JP4630915B2 - 反射低減膜、光学部材、光学系 - Google Patents

反射低減膜、光学部材、光学系 Download PDF

Info

Publication number
JP4630915B2
JP4630915B2 JP2008134224A JP2008134224A JP4630915B2 JP 4630915 B2 JP4630915 B2 JP 4630915B2 JP 2008134224 A JP2008134224 A JP 2008134224A JP 2008134224 A JP2008134224 A JP 2008134224A JP 4630915 B2 JP4630915 B2 JP 4630915B2
Authority
JP
Japan
Prior art keywords
refractive index
layer
index material
layers
reflection reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008134224A
Other languages
English (en)
Other versions
JP2009282295A (ja
Inventor
悦夫 寺山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008134224A priority Critical patent/JP4630915B2/ja
Priority to EP09006854A priority patent/EP2128658A3/en
Priority to US12/470,216 priority patent/US8248699B2/en
Priority to CN2009102038750A priority patent/CN101587197B/zh
Publication of JP2009282295A publication Critical patent/JP2009282295A/ja
Application granted granted Critical
Publication of JP4630915B2 publication Critical patent/JP4630915B2/ja
Priority to US13/549,086 priority patent/US20120276350A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Lenses (AREA)

Description

本発明は、例えばレンズやフィルターなどの光学部材の一面に形成され、所定の波長帯の光に対して反射低減効果を発揮する反射低減膜、ならびにそれを備えた光学部材および光学系に関する。
一般に、写真用カメラやテレビ放送用カメラなどの撮像装置においては、その光路上にレンズやプリズム、あるいはフィルターなどの光学部材が多数配置されている。各光学部材の表面では、光が入射するとその光の一部が反射光となる。ここで光学部材の総数が増加すると、それに応じて反射光の総量が増加してしまうことから、例えば放送用カメラでは映像にフレアやゴーストが発生するなどの障害が現れる。また、各光学部材の表面での反射率が入射光の波長に対して分布を有し、かつ、各光学部材の構成材料によって様々な反射率の波長依存性を示すことから、色度バランスが劣化し、撮像装置全体でのホワイトバランスを調整する必要がある。
こうしたことから、従来より、各光学部材の表面に反射低減膜(あるいは反射防止膜ともいう。)を設けるようにしている。反射低減膜は互いに異なる屈折率を有する誘電体膜を組み合わせた多層膜であり、その構成については、例えば下記の非特許文献1に開示されている。この非特許文献1では、5層構造の反射防止膜が開示されており、より広帯域に亘って低い反射率を得るための試みがなされている。
「光・薄膜マニュアル」、オプトロニクス社、平成元年10月9日、p.246−247
また、上記非特許文献1のほかに、9層構造の反射防止膜が特許文献1に開示されている。
特開2002−267801号公報
上記非特許文献1に開示された反射防止膜は、例えばd線に対して1.70を下回る屈折率を示す光学基板上に設けた場合には比較的良好な低反射率特性を発揮する。しかしながら、1.75を上回るような高い屈折率を示す光学基板上に設けた場合には、以下に説明するように反射率分布の平坦性が失われ、特定の波長において反射率が上昇してしまう傾向があることがわかった。
表1および表2は、非特許文献1に開示された反射防止膜に相当する積層構造を有する反射防止膜(従来例1,2)の基本データ(構成材料、屈折率、光学膜厚)を表し、図23は、表1および表2の基本データを有する反射防止膜の反射率分布を示すものである。
Figure 0004630915
Figure 0004630915
表1の従来例1は、反射防止膜が形成される光学基板の屈折率が比較的低い場合の構成例であり、表2の従来例2は、光学基板の屈折率が比較的高い場合の構成例である。なお、表1および表2において、「SUB−M1」はPrAlO3 を主成分とするサブスタンスM1(メルク社)を表し、「SUB−M3」はランタンアルミネート(La2X Al2Y 3(X+Y) )を主成分とするサブスタンスM3(メルク社)を表し、「SUB−H4」はLaTiO3 を主成分とするサブスタンスH4(メルク社)を表す。図23では、曲線23Aが従来例1の反射率分布を示し、曲線23Bが従来例2の反射率分布を示している。このように、光学基板の屈折率が1.8830である従来例2では、反射率分布が平坦ではなく波長420nm付近、510nm付近および650nm付近にピークが生じてしまっている。
また、最近では、放送用カメラとして昼夜兼用カメラ(デイ・ナイト・カメラ)に対する需要が高まっている。しかしながら、上記特許文献1に記載の反射防止膜では、近赤外領域における反射防止性能が不十分である。したがって、可視光域に加え、波長700nmから900nm付近の近赤外領域においても良好な撮影が可能となる光学系が強く求められている。
こうしたことから、比較的高い屈折率を有する光学基板に設けられた場合であっても、例えば400nmから900nm付近の波長光に対して十分に低い反射率を示す反射低減膜が望まれる。
本発明はかかる問題点に鑑みてなされたもので、その第1の目的は、より広い波長帯において十分に低減された反射率を示す反射低減膜を提供することにある。本発明の第2の目的は、そのような反射低減膜を備えた光学部材および光学系を提供することにある。
本発明の反射低減膜は、基板上に、この基板と反対側から順に積層された第1から第8の層を含む反射低減層を備えるようにしたものである。第1および第6の層がd線に対して1.35以上1.50以下の屈折率を示す低屈折率材料からなり、第3、第5および第7の層がd線に対して1.55以上1.85以下の屈折率を示す中間屈折率材料からなり、第2、第4および第8の層がd線に対して1.70以上2.50以下の範囲において中間屈折率材料よりも高い屈折率を示す高屈折率材料からなる。
本発明の反射低減膜では、基板と反射低減層との間に、中間屈折率材料からなる単層構造、または、反射低減層と接する層が中間屈折率材料によって構成された多層構造を有する緩衝層をさらに備える。
本発明の反射低減膜では、さらに、以下の条件式(1)〜(8)を全て満足している。ただし、λ0は中心波長、N1〜N8は第1から第8の層における中心波長λ0に対する屈折率、d1〜d8は第1から第8の層における物理的膜厚である。
0.23×λ0≦N1×d1≦0.25×λ0 …… (1)
0.11×λ0≦N2×d2≦0.13×λ0 …… (2)
0.03×λ0≦N3×d3≦0.05×λ0 …… (3)
0.25×λ0≦N4×d4≦0.29×λ0 …… (4)
0.22×λ0≦N5×d5≦0.24×λ0 …… (5)
0.22×λ0≦N6×d6≦0.26×λ0 …… (6)
0.21×λ0≦N7×d7≦0.24×λ0 …… (7)
0.45×λ0≦N8×d8≦0.53×λ0 …… (8)
本発明の光学部材は、上記の反射低減膜が表面に設けられたものであり、本発明の光学系は、そのような光学部材を備えたものである。
本発明の反射低減膜では、基板上に設けられた反射低減層における第1から第8の層が所定の屈折率を示す材料からなるようにしたので、より広い波長帯において反射率分布が十分に低減される。
本発明の反射低減膜では、基板と反射低減層との間に、それらの間で発生する反射光を減少させる緩衝層を備える。その緩衝層は、中間屈折率材料からなる単層構造、または、反射低減層と接する層が中間屈折率材料によって構成された多層構造を有する。この緩衝層は、基板と反射低減層との間で急激な屈折率の変化をやわらげることで、基板表面での反射を減少させる。緩衝層が多層構造を有する場合、例えば3層以上5層以下であるとよい。具体的には、基板のd線に対する屈折率が1.66以上2.2以下であり、緩衝層は反射低減層の側から順に積層された第9から第13の層を含み、第9,第11および第13の層が中間屈折率材料によって構成されると共に第10および第12の層が高屈折率材料によって構成されるようにするとよい。あるいは、基板のd線に対する屈折率が1.51以上1.72以下であり、緩衝層は反射低減層の側から順に積層された第9から第11の層を含み、第9および第11の層が中間屈折率材料によって構成されると共に第10の層が高屈折率材料によって構成されるようにするとよい。あるいは、基板のd線に対する屈折率が1.40以上1.58以下であり、緩衝層は反射低減層の側から順に積層された第9から第12の層を含み、第9および第12の層が中間屈折率材料、第10の層が高屈折率材料、第11の層が低屈折率材料によってそれぞれ構成され、もしくは第9の層が中間屈折率材料、第10および第12の層が高屈折率材料、第11の層が低屈折率材料によってそれぞれ構成されるようにするとよい。
本発明の反射低減膜および光学部材によれば、基板上の反射低減層における第1から第8の層が所定の屈折率を示す材料からなるようにしたので、可視域から近赤外域に亘る広い波長帯において、垂直入射光および斜入射光の双方に対する反射率を十分に低減することができる。したがって、本発明の反射低減膜および光学部材を放送用カメラなどの撮像装置における光学系に適用した場合には、フレアやゴーストの発生を抑制すると共に、より優れた色度バランス性を得ることができる。また、可視域から近赤外域まで対応できるので、昼夜兼用カメラの光学系に好適である。
以下、本発明における実施の形態について、図面を参照して各々詳細に説明する。
[第1の実施の形態]
図1は、本発明における第1の実施の形態としての反射低減膜20の構成を示す概略断面図である。図1の反射低減膜20は、後述の第1の数値実施例(表3から表9,図8から図14)に対応している。
反射低減膜20は、光学基板100の表面100S上に設けられた合計13層からなる多層膜であり、第1層1から第13層13までの各層が、光学基板100と反対側から順に積層されたものである。第1層1から第8層8までが反射低減層21であり、第9層9から第13層13までが緩衝層22である。緩衝層22は、光学基板100の表面100S、および反射低減層21の第8層8の双方と密着して設けられ、かつ、多層構造を有している。この緩衝層22は、光学基板100と反射低減層21との間で急激な屈折率の変化をやわらげ、表面100Sでの反射を減少させるように機能する。なお、ここでは表面100Sを平面としたが、これに限らず曲面としてもよい。すなわち、光学基板100として球面や非球面を有するレンズを用い、その球面や非球面の上に反射低減膜20を設けるようにしてもよい。
光学基板100は、ガラスや結晶材料などの透明材料によって構成されている。具体的には、d線(波長λ=587.56nm)に対して1.66以上2.20以下の屈折率を示すものであれば好適に用いることができる。このような透明材料としては、例えばS−LAH79(オハラ社),S−NPH2(オハラ社),LASF−N17(住田光学ガラス社),S−TIH53(オハラ社),SFL6(ショット社),SF14(住田光学ガラス社),S−TIH1(オハラ社),BASF−2(住田光学ガラス社)などが挙げられる。
反射低減層21における第1層1および第6層6は、d線(波長λ=587.56nm)に対して1.35以上1.50以下の屈折率を示す低屈折率材料からなる低屈折率層である。ここでの低屈折率材料としては、例えばフッ化マグネシウム(MgF2 )、SiO2 およびフッ化アルミニウム(AlF3 )、ならびにそれらの混合物および化合物を用いることができる。第1層1および第6層6は、特に、d線に対して特に1.37以上1.40以下の屈折率を示す低屈折率材料(例えばMgF2 )によって構成されていることが望ましい。また、より高い機械的強度を得るという観点では、SiO2 を主成分とするサブスタンスL5(メルク社)の採用が好ましい。サブスタンスL5(メルク社)は、SiO2 のほか微量の酸化アルミニウム(Al2 3 )を含み、d線に対して1.46以上1.48以下の屈折率を示すものである。
反射低減層21における第3層3、第5層5および第7層7は、d線に対して1.55以上1.85以下の屈折率を示す中間屈折率材料からなる中間屈折率層である。ここでの中間屈折率材料としては、例えば酸化アルミニウム(Al2 3 )、プラセオジウムアルミネート(PrAlO3 )、ランタンアルミネート(La2X Al2Y 3(X+Y) )、酸化ゲルマニウム(GeO2 )および酸化イットリウム(Y2 3 )、ならびにそれらの混合物および化合物を用いることができる。第3層3、第5層5および第7層7は、特に、d線に対して1.62以上1.65以下の屈折率を示す中間屈折率材料(例えばAl2 3 )によって構成されていることが望ましい。
さらに、反射低減層21における第2層2、第4層4および第8層8は、d線に対して1.70以上2.50以下の範囲において中間屈折率材料よりも高い屈折率を示す高屈折率材料からなる高屈折率層である。ここでの高屈折率材料としては、例えばチタン酸ランタン(LaTiO3 )、酸化ジルコニウム(ZrO2 )、酸化チタン(TiO2 )、酸化タンタル(Ta2 5 )、酸化ニオブ(Nb2 5 )、酸化ハフニウム(HfO2 )および酸化セリウム(CeO2 )、ならびにそれらの混合物および化合物を用いることができる。第2層2、第4層4および第8層8は、特に、d線に対して2.08以上2.11以下の屈折率を示す高屈折率材料(例えばLaTiO3 を主成分とするサブスタンスH4(メルク社))によって構成されているとよい。
第1層1から第8層8においては、さらに、以下の条件式(1)〜(8)を全て満足するように各々構成されていることが望ましい。ただし、λ0は中心波長(単位:nm)であり、N1〜N8は第1層1から第8層8における中心波長λ0に対する屈折率であり、d1〜d8は第1層1から第8層8における物理的膜厚(単位:nm)である。
0.23×λ0≦N1×d1≦0.25×λ0 …… (1)
0.11×λ0≦N2×d2≦0.13×λ0 …… (2)
0.03×λ0≦N3×d3≦0.05×λ0 …… (3)
0.25×λ0≦N4×d4≦0.29×λ0 …… (4)
0.22×λ0≦N5×d5≦0.24×λ0 …… (5)
0.22×λ0≦N6×d6≦0.26×λ0 …… (6)
0.21×λ0≦N7×d7≦0.24×λ0 …… (7)
0.45×λ0≦N8×d8≦0.53×λ0 …… (8)
緩衝層22は、反射低減層21の第8層8と接する第9層9が上述の中間屈折率材料によって構成されたものである。第9層9のほか、第11層11および第13層13も上述の中間屈折率材料によって構成されると共に、第10層10および第12層12が上述の高屈折率材料によって構成されることが望ましい。緩衝層22における中間屈折率材料としては、特に、d線に対して1.62以上1.65以下の屈折率を示すAl2 3 などが望ましい。また、緩衝層22における高屈折率材料としては、特に、d線に対して2.08以上2.11以下の屈折率を示すサブスタンスH4(メルク社)などが望ましい。
このように、本実施の形態の反射低減膜20によれば、各々所定範囲の屈折率を示す第1層1〜第13層13を、d線に対して1.66以上2.20以下の屈折率を示す光学基板100の上に空気側から順に積層するようにしたので、可視域から近赤外域に亘る広い波長帯において、垂直入射光および斜入射光の双方に対する反射率を十分に低減することができる。特に、各条件式(1)〜(8)を満たすことにより光学膜厚N×dの最適化を図るようにしたので、上記の効果をよりいっそう高めることができる。したがって、本発明の反射低減膜および光学部材を放送用カメラなどの撮像装置における光学系に適用した場合には、フレアやゴーストの発生を抑制すると共に、より優れた色度バランス性を得ることができる。また、可視域から近赤外域まで対応できるので、昼夜兼用カメラの光学系に好適である。
[第2の実施の形態]
図2は、本発明における第2の実施の形態としての反射低減膜30の構成を示す概略断面図である。図2の反射低減膜30は、後述の第2の数値実施例(表10から表12,図15から図17)に対応している。
反射低減膜30は、光学基板100の表面100S上に設けられた合計11層からなる多層膜であり、第1層1から第11層11までの各層が、光学基板100と反対側から順に積層されたものである。このうち、第1層1から第8層8までが反射低減層31であり、第9層9から第11層11までが緩衝層32である。反射低減層31は反射低減層21と同様の構成である。なお、反射低減膜30に関する以下の説明においては、上記第1の実施の形態における反射低減膜20と実質的に異なる構成要素について主に記載し、同一の構成要素については適宜記載を省略する。
光学基板100については、d線に対して1.51以上1.72以下の屈折率を示す透明材料であれば好適に用いることができる。このような透明材料としては、例えばS−TIH1(オハラ社),BASF−2(住田光学ガラス社),F−3(住田光学ガラス社),LF1(住田光学ガラス社),BK7(住田光学ガラス社)などが挙げられる。
緩衝層32は、3層構造からなり、反射低減層31の第8層8と接する第9層9が上述の中間屈折率材料によって構成されたものである。第9層9のほか、第11層11も上述の中間屈折率材料によって構成されると共に、第10層10が上述の高屈折率材料によって構成されることが望ましい。緩衝層32における中間屈折率材料としては、特に、d線に対して1.62以上1.65以下の屈折率を示すAl2 3 などが望ましい。また、緩衝層32における高屈折率材料としては、特に、d線に対して2.08以上2.11以下の屈折率を示すサブスタンスH4(メルク社製)などが望ましい。
このように、本実施の形態の反射低減膜30によれば、各々所定範囲の屈折率を示す第1層1〜第11層11を、d線に対して1.51以上1.72以下の屈折率を示す光学基板100の上に空気側から順に積層するようにしたので、上記第1の実施の形態の反射低減膜20と同様の効果が得られる。
[第3の実施の形態]
図3は、本発明における第3の実施の形態としての反射低減膜40の構成を示す概略断面図である。図3の反射低減膜40は、後述の第3の数値実施例(表13から表16,図18から図21)に対応している。
反射低減膜40は、光学基板100の表面100S上に設けられた合計12層からなる多層膜であり、第1層1から第12層12までの各層が、光学基板100と反対側から順に積層されたものである。このうち、第1層1から第8層8までが反射低減層41であり、第9層9から第12層12までが緩衝層42である。反射低減層41は反射低減層21と同様の構成である。なお、反射低減膜40に関する以下の説明においては、上記第1の実施の形態における反射低減膜40と実質的に異なる構成要素について主に記載し、同一の構成要素については適宜記載を省略する。
光学基板100については、d線に対して1.40以上1.58以下の屈折率を示す透明材料であれば好適に用いることができる。このような透明材料としては、例えばLF1(住田光学ガラス社),BK7(住田光学ガラス社),FK−5(住田光学ガラス社),石英(シリカ)ガラス(SiO2 ),蛍石(CaF2 )などが挙げられる。特に、蛍石は色分散が小さい光学材料として知られており、光学基板100がレンズである場合には、色収差の小さいものとなる。
緩衝層42は、4層構造からなり、反射低減層41の第8層8と接する第9層9が上述の中間屈折率材料によって構成されたものである。第9層9のほか、第12層12も上述の中間屈折率材料によって構成され、第10層10が上述の高屈折率材料によって構成され、第11層11が上述の低屈折率材料によって構成されたものであることが望ましい。緩衝層42における中間屈折率材料としては、特に、d線に対して1.62以上1.65以下の屈折率を示すAl2 3 などが望ましい。また、緩衝層42における高屈折率材料としては、特に、d線に対して2.08以上2.11以下の屈折率を示すサブスタンスH4(メルク社)などが望ましい。さらに、緩衝層42における低屈折率材料としては、特に、d線に対して1.37以上1.40以下の屈折率を示すMgF2 などが望ましい。あるいは、より高い機械的強度を得るという観点から、低屈折率材料としてサブスタンスL5(メルク社)の採用が好ましい。
このように、本実施の形態の反射低減膜40によれば、各々所定範囲の屈折率を示す第1層1〜第12層12を、d線に対して1.40以上1.58以下の屈折率を示す光学基板100の上に空気側から順に積層するようにしたので、上記第1の実施の形態の反射低減膜20と同様の効果が得られる。
(第3の実施の形態における変形例)
図4は、本実施の形態の変形例としての反射低減膜40Aの構成を示す概略断面図である。図4の反射低減膜40Aは、後述の第4の数値実施例(表17および図22)に対応している。
上記実施の形態では、4層構造の緩衝層42うち、最も光学基板100側に位置する第12層12が中間屈折率材料によって構成されるようにしたが、これが高屈折率材料によって構成されるようにしてもよい。その場合、第12層12を、第10層10を構成する材料よりも低い屈折率を有する材料、特に、d線に対して1.80以上1.82以下の屈折率を示すY2 3 によって構成するとよい。こうした場合においても、上記第1の実施の形態の反射低減膜20と同様の効果が得られる。
[第4の実施の形態]
図5は、本発明における第4の実施の形態としてのレトロフォーカスレンズの構成例を表している。
図5において、符号Li(i=1〜8)は、最も物体側の構成要素を1番目として、像側(結像側)に向かうに従い順次増加するi番目の構成要素を示す。符号Si(i=1〜13)は、最も物体側の構成要素の面を1番目として、像側(結像側)に向かうに従い順次増加するi番目の面を示す。
このレトロフォーカスレンズは、例えば屋内外の監視用途や防犯用途で使用されるCCTV(Closed Circuit Television)カメラなどの撮像装置に搭載される光学系であり、光軸Z1に沿って物体側から順に第1〜第3のレンズ群G101〜G103が配置されたものである。ここで、例えば第1のレンズ群G101は負の屈折力を有する一方、第2のレンズ群G102および第3のレンズ群G103はいずれも正の屈折力を有する。第1のレンズ群G101および第2のレンズ群G102は、全体として負の屈折力を示す。図示しないが、第1のレンズ群G101と第2のレンズ群G102との間には周辺光束の透過を制限する絞りが設けられ、第2のレンズ群G102と第3のレンズ群G103との間には開口絞りが設けられている。
第1のレンズ群G101は、物体側から順に、物体側に凸面を向けた負のメニスカス形状のレンズL1と、両凸形状のレンズL2と、物体側に凸面を向けた負のメニスカス形状のレンズL3とが配列されてなるものである。第2のレンズ群G102は、像側に凸面を向けた正のメニスカス形状のレンズL4からなる。さらに第3のレンズ群G103は、物体側から順に、負のレンズL5および正のレンズL6からなる接合レンズL56と、物体側に凸面を向けた正のレンズL7とが配置されている。
このレトロフォーカスレンズの結像面(撮像面)Simgには、例えば図示しない電荷結合素子(CCD)などの撮像素子が配置される。第3のレンズ群G103と撮像面Simgとの間には、これを装着するカメラ側の構成に応じて、種々の光学部品GCが配置されている。光学部品GCとしては、例えば撮像面保護用のカバーガラスや各種光学フィルタなどの平板状の部材が挙げられる。
このような構成のレトロフォーカスレンズの各レンズL1〜L7の各面S1〜S13の(接合面を除く)全て、またはそれらのうちの任意の面Siに、上記第1〜第3の実施の形態における反射低減膜20,30,40,40Aのいずれかが設けられている。このため、このレトロフォーカスレンズでは、フレアやゴーストの発生を抑制すると共に、より優れた色度バランス性を得ることができる。また、可視域から近赤外域まで対応できるので、昼夜の撮影に対応可能である。
[第5の実施の形態]
図6は、本発明における第5の実施の形態としての広角系ズームレンズの構成例を表している。
この広角系ズームレンズは、例えば、e−シネマやHDTV用の撮影カメラに搭載されて使用されるものである。この広角系ズームレンズは、光軸Z1に沿って、フォーカス群G1、変倍群G20、開口絞りSt、リレーレンズ群G4が、物体側より順に配設された構成となっている。変倍群G20は、物体側より順に、第1移動群G2および第2移動群G3が配設された構成となっている。この広角系ズームレンズの結像面(撮像面)Simgには、例えば図示しない撮像素子が配置される。リレーレンズ群G4と撮像面との間には、レンズを装着するカメラ側の構成に応じて、種々の光学部材が配置されていても良い。図6の構成例では、色分解プリズム等からなる色分解光学系GCが配置されている。
この広角系ズームレンズは、変倍群G20を光軸上で移動させることにより変倍を行うようになっている。より具体的には、第1移動群G2を光軸上で移動させることにより変倍が行われ、それに伴う焦点移動の補正が第2移動群G3を光軸上で移動させることにより行われるようになっている。第1移動群G2と第2移動群G3は、広角端から望遠端へと変倍させるに従い、図6に実線で示した軌跡を描くように移動する。フォーカス調整は、フォーカス群G1の一部のレンズ群を光軸上で移動させることにより行われる。リレーレンズ群G4は、変倍時およびフォーカス時のいずれにおいても固定となっている。
フォーカス群G1は、全体として正の屈折力を有している。このフォーカス群G1は、全体として例えば負の屈折力を有すると共にフォーカス時に固定の第1レンズ群G11と、全体として正の屈折力を有する第2レンズ群G12と、全体として例えば正の屈折力を有すると共にフォーカス時に固定の第3レンズ群G13とが、物体側より順に配設された構成となっている。このフォーカス群G1を構成するレンズL11〜L19(後出)の全ての面、またはそれらのうちの任意の面には、上記第1〜第3の実施の形態における反射低減膜20,30,40,40Aのいずれかが設けられている。
第1レンズ群G11は、複数枚の負レンズが先行配置されると共に、最も結像面側に正レンズが配置された構成となっている。具体的には、例えば4枚のレンズL11〜L14で構成され、L11〜L13が負レンズ、レンズL14が正レンズとなっている。第1レンズ群G11において、レンズL11,L12は例えば、物体側に凸面を向けた負のメニスカスレンズとなっている。レンズL13は例えば、両凹レンズとなっている。レンズL14は例えば、両凸レンズとなっている。
第2レンズ群G12は、少なくとも1枚のレンズで構成され、かつ正レンズのみからなっている。第2レンズ群G12は、正の屈折力を有していることにより、無限遠から近距離物体(至近)へのフォーカス時に結像面側に移動する。このように、この広角系ズームレンズは、フォーカス群G1のうち、内部の一部の群を動かすインナーフォーカスタイプのレンズとなっている。第2レンズ群G12は、具体的には例えば、1枚の正レンズL15で構成されている。正レンズL15は例えば、物体側に凹面を向けた正のメニスカスレンズとなっている。
第3レンズ群G13は、物体側より順に、負レンズおよび複数枚の正レンズで構成され、最終面が像面に対して凸面を向けている。具体的には例えば、1枚の負レンズL16および3枚の正レンズL17〜L19で構成されている。負レンズL16は例えば、物体側に凸面を向けた負のメニスカスレンズとなっている。
変倍群G20において、第1移動群G2は、全体として負の屈折力を有している。この第1移動群G2は、具体的には例えば4枚のレンズL21〜L24により構成される。レンズL21は例えば、物体側に凸面を向けた負のメニスカスレンズとなっている。レンズL22は例えば、両凹レンズとなっている。レンズL23,L24は例えば、接合レンズとなっている。
第2移動群G3は、全体として正または負の屈折力を有している。この第2移動群G3は、具体的には例えば2枚の接合レンズL31,L32により構成される。
リレーレンズ群G4は、全体として正の屈折力を有している。このリレーレンズ群G4は、具体的には例えば10枚のレンズL41〜L50により構成される。レンズL41〜L44からなる前群とレンズL45〜L50からなる後群との間で、光束がほぼ平行となるように構成されている。
次に、以上のように構成された広角系ズームレンズの作用および効果を説明する。
この広角系ズームレンズでは、変倍群G20における第1移動群G2を光軸方向に移動させることにより、変倍が行われ、その変倍に伴う焦点移動の補正が、第2移動群G3を光軸方向に移動させることにより行われる。フォーカス調整は、フォーカス群G1のうち、第2レンズ群G12を光軸上で移動させることにより行われる。第2レンズ群G12は、正の屈折力を有していることにより、無限遠から近距離物体(至近)へのフォーカス時に結像面側に移動する。
この広角系ズームレンズでは、フォーカス群G1を複数群に分割し、そのうちの第2レンズ群G12のみを移動させるようなインナーフォーカスの構成を採用したことで、フォーカス時の画角変化(ブリージング)を良好に保つことができると共に、フォーカス調整機構の簡略化を図ることができる。また、最前群である第1レンズ群G11を固定群にしたことで、防塵・防曇性を確保することも容易となる。
さらに、フォーカス群G1を構成するレンズL11〜L19の(接合面を除く)全ての面、またはそれらの一部の面に、上記第1〜第3の実施の形態における反射低減膜20,30,40,40Aのいずれかを設けるようにしたので、フレアやゴーストの発生を抑制すると共に、より優れた色度バランス性を得ることができる。また、可視域から近赤外域まで対応できるので、昼夜の撮影に対応可能である。
また、一般に、反射低減膜を、例えばレンズL11の物体側の面のような比較的曲率の高い面上にスパッタリングなどの蒸着法によって形成する場合、その面の光軸から遠い部分(周辺部分)では、光軸に近い部分(中央部分)よりも膜厚が薄くなりがちである。そのうえ、面の周辺部分を通過する光は、面の法線に対して比較的大きい角度をもつことが多い。そのため、可視光の反射を低減する従来の反射低減膜をそのような曲率の高い面上に形成すると、周辺光量比が低下してしまう。ところが、本実施の形態に用いる反射低減膜20,30,40,40Aは、いずれも、可視域から近赤外域に亘る広い波長帯において、垂直入射光および斜入射光の双方に対する反射率を十分に低減することができるので、周辺光量比の低下を十分に抑制できる。
[第6の実施の形態]
図7は、本発明における第6の実施の形態としての色分解光学系101を備えた撮像装置の要部構成を示している。この撮像装置は例えばテレビカメラの撮像部分として利用される。色分解光学系101は、撮影レンズ102を介して入射した入射光Lを青色光LB、赤色光LR、および緑色光LGの3つの色光成分に分解するものである。色分解光学系101によって分解された各色光に対応する位置には、CCD等の各色光用の撮像素子104B,104R,104Gが配置されている。この色分解光学系101は、光軸Z1に沿って光の入射側から順に、第1のプリズム110と、第2のプリズム120と、第3のプリズム130とを備えている。本実施の形態における色分解光学系101は、第1のプリズム110で青色光LB、第2のプリズム120で赤色光LR、第3のプリズム130で緑色光LGをそれぞれ取り出す構成例である。なお、色分解光学系101は、第1のプリズム110と第2のプリズム120とが空気間隔110AGを空けて配置されたフィリップス型と呼ばれるものである。
第1のプリズム110は、第1の面111、第2の面112、および第3の面113を有している。第1のプリズム110の第3の面113は光射出面である。この射出面にはトリミングフィルタ151が設けられている。トリミングフィルタ151の光射出面にはゴースト・フレア防止用の反射低減膜151ARが形成されている。なお、トリミングフィルタ151を設けることなく、第1のプリズム110の第3の面113に直接、反射低減膜151ARを形成するようにしてもよい。
第1のプリズム110の第2の面12には、第1のダイクロイック膜としての青色光反射ダイクロイック膜DBが形成されている。青色光反射ダイクロイック膜DBは、第1の色光成分として青色光LBを反射し、緑色光LGおよび赤色光LRを透過する膜構成とされている。
第2のプリズム120は、第1の面121、第2の面122、および第3の面123を有している。第2のプリズム120の第3の面123は光射出面である。この射出面にはトリミングフィルタ152が設けられている。トリミングフィルタ152の光射出面には、ゴースト・フレア防止用の反射低減膜152ARが形成されている。なお、トリミングフィルタ152を設けることなく、第2のプリズム120の第3の面123に直接、反射低減膜152ARを形成するようにしてもよい。
第2のプリズム120の第2の面122には、第2のダイクロイック膜としての赤色光反射ダイクロイック膜DRが形成されている。赤色光反射ダイクロイック膜DRは、第2の色光成分として赤色光LRを反射し、緑色光LGを透過する膜構成とされている。
第3のプリズム130は、第1の面131、および第2の面132を有している。第3のプリズム130は、赤色光反射ダイクロイック膜DRを介して第2のプリズム120に接合されている。より詳しくは、第2のプリズム120の第2の面122と、第3のプリズム130の第1の面131とが赤色光反射ダイクロイック膜DRを介して接合されている。第3のプリズム130の第2の面132は光射出面である。この射出面にはトリミングフィルタ153が設けられている。このトリミングフィルタ153の光射出面には、ゴースト・フレア防止用の反射低減膜153ARが形成されている。なお、トリミングフィルタ153を設けることなく、第3のプリズム130の第2の面132に直接、反射低減膜153ARを形成するようにしてもよい。
次に、本実施の形態における撮像装置の作用、特に色分解光学系101の光学的な作用および効果を説明する。
この撮像装置において、図示しない光源によって照射された図示しない被写体からの被写体光は、撮影レンズ102を介して色分解光学系101に入射される。色分解光学系101では入射光Lを青色光LB、赤色光LR、および緑色光LGの3つの色光成分に分解する。より詳しくは、まず、入射光Lのうち青色光LBが、青色光反射ダイクロイック膜DBによって反射され、第1のプリズム110から第1の色光成分として取り出される。また、青色光反射ダイクロイック膜DBを透過した赤色光LRが、赤色光反射ダイクロイック膜DRによって反射され、第2のプリズム120から第2の色光成分として取り出される。さらに、青色光反射ダイクロイック膜DB、および赤色光反射ダイクロイック膜DRを透過した緑色光LGが、第3の色光成分として第3のプリズム130から取り出される。色分解光学系101によって分解された各色光は、各色光に対応して設けられた撮像素子104B,104R,104Gに入射する。撮像素子104B,104R,104Gでは、入射した各色光に応じた電気信号を撮像信号として出力する。
本実施の形態では、第1〜第3のプリズム110,120,130の各光射出面に、それぞれ反射低減膜151AR,152AR,153ARを設けるようにしている。それら反射低減膜151AR,152AR,153ARとして、上記第1〜第3の実施の形態における反射低減膜20,30,40,40Aのいずれかを適用するようにすれば、フレアやゴーストの発生を抑制すると共に、より優れた色度バランス性を得ることができる。また、可視域から近赤外域まで対応できるので、昼夜の撮影に対応可能である。
次に、本実施の形態に係る反射低減膜の具体的な数値実施例について説明する。
<第1の数値実施例>
第1の数値実施例(実施例1−1〜1−7)を表3〜表9および図8〜図14に示す。ここで表3〜表9が、図1に示した反射低減膜20に対応する実施例1−1〜1−7の基本データをそれぞれ示している。また、図8〜図14が実施例1−1〜1−7の反射率分布をそれぞれ示している。そのうち、図8(A),図9(A),図10(A),図11(A),図12(A),図13(A)および図14(A)が、各実施例の垂直入射光に対する反射率分布をそれぞれ示し、図8(B),図9(B),図10(B),図11(B),図12(B),図13(B)および図14(B)が、各実施例の斜入射光(45°入射光)に対する反射率分布をそれぞれ示す。
Figure 0004630915
Figure 0004630915
Figure 0004630915
Figure 0004630915
Figure 0004630915
Figure 0004630915
Figure 0004630915
表3〜表9には、各層の構成材料、d線に対する屈折率N、物理的膜厚d(単位:nm)および光学膜厚N×d(単位:nm)をそれぞれ示す。実施例1−1〜1−7は、互いに光学基板の構成材料が異なることを除き、他は同様の構成を有している。構成材料の欄における「SUB−H4」は、LaTiO3 を主成分とするサブスタンスH4(メルク社)を表している。また光学膜厚N×dの欄に示した中心波長λ0については全て600nmとした。各表から明らかなように、反射低減層に相当する第1層から第8層の各屈折率Nおよび各光学膜厚N×dの値は上記した条件式(1)〜(8)を全て満足している。また、緩衝層に相当する第9層から第13層では、反射低減層と接する第9層が全ての実施例において中間屈折率材料によって構成されている。
図8(A),図9(A),図10(A),図11(A),図12(A),図13(A)および図14(A)では、縦軸が垂直入射光に対する反射率(%)を表し、横軸が測定時の波長λ(nm)を表す。各図から明らかなように、いずれにおいても、おおよそ400nmから900nmの帯域において反射率が0.4%未満の良好な反射特性が得られた。また、図8(B),図9(B),図10(B),図11(B),図12(B),図13(B)および図14(B)では、縦軸が45°入射光に対する反射率(%)を表し、横軸が測定時の波長λ(nm)を表す。各図から明らかなように、いずれにおいても、おおよそ400nmから900nmの帯域において反射率が2.0%未満に収まり、斜入射光に対しても良好な反射特性が得られた。また、緩衝層が、反射低減層の第8層と接するように設けられた中間屈折率材料からなる第9層を含むことから、緩衝層が、光学基板および反射低減層の双方との密着性を良好に維持し、高い剥離強度が確保されていることも確認された。
<第2の数値実施例>
第2の数値実施例(実施例2−1〜2−3)を表10〜表12および図15〜図17に示す。ここで表10〜表12が、図2に示した反射低減膜30に対応する実施例2−1〜2−3の基本データをそれぞれ示している。また、図15〜図17が実施例2−1〜2−3の反射率分布をそれぞれ示している。そのうち、図15(A),図16(A)および図17(A)が、各実施例の垂直入射光に対する反射率分布をそれぞれ示し、図15(B),図16(B)および図17(B)が、各実施例の斜入射光(45°入射光)に対する反射率分布をそれぞれ示す。
Figure 0004630915
Figure 0004630915
Figure 0004630915
表10〜表12には、上記した表3〜表9と同様の項目についてそれぞれ示す。実施例2−1〜2−3は、互いに光学基板の構成材料が異なることを除き、他は同様の構成を有している。各表から明らかなように、反射低減層に相当する第1層から第8層の各屈折率Nおよび各光学膜厚N×dの値は上記した条件式(1)〜(8)を全て満足している。
また、緩衝層に相当する第9層から第11層では、反射低減層と接する第9層が全ての実施例において中間屈折率材料によって構成されている。
図15(A),図16(A)および図17(A)では、縦軸が垂直入射光に対する反射率(%)を表し、横軸が測定時の波長λ(nm)を表す。各図から明らかなように、いずれにおいても、おおよそ400nmから900nmの帯域において反射率が0.4%未満の良好な反射特性が得られた。また、図15(B),図16(B)および図17(B)では、縦軸が45°入射光に対する反射率(%)を表し、横軸が測定時の波長λ(nm)を表す。各図から明らかなように、いずれにおいても、おおよそ400nmから900nmの帯域において反射率が2.0%未満に収まり、斜入射光に対しても良好な反射特性が得られた。また、緩衝層が、反射低減層の第8層と接するように設けられた中間屈折率材料からなる第9層を含むことから、緩衝層が、光学基板および反射低減層の双方との密着性を良好に維持し、高い剥離強度が確保されていることも確認された。
<第3の数値実施例>
第3の数値実施例(実施例3−1〜3−4)を表13〜表16および図18〜図21に示す。ここで表13〜表16が、図3に示した反射低減膜40に対応する実施例3−1〜3−4の基本データをそれぞれ示している。また、図18〜図21が実施例3−1〜3−4の反射率分布をそれぞれ示している。そのうち、図18(A),図19(A),図20(A)および図21(A)が、各実施例の垂直入射光に対する反射率分布をそれぞれ示し、図18(B),図19(B),図20(B)および図21(B)が、各実施例の斜入射光(45°入射光)に対する反射率分布をそれぞれ示す。
Figure 0004630915
Figure 0004630915
Figure 0004630915
Figure 0004630915
表13〜表16には、上記した表3〜表9と同様の項目についてそれぞれ示す。実施例3−1〜3−4は、互いに光学基板の構成材料が異なることを除き、他は同様の構成を有している。各表から明らかなように、反射低減層に相当する第1層から第8層の各屈折率Nおよび各光学膜厚N×dの値は上記した条件式(1)〜(8)を全て満足している。また、緩衝層に相当する第9層から第12層では、反射低減層と接する第9層が全ての実施例において中間屈折率材料によって構成されている。
図18(A),図19(A),図20(A)および図21(A)では、縦軸が垂直入射光に対する反射率(%)を表し、横軸が測定時の波長λ(nm)を表す。各図から明らかなように、いずれにおいても、おおよそ400nmから900nmの帯域において反射率が0.4%未満の良好な反射特性が得られた。また、図18(B),図19(B),図20(B)および図21(B)では、縦軸が45°入射光に対する反射率(%)を表し、横軸が測定時の波長λ(nm)を表す。各図から明らかなように、いずれにおいても、おおよそ400nmから900nmの帯域において反射率が2.0%未満に収まり、斜入射光に対しても良好な反射特性が得られた。また、緩衝層が、反射低減層の第8層と接するように設けられた中間屈折率材料からなる第9層を含むことから、緩衝層が、光学基板および反射低減層の双方との密着性を良好に維持し、高い剥離強度が確保されていることも確認された。
<第4の数値実施例>
第4の数値実施例(実施例4−1)を表17および図22に示す。ここで表17が、図4に示した反射低減膜40Aに対応する実施例4−1の基本データを示し、図22が実施例4−1の反射率分布を示している。特に、図22(A)が実施例4−1の垂直入射光に対する反射率分布を示し、図22(B)が実施例4−1の斜入射光に対する反射率分布を示す。
Figure 0004630915
表17には、上記した表3〜表9と同様の項目について示す。表17から明らかなように、反射低減層に相当する第1層から第8層の各屈折率Nおよび各光学膜厚N×dの値は上記した条件式(1)〜(8)を全て満足している。また、緩衝層に相当する第9層から第12層では、反射低減層と接する第9層が中間屈折率材料によって構成されている。
図22(A)では、縦軸が垂直入射光に対する反射率(%)を表し、横軸が測定時の波長λ(nm)を表す。図22(A)から明らかなように、おおよそ400nmから900nmの帯域において反射率が0.4%未満の良好な反射特性が得られた。また、図22(B)では、縦軸が45°入射光に対する反射率(%)を表し、横軸が測定時の波長λ(nm)を表す。図22(B)から明らかなように、おおよそ400nmから900nmの帯域において反射率が2.0%未満に収まり、斜入射光に対しても良好な反射特性が得られた。また、緩衝層が、反射低減層の第8層と接するように設けられた中間屈折率材料からなる第9層を含むことから、緩衝層が、光学基板および反射低減層の双方との密着性を良好に維持し、高い剥離強度が確保されていることも確認された。
以上の各基本データおよび各反射率分布図から明らかなように、各実施例では、可視域から近赤外域まで安定した低い反射率分布が実現されている。すなわち、本発明の反射低減膜によれば、従来よりも広い帯域において反射率を十分に低減し、かつ、その反射率の分布を十分に平坦化することが可能なことが確認された。
以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は上記実施の形態および実施例に限定されず、種々の変形が可能である。例えば、各層および各基板の屈折率および光学膜厚の値は、上記各数値実施例で示した値に限定されず、他の値をとり得るものである。また、各層および各基板を構成する材料種についても上記各数値実施例で示したものに限定されず、他の材料種を利用することが可能である。
さらに、各層を、等価膜理論に基づき、複数の膜によって構成してもよい。すなわち、2種類の屈折率膜を対称に積層することにより、光学的に単層として振る舞うように構成してもよい。
また、上記実施の形態等では、緩衝層が複数層からなる多層構造の場合について説明するようにしたが、本発明はこれに限定されるものではない。すなわち、本発明では、緩衝層を中間屈折率材料からなる単層構造としてもよい。
本発明における第1の実施の形態としての反射防止膜の断面図である。 本発明における第2の実施の形態としての反射防止膜の断面図である。 本発明における第3の実施の形態としての反射防止膜の断面図である。 図3の変形例としての反射低減膜の断面図である。 本発明における第4の実施の形態としてのレトロフォーカスレンズの断面図である。 本発明における第5の実施の形態としての広角系ズームレンズの断面図である。 本発明における第6の実施の形態としての色分解光学系の断面図である。 図1に示した反射低減膜に対応する実施例1−1の反射率分布図である。 図1に示した反射低減膜に対応する実施例1−2の反射率分布図である。 図1に示した反射低減膜に対応する実施例1−3の反射率分布図である。 図1に示した反射低減膜に対応する実施例1−4の反射率分布図である。 図1に示した反射低減膜に対応する実施例1−5の反射率分布図である。 図1に示した反射低減膜に対応する実施例1−6の反射率分布図である。 図1に示した反射低減膜に対応する実施例1−7の反射率分布図である。 図2に示した反射低減膜に対応する実施例2−1の反射率分布図である。 図2に示した反射低減膜に対応する実施例2−2の反射率分布図である。 図2に示した反射低減膜に対応する実施例2−3の反射率分布図である。 図3に示した反射低減膜に対応する実施例3−1の反射率分布図である。 図3に示した反射低減膜に対応する実施例3−2の反射率分布図である。 図3に示した反射低減膜に対応する実施例3−3の反射率分布図である。 図3に示した反射低減膜に対応する実施例3−4の反射率分布図である。 図4に示した反射低減膜に対応する実施例4−1の反射率分布図である。 従来例1,2の反射率分布図である。
符号の説明
1〜13…第1層〜第13層、20,30,40,40A…反射低減膜、100…光学基板、100S…表面、101…色分解光学系、102…撮像レンズ、110…第1のプリズム、120…第2のプリズム、130…第3のプリズム、151AR,152AR,153AR…反射低減膜、G101〜G103…第1〜第3のレンズ群、G1…フォーカス群、G2…第1移動群、G3…第2移動群、G4…リレーレンズ群。

Claims (7)

  1. 基板上に、前記基板と反対側から順に積層された第1から第8の層を含む反射低減層を備え、
    第1および第6の層は、d線に対して1.35以上1.50以下の屈折率を示す低屈折率材料からなり、
    第3、第5および第7の層は、d線に対して1.55以上1.85以下の屈折率を示す中間屈折率材料からなり、
    第2、第4および第8の層は、d線に対して1.70以上2.50以下の範囲において前記中間屈折率材料よりも高い屈折率を示す高屈折率材料からなり、
    前記基板と前記反射低減層との間に、前記中間屈折率材料からなる単層構造、または、前記反射低減層と接する層が前記中間屈折率材料によって構成された多層構造を有する緩衝層をさらに備え、
    以下の条件式(1)〜(8)を全て満足することを特徴とする反射低減膜。
    0.23×λ0≦N1×d1≦0.25×λ0 …… (1)
    0.11×λ0≦N2×d2≦0.13×λ0 …… (2)
    0.03×λ0≦N3×d3≦0.05×λ0 …… (3)
    0.25×λ0≦N4×d4≦0.29×λ0 …… (4)
    0.22×λ0≦N5×d5≦0.24×λ0 …… (5)
    0.22×λ0≦N6×d6≦0.26×λ0 …… (6)
    0.21×λ0≦N7×d7≦0.24×λ0 …… (7)
    0.45×λ0≦N8×d8≦0.53×λ0 …… (8)
    ただし、
    λ0:中心波長
    N1〜N8:第1から第8の層における中心波長λ0に対する屈折率
    d1〜d8:第1から第8の層における物理的膜厚
  2. 前記基板のd線に対する屈折率が1.66以上2.2以下であり、
    前記緩衝層は前記反射低減層の側から順に積層された第9から第13の層を含み、
    前記第9,第11および第13の層が前記中間屈折率材料によって構成されると共に前記第10および第12の層が前記高屈折率材料によって構成される
    ことを特徴とする請求項記載の反射低減膜。
  3. 前記基板のd線に対する屈折率が1.51以上1.72以下であり、
    前記緩衝層は前記反射低減層の側から順に積層された第9から第11の層を含み、
    前記第9および第11の層が前記中間屈折率材料によって構成されると共に前記第10の層が前記高屈折率材料によって構成される
    ことを特徴とする請求項記載の反射低減膜。
  4. 前記基板のd線に対する屈折率が1.40以上1.58以下であり、
    前記緩衝層は前記反射低減層の側から順に積層された第9から第12の層を含み、
    前記第9および第12の層が前記中間屈折率材料、前記第10の層が前記高屈折率材料、前記第11の層が前記低屈折率材料によってそれぞれ構成され、または前記第9の層が前記中間屈折率材料、前記第10および第12の層が前記高屈折率材料、前記第11の層が前記低屈折率材料によってそれぞれ構成される
    ことを特徴とする請求項記載の反射低減膜。
  5. 前記低屈折率材料は、フッ化マグネシウム(MgF2)、二酸化珪素(SiO2)およびフッ化アルミニウム(AlF3)のうちの少なくとも1種を含むものであり、
    前記中間屈折率材料は、プラセオジウムアルミネート(PrAlO3)、ランタンアルミネート(La2XAl2Y3(X+Y))、酸化アルミニウム(Al23)、酸化ゲルマニウム(GeO2)および酸化イットリウム(Y23)のうちの少なくとも1種を含むものであり、
    前記高屈折率材料は、チタン酸ランタン(LaTiO3)、酸化ジルコニウム(ZrO2)、酸化チタン(TiO2)、酸化タンタル(Ta25)、酸化ニオブ(Nb25)、酸化ハフニウム(HfO2)および酸化セリウム(CeO2)のうちの少なくとも1種を含むものである
    ことを特徴とする請求項1から請求項のいずれか1項記載の反射低減膜。
  6. 請求項1から請求項記載の反射低減膜が表面に設けられていることを特徴とする光学部材。
  7. 請求項記載の光学部材を備えたことを特徴とする光学系。
JP2008134224A 2008-05-22 2008-05-22 反射低減膜、光学部材、光学系 Expired - Fee Related JP4630915B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008134224A JP4630915B2 (ja) 2008-05-22 2008-05-22 反射低減膜、光学部材、光学系
EP09006854A EP2128658A3 (en) 2008-05-22 2009-05-20 Reflection reducing film, optical member and optical system
US12/470,216 US8248699B2 (en) 2008-05-22 2009-05-21 Reflection reducing film, optical member and optical system
CN2009102038750A CN101587197B (zh) 2008-05-22 2009-05-22 减反射膜、光学构件、光学系统
US13/549,086 US20120276350A1 (en) 2008-05-22 2012-07-13 Reflection reducing film, optical member and optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008134224A JP4630915B2 (ja) 2008-05-22 2008-05-22 反射低減膜、光学部材、光学系

Publications (2)

Publication Number Publication Date
JP2009282295A JP2009282295A (ja) 2009-12-03
JP4630915B2 true JP4630915B2 (ja) 2011-02-09

Family

ID=41371522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134224A Expired - Fee Related JP4630915B2 (ja) 2008-05-22 2008-05-22 反射低減膜、光学部材、光学系

Country Status (2)

Country Link
JP (1) JP4630915B2 (ja)
CN (1) CN101587197B (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101782216B (zh) * 2010-02-04 2014-05-28 海洋王照明科技股份有限公司 一种具有超宽带增透保护膜的反光器
CN101846756A (zh) * 2010-05-26 2010-09-29 湖南大学 一种用于玻璃表面增透的MgF2/氧化物复合膜
JP2012042665A (ja) * 2010-08-18 2012-03-01 Sony Corp 光学機能素子および撮像装置
KR101463956B1 (ko) * 2013-05-21 2014-11-26 (주)소모옵티칼 청색광 차단 렌즈
CN105268110B (zh) * 2014-06-19 2018-03-13 昆山科技大学 黄疸光疗装置
CN104216034B (zh) * 2014-09-02 2016-04-06 西安应用光学研究所 一种用于大曲率透镜表面的0.532微米与1.064微米倍频减反射膜
CN105527668B (zh) * 2016-01-12 2018-03-13 武汉华星光电技术有限公司 显示器及其防蓝光薄膜
CN106292065A (zh) * 2016-08-31 2017-01-04 张家港康得新光电材料有限公司 量子点膜及背光模组
CN106200123A (zh) * 2016-08-31 2016-12-07 张家港康得新光电材料有限公司 一种量子点膜及背光模组
CN109791271A (zh) * 2016-09-30 2019-05-21 日本电产株式会社 透镜单元以及摄像装置
CN107881473A (zh) * 2017-12-15 2018-04-06 奥特路(漳州)光学科技有限公司 一种抗磨、抗腐蚀以及增透镜片镀膜方法
CN108060390A (zh) * 2017-12-15 2018-05-22 奥特路(漳州)光学科技有限公司 一种防尘镜片镀膜方法
CN108169825A (zh) * 2017-12-18 2018-06-15 池州市正彩电子科技有限公司 一种高硬度增透膜的成型方法
CN108227048B (zh) * 2018-01-26 2019-11-05 河南师范大学 硅晶圆上的一种低发射率红外增透膜
CN109001849B (zh) * 2018-08-22 2024-04-19 杭州科汀光学技术有限公司 一种宽波长域的高效减反射膜及光学系统
CN109103233A (zh) * 2018-08-31 2018-12-28 信利光电股份有限公司 一种有机发光二极管显示屏
CN111856625A (zh) * 2019-04-30 2020-10-30 三营超精密光电(晋城)有限公司 镜头模组及具有该镜头模组的电子装置
CN113031119A (zh) * 2020-09-21 2021-06-25 威海世高光电子有限公司 光学镜头、光学镜头的制造方法及微型投影系统
CN112764135B (zh) * 2021-01-04 2023-08-18 杭州科汀光学技术有限公司 一种极低残余反射的窄带减反射膜
CN113502454A (zh) * 2021-07-22 2021-10-15 深圳市易卜光电有限公司 一种摄像头镜片镀膜丝印方法
CN115079313B (zh) * 2022-06-10 2023-08-08 贵州铜仁旭晶光电科技有限公司 一种高稳定性的蓝玻璃增透膜

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228285A (ja) * 2005-02-15 2006-08-31 Konica Minolta Opto Inc 光ピックアップ用光学素子及び光ピックアップ装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032001A (ja) * 1983-08-01 1985-02-19 Minolta Camera Co Ltd 反射防止膜
JPS6180203A (ja) * 1984-09-28 1986-04-23 Toshiba Corp 光干渉体
US5725959A (en) * 1993-03-18 1998-03-10 Canon Kabushiki Kaisha Antireflection film for plastic optical element
JP2002267801A (ja) * 2001-03-12 2002-09-18 Canon Inc 反射防止膜及びそれを用いた光学部材
CN101154544B (zh) * 2006-09-27 2011-04-13 甘国工 等离子体显示器的具有防电磁辐射及滤光功能的滤光板
CN201000868Y (zh) * 2006-12-28 2008-01-02 甘国工 等离子体显示器滤光片及使用该滤光片的显示器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228285A (ja) * 2005-02-15 2006-08-31 Konica Minolta Opto Inc 光ピックアップ用光学素子及び光ピックアップ装置

Also Published As

Publication number Publication date
CN101587197A (zh) 2009-11-25
CN101587197B (zh) 2012-07-18
JP2009282295A (ja) 2009-12-03

Similar Documents

Publication Publication Date Title
JP4630915B2 (ja) 反射低減膜、光学部材、光学系
US8248699B2 (en) Reflection reducing film, optical member and optical system
JP4958594B2 (ja) 反射防止膜、光学素子および光学系
JP4958536B2 (ja) 反射防止膜
EP2708922B1 (en) Anti-reflection coating, optical member having it, and optical equipment comprising such optical member
US11221469B2 (en) Zooming optical system, optical apparatus, and manufacturing method for the zooming optical system
JP4984231B2 (ja) ズームレンズ、光学機器、および結像方法
US8908273B2 (en) Imaging lens, optical apparatus equipped therewith and method for manufacturing imaging lens
JP5354345B2 (ja) 変倍光学系、この変倍光学系を備えた光学機器
US10302905B2 (en) Optical system, image-capturing device comprising optical system and method for manufacturing optical system
JP4079551B2 (ja) 撮像装置及び撮像光学系
US8922905B2 (en) Variable-magnification projection optical system and projection display device
US8605370B2 (en) Imaging lens, optical apparatus equipped therewith, and method for manufacturing imaging lens
JP4630916B2 (ja) 反射低減膜、光学部材、光学系
US9753271B2 (en) Eyepiece lens, viewfinder optical system and optical apparatus equipped with the same, and method for manufacturing eyepiece lens
JP2007333806A (ja) 反射防止膜および光学部材
JP2001033700A (ja) ズームレンズ
US9791678B2 (en) Zoom lens, imaging device and method for manufacturing the zoom lens
JP2012237953A (ja) 変倍光学系、光学装置、変倍光学系の製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees