the GaN-based compound is grown on the (100) plane of the substrate 10 made of β-Ga 2 O 3 single crystal, the cleavage plane is a plane in substantially the same direction. Therefore, a high-quality resonator end face 113 can be easily obtained using cleavage.
(2) Since the substrate 10 made of β-Ga 2 O 3 based single crystal has conductivity, it is possible to have a vertical structure in which electrodes are provided on the epitaxial layer 111 side and the substrate 10 on the opposite side. The semiconductor laser can be manufactured by a simple manufacturing process.
(3) Since the substrate 10 made of β-Ga 2 O 3 based single crystal has a thermal expansion coefficient very close to that of GaN, it is less affected by the warpage of the substrate 10 during the process, and is uniform over the entire substrate 10. The epitaxial layer 111 is obtained and the yield is improved.

以上から、従来技術で実施されている、例えば、サファイア基板をレーザリフト法により除去してSi基板等へ貼りかえる必要等がなく、劈開を利用して簡易な製造プロセスにより精度のよいレーザ共振器が形成された半導体レーザが可能となる。   From the above, for example, there is no need to remove a sapphire substrate by a laser lift method and replace it with a Si substrate or the like, and a laser resonator with high accuracy by a simple manufacturing process using cleavage. A semiconductor laser in which is formed becomes possible.

図1(a)は、本発明の第1の実施の形態に係る面方位を規定した半導体基板の外観斜視図である。図1(b)は、図1(a)の半導体基板の(100)面の部分を拡大して結晶構造を示す図である。FIG. 1A is an external perspective view of a semiconductor substrate that defines a plane orientation according to the first embodiment of the present invention. FIG. 1B is a diagram showing a crystal structure by enlarging the portion of the (100) plane of the semiconductor substrate of FIG. 図2(a)は、本発明の第2の実施の形態に係る半導体基板10を示す図であり、第1の実施の形態に係る半導体基板1上に、GaNをエピタキシャル結晶成長させた場合の結晶成長方位を示す図であり、Gaのb軸方向から見た図である。同様に、図2(b)は、GaNのc軸<0001>又は<000―1>方向から見た図(図2(a)の上方向から見た図)である。FIG. 2A is a diagram showing a semiconductor substrate 10 according to the second embodiment of the present invention. In the case where GaN is epitaxially grown on the semiconductor substrate 1 according to the first embodiment, FIG. is a diagram showing the crystal growth orientation, as viewed from the b-axis direction of the Ga 2 O 3. Similarly, FIG. 2B is a view of GaN as seen from the c-axis <0001> or <000-1> direction (viewed from the upper side of FIG. 2A). 図3は、ウルツ鉱型構造のGaNの結晶構造、(a)Ga面及び(b)窒素面を示す図であり、Ga(ガリウム)原子30及びN(窒素)原子50から構成されていることを表わす図である。FIG. 3 is a view showing a crystal structure of GaN having a wurtzite structure, (a) a Ga plane, and (b) a nitrogen plane, and is composed of Ga (gallium) atoms 30 and N (nitrogen) atoms 50. FIG. 図4は、第1の実施の形態に係る半導体基板1のβ―Ga基板表面にGaNをエピタキシャル結晶成長させた場合における、GaNのc軸<0001>又は<000―1>方向から見た、GaNのGa原子30及びN原子50を線で結んで結晶格子を視覚化して表したもの、及び、β―GaのGa原子30及びO原子50を線で結んで結晶格子を視覚化して表したものを重ねて図示したものである。FIG. 4 shows the GaN c-axis <0001> or <000-1> direction when GaN is epitaxially grown on the surface of the β-Ga 2 O 3 substrate of the semiconductor substrate 1 according to the first embodiment. As seen, the crystal lattice is visualized by connecting Ga atoms 30 and N atoms 50 of GaN with lines, and the crystal lattice by connecting Ga atoms 30 and O atoms 50 of β-Ga 2 O 3 with lines. This is an illustration of a visual representation of the above. 図5は、β―Ga基板の(001)面から見たGa原子30及びO原子50の配列状態を視覚化して図示したものである。FIG. 5 is a visual representation of the arrangement state of Ga atoms 30 and O atoms 50 viewed from the (001) plane of the β-Ga 2 O 3 substrate. 図6は、GaN及びβ―Gaの格子定数を示す図である。FIG. 6 is a diagram showing lattice constants of GaN and β-Ga 2 O 3 . 図7は、GaNの格子とβ―Gaの格子像を合わせた状態を視覚化して表す図である。FIG. 7 is a diagram visualizing a state where a lattice of GaN and a lattice image of β-Ga 2 O 3 are combined. 図8は、上記した従来のβ―Ga基板にGaNをエピタキシャル結晶成長させた場合における、GaNのc軸<0001>又は<000―1>方向から見た、GaNのGa原子30及びN原子50を線で結んで結晶格子を視覚化して表したもの、及び、β―GaのGa原子30及びO原子50を線で結んで結晶格子を視覚化して表したものを重ねて図示したものである。FIG. 8 shows GaN Ga atoms 30 and GaN as viewed from the c-axis <0001> or <000-1> direction of GaN when GaN is epitaxially grown on the conventional β-Ga 2 O 3 substrate. The crystal lattice is visualized by connecting the N atoms 50 with lines, and the crystal lattice is visualized by connecting the Ga atoms 30 and O atoms 50 of β-Ga 2 O 3 with lines. It is shown in the figure. 図9は、β―Ga基板の(001)面から見たGa原子30及びO原子50の配列状態を視覚化して図示したものである。FIG. 9 is a diagram visualizing the arrangement state of Ga atoms 30 and O atoms 50 viewed from the (001) plane of the β-Ga 2 O 3 substrate. 図10は、第2の実施の形態に係る半導体基板10を半導体レーザへ適用した場合の半導体レーザ101の模式的斜視図である。FIG. 10 is a schematic perspective view of a semiconductor laser 101 when the semiconductor substrate 10 according to the second embodiment is applied to a semiconductor laser.

符号の説明Explanation of symbols

1、10 半導体基板
30 Ga(ガリウム)原子
40 O(酸素)原子
50 N(窒素)原子
101 半導体レーザ
111 エピタキシャル層
112 活性領域
113 共振器端面
122 n−GaN層
123 n−InGaN層
124 n−AlGaN層
125 n−GaN層
126 InGaN MQW
127 p−AlGaN層
128 p−GaN層
129 p−AlGaN層
130 p−GaN層
131 n電極
132 p電極
1, 10 Semiconductor substrate 30 Ga (gallium) atom 40 O (oxygen) atom 50 N (nitrogen) atom 101 Semiconductor laser 111 Epitaxial layer 112 Active region 113 Resonator end face 122 n-GaN layer 123 n-InGaN layer 124 n-AlGaN Layer 125 n-GaN layer 126 InGaN MQW
127 p-AlGaN layer 128 p-GaN layer 129 p-AlGaN layer 130 p-GaN layer 131 n-electrode 132 p-electrode

Claims (5)

所定の面方位である(100)面を有し、前記(100)面の表面層の酸素が除去されたことを特徴とするβ―Ga系単結晶からなる半導体基板。 A semiconductor substrate comprising a β-Ga 2 O 3 -based single crystal having a (100) plane having a predetermined plane orientation, wherein oxygen in a surface layer of the (100) plane is removed. 所定の面方位である(100)面の表面層の酸素が除去され、前記酸素が除去された(100)面上に、ウルツ鉱型構造のGaNが前記GaNのc軸<0001>又は<000―1>方向に成長して形成されたエピタキシャル層を有することを特徴とするβ―Ga系単結晶からなる半導体基板。 Oxygen in the surface layer of the (100) plane having a predetermined plane orientation is removed, and the wurtzite-type GaN is formed on the (100) plane from which the oxygen is removed, and the c-axis <0001> or <000 of the GaN. A semiconductor substrate made of a β-Ga 2 O 3 single crystal, characterized by having an epitaxial layer formed by growing in the -1> direction. 所定の面方位である(100)面を有するβ―Ga系単結晶からなる基板を準備する基板準備工程と、
前記基板の前記所定の面方位である(100)面の表面層の酸素を除去する酸素除去工程と、
を有することを特徴とするβ―Ga系単結晶からなる半導体基板の製造方法。
A substrate preparation step of preparing a substrate made of a β-Ga 2 O 3 -based single crystal having a (100) plane having a predetermined plane orientation;
An oxygen removing step of removing oxygen from the surface layer of the (100) plane which is the predetermined plane orientation of the substrate;
A method for producing a semiconductor substrate comprising a β-Ga 2 O 3 -based single crystal, comprising:
前記酸素除去工程は、1気圧以下の雰囲気中において熱処理することを特徴とする請求項3に記載のβ―Ga系単結晶からなる半導体基板の製造方法。 The method for manufacturing a semiconductor substrate comprising a β-Ga 2 O 3 single crystal according to claim 3, wherein the oxygen removing step is heat-treated in an atmosphere of 1 atm or less. 前記酸素除去工程は、低温、H雰囲気中において熱処理することを特徴とする請求項3に記載のβ―Ga系単結晶からなる半導体基板の製造方法。 The method for manufacturing a semiconductor substrate comprising a β-Ga 2 O 3 single crystal according to claim 3, wherein the oxygen removing step is heat-treated in a low temperature and H 2 atmosphere.
JP2006344918A 2006-12-21 2006-12-21 Semiconductor substrate and method for manufacturing the same Pending JP2008156141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006344918A JP2008156141A (en) 2006-12-21 2006-12-21 Semiconductor substrate and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006344918A JP2008156141A (en) 2006-12-21 2006-12-21 Semiconductor substrate and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2008156141A true JP2008156141A (en) 2008-07-10

Family

ID=39657494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344918A Pending JP2008156141A (en) 2006-12-21 2006-12-21 Semiconductor substrate and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2008156141A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183026A (en) * 2009-02-09 2010-08-19 Sumitomo Electric Ind Ltd Epitaxial wafer, method of fabricating gallium nitride-based semiconductor device, gallium nitride-based semiconductor device, and gallium oxide wafer
WO2010095550A1 (en) * 2009-02-19 2010-08-26 住友電気工業株式会社 Method for forming epitaxial wafer and method for manufacturing semiconductor element
JP2011207754A (en) * 2010-03-12 2011-10-20 Semiconductor Energy Lab Co Ltd Manufacturing method of gallium oxide single crystal
WO2012137781A1 (en) * 2011-04-08 2012-10-11 株式会社タムラ製作所 Semiconductor stacked body, method for manufacturing same, and semiconductor element
WO2013035464A1 (en) 2011-09-08 2013-03-14 株式会社タムラ製作所 Crystal laminate structure and method for producing same
WO2013035472A1 (en) 2011-09-08 2013-03-14 株式会社タムラ製作所 Substrate for epitaxial growth, and crystal laminate structure
WO2013054919A1 (en) * 2011-10-14 2013-04-18 株式会社タムラ製作所 Method for producing β-ga2o3 substrate and method for producing crystal laminate structure
JP2013082587A (en) * 2011-10-11 2013-05-09 Tamura Seisakusho Co Ltd METHOD FOR GROWING β-Ga2O3-BASED SINGLE CRYSTAL
JP2014201480A (en) * 2013-04-04 2014-10-27 株式会社タムラ製作所 GROWTH METHOD OF β-Ga2O3-BASED SINGLE CRYSTAL
JP2014205618A (en) * 2014-06-26 2014-10-30 株式会社タムラ製作所 β-Ga2O3-BASED SINGLE CRYSTAL AND SUBSTRATE
JP2014210707A (en) * 2014-06-25 2014-11-13 株式会社タムラ製作所 β-Ga2O3 BASED SINGLE CRYSTAL SUBSTRATE AND CRYSTAL LAMINATED STRUCTURE
WO2015005385A1 (en) * 2013-07-12 2015-01-15 株式会社タムラ製作所 Semiconductor layered structure and semiconductor element
CN104726935A (en) * 2013-12-24 2015-06-24 株式会社田村制作所 Method Of Forming Ga2o3-based Crystal Film And Crystal Multilayer Structure
JP2015179850A (en) * 2011-09-08 2015-10-08 株式会社タムラ製作所 β-GALLIUM OXIDE BASED MONOCRYSTAL AND β-GALLIUM OXIDE BASED MONOCRYSTAL BODY
JP2016013962A (en) * 2015-05-08 2016-01-28 株式会社タムラ製作所 Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
JP2016013932A (en) * 2014-06-30 2016-01-28 株式会社タムラ製作所 Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
JP2019012827A (en) * 2017-06-30 2019-01-24 国立研究開発法人物質・材料研究機構 Gallium nitride semiconductor device and manufacturing method therefor
US10196756B2 (en) * 2014-06-30 2019-02-05 Tamura Corporation β-Ga2O3 single-crystal substrate
JP2019182744A (en) * 2019-07-31 2019-10-24 株式会社タムラ製作所 Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056098A (en) * 2002-05-31 2004-02-19 Koha Co Ltd Light emitting device and method of manufacture the same
JP2005064153A (en) * 2003-08-08 2005-03-10 Koha Co Ltd Semiconductor layer
JP2006032739A (en) * 2004-07-16 2006-02-02 Koha Co Ltd Light emitting element
JP2006135268A (en) * 2004-11-09 2006-05-25 Koha Co Ltd Semiconductor device and its fabrication process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056098A (en) * 2002-05-31 2004-02-19 Koha Co Ltd Light emitting device and method of manufacture the same
JP2005064153A (en) * 2003-08-08 2005-03-10 Koha Co Ltd Semiconductor layer
JP2006032739A (en) * 2004-07-16 2006-02-02 Koha Co Ltd Light emitting element
JP2006135268A (en) * 2004-11-09 2006-05-25 Koha Co Ltd Semiconductor device and its fabrication process

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308370A (en) * 2009-02-09 2012-01-04 住友电气工业株式会社 Epitaxial wafer, method for manufacturing gallium nitride semiconductor device, gallium nitride semiconductor device and gallium oxide wafer
JP2010183026A (en) * 2009-02-09 2010-08-19 Sumitomo Electric Ind Ltd Epitaxial wafer, method of fabricating gallium nitride-based semiconductor device, gallium nitride-based semiconductor device, and gallium oxide wafer
US8592289B2 (en) 2009-02-09 2013-11-26 Sumitomo Electric Industries, Ltd. Epitaxial wafer, method for manufacturing gallium nitride semiconductor device, gallium nitride semiconductor device and gallium oxide wafer
CN102326231A (en) * 2009-02-19 2012-01-18 住友电气工业株式会社 The formation method of epitaxial wafer and the manufacture method of semiconductor device
JP2010192770A (en) * 2009-02-19 2010-09-02 Sumitomo Electric Ind Ltd Method of forming epitaxial wafer, and method of fabricating semiconductor element
WO2010095550A1 (en) * 2009-02-19 2010-08-26 住友電気工業株式会社 Method for forming epitaxial wafer and method for manufacturing semiconductor element
US8679955B2 (en) 2009-02-19 2014-03-25 Sumitomo Electric Industries, Ltd. Method for forming epitaxial wafer and method for fabricating semiconductor device
US8900362B2 (en) 2010-03-12 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of gallium oxide single crystal
JP2011207754A (en) * 2010-03-12 2011-10-20 Semiconductor Energy Lab Co Ltd Manufacturing method of gallium oxide single crystal
JPWO2012137781A1 (en) * 2011-04-08 2014-07-28 株式会社タムラ製作所 Semiconductor laminate, method for manufacturing the same, and semiconductor element
WO2012137781A1 (en) * 2011-04-08 2012-10-11 株式会社タムラ製作所 Semiconductor stacked body, method for manufacturing same, and semiconductor element
US9153648B2 (en) 2011-04-08 2015-10-06 Tamura Corporation Semiconductor stacked body, method for manufacturing same, and semiconductor element
JP5596222B2 (en) * 2011-04-08 2014-09-24 株式会社タムラ製作所 Semiconductor laminate, method for manufacturing the same, and semiconductor element
US9716004B2 (en) 2011-09-08 2017-07-25 Tamura Corporation Crystal laminate structure and method for producing same
CN107653490A (en) * 2011-09-08 2018-02-02 株式会社田村制作所 Crystal laminate structure
WO2013035472A1 (en) 2011-09-08 2013-03-14 株式会社タムラ製作所 Substrate for epitaxial growth, and crystal laminate structure
US9685515B2 (en) 2011-09-08 2017-06-20 Tamura Corporation Substrate for epitaxial growth, and crystal laminate structure
WO2013035464A1 (en) 2011-09-08 2013-03-14 株式会社タムラ製作所 Crystal laminate structure and method for producing same
JP2015179850A (en) * 2011-09-08 2015-10-08 株式会社タムラ製作所 β-GALLIUM OXIDE BASED MONOCRYSTAL AND β-GALLIUM OXIDE BASED MONOCRYSTAL BODY
US9142623B2 (en) 2011-09-08 2015-09-22 Tamura Corporation Substrate for epitaxial growth, and crystal laminate structure
JP2013082587A (en) * 2011-10-11 2013-05-09 Tamura Seisakusho Co Ltd METHOD FOR GROWING β-Ga2O3-BASED SINGLE CRYSTAL
TWI570286B (en) * 2011-10-14 2017-02-11 Tamura Seisakusho Kk Β-Ga 2 O 3 A method for manufacturing a substrate, and a method for producing a crystalline laminated structure
US9926647B2 (en) * 2011-10-14 2018-03-27 Tamura Corporation Method for producing β-Ga2O3 substrate and method for producing crystal laminate structure including cutting out β-Ga2O3 based substrate from β-Ga2O3 based crystal
KR20140077962A (en) * 2011-10-14 2014-06-24 가부시키가이샤 다무라 세이사쿠쇼 METHOD FOR PRODUCING β-GA_2 O_3SUBSTRATE AND METHOD FOR PRODUCING CRYSTAL LAMINATE STRUCTURE
CN103917700A (en) * 2011-10-14 2014-07-09 株式会社田村制作所 Method for producing beta-Ga2O3 substrate and method for producing crystal laminate structure
WO2013054919A1 (en) * 2011-10-14 2013-04-18 株式会社タムラ製作所 Method for producing β-ga2o3 substrate and method for producing crystal laminate structure
EP2767621A4 (en) * 2011-10-14 2015-02-25 Tamura Seisakusho Kk Method for producing b-ga2o3 substrate and method for producing crystal laminate structure
KR101997302B1 (en) * 2011-10-14 2019-07-05 가부시키가이샤 다무라 세이사쿠쇼 METHOD FOR PRODUCING β-GA₂O₃SUBSTRATE AND METHOD FOR PRODUCING CRYSTAL LAMINATE STRUCTURE
JP2013086988A (en) * 2011-10-14 2013-05-13 Tamura Seisakusho Co Ltd METHOD FOR PRODUCING β-Ga2O3-BASED SUBSTRATE, AND METHOD FOR PRODUCING CRYSTAL LAMINATE STRUCTURE
US20140230723A1 (en) * 2011-10-14 2014-08-21 Tamura Corporation METHOD FOR PRODUCING B-Ga203 SUBSTRATE AND METHOD FOR PRODUCING CRYSTAL LAMINATE STRUCTURE
EP2767621A1 (en) * 2011-10-14 2014-08-20 Tamura Corporation Methof for producing b-ga2o3 substrate and method for producing crystal laminate structure
JP2014201480A (en) * 2013-04-04 2014-10-27 株式会社タムラ製作所 GROWTH METHOD OF β-Ga2O3-BASED SINGLE CRYSTAL
US10526721B2 (en) 2013-04-04 2020-01-07 Koha Co., Ltd. Method for growing β-GA2O3-based single crystal
JP2015017024A (en) * 2013-07-12 2015-01-29 株式会社タムラ製作所 Semiconductor multilayer structure, and semiconductor element
WO2015005385A1 (en) * 2013-07-12 2015-01-15 株式会社タムラ製作所 Semiconductor layered structure and semiconductor element
CN104726935A (en) * 2013-12-24 2015-06-24 株式会社田村制作所 Method Of Forming Ga2o3-based Crystal Film And Crystal Multilayer Structure
JP2014210707A (en) * 2014-06-25 2014-11-13 株式会社タムラ製作所 β-Ga2O3 BASED SINGLE CRYSTAL SUBSTRATE AND CRYSTAL LAMINATED STRUCTURE
JP2014205618A (en) * 2014-06-26 2014-10-30 株式会社タムラ製作所 β-Ga2O3-BASED SINGLE CRYSTAL AND SUBSTRATE
JP2016013932A (en) * 2014-06-30 2016-01-28 株式会社タムラ製作所 Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
US10196756B2 (en) * 2014-06-30 2019-02-05 Tamura Corporation β-Ga2O3 single-crystal substrate
JP2016013962A (en) * 2015-05-08 2016-01-28 株式会社タムラ製作所 Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE
JP2019012827A (en) * 2017-06-30 2019-01-24 国立研究開発法人物質・材料研究機構 Gallium nitride semiconductor device and manufacturing method therefor
JP7067702B2 (en) 2017-06-30 2022-05-16 国立研究開発法人物質・材料研究機構 Gallium nitride based semiconductor device and its manufacturing method
JP2019182744A (en) * 2019-07-31 2019-10-24 株式会社タムラ製作所 Ga2O3-BASED SINGLE CRYSTAL SUBSTRATE

Similar Documents

Publication Publication Date Title
JP2008156141A (en) Semiconductor substrate and method for manufacturing the same
JP4735949B2 (en) Method for producing group III-V nitride semiconductor crystal and method for producing group III-V nitride semiconductor substrate
JP4720125B2 (en) III-V nitride semiconductor substrate, method of manufacturing the same, and III-V nitride semiconductor
JP5026271B2 (en) Method for producing hexagonal nitride single crystal, method for producing hexagonal nitride semiconductor crystal and hexagonal nitride single crystal wafer
JP4529846B2 (en) III-V nitride semiconductor substrate and method for manufacturing the same
US8878189B2 (en) Group III nitride semiconductor growth substrate, group III nitride semiconductor epitaxial substrate, group III nitride semiconductor element and group III nitride semiconductor free-standing substrate, and method of producing the same
JP5509680B2 (en) Group III nitride crystal and method for producing the same
KR20090068374A (en) Sapphire substrate, nitride semiconductor luminescent element using the sapphire substrate, and method for manufacturing the nitride semiconductor luminescent element
EP2472567A2 (en) Semiconductor layer
JP2001181096A (en) Method for producing iii group nitride compound semiconductor and iii group nitride compound semiconductor element
JP2003282602A (en) SUBSTRATE FOR CRYSTAL GROWTH AND ZnO COMPOUND SEMICONDUCTOR DEVICE
JP2011187965A (en) Nitride semiconductor structure, method of manufacturing the same, and light emitting element
JP2001267242A (en) Group iii nitride-based compound semiconductor and method of manufacturing the same
JP2006312571A (en) METHOD FOR PRODUCING Ga2O3-BASED CRYSTAL
JP2007331973A (en) Nitride semiconductor self-standing substrate and nitride semiconductor light-emitting element
JP2005343713A (en) Group iii-v nitride-based semiconductor self-standing substrate, its producing method, and group iii-v nitride-based semiconductor
JP2000223417A (en) Growing method of semiconductor, manufacture of semiconductor substrate, and manufacture of semiconductor device
JP2003017420A (en) Gallium nitride compound semiconductor substrate and method of manufacturing the same
KR100841269B1 (en) Group ¥² nitride semiconductor multilayer structure
TW200939536A (en) Nitride semiconductor and method for manufacturing same
JP5043363B2 (en) Method for forming gallium nitride crystal, substrate, and method for forming gallium nitride substrate
JP4051892B2 (en) Group III nitride compound semiconductor manufacturing method and group III nitride compound semiconductor device
JP7350477B2 (en) Method for manufacturing semiconductor growth substrate, semiconductor element, semiconductor light emitting device, and semiconductor growth substrate
JP2009141085A (en) Nitride semiconductor device
JP4016062B2 (en) Nitride semiconductor structure, manufacturing method thereof, and light emitting device

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20091215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004