JP2014205618A - β-Ga2O3-BASED SINGLE CRYSTAL AND SUBSTRATE - Google Patents

β-Ga2O3-BASED SINGLE CRYSTAL AND SUBSTRATE Download PDF

Info

Publication number
JP2014205618A
JP2014205618A JP2014131332A JP2014131332A JP2014205618A JP 2014205618 A JP2014205618 A JP 2014205618A JP 2014131332 A JP2014131332 A JP 2014131332A JP 2014131332 A JP2014131332 A JP 2014131332A JP 2014205618 A JP2014205618 A JP 2014205618A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
substrate
axis
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014131332A
Other languages
Japanese (ja)
Inventor
信也 渡辺
Shinya Watanabe
信也 渡辺
飯塚 和幸
Kazuyuki Iizuka
和幸 飯塚
慶 土井岡
Kei Doioka
慶 土井岡
春香 坂本
Haruka Sakamoto
春香 坂本
建和 増井
Takekazu Masui
建和 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Koha Co Ltd
Original Assignee
Tamura Corp
Koha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp, Koha Co Ltd filed Critical Tamura Corp
Priority to JP2014131332A priority Critical patent/JP2014205618A/en
Publication of JP2014205618A publication Critical patent/JP2014205618A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a high-quality β-GaO-based single crystal and a substrate by suppressing variation of a crystal structure in the vertical direction to a b-axis.SOLUTION: A β-GaO-based single crystal in which a crystal growth direction is a b-axis direction, and the addition concentration of Sn is 0.005 mol%-1.0 mol% is grown by using an EFG(Edge-defined Film-fed Growth) method. In the obtained single crystal, each substrate whose position from a seed crystal is 40 mm and 90 mm is cut out respectively, and a difference between a peak position of an X-ray diffraction profile of each substrate and the rotation angle of an approximate curve is determined, and the mean value α thereof is determined. The α becomes smaller in proportion to the smallness of variation of the peak position of the X-ray diffraction profile in the vertical direction to the b-axis. The variation of a crystal structure in the vertical direction to the b-axis is more similar to that of the seed crystal in proportion to the smallness of the α ratio which is a ratio of α in each crystal to α of the seed crystal, thereby a high-quality crystal obtained.

Description

本発明は、β−Ga系単結晶及び基板に関する。 The present invention relates to a β-Ga 2 O 3 single crystal and a substrate.

従来、EFG(Edge-defined Film-fed Growth)法を用いた平板状のGa単結晶の成長方法が知られている(例えば、特許文献1参照)。 Conventionally, a growth method of a tabular Ga 2 O 3 single crystal using an EFG (Edge-defined Film-fed Growth) method is known (for example, see Patent Document 1).

特許文献1によれば、SiOをドーパント原料として用いて、SiをGa単結晶に添加する。SiOは、Gaとの融点の差が小さく、Ga単結晶の成長温度(Ga単結晶の原料の融点)における蒸気圧が低いため、Ga単結晶中のドーパント量の制御が容易である。 According to Patent Document 1, Si is added to a Ga 2 O 3 single crystal using SiO 2 as a dopant raw material. SiO 2 has a small difference in melting points of Ga 2 O 3, Ga 2 O 3 has a low vapor pressure at the growth temperature of the single crystal (Ga 2 O 3 melting point of the single crystal raw material), Ga 2 O 3 single crystal It is easy to control the amount of dopant therein.

また、従来、FZ(Floating Zone)法を用いた円柱状のβ−Ga系単結晶の成長方法が知られている(例えば、特許文献2参照)。 Conventionally, a columnar β-Ga 2 O 3 single crystal growth method using an FZ (Floating Zone) method is known (see, for example, Patent Document 2).

特許文献2によれば、Si、Sn、Zr、Hf、Ge等を熱融解性調整用添加物としてβ−Ga系単結晶に添加する。熱融解性調整用添加物を添加することにより、β−Ga系単結晶の赤外線吸収特性が大きくなり、FZ装置の光源からの赤外線をβ−Ga系単結晶が効率的に吸収するようになる。このため、β−Ga系単結晶の外径が大きい場合であっても、中心部と外側の温度差が小さくなり、中心部が凝固し難くなる。 According to Patent Document 2, Si, Sn, Zr, Hf, Ge, or the like is added to the β-Ga 2 O 3 single crystal as an additive for adjusting thermal melting. By adding the additive for adjusting the heat melting property, the infrared absorption characteristic of the β-Ga 2 O 3 single crystal is increased, and the infrared light from the light source of the FZ apparatus is efficiently used by the β-Ga 2 O 3 single crystal. To absorb. For this reason, even if the outer diameter of the β-Ga 2 O 3 -based single crystal is large, the temperature difference between the central portion and the outside becomes small, and the central portion becomes difficult to solidify.

特開2011−190127号公報JP 2011-190127 A 特開2006−273684号公報JP 2006-273684 A

本発明の目的の1つは、b軸に垂直な方向の結晶構造のばらつきを抑制して高品質のβ−Ga系単結晶及び基板を提供することである。 One of the objects of the present invention is to provide a high-quality β-Ga 2 O 3 -based single crystal and a substrate while suppressing variations in crystal structure in the direction perpendicular to the b-axis.

本発明の一態様は、上記目的を達成するために、Snの添加濃度が0.005mol%〜1.0mol%のβ−Ga系単結晶、及びこのβ−Ga系単結晶からなる基板を提供する。 One aspect of the present invention, in order to achieve the above object, the addition concentration of Sn is 0.005mol% ~1.0mol% of β-Ga 2 O 3 single crystal, and the β-Ga 2 O 3 system single A substrate made of a crystal is provided.

本発明によれば、b軸に垂直な方向の結晶構造のばらつきを抑制して高品質のβ−Ga系単結晶及び基板を提供することができる。 According to the present invention, it is possible to provide a high-quality β-Ga 2 O 3 single crystal and a substrate while suppressing variations in crystal structure in the direction perpendicular to the b-axis.

図1は、実施の形態に係るEFG結晶製造装置の一部の垂直断面図である。FIG. 1 is a vertical sectional view of a part of an EFG crystal manufacturing apparatus according to an embodiment. 図2は、β−Ga系単結晶の成長中の様子を表す斜視図である。FIG. 2 is a perspective view illustrating a state during the growth of the β-Ga 2 O 3 single crystal. 図3(a)は、β−Ga系単結晶から切り出した基板とX線回折の測定位置を表す平面図である。図3(b)は、各測定点において得られたX線回折プロファイルをb軸に垂直な方向に沿って並べたイメージ図である。FIG. 3A is a plan view showing a substrate cut out from a β-Ga 2 O 3 -based single crystal and measurement positions of X-ray diffraction. FIG. 3B is an image diagram in which X-ray diffraction profiles obtained at each measurement point are arranged along a direction perpendicular to the b-axis. 図4は、測定点ごとのX線回折強度の分布を表す図である。FIG. 4 is a diagram showing the distribution of X-ray diffraction intensity for each measurement point. 図5は、基板位置とX線回折プロファイルのピーク位置の関係を表す曲線とその近似直線を表すグラフである。FIG. 5 is a graph showing a curve representing the relationship between the substrate position and the peak position of the X-ray diffraction profile and its approximate straight line. 図6(a)、(b)は、結晶A、Bからそれぞれ切り出された、種結晶からの位置が40mmの点を中心とする基板の、測定点ごとのX線回折強度の分布を表す。6A and 6B show the distribution of X-ray diffraction intensity for each measurement point on a substrate centered on a point 40 mm from the seed crystal, cut out from crystals A and B, respectively. 図7(a)、(b)は、結晶C、Dからそれぞれ切り出された、種結晶からの位置が40mmの点を中心とする基板の測定点ごとの、X線回折強度の分布を表す。FIGS. 7A and 7B show the distribution of X-ray diffraction intensity for each measurement point of the substrate centered on a point 40 mm from the seed crystal, cut out from the crystals C and D, respectively. 図8は、Snが添加された結晶A、B、Siが添加された結晶C、D、及び無添加の結晶EFの、b軸に垂直な方向の結晶構造のばらつきを示す図である。FIG. 8 is a diagram showing variations in crystal structures in the direction perpendicular to the b-axis of crystals A and B to which Sn is added, crystals C and D to which Si is added, and crystal EF to which no additive is added.

〔実施の形態〕
本実施の形態においては、種結晶を用いて、Snが添加された平板状のβ−Ga系単結晶をb軸方向に成長させる。これにより、b軸方向に垂直な方向の結晶品質のばらつきが小さいβ−Ga系単結晶を得ることができる。
Embodiment
In this embodiment, a tabular β-Ga 2 O 3 single crystal to which Sn is added is grown in the b-axis direction using a seed crystal. Thereby, a β-Ga 2 O 3 -based single crystal with small variations in crystal quality in the direction perpendicular to the b-axis direction can be obtained.

従来、多くの場合、Ga結晶に添加される導電型不純物として、Siが用いられている。SiはGa結晶に添加される導電型不純物の中でGa単結晶の成長温度における蒸気圧が比較的低く、結晶成長中の蒸発量が少ないため、Si添加量の調整によるGa結晶の導電性の制御が比較的容易である。 Conventionally, in many cases, Si is used as a conductive impurity added to the Ga 2 O 3 crystal. Si has a relatively low vapor pressure at the growth temperature of the Ga 2 O 3 single crystal among the conductivity type impurities added to the Ga 2 O 3 crystal, and the amount of evaporation during crystal growth is small. Control of the conductivity of the Ga 2 O 3 crystal is relatively easy.

一方、SnはSiよりもGa単結晶の成長温度における蒸気圧が高く、結晶成長中の蒸発量が多いため、Ga結晶に添加される導電型不純物としては少々扱いづらい。 On the other hand, Sn has a higher vapor pressure at the growth temperature of the Ga 2 O 3 single crystal than Si, and the amount of evaporation during crystal growth is large. Therefore, it is a little difficult to treat as a conductive impurity added to the Ga 2 O 3 crystal.

しかしながら、本願の発明者等は、平板状のβ−Ga系単結晶をb軸方向に成長させるという特定の条件下において、Siを添加することにより、b軸方向の結晶構造は一定になるが、b軸に垂直な方向の結晶構造に大きなばらつきが生じるという問題を見出した。そして、本願の発明者等は、Siの代わりにSnを添加することにより、その問題を解消できることを見出した。 However, the inventors of the present application added the Si under a specific condition of growing a flat β-Ga 2 O 3 single crystal in the b-axis direction, so that the crystal structure in the b-axis direction is constant. However, it has been found that there is a large variation in the crystal structure in the direction perpendicular to the b-axis. The inventors of the present application have found that the problem can be solved by adding Sn instead of Si.

(β−Ga系単結晶の成長)
以下に、平板状のβ−Ga系単結晶を成長させる方法の一例として、EFG(Edge-defined film-fed growth)法を用いる場合の方法について説明する。なお、本実施の形態の平板状のβ−Ga系単結晶の成長方法はEFG法に限られず、他の成長方法、例えば、マイクロPD(pulling-down)法等の引き下げ法を用いてもよい。また、ブリッジマン法にEFG法のダイのようなスリットを有するダイを適用し、平板状のβ−Ga系単結晶を育成してもよい。
(Growth of β-Ga 2 O 3 single crystal)
Hereinafter, as an example of a method for growing a flat β-Ga 2 O 3 single crystal, a method using an EFG (Edge-defined film-fed growth) method will be described. Note that the growth method of the flat β-Ga 2 O 3 single crystal of the present embodiment is not limited to the EFG method, and other growth methods such as a pulling-down method such as a micro PD (pulling-down) method are used. May be. Further, a die having a slit like a die of the EFG method may be applied to the Bridgman method to grow a plate-like β-Ga 2 O 3 single crystal.

図1は、本実施の形態に係るEFG結晶製造装置の一部の垂直断面図である。このEFG結晶製造装置10は、Ga系融液12を受容するルツボ13と、このルツボ13内に設置されたスリット14aを有するダイ14と、スリット14aの開口部14bを含むダイ14の上部を露出させるようにルツボ13の上面を閉塞する蓋15と、β−Ga系種結晶(以下、「種結晶」という)20を保持する種結晶保持具21と、種結晶保持具21を昇降可能に支持するシャフト22とを有する。 FIG. 1 is a vertical sectional view of a part of the EFG crystal manufacturing apparatus according to the present embodiment. The EFG crystal manufacturing apparatus 10 includes a crucible 13 for receiving a Ga 2 O 3 melt 12, a die 14 having a slit 14 a installed in the crucible 13, and a die 14 including an opening 14 b of the slit 14 a. A lid 15 that closes the upper surface of the crucible 13 so as to expose the upper part, a seed crystal holder 21 that holds a β-Ga 2 O 3 -based seed crystal (hereinafter referred to as “seed crystal”) 20, and a seed crystal holder And a shaft 22 that supports 21 so as to be movable up and down.

ルツボ13は、Ga系粉末を溶解させて得られたGa系融液12を収容する。ルツボ13は、Ga系融液12を収容しうる耐熱性を有するイリジウム等の材料からなる。 The crucible 13 contains a Ga 2 O 3 melt 12 obtained by dissolving Ga 2 O 3 powder. The crucible 13 is made of a material such as iridium having heat resistance that can accommodate the Ga 2 O 3 melt 12.

ダイ14は、Ga系融液12を毛細管現象により上昇させるためのスリット14aを有する。 The die 14 has a slit 14a for raising the Ga 2 O 3 melt 12 by capillary action.

蓋15は、ルツボ13から高温のGa系融液12が蒸発することを防止し、さらにスリット14aの上面以外の部分にGa系融液12の蒸気が付着することを防ぐ。 The lid 15 prevents the high-temperature Ga 2 O 3 melt 12 from evaporating from the crucible 13 and further prevents the vapor of the Ga 2 O 3 melt 12 from adhering to a portion other than the upper surface of the slit 14a. .

種結晶20を下降させて、スリット14aの開口部14bからダイ14の上面に広がったGa系融液12に接触させ、Ga系融液12と接触した種結晶20を引き上げることにより、平板状のβ−Ga系単結晶25を成長させる。β−Ga系単結晶25の結晶方位は種結晶20の結晶方位と等しく、β−Ga系単結晶25の結晶方位を制御するためには、例えば、種結晶20の底面の面方位及び水平面内の角度を調整する。 Lowers the seed crystal 20 is contacted from the opening 14b of the slit 14a in the Ga 2 O 3 KeiTorueki 12 spread on the top surface of the die 14, pulling the seed crystal 20 in contact with the Ga 2 O 3 KeiTorueki 12 As a result, a flat β-Ga 2 O 3 single crystal 25 is grown. crystal orientation of the β-Ga 2 O 3 single crystal 25 is equal to the crystal orientation of the seed crystal 20, in order to control the crystal orientation of the β-Ga 2 O 3 single crystal 25 is, for example, the bottom surface of the seed crystal 20 Adjust the plane orientation and angle in the horizontal plane.

図2は、β−Ga系単結晶の成長中の様子を表す斜視図である。図2中の面26は、スリット14aのスリット方向と平行なβ−Ga系単結晶25の主面である。成長させたβ−Ga系単結晶25を切り出してβ−Ga系基板を形成する場合は、β−Ga系基板の所望の主面の面方位にβ−Ga系単結晶25の面26の面方位を一致させる。例えば、(−201)面を主面とするβ−Ga系基板を形成する場合は、面26の面方位を(−201)とする。また、成長させたβ−Ga系単結晶25は、新たなβ−Ga系単結晶を成長させるための種結晶として用いることができる。図1、2に示される結晶成長方向は、β−Ga系単結晶25のb軸に平行な方向(b軸方向)である。 FIG. 2 is a perspective view illustrating a state during the growth of the β-Ga 2 O 3 single crystal. A surface 26 in FIG. 2 is a main surface of the β-Ga 2 O 3 single crystal 25 parallel to the slit direction of the slit 14a. If cut out β-Ga 2 O 3 single crystal 25 is grown to form a β-Ga 2 O 3 system board, the plane orientation of the desired major surface of the β-Ga 2 O 3 based substrate beta-Ga The plane orientation of the face 26 of the 2 O 3 system single crystal 25 is matched. For example, when a β-Ga 2 O 3 -based substrate having a (−201) plane as a main surface is formed, the plane orientation of the plane 26 is set to (−201). The grown β-Ga 2 O 3 single crystal 25 can be used as a seed crystal for growing a new β-Ga 2 O 3 single crystal. The crystal growth direction shown in FIGS. 1 and 2 is a direction (b-axis direction) parallel to the b-axis of the β-Ga 2 O 3 -based single crystal 25.

β−Ga系単結晶25及び種結晶20は、β−Ga単結晶、又は、Al、In等の元素が添加されたGa単結晶である。例えば、Al及びInが添加されたβ−Ga単結晶である(GaAlIn(1−))(0<x≦1、0≦y≦1、0<x+y≦1)単結晶であってもよい。Alを添加した場合にはバンドギャップが広がり、Inを添加した場合にはバンドギャップが狭くなる。 The β-Ga 2 O 3 single crystal 25 and the seed crystal 20 are a β-Ga 2 O 3 single crystal or a Ga 2 O 3 single crystal to which an element such as Al or In is added. For example, Al and In are β-Ga 2 O 3 single crystal is added (Ga x Al y In (1- x - y)) 2 O 3 (0 <x ≦ 1,0 ≦ y ≦ 1,0 <X + y ≦ 1) A single crystal may be used. When Al is added, the band gap is widened, and when In is added, the band gap is narrowed.

β−Ga系原料に、所望の濃度のSnが添加されるような量のSn原料を加える。例えば、LED用基板を切り出すためのβ−Ga系単結晶25を成長させる場合は、濃度0.005mol%以上かつ1.0mol%以下のSnが添加されるような量のSnOをβ−Ga系原料に加える。濃度0.005mol%未満の場合、導電性基板として十分な特性が得られない。また、1.0mol%を超える場合、ドーピング効率の低下、吸収係数増加、歩留低下等の問題が生じやすい。 An amount of Sn raw material is added to the β-Ga 2 O 3 type raw material such that Sn having a desired concentration is added. For example, when the β-Ga 2 O 3 single crystal 25 for cutting out an LED substrate is grown, SnO 2 is added in such an amount that Sn having a concentration of 0.005 mol% or more and 1.0 mol% or less is added. Add to β-Ga 2 O 3 system material. When the concentration is less than 0.005 mol%, sufficient characteristics as a conductive substrate cannot be obtained. Moreover, when it exceeds 1.0 mol%, problems such as a decrease in doping efficiency, an increase in absorption coefficient, and a decrease in yield are likely to occur.

以下に、本実施の形態のβ−Ga系単結晶25の育成条件の一例について述べる。 Below, an example of the growth conditions of the β-Ga 2 O 3 based single crystal 25 of the present embodiment will be described.

例えば、β−Ga系単結晶25の育成は、窒素雰囲気下で行われる。 For example, the β-Ga 2 O 3 single crystal 25 is grown in a nitrogen atmosphere.

図1、2に示される例では、水平断面の大きさがGa系単結晶25とほぼ同じ大きさの種結晶20を用いている。この場合、Ga系単結晶25の幅を広げる肩広げ工程を行わないため、肩広げ工程において発生しやすい双晶化を抑えることができる。 In the example shown in FIGS. 1 and 2, a seed crystal 20 having a horizontal cross section substantially the same size as the Ga 2 O 3 single crystal 25 is used. In this case, since the shoulder widening process for expanding the width of the Ga 2 O 3 single crystal 25 is not performed, twinning that is likely to occur in the shoulder widening process can be suppressed.

なお、この場合、種結晶20は通常の結晶育成に用いられる種結晶よりも大きく、熱衝撃に弱いため、Ga系融液12に接触させる前の種結晶20のダイ14からの高さは、ある程度低いことが好ましく、例えば、10mmである。また、Ga系融液12に接触させるまでの種結晶20の降下速度は、ある程度低いことが好ましく、例えば、1mm/minである。 In this case, since the seed crystal 20 is larger than the seed crystal used for normal crystal growth and is weak against thermal shock, the seed crystal 20 from the die 14 before contacting with the Ga 2 O 3 melt 12 is high. The thickness is preferably low to some extent, for example, 10 mm. The descending speed of the seed crystal 20 until it contacts with the Ga 2 O 3 melt 12 is preferably low to some extent, for example, 1 mm / min.

種結晶20をGa系融液12に接触させた後の引き上げるまでの待機時間は、温度をより安定させて熱衝撃を防ぐために、ある程度長いことが好ましく、例えば、10minである。 The waiting time until the seed crystal 20 is pulled up after being brought into contact with the Ga 2 O 3 melt 12 is preferably long to some extent in order to stabilize the temperature and prevent thermal shock, for example, 10 minutes.

ルツボ13中の原料を溶かすときの昇温速度は、ルツボ13周辺の温度が急上昇して種結晶20に熱衝撃が加わることを防ぐために、ある程度低いことが好ましく、例えば、11時間掛けて原料を溶かす。   The rate of temperature rise when melting the raw material in the crucible 13 is preferably low to some extent in order to prevent the temperature around the crucible 13 from rising rapidly and causing thermal shock to the seed crystal 20. Melt.

(β−Ga系単結晶の品質評価方法)
上記の方法等を用いて成長させたβ−Ga系単結晶の種結晶から基板を切り出し、鏡面研磨した後、X線回折測定により結晶品質の評価を行う。この結晶品質の評価は、基板のb軸に垂直な方向の結晶構造のばらつきの評価により行う。
(Quality evaluation method of β-Ga 2 O 3 single crystal)
A substrate is cut out from a seed crystal of β-Ga 2 O 3 single crystal grown using the above method and the like, mirror-polished, and then evaluated for crystal quality by X-ray diffraction measurement. This crystal quality is evaluated by evaluating the variation in crystal structure in the direction perpendicular to the b-axis of the substrate.

図3(a)は、β−Ga系単結晶から切り出した基板とX線回折の測定位置を表す平面図である。図3(a)に「×」で示されるβ−Ga系単結晶のb軸に垂直な方向に沿って並ぶ測定点において、β−Ga系単結晶のb軸方向を軸として基板を回転させながらX線回折強度を測定し、X線回折プロファイルを得る。ここで、基板のb軸方向を軸とする回転角度をω[deg]とする。 FIG. 3A is a plan view showing a substrate cut out from a β-Ga 2 O 3 -based single crystal and measurement positions of X-ray diffraction. At the measurement points arranged along the direction perpendicular to the b-axis of the β-Ga 2 O 3 single crystal indicated by “x” in FIG. 3A, the b-axis direction of the β-Ga 2 O 3 single crystal is expressed as follows. The X-ray diffraction intensity is measured while rotating the substrate as an axis to obtain an X-ray diffraction profile. Here, the rotation angle about the b-axis direction of the substrate is ω [deg].

図3(b)は、各測定点において得られたX線回折プロファイルをb軸に垂直な方向に沿って並べたイメージ図である。   FIG. 3B is an image diagram in which X-ray diffraction profiles obtained at each measurement point are arranged along a direction perpendicular to the b-axis.

図4は、図3(b)を上方から見た図であり、測定点ごとのX線回折強度の分布を表す。図4の横軸はb軸に垂直な方向の基板上の位置[mm]、縦軸は基板の回転角度ω[deg]を表す。ドットの密度の高い領域がX線回折強度の高い領域であることを表し、曲線は各測定点におけるX線回折プロファイルのピーク位置を繋いだものである。なお、横軸の基板上の位置は、基板の中心を原点としている。   FIG. 4 is a view of FIG. 3B as viewed from above, and represents the distribution of X-ray diffraction intensity at each measurement point. The horizontal axis in FIG. 4 represents the position [mm] on the substrate in the direction perpendicular to the b-axis, and the vertical axis represents the rotation angle ω [deg] of the substrate. The region where the dot density is high is a region where the X-ray diffraction intensity is high, and the curve connects the peak positions of the X-ray diffraction profile at each measurement point. Note that the position on the substrate on the horizontal axis is the origin of the center of the substrate.

図5は、基板位置とX線回折プロファイルのピーク位置の関係を表す曲線とその最小二乗法による線形近似から求められた近似直線を表すグラフである。図5の横軸はb軸に垂直な方向の基板上の位置[mm]、縦軸は基板の回転角度ω[deg]を表す。   FIG. 5 is a graph showing a curve representing the relationship between the substrate position and the peak position of the X-ray diffraction profile and an approximate straight line obtained from the linear approximation by the least square method. The horizontal axis in FIG. 5 represents the position [mm] on the substrate in the direction perpendicular to the b-axis, and the vertical axis represents the rotation angle ω [deg] of the substrate.

図5から、各々の基板位置におけるX線回折プロファイルのピーク位置と近似直線の回転角度ωの差を求め、それらの平均値αを求める。b軸に垂直な方向のX線回折プロファイルのピーク位置のばらつきが小さいほど、このαが小さくなり、基板のb軸に垂直な方向の結晶構造のばらつきが小さいことを意味する。   From FIG. 5, the difference between the peak position of the X-ray diffraction profile at each substrate position and the rotation angle ω of the approximate line is obtained, and the average value α is obtained. The smaller the variation in the peak position of the X-ray diffraction profile in the direction perpendicular to the b-axis, the smaller this α, which means that the variation in crystal structure in the direction perpendicular to the b-axis of the substrate is smaller.

(β−Ga系単結晶の品質評価結果)
本実施の形態の一例として、濃度0.05mol%のSnを添加して主面が(−201)面の平板状のβ−Ga系単結晶を2つ成長させ(結晶A、Bとする)、これら結晶A、Bから、種結晶からの位置が40mmの点を中心とする基板と、種結晶からの位置が90mmの点を中心とする基板をそれぞれ1枚ずつ切り出した。各基板の直径は50mmとした。
(Quality evaluation result of β-Ga 2 O 3 based single crystal)
As an example of the present embodiment, Sn having a concentration of 0.05 mol% is added to grow two flat β-Ga 2 O 3 single crystals having a (−201) principal surface (crystals A and B). From the crystals A and B, a substrate centered at a point 40 mm from the seed crystal and a substrate centered at a point 90 mm from the seed crystal were cut out one by one. The diameter of each substrate was 50 mm.

同様に、比較例として、濃度0.05mol%のSiを添加して主面が(−201)面の平板状のβ−Ga系単結晶を2つ成長させ(結晶C、Dとする)、これら結晶C、Dから、種結晶からの位置が40mmの点を中心とする基板をそれぞれ切り出した。各基板の直径は50mmとした。 Similarly, as a comparative example, Si having a concentration of 0.05 mol% was added to grow two flat β-Ga 2 O 3 single crystals having a (−201) principal surface (crystals C and D). The substrate centering on the point where the position from the seed crystal is 40 mm was cut out from these crystals C and D. The diameter of each substrate was 50 mm.

また、他の比較例として、ドーパントを添加せずに主面が(−201)面の平板状のβ−Ga系単結晶を2つ成長させ(結晶E、Fとする)、これら結晶E、Fから、種結晶からの位置が40mmの点を中心とする基板と、種結晶からの位置が90mmの点を中心とする基板をそれぞれ1枚ずつ切り出した。各基板の直径は50mmとした。 Further, as another comparative example, two flat β-Ga 2 O 3 single crystals having a (−201) plane principal surface without adding a dopant were grown (referred to as crystals E and F). From the crystals E and F, a substrate centered around a point 40 mm from the seed crystal and a substrate centered at a point 90 mm from the seed crystal were cut out one by one. The diameter of each substrate was 50 mm.

なお、平板状の結晶A〜Fの幅(結晶成長方向に垂直な幅)は、直径50mmの基板を切り出すため、52mmとした。   The width of the flat crystals A to F (width perpendicular to the crystal growth direction) was set to 52 mm in order to cut out a substrate having a diameter of 50 mm.

上記の4枚のSn添加β−Ga系単結晶基板、4枚のSi添加β−Ga系単結晶基板、及び4枚の無添加β−Ga系単結晶基板に対し、上記の評価方法により、基板のb軸に垂直な方向の結晶構造のばらつきを評価した。 Four Sn-added β-Ga 2 O 3 single crystal substrates, four Si-added β-Ga 2 O 3 single crystal substrates, and four undoped β-Ga 2 O 3 single crystal substrates On the other hand, the crystal structure variation in the direction perpendicular to the b-axis of the substrate was evaluated by the above evaluation method.

図6(a)、(b)は、結晶A、Bからそれぞれ切り出された、種結晶からの位置が40mmの点を中心とする基板の、測定点ごとのX線回折強度の分布を表す。また、図7(a)、(b)は、結晶C、Dからそれぞれ切り出された、種結晶からの位置が40mmの点を中心とする基板の、測定点ごとのX線回折強度の分布を表す。図6(a)、(b)、及び図7(a)、(b)は、図4に対応する。   6A and 6B show the distribution of X-ray diffraction intensity for each measurement point on a substrate centered on a point 40 mm from the seed crystal, cut out from crystals A and B, respectively. FIGS. 7A and 7B show the distribution of X-ray diffraction intensity for each measurement point on a substrate centered on a point 40 mm from the seed crystal, cut out from crystals C and D, respectively. Represent. FIGS. 6A and 6B and FIGS. 7A and 7B correspond to FIG.

図6(a)、(b)、及び図7(a)、(b)は、Snが添加された結晶A、Bから切り出された基板は、Siが添加された結晶C、Dから切り出された基板よりも、b軸に垂直な方向のX線回折プロファイルのピーク位置のばらつきが小さく、b軸に垂直な方向の結晶構造のばらつきが小さいことを示している。   6 (a), 6 (b), 7 (a) and 7 (b) show that the substrate cut from the crystals A and B to which Sn is added is cut from the crystals C and D to which Si is added. This shows that the variation in the peak position of the X-ray diffraction profile in the direction perpendicular to the b-axis is smaller than that of the substrate, and the variation in the crystal structure in the direction perpendicular to the b-axis is small.

図8は、Snが添加された結晶A、B、Siが添加された結晶C、D、及び無添加の結晶EFの、b軸に垂直な方向の結晶構造のばらつきを示す図である。図8の縦軸は、各々の結晶におけるαの種結晶のαに対する比を表す。このα比が小さいほど、b軸に垂直な方向の結晶構造のばらつきが種結晶のものに近く、高品質の結晶が得られていることを示す。   FIG. 8 is a diagram showing variations in crystal structures in the direction perpendicular to the b-axis of crystals A and B to which Sn is added, crystals C and D to which Si is added, and crystal EF to which no additive is added. The vertical axis in FIG. 8 represents the ratio of α to α of the seed crystal in each crystal. As the α ratio is smaller, the crystal structure variation in the direction perpendicular to the b-axis is closer to that of the seed crystal, indicating that a high-quality crystal is obtained.

図8の下部の横軸に沿って並んだ文字欄の上段は基板を切り出した結晶の種類(結晶A〜F)を表し、中段は添加されたドーパントの種類(Si、Sn、なし)を表し、下段は結晶から切り出される前の基板の中心の種結晶からの距離(40mm、90mm)を表す。   The upper part of the character column aligned along the horizontal axis at the bottom of FIG. 8 represents the type of crystal (crystals A to F) obtained by cutting the substrate, and the middle part represents the type of added dopant (Si, Sn, none). The lower row represents the distance (40 mm, 90 mm) from the seed crystal at the center of the substrate before being cut out from the crystal.

図8は、Snが添加された結晶A、Bのα比が、Siが添加された結晶C、Dのα比よりも小さく、結晶A、Bのb軸に垂直な方向の結晶構造のばらつきが小さいことを示している。また、Snが添加された結晶A、Bのα比は、無添加の結晶E、Fのα比と近く、Snを添加したβ−Ga系単結晶のb軸に垂直な方向の結晶構造のばらつきが無添加のβ−Ga系単結晶のものに近いことを示している。 FIG. 8 shows that the α ratio of the crystals A and B to which Sn is added is smaller than the α ratio of the crystals C and D to which Si is added, and the crystal structure variation in the direction perpendicular to the b-axis of the crystals A and B Is small. The α ratio of the crystals A and B to which Sn is added is close to the α ratio of the crystals E and F to which no additive is added, and is in a direction perpendicular to the b-axis of the β-Ga 2 O 3 single crystal to which Sn is added. It shows that the variation in crystal structure is close to that of an additive-free β-Ga 2 O 3 single crystal.

また、一般的に、成長させた結晶においては、種結晶からの距離が離れた領域ほど結晶品質が低いが、Snが添加された結晶A、Bの種結晶からの距離が90mmの領域のb軸に垂直な方向の結晶構造のばらつきは、Siが添加された結晶C、Dの種結晶からの距離が40mmの領域のものよりも小さい。これは、Siの代わりにSnを添加することにより、β−Ga系単結晶のb軸に垂直な方向の結晶構造のばらつきを大きく低減できることを表している。 Further, in general, in a grown crystal, the crystal quality is lower in a region farther from the seed crystal, but b in a region where the distance from the seed crystal of the crystals A and B to which Sn is added is 90 mm. The variation in the crystal structure in the direction perpendicular to the axis is smaller than that in the region where the distance from the seed crystal of crystals C and D to which Si is added is 40 mm. This indicates that by adding Sn instead of Si, variation in the crystal structure in the direction perpendicular to the b-axis of the β-Ga 2 O 3 single crystal can be greatly reduced.

なお、同様の評価方法により、b軸方向の結晶構造のばらつきを評価したところ、Snを添加したβ−Ga系単結晶、Siを添加したβ−Ga系単結晶ともに、b軸方向の結晶構造のばらつきはほとんど見られなかった。 Incidentally, the same evaluation methods, were evaluated variation of b-axis direction of the crystal structure was added Sn β-Ga 2 O 3 system single crystal, the β-Ga 2 O 3 system single crystal both added with Si, There was almost no variation in the crystal structure in the b-axis direction.

(実施の形態の効果)
本実施の形態によれば、β−Ga系単結晶に導電性を与えるドーパントとしてSnを用いることにより、結晶構造のばらつきが小さい高品質のβ−Ga系単結晶をb軸方向に成長させることができる。
(Effect of embodiment)
According to the present embodiment, by using Sn as a dopant that imparts conductivity to the β-Ga 2 O 3 single crystal, a high-quality β-Ga 2 O 3 single crystal having a small variation in crystal structure is converted to b. It can be grown in the axial direction.

一例として、Snを添加して、長さ65mm、幅52mm以上の平板状のβ−Ga系単結晶を成長させることにより、種結晶からの距離が40mmの点を中心とする領域から、直径50mmの結晶品質に優れた導電性基板を得ることができる。 As an example, by adding Sn and growing a plate-like β-Ga 2 O 3 single crystal having a length of 65 mm and a width of 52 mm or more, from a region centered on a point whose distance from the seed crystal is 40 mm A conductive substrate having a diameter of 50 mm and excellent crystal quality can be obtained.

なお、本実施の形態の効果はSnの添加濃度には依らず、少なくとも1.0mol%まではβ−Ga系単結晶のb軸に垂直な方向の結晶構造のばらつきがほぼ変化しないことが確認されている。 Note that the effect of this embodiment does not depend on the Sn addition concentration, and the variation in the crystal structure in the direction perpendicular to the b-axis of the β-Ga 2 O 3 single crystal is almost unchanged up to at least 1.0 mol%. It has been confirmed.

以上、本発明の実施の形態を説明したが、本発明は、上記実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the invention.

また、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。   The embodiments described above do not limit the invention according to the claims. In addition, it should be noted that not all the combinations of features described in the embodiments are essential to the means for solving the problems of the invention.

10…EFG結晶製造装置、 20…種結晶、 25…β−Ga系単結晶 10 ... EFG crystal manufacturing apparatus, 20 ... seed crystal, 25 ... β-Ga 2 O 3 single crystal

Claims (2)

Snの添加濃度が0.005mol%〜1.0mol%のβ−Ga系単結晶。 A β-Ga 2 O 3 single crystal in which the concentration of Sn added is 0.005 mol% to 1.0 mol%. 請求項1に記載のβ−Ga系単結晶からなる基板。 A substrate comprising the β-Ga 2 O 3 -based single crystal according to claim 1.
JP2014131332A 2014-06-26 2014-06-26 β-Ga2O3-BASED SINGLE CRYSTAL AND SUBSTRATE Pending JP2014205618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014131332A JP2014205618A (en) 2014-06-26 2014-06-26 β-Ga2O3-BASED SINGLE CRYSTAL AND SUBSTRATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014131332A JP2014205618A (en) 2014-06-26 2014-06-26 β-Ga2O3-BASED SINGLE CRYSTAL AND SUBSTRATE

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013078575A Division JP5788925B2 (en) 2013-04-04 2013-04-04 Method for growing β-Ga 2 O 3 single crystal

Publications (1)

Publication Number Publication Date
JP2014205618A true JP2014205618A (en) 2014-10-30

Family

ID=52119520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014131332A Pending JP2014205618A (en) 2014-06-26 2014-06-26 β-Ga2O3-BASED SINGLE CRYSTAL AND SUBSTRATE

Country Status (1)

Country Link
JP (1) JP2014205618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913925A (en) * 2021-09-08 2022-01-11 杭州富加镓业科技有限公司 beta-Ga based on mode-guiding method2O3Single crystal growth method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093243A (en) * 2000-07-10 2002-03-29 Japan Science & Technology Corp Ultraviolet transparent conductive film and manufacturing method for it
JP2005235961A (en) * 2004-02-18 2005-09-02 Univ Waseda Method for controlling conductivity of gallium oxide series monocrystal
JP2006273684A (en) * 2005-03-30 2006-10-12 Koha Co Ltd Method for producing group iii element oxide-based single crystal
JP2008037725A (en) * 2006-08-10 2008-02-21 Nippon Light Metal Co Ltd Method for producing gallium oxide single crystal
JP2008156141A (en) * 2006-12-21 2008-07-10 Koha Co Ltd Semiconductor substrate and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093243A (en) * 2000-07-10 2002-03-29 Japan Science & Technology Corp Ultraviolet transparent conductive film and manufacturing method for it
JP2005235961A (en) * 2004-02-18 2005-09-02 Univ Waseda Method for controlling conductivity of gallium oxide series monocrystal
JP2006273684A (en) * 2005-03-30 2006-10-12 Koha Co Ltd Method for producing group iii element oxide-based single crystal
JP2008037725A (en) * 2006-08-10 2008-02-21 Nippon Light Metal Co Ltd Method for producing gallium oxide single crystal
JP2008156141A (en) * 2006-12-21 2008-07-10 Koha Co Ltd Semiconductor substrate and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913925A (en) * 2021-09-08 2022-01-11 杭州富加镓业科技有限公司 beta-Ga based on mode-guiding method2O3Single crystal growth method

Similar Documents

Publication Publication Date Title
JP5788925B2 (en) Method for growing β-Ga 2 O 3 single crystal
JP5491483B2 (en) Method for growing β-Ga 2 O 3 single crystal
JP5864998B2 (en) Method for growing β-Ga 2 O 3 single crystal
TWI651442B (en) GaO single crystal substrate and method of producing the same
EP2767621B1 (en) Method for producing b-ga2o3 substrate and method for producing crystal laminate structure
JP4723071B2 (en) Silicon crystal, silicon crystal wafer, and manufacturing method thereof
JP5756075B2 (en) Method for growing β-Ga 2 O 3 single crystal
US9988739B2 (en) Method for pulling a single crystal composed of silicon from a melt contained in a crucible, and single crystal produced thereby
KR101310292B1 (en) Sapphire seed and method for manufacturing the same, and method for manufacturing sapphire single crystal
JP5372105B2 (en) N-type silicon single crystal and manufacturing method thereof
JP2014205618A (en) β-Ga2O3-BASED SINGLE CRYSTAL AND SUBSTRATE
JP2005206391A (en) Method for guaranteeing resistivity of silicon single crystal substrate, method for manufacturing silicon single crystal substrate, and silicon single crystal substrate
JP5419072B2 (en) Si crystal and manufacturing method thereof
JP5777756B2 (en) β-Ga2O3-based single crystal substrate
JP2009292654A (en) Method for pulling silicon single crystal
JP2011046565A (en) Single crystal silicon ingot, single crystal silicon wafer, single crystal silicon solar cell, and method for manufacturing single crystal silicon ingot
Watanabe et al. Method for growing β-GA 2 O 3-based single crystal
JP2014503452A (en) Method for reducing the resistivity range of semiconductor crystalline sheets grown in a multi-lane furnace.
JP2016013933A (en) UNDOPED SEMI-INSULATING Ga2O3 SYSTEM SINGLE CRYSTAL SUBSTRATE AND MANUFACTURING METHOD THEREOF
JP2023041918A (en) single crystal
JP5688654B2 (en) Silicon crystal, method for producing silicon crystal, and method for producing silicon polycrystalline ingot
JP2015008314A (en) Method of producing epitaxial wafer and epitaxial wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141217

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20141217

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150714